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Abstract The polar ZnO surfaces have received wide

interests due to their higher activity than the nonpolar facets

in catalysis, photo-catalysis and gas sensitivity. However,

the theoretical study on the relative stability of the polar ZnO

surfaces is still limited. In this work, two different methods

were used to calculate the surface energy of the polar

ZnO(0001)–Zn and Zn(000-1)–O surfaces. The empirical

pair potential method shows that the ZnO(000-1)–O terminal

is more stable than the ZnO(0001)–Zn terminal because the

polarizability of surface O2- is higher than that of surface

Zn2?, which is in good agreement with the experimental

results. However, the classic local energy density method

predicts a higher stability of the ZnO(0001)–Zn terminal.

The overestimation of the stability of the ZnO(0001)–Zn

terminal originates from more distribution of the transferred

charge to the ZnO(0001)–Zn terminal as the electron

acceptor. We propose a hybrid method to fairly redistribute

the contribution of the transferred charge to electron donor

and electron acceptor and make the same stability trend with

the experimental studies.

Keywords ZnO � Polar surfaces � The stability �
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1 Introduction

Zinc oxides with the wurtzite structure have attracted much

attention due to their applications in catalysis [1, 2], photo-

catalysis [3–5] and gas sensing systems [6], etc. ZnO sur-

faces generally consist of a couple of polar surfaces in

(0001) direction terminated with zinc (denoted by

ZnO(0001)–Zn), in (000-1) direction terminated with

oxygen (denoted by ZnO(000-1)–O) and a nonpolar (01-

10) plane. In recent years, the polar surfaces of

ZnO(0001)–Zn/ZnO(000-1)–O have been demonstrated to

possess higher activity than other facets in catalysis [7],

photocatalysis [3] and gas sensitivity [8], etc. For instance,

Li et al. [7] found that ZnO with large polar surfaces is

more catalytically active for the N-formylation reaction.

Mclaren et al. [3] found that the polar faces of ZnO are

more active than the nonpolar surfaces for the photocata-

lytic reaction in the decomposition of methylene blue.

The comparison between the polar surfaces and the

nonpolar surfaces of ZnO has been widely studied [9],

while the comparison in the polar surfaces was little

investigated. The low temperature sublimation processes

indicated a higher sublimation rate of the ZnO(0001)–Zn

surface compared to the ZnO(000-1)–O surface [10, 11]. In

addition, during the process of ZnO growth, the growth

speed of ZnO nanorods is reported to be 3:1 in the (0001)

direction versus the (000-1) direction [12]. These experi-

ments clearly displayed that the ZnO(000-1)–O surface is

more stable than the ZnO(0001)–Zn surface. This conclu-

sion is confirmed by the theoretical results [12, 13]. In

particular, Na and Park (NP) [12] obtained the separated

surface energies of the ZnO(0001)–Zn and Zn(000-1)–O

surfaces of 2.247 and 2.042 J/m2 by combining multiple

calculations—total energy of slabs with/without hydrogen

passivation. Although the relative stability of the ZnO polar

surfaces by this method agrees well with the experimental

results, the calculated surface energy is only an estimated

value by the energy between the surface with and without

hydrogen passivation. Therefore, a more direct calculation
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of the surface energy of ZnO polar surface is requested

from a theoretical point of view.

Theoretically, the surface energy is defined as the

energy difference between the surface and bulk for one unit

area. In the ab initio calculations, it is very convenient to

calculate the surface energy of a surface with a symmetric

opposite surfaces. An infinite slab with two symmetric

surfaces can be built, and the surface energy is normally

calculated by

c ¼ Eslab � n � Ebulk

2A
ð1Þ

where c is the surface energy and Eslab is the energy of the

slab. n is the atomic number of the slab and Ebulk is the

energy per atom in the bulk. A is the area of the slab.

However, only the total surface energy of two polar ZnO

surfaces can be calculated based on this method, since the

average distribution of total surface energy to two opposite

polar surfaces is not a good choice. The challenge is to

develop a suitable method to separate of the total surface

energy into two asymmetric surfaces fairly, which was

even considered to be inaccessible for a long time [14].

In principle, the local energy density method [15], which

can determine a local energy density of a system, is

desirable to obtain the separated surface energies for the

polar surfaces. However, although the energy density

function is not gauge invariant, the sum of energy density

on an atom is still dependent on the choice of the regions of

the atoms. This puzzle is very similar to that in determining

atomic charges [16], which is also gauge dependent. As a

result, several different methods based on different gauges

were built, such as Voronoi method, Bader method or

Yu_Trinkle_Martin et al.’s (YTM) [17] method. In this

work, the separated surface energies of the ZnO(0001)–Zn

terminal and the ZnO(000-1)–O terminal were calculated

by an empirical pair potential (PP) method and the local

energy density method. For the local energy density

method, Bader method and YTM method were initially

employed. Considering the shortcomings of Bader method

and YTM method on the polar surfaces, we propose a new

hybrid method to calculate the surface energies of

ZnO(0001)–Zn and ZnO(000-1)–O polar surfaces.

2 Methods

Several sets of the empirical atomistic potentials have been

employed to describe ZnO structure [18–21]. The pair

potential developed by Whitmore et al. [22] was adopted in

this work due to three reasons. First, the local energy of

each ion is convenient to be defined as the half potential

energy between one ion and other ions for the PP method.

Second, the potential is achieved from the GULP code

[23], which provides a good overall agreement with the

experiments and density functional theory (DFT) calcula-

tions. Last, the oxygen atom is separated into two parts:

O-core and O-shell, which make possible the deviation of

oxygen charge on O-shell and O-core. The deviation is

regarded curial to understand the relative stability of the

ZnO polar surfaces (see the discussion in the text). The

forms of Whitmore’s potentials were described by a sum-

marization of Buckingham potentials, Lennard-Jones

potentials, Spring potentials, Polynomial potentials and

Coulomb potentials [22]. All the potentials except Cou-

lomb potentials were considered as short-range potentials

and were cut off at 12.0 Å. For the long-range Coulomb

potentials, we use Wolf summation [24] rather than Ewald

summation. According to Wolf summation, the Coulomb

energy contribution can be given as [25],

ECoul ¼ 1
2

PN

i¼1

P

j6¼i
rij\Rc

qiqjerfcðrij=bÞ
rij

� lim
rij!Rc

qiqjerfcðrij=bÞ
rij

n o� �

� erfcðRc=bÞ
2Rc

þ 1

bp1=2

� �XN

i¼1

q2
i

ð2Þ

where rij is the distance between the ions i and j, q is the

ionic charge, b is a controllable parameter and Rc is cutoff

distance. Testing calculation results show that the energy

error is \0.003 eV if RC = 12.0 Å and b = 4 were adop-

ted. The local minimum is achieved when the residual

force on every atom is \0.001 eV Å-1.

Periodic DFT calculations using Vienna Ab Initio

Simulation Package (VASP) [26] were performed to cal-

culate ZnO systems. The total energy was calculated by

solving the Kohn–Sham equations, using the exchange

correlation functional proposed by Perdew and Zunger

[27], corrected for nonlocality in the generalized gradient

approximation (GGA) with PW91 functional [28]. Plane

waves are used to expand wave functions with a cutoff of

400 eV for projector augmented wave (PAW) potentials

[29, 30]. The criteria for the convergence in the structural

relaxation were the residual force \0.02 eV Å-1. Spin

polarization and dipole corrections are considered during

all the calculations. The local energy density is calculated

by the energy density method, which is implemented into

the framework of VASP by Yu et al. [17] The ZnO(0001)

slab surface is modeled by a ten-layer slab with a vacuum

thickness of 15 Å. A 1 9 1 supercell is used with the

Monkhorst–Pack (MP) 8 9 8 9 1 k-point mesh.

3 Results and discussion

The empirical PP method shows that the bulk ZnO has the

parameters of a = 3.2515 Å, b = 5.2001 Å, z0 = 0.3804 Å,
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which are in good agreement with Whitmore’s results

(a = 3.2518 Å, b = 5.1969 Å, z0 = 0.3806 Å [22]). The

slight difference may originate from the different methods to

calculate the Coulomb energy contribution. In the bulk ZnO

structure, O-core has a deviation from O-shell by 0.0026 Å in

(000-1) direction owing to the polarity of ZnO4 unit in ZnO

crystal. The bond length of Zn–O in (0001) direction is

1.992 Å, slightly longer than those in other directions

(1.973 Å). Correspondingly, the weight center of four O2-

ions in ZnO4 unit deviates from Zn2?, leading to the deviation

of the charge on O2- (O-shell in PP method) from the O-core

because of the Coulomb interaction, and thus, the polarity is

formed in (0001) direction.

Figure 1a shows the structure of the ZnO(0001)–Zn

terminal with six surface layers and six bulk layers

employed in PP method. In this model, ZnO is separated

into the bulk region and the surface region. In the bulk

region, all the ions including the Zn2?, O-core and O-shell

are fixed at the bulk sites, and the total layer number is

fixed at six. The six layers in the bulk region are thicker

than the cutoff distance (12 Å) in PP method and thus are

sufficient to simulate the bulk ZnO. The ions in the surface

region are optimized to the minimum, and the total energy

of the slab (Eslab) is calculated by summarizing the energies

of all the ions in the surface region. The corresponding

surface energy is calculated by

c ¼ Eslab � n � Ebulk

A
ð3Þ

The calculated surface energies for both ZnO(0001)–Zn

and ZnO(000-1)–O surfaces increase when the surface

layer number is less than eighteen (Fig. 1b). For the surface

layer number larger than eighteen, the variation in the

surface energies is \0.002 J m-2, suggesting that the

convergence is achieved and the surface energies for the

ZnO(0001)–Zn terminal and the ZnO(000-1)–O terminal

are 2.08 and 1.76 J m-2, respectively. Clearly, the

ZnO(000-1)–O terminal is more stable than the

ZnO(0001)–Zn terminal. The energy difference between

the ZnO(0001)–Zn terminal and the ZnO(000-1)–O

terminal should be assigned to the separation of O-shell

and O-core. If the O were not split into O-shell and O-core,

it would exactly be equivalent to Zn in PP method and the

surface energy of the ZnO(0001)–Zn terminal and the

ZnO(000-1)–O terminal would be equal.

Figure 2 shows the schematic diagram of the difference

in stability between the ZnO(0001)–Zn terminal and the

ZnO(000-1)–O terminal. It has been proved that the bond

contraction in a surface tends to increase the stability [31].

Therefore, the distance between Zn2? and O2- in the sur-

face layer will be shorter compared to that in the bulk

region, and the inter-layer distance between the Zn-layer

and the O-layer in the surface will be shorter. According to

PP method, the inter-layer distances are 0.1439 Å for the

ZnO(0001)–Zn terminal and 0.3722 Å for the ZnO(000-1)–

O terminal in the models with 30 surface layers, shorter

than that of 0.6254 Å in the bulk region. The shorter inter-

layer distance and shorter Zn–O bonds suggest the stronger

interaction between Zn and O in the surface.

Fig. 1 The surface structure of the

ZnO(0001)–Zn terminal with the

six surface layers (a) and the

surface energies of the

ZnO(0001)–Zn and ZnO(000-1)–

O surfaces as a function of the

total surface layer number (b)

Fig. 2 Schematic diagram of the difference in stability between the

ZnO(0001)–Zn terminal (a) and the ZnO(000-1)–O terminal (b)
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As shown in Fig. 2, the interaction includes two parts: the

repulsion and the attraction. The interaction between Zn2?

and O-core is dominated by the repulsion, whereas the inter-

action between Zn2? and O-shell is dominated by the attrac-

tion because of the Coulomb interaction. For the ZnO(0001)–

Zn terminal, both of the repulsion and the attraction are

strengthened synchronously when the surface Zn2? comes

close to the subsurface O ions during the bond contraction.

However, the case is quite different for the ZnO(000-1)–O

terminal. When O ions including O-shell and O-core come

close to the subsurface Zn2?, the bond of Zn–O-shell prefers to

be shorter because of the attraction, whereas the bond of Zn–

O-core prefers to be longer due to the repulsion. As a result, the

attraction is strengthened and the repulsion is weakened in the

ZnO(000-1)–O terminal, thereby leading to the higher sta-

bility of the ZnO(000-1)–O terminal. In one word, the higher

stability of the ZnO(000-1)–O terminal than that of the

ZnO(0001)–Zn terminal can be ascribed to the larger polar-

izability of the surface O2- compared to the surface Zn2?.

Having discussed the results calculated by PP method,

we then focus on the local energy density method based on

DFT calculations. The bulk parameters of ZnO are calcu-

lated to be a = 3.286 Å, b = 5.295 Å and z0 = 0.380 Å,

which is in reasonable agreement with the previous DFT

calculation with a = 3.283 Å, b = 5.289 Å and

z0 = 0.378 Å [32]. Figure 3a shows the optimized struc-

ture of the ZnO(0001) slab with ten layers. Since the huge

difference between Zn ions and O ions in energies and

charges, the sum of Zn and O in each layer is discussed.

Figure 3b shows Bader charges [33] of each layer in the

ZnO(0001) slab. It can be seen that Bader charges in the

ZnO(000-1)–O surface region (layers 1, 2 and 3) are neg-

ative, implying an electron depletion in the ZnO(000-1)–O

terminal. Bader charges in the ZnO(0001)–Zn surface

region (layers 8, 9 and 10) are positive, which means the

electron accumulation in the ZnO(0001)–Zn terminal.

Bader charges in the bulk region (layers 4, 5, 6 and 7) are

nearly zero. These results reveal that the electrons have

indeed been transferred from the ZnO(000-1)–O terminal

to the ZnO(0001)–Zn terminal, which is induced by the

internal electrostatic field in the direction from the

ZnO(0001)–Zn terminal to the ZnO(000-1)–O terminal.

According to Yu et al. [17], the total energy density is

expressed to a sum of the kinetic energy density (eT), the

exchange correlation energy density (eX), the classical

Coulomb energy density (eC) and the short-range on-site

energy. To calculate the local energy on every atom, eT and

eX are integrated by Bader volume [33] and eC is integrated

by the charge neutral (CN) volume in YTM method [17].

However, in Bader method, all eT, eX and eC are integrated

by Bader volume. The local energies calculated for each

layer using various methods are shown in Fig. 3c. It is

found that Bader and YTM methods predict almost

equivalent local energy for each layer in the bulk region.

However, in the surface region, these two methods differ

from each other: compared to Bader method, YTM method

shows the higher local energies for the ZnO(000-1)–O

terminal and the lower local energies for the ZnO(0001)–

Zn terminal.

The difference between YTM method and Bader method

can be attributed to the different volume used for the local

Coulomb energy calculation. As seen in Fig. 4, CN volume

(to integrate eC in YTM method) is larger than Bader

volume (to integrate eC in Bader method) for the electron

donor (such as Zn atom). This is because CN volume

shows the size of the neutral atom (Zn0 atom), and Bader

volume indicates the size of the charged cation (Zn2?

cation) [34, 35]. Correspondingly, Bader volume is larger

than CN volume for the electron acceptor, as the charged

O2- ions are larger than the neutral O atoms [36]. There-

fore, the region difference between Bader volume and CN

volume (region C in Fig. 4) is assigned to the different

Fig. 3 The optimized structure of the ZnO(0001) slab with ten layers

(a), the corresponding Bader charge for each layer (b) and the local

energy for each layer (c) by Bader method, Yu_Trinkle_Martin’s

method (YTM) [17], charge neutral (CN) method and the proposed

hybrid method in this work
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atomic sizes with different charges. In Fig. 4, the region C

is assigned to the electron acceptor in Bader method, but it

is assigned to the electron donor in YTM method.

Since the region C locates away from the atomic cores,

the Coulomb attractions between the electrons in region C

and the atomic cores are strongly screened by the electrons

near the cores. The electrons in region C are dominated by

the Coulomb repulsion with other electrons. Therefore, the

local Coulomb energy in region C should be positive, and

thus, Bader method will overestimate (more positive) the

local energies of the electron acceptors and underestimate

the local energies of the electron donors compared to YTM

method. Since the charge is transferred from the ZnO(000-

1)–O terminal to the ZnO(0001)–Zn terminal, the

ZnO(000-1)–O terminal and ZnO(0001)–Zn terminal will

act as the electron donor and the electron acceptor,

respectively. As a result, the local energies in the ZnO(000-

1)–O surface region by YTM method are higher than those

by Bader method, and the local energies in the ZnO(0001)–

Zn surface region by YTM method are lower than those by

Bader method.

Based on the calculated local energies for each layer, it

is convenient to obtain the separated surface energy for the

ZnO(000-1)–O terminal and the ZnO(0001)–Zn terminal

by Eq. (3). The separated surface energy is dependent on

the methods, and the relative surface energy difference

between the ZnO(0001)–Zn surface and the ZnO(000-1)–O

surface is also discussed in this work. As seen in Fig. 5,

the surface energy difference is 0.32, -1.21, -1.23,

-1.98 J m-2 by PP, Voronoi, Bader and YTM methods,

respectively. The surface energy difference (0.21 J m-2)

from NP’s work [12] is also shown. The results predicted

by Voronoi method, Bader method and YTM method are in

contradiction with the experimental findings of the higher

stability of ZnO(000-1)–O terminal than ZnO(0001)–Zn

terminal [10–12]. Although the empirical PP method is a

phenomenological model, it still gives the same tendency

with the experimental results. Clearly, these local energy

density methods overestimate the stability of the

ZnO(0001)–Zn terminal.

The overestimation is caused by the overestimated

assignment of the transferred electrons to the ZnO(0001)–Zn

terminal. As discussed above, the regions between Bader

volume and CN volume (region C in Fig. 4) are the locations

of the transferred electrons. According to Bader method, the

transferred electrons are assigned to the electron acceptor,

and thus, the energy of the transferred electrons is also

assigned to the electron acceptor. The spontaneous electron

transfer is always companied with the decrease in the energy,

leading to a negative local energy of the transferred elec-

trons. Since the transferred electrons are assigned to the

electron acceptor and the local energy of the transferred

electrons is negative, the local energy of the electron

acceptor decreases and the local energy of the electron donor

increases correspondingly. Therefore, the surface energy of

ZnO(0001)–Zn terminal is underestimated, since the

ZnO(0001)–Zn terminal is the electron acceptor.

In contrast to Bader method, CN method assigned the

transferred electrons to the electron donor, thereby leading

to the decrease in the surface energy of ZnO(000-1)–O

terminal. As shown in Fig. 3c, the local energy of the

ZnO(000-1)–O terminal is so low that the local energy of

layer 2 is even lower than that in bulk region. The surface

energy difference between the ZnO(0001)–Zn surface and

the ZnO(000-1)–O surface by CN method is also as large

Fig. 4 Schematic diagram for Bader method, charge neutral (CN)

method and the proposed hybrid method in this work. EA is the

electron acceptor, and ED is the electron donor. For ZnO system, Zn

is the electron donor and O is the electron acceptor. For the

ZnO(0001) slab, the ZnO(000-1)–O terminal is the electron donor and

the ZnO(0001)–Zn terminal is the electron acceptor

Fig. 5 The surface energy difference between the ZnO(0001)–Zn

surface and the ZnO(000-1)–O surface by Na and Park’s method (NP)

[12], pair potential method (PP), Voronoi method, Bader method,

charge neutral method (CN), Yu_Trinkle_Martin’s method (YTM)

[17] and the proposed hybrid method in this work
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as 3.12 J m-2, which is far beyond the results calculated by

NP method and PP method. The surface energy of the

ZnO(000-1)–O surface is predicted to be only 0.09 J m-2,

which is even much lower than that of the nonpolar

ZnO(01-10) surface (0.88 J m-2). Obviously, the local

energy of the ZnO(000-1)–O surface is underestimated by

CN method with respect to the experimental results,

whereby the nonpolar (01-10) surface is more stable than

the polar (000-1) surface [37–39]. Since the total energy

decreases when the electron transfer occurs from the

electron donor to the electron acceptor, the energy of

transferred electrons should be distributed to the electron

donor and the electron acceptor fairly as in the empirical

PP method. Therefore, we propose a hybrid method to

distribute the energy of transferred electrons evenly, as

shown in Fig. 4.

In the hybrid method, eC, eT and eX are integrated by

both Bader volume and CN volume to obtain the local

Coulomb energies, the local kinetic energies and local

exchange energies, respectively, and the average values of

Bader method and CN method are adopted. Using the

hybrid method, the local energy for each layer is obtained,

as shown in Fig. 3c. The local energies calculated by the

hybrid method are always in the center of those calculated

by Bader method and CN method, which indicates that the

hybrid method is the average of Bader method and CN

method. The surface energy difference between the

ZnO(0001)–Zn surface and the ZnO(000-1)–O surface by

the hybrid method is 0.95 J m-2, which gives the same

tendency with the results by NP method, PP method and

the experimental results [10–12]. The calculated surface

energy of the ZnO(0001)–Zn surface and the ZnO(000-1)–

O surface by the hybrid method is 2.11 and 1.17 J m-2,

respectively. The average surface energy of the

ZnO(0001)–Zn surface and the ZnO(000-1)–O surface

(1.64 J m-1) is lower than that of NP’s result of

2.14 J m-1 [12]. The notable difference between our work

and NP’s work may originate from different functionals. In

NP’s work, LDA ? U (local density approximation plus

on-site Coulomb parameter) was used, whereas GGA is

adopted in our work.

Figure 2c shows that all the calculated local energies in

the bulk regions (layers 4, 5, 6 and 7) from different local

energy density methods are almost equal to zero. This

identifies that the local energy density methods including

Bader method, YTM method and the hybrid method can be

efficient for the systems without notable charge transfer,

such as some metals, some nonmetallic free elements or

some symmetric structures. While for the systems with the

notable charge transfer, particularly for the systems with

polar surfaces or with strong internal electrostatic fields,

the hybrid method is strongly suggested.

4 Conclusions

The surface energies of the polar ZnO surfaces were cal-

culated using two different methods. The empirical PP

shows that the ZnO(000-1)–O terminal is more stable than

the ZnO(0001)–Zn terminal, with the surface energy dif-

ference of 0.32 J m-2, which is in good agreement with the

experimental findings. The reason of the different stability

is assigned to the different polarizability of O2- ions and

Zn2? cations. A better separation between O-shell (elec-

trons on O) and O-core strengthens the attractive interac-

tion between O and Zn in the ZnO(000-1)–O surface. The

classic local energy density methods, including Bader

method and YMT methods, show that the ZnO(0001)–Zn

terminal is energetically more favorable, in disagreement

with PP method and the experimental findings. The dis-

crepancy can be attributed to the energy distribution of the

transferred electrons: the local energy of the transferred

charge is assigned to the electron acceptor (ZnO(0001)–Zn

terminal), leading to an underestimation in energy for the

ZnO(0001)–Zn terminal. We proposed a hybrid method,

where the energy for the transferred electrons is distributed

to the electron donor and the electron acceptor on the

average, and make an agreement with the experimental

results. The hybrid method is recommended to calculate

the systems with the notable charge transfer.
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