

Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

Jacob Andersen

Peter Jensen
Stig Kofoed

SyoSil

Systems on Silicon

Himmelev Bygade 53, 4000 Roskilde, Denmark
www.syosil.com

{jacob, peter, stig}@syosil.com

ABSTRACT

This paper introduces an industry-proven, standardized way of writing VMM compliant
Verification IP, namely the concept of SystemVerilog Verification Components (SVVCs). The
SVVC concept standardizes how VIP offering support for both directed testing and constrained
random verification is built across protocols, and offers a common look and feel. The SVVC
concept offers a well documented approach of how to verify the VIP components in a stand-
alone context. This approach decouples the VIP development from any RTL design development
effort, and ensures that the SVVCs are fully verified before being employed in an RTL test
bench. This paper also describes how VMM compliant test benches are rapidly composed based
on reusing SVVCs and other generic verification components, such as scoreboards and reference
models. Furthermore, on the top of such SVVC based test benches, we show how directed and
constrained random test cases access the SVVCs.

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

2

Table of Contents

1.0 Introduction... 3
2.0 The SyoSil Layered Approach to VMM Verification .. 3
3.0 Limiting the Use of the VMM Feature Set ... 5
4.0 Extending VMM: Hierarchical Test Benches... 6
5.0 The SVVC... 7
6.0 SVVC Verification.. 20
7.0 Authoring VMM Test Benches Using SVVCs... 22
8.0 Authoring Test Cases.. 25
9.0 Industry Experience .. 26
10.0 Conclusion .. 27
11.0 Acknowledgements... 27
12.0 References... 27

Table of Figures

Figure 1 – Layered Approach Extending VMM... 4
Figure 2 – SVVC Structure... 8
Figure 3 – bfm Class Definition Example... 12
Figure 4 – bfm main() Method Example... 13
Figure 5 – dtst Class Definition Example... 16
Figure 6 – SVVC Class Definition Example .. 18
Figure 7 – SVVC Execution Sequence... 19
Figure 8 – SVVC build() Method ... 20
Figure 9 – SVVC Standalone Verification ... 22
Figure 10 – SVVC Hook Up... 23
Figure 11 – SVVC Construction and Hook Up .. 24
Figure 12 – Hooking Up Scoreboard to SVVC .. 25
Figure 13 – Controlling SVVC Transactor... 25
Figure 14 – Test Case Accessing SVVC Resources... 26

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

3

1.0 Introduction
To address the increasing challenges met when performing functional verification of state-of-
the-art digital integrated devices, methodologies such as VMM [2] combined with the HDVL
SystemVerilog [1] is currently enabling an evolution towards true coverage-driven, constrained
random verification.

While offering numerous new tools for the verification engineer toolbox, VMM and
SystemVerilog also challenges the engineer with a steep learning curve and an increased amount
of complexity in the areas of languages, tools and methodologies, something that initially
threatens to drastically lower the engineer productivity. To address these challenges, it is of great
importance to be able to employ a high degree of reusability of verification components, a
concept also known as Verification IP (VIP).

Today the VMM methodology offers a rich set of guidelines for ensuring that VMM based VIP
is reusable, e.g. with regard to concepts and connectivity. Still, we have seen that independently
built VMM compliant VIP turns out to be hard to reuse. Every independently VMM trained
engineer writes VIP in her or his own way.

This paper introduces an industry-proven, standardized way of writing VMM compliant
Verification IP, namely the concept of SystemVerilog Verification Components (SVVCs). The
SVVC concept standardizes how VIP offering support for both directed testing and constrained
random verification is built across protocols, and offers a common look and feel. Even for
complex industry-standard protocols, SVVC authors know exactly what to write, and SVVC
users know exactly what features to expect and how to invoke them. This gives a superior
engineering productivity, which in turn leads to finding more RTL design bugs, as the
verification engineer ultimately is able to focus on the device, rather than spending time on
debugging a complex hard-to-understand verification environment.

The SVVC concept also offers a well documented approach of how to verify the VIP
components in a stand-alone context. This approach decouples the VIP development from any
RTL design development effort, and ensures that the SVVCs are fully verified before being
employed in an RTL test bench. This eliminates the scenario of having functional errors in the
VIP that cloak errors in the RTL, which greatly enhances verification engineer productivity and
the general quality of the verification process.

Beyond describing how to create and verify the SVVCs, this paper outlines how VMM
compliant test benches are rapidly composed based on reusing SVVCs and other generic
verification components, such as scoreboards and reference models. Furthermore, on the top of
such SVVC based test benches, we show how directed and constrained random test cases access
the SVVCs.

2.0 The SyoSil Layered Approach to VMM Verification
All state-of-the-art verification environments are built in layers. VMM enforces such a layered
approach in order to promote maximum reuse and scalability of VIP, test bench components and

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

4

test cases. The SyoSil framework for developing VIP, test benches and test cases extends the
VMM layered approach as shown below.

Figure 1 – Layered Approach Extending VMM

The SyoSil SystemVerilog Utilities consist of multiple resources streamlining and accelerating
the creation of the upper layers. To mention a few, the utilities contain:

• Low level libraries (generic messaging services, string handling services).
• A generic scoreboard architecture.
• A base class framework for modelling reference models and configuration state registers.

The SyoSil VMM Base Layer extends most of the VMM base classes with additional
functionality to support the SVVC approach. The layer encapsulates all code that is shared
across different SVVCs and test benches, and keeps the amount of code here to the application
specific minimum. Examples of such shared code are:

• Simulation switches (reference model and scoreboard control).
• Registration and maintenance of SVVCs in test bench.
• Control of information output level throughout SVVCs and the test bench.

Note that all VMM compliant code can run together with this base layer, and any VMM
documentation applies as well.

Based on the above mentioned layers SVVCs, test benches and test cases are created while
utilizing all the code present in the lower layers. Similarly to using the bare VMM base classes,
the layered approach used for the SVVC framework simplifies the challenge of creating a
running system for the end user.

SystemVerilog

VMM

SyoSil VMM Base Layer SyoSil
SystemVerilog

Utilities

SVVCs

Test Benches

Test Cases

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

5

3.0 Limiting the Use of the VMM Feature Set
VMM is a rich methodology which offers many different both simple and complex concepts and
constructs to develop VIP and test benches. This wealth of opportunities is what makes modern
verification engineering difficult – simply choosing the best way of implementing a certain
solution. This leads to diversity as each engineer chooses her or his own style for implementing
VIP, test benches, test cases, functional coverage, etc., which clearly is a disadvantage when
trying to create uniform and reusable verification components.

To address this challenge, we have chosen to limit the number of VMM features used for certain
tasks, and furthermore put forward internal standardization guidelines in order to “keep things
simple”. Below, a selected number of these guidelines are presented.

3.1 Test Bench Structure Using VMM Channels Only

VMM suggests a basic test bench infrastructure, in which channels connect transactors, e.g.
generators and Bus Functional Models (BFMs). Using these channels, transactions spend their
lifetime by travelling from their point of creation till their destruction, while their presence
causes various actions to happen, e.g. causing the BFM to send and receive stimuli from the
Design Under Verification (DUV).

The infrastructure created using channels can easily be depicted in a test bench specification, and
is simple to understand for people with a hardware background. However, when it comes to
hooking up functionality such as reference models, scoreboards and units sampling transaction
coverage, VMM recommends that hook up is made using call-backs [2]. Using call-backs is a
well known powerful software technique for run-time modification of code, but when put into a
hardware verification perspective, verification engineers find it difficult to overview test benches
with heavy use of call-back mechanisms.

To preserve a clear notion of test bench structure, we propose to avoid using call-backs for
composing test bench structure. Rather, reference models, scoreboards and coverage units are
created as true VMM transactors capable of hooking up to channels connecting these transactors
to the other test bench components. This yields a more clear and well defined test bench
infrastructure, which still is run-time constructed and modifiable, e.g. based on randomization of
the DUV structure and capabilities which can be controlled by parameters.

The use of call-backs is in general not prohibited. A call-back remains a powerful mechanism for
modifying e.g. BFM behaviour (dropping or delaying transactions), depending on DUV and test
bench dynamics. But the use of call-backs should be left for implementation of such exceptions,
and not be used for implementing test bench structure.

3.2 Cross Referencing Transactions from Multiple Transactors

The channel based infrastructure of a test bench in fact does not move transactions around
between transactors. Rather, references to transactions are passed around. This allows a
transactor – even though it already passed a transaction on to the transactor next in chain – to
keep a reference to the transaction. Thereby multiple structural elements may have access to the

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

6

same transaction at the same time, and potentially is capable of modifying the transaction
simultaneously. VMM does not prevent such hazardous actions from happening. For some
simple uses, VMM actually endorses such activity [2].

We have chosen to employ a strict policy regarding cross referencing transactions from multiple
transactors:

1. A transaction should only be referenced by one single transactor or channel at a time.
• Once a transactor performs a put or a sneak of a transaction on a channel, it should no

longer reference that object.
• To get a transaction from a channel, a transactor should employ the channel get

method and defer from using the peek and tee methods.
• This implies that advanced channel functionality such as the active slot and numerous

other more advanced VMM channel features (e.g. VMM notifications) are left unused
in this framework.

2. A VMM broadcaster sending copies of transactions to multiple consumers should employ
a true deep copy method and defer from only copying transaction references.
• This prevents that e.g. a reference model by mistake modifies a transaction that also

goes into the scoreboard, which would be hazardous to the verification safety.

Although copying data is less efficient we have not yet observed any substantial performance
impact. If performance becomes an issue the broadcaster can be configured to copy references
instead of deep copying the objects, as explained in [2].

4.0 Extending VMM: Hierarchical Test Benches
Traditionally a VMM test bench is flat in structure (the next generation of VMM introduces
hierarchical test benches through the vmm_subenv class). Basically it consists of a vmm_env [2]
encapsulating numerous transactors, channels and alike. This also implies that reusable VIP
normally consists of an ungrouped collection of:

• Data classes.
• VIP configuration mechanisms.
• Transaction generators (transactors).
• BFMs and monitors (transactors).
• Interfaces and assertions checkers.

For each DUV interface, these numerous VIP subcomponents must be declared, constructed and
controlled inside the top level test bench scope, namely the vmm_env. This leads to a very
crowded and difficult to understand top level structure, especially when the DUV has many
interface instances.

To address this, we have standardized how hierarchical test benches are built from multiple
vmm_env’s. This allows grouping all the mentioned VIP sub components into a single vmm_env
environment, which makes it extremely easy to reuse. It allows easy declaration, construction,

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

7

hook up and invocation of a VIP component. Also, the VIP environment can be further modified
and customized by employing class inheritance of the environment.

The SyoSil VMM base layer offers an extension of the vmm_env class, called vmm_env_syo.
Using this extension automates the calling of each sub environment (in this context SVVC) by
simple registration of the sub environment in a data structure of the parent environment. For each
of the vmm_env_syo sub steps (gen_cfg(), build(), etc), the parent environment calls the same
method for each of its sub environments.

5.0 The SVVC

5.1 Introduction

The SystemVerilog Verification Component (SVVC) concept was developed by SyoSil to
standardize how VIP is built across protocols. The SVVC concept is independent of the
SystemVerilog methodology used (here VMM), but any actual SVVC implementation is
methodology specific.

Using the SVVC concept instead of writing VIP in any arbitrary form or structure offers
following advantages:

• Proven support for constrained random verification and directed testing.
• A common look and feel: SVVC authors know exactly what to write, and SVVC users

know exactly what features to expect and how to invoke them.
• Stand-alone verification of the SVVC, which enables developing the SVVC

independently of the availability and state of any RTL block using the same protocol.
• Easy and standardized reuse integration of multiple SVVCs in large test benches.

Protocols are by nature quite different. Some are simple master/slave protocols, whereas some
are highly pipelined multi-point protocols with independent address and data phases and using
tagged transfers. Experience from industry applications has shown that the SVVC concept
addresses both simple and complex protocols, but special protocols require adaptations to the
basic SVVC concept in rare cases.

5.2 Overview of the SVVC Structure

An SVVC is a SystemVerilog class based object connecting to a DUV RTL port in the form of a
SystemVerilog RTL interface by using virtual interface hook up. The SVVC will drive and
respond to the physical protocol, based on the high level transactions generated internally in the
SVVC or requested externally by the test bench. In its most simple form, this may be an SVVC
method call (e.g. send_transaction()) invoked by the test bench which creates a bus transaction
on the physical protocol, but may also be complex random scenarios conducted by the SVVC.
The SVVC is driven by generators and transactors. A generator produces transactions, whereas a
transactor also acts as a consumer.

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

8

The SVVC itself is a sub environment derived from vmm_env_syo, in which all the objects that
constitute the SVVC are instantiated. The basic SVVC structure is depicted in the figure below.

Figure 2 – SVVC Structure

The following objects exist inside a VMM based SVVC:

Object
Name

Class Name Description

agen cl_svvc_atomic_gen Atomic constrained random generator dispatching
independent randomly generated transactions to the
broker.

sgen cl_svvc_scenario_gen Scenario constrained random generator dispatching
randomly generated sequences of transactions to the
broker.

dtst cl_svvc_dtst Directed test transactor dispatching and receiving direct
test case transactions to/from the broker.

<other
gen>

cl_svvc_<other gen> Other customized generator(s) specific for this SVVC
type.

agen

dtst

<other
gen>

sgen

bro

bfm

cfg

mon

brc

cov

 SystemVerilog DUV
Interface

SVVC

Scoreboard,
reference
model, etc

Channel

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

9

bro cl_svvc_broker Broker exchanging information between transaction
producers/consumers and the bfm. Note that additional
transaction producers/consumers beyond the agen, sgen
and dtst units may be registered on the broker.

bfm cl_svvc_bfm Bus Functional Model driving and responding to the
DUV interface according to the protocol. The bfm
typically implements a requestor (master) side and a
responder (slave) side. Implementing monitor/observer
functionality in the bfm is mandatory.

mon cl_svvc_bfm Monitor sampling all transactions on the DUV interface.
Often the same class as the bfm, but configured to act as
a monitor (passive).

brc vmm_broadcast_syo VMM broadcaster distributing all transactions from the
monitor to all consumers.

cov cl_svvc_cover Transactor collecting functional coverage of the
transactions collected by the monitor, received via the
brc.

cfg cl_svvc_cfg Configuration class for SVVC, setting e.g. bus latencies
on the DUV interface.

The following other classes are used in or are part of the SVVC:

Class Name Description

cl_svvc_data Data class capturing one transaction for the protocol. VMM macro
expansion generates the classes cl_svvc_channel,
cl_svvc_atomic_gen and cl_svvc_scenario_gen based on this data
class.

cl_svvc_data_channel Channel class able to transport cl_svvc_data or a descendant hereof.

cl_svvc_env The SVVC itself (sub environment)

Readers familiar with VMM will recognize basic VMM concepts such as the data class, the
atomic/scenario generator classes, the channel class and various extensions of the VMM

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

10

transactor base class. The process of creating the protocol specific extensions of these VMM
base classes is well described in [2], and will not be discussed further in this paper.

5.3 The Bus Functional Model (Class cl_svvc_bfm)

The bfm is the link between the higher level abstraction (namely the data class) and the DUV
interface. The BFM class must be able to act on the physical pin level interface in the different
configurations described in the protocol specification, typically to act both as a master and a
slave. Furthermore, all BFMs shall implement a monitor BFM. One and same transactor shall be
configurable such that it can act as any of the mentioned types.

Three different categories of BFMs exist: Requestors, responders and passive transactors. It is
important to determine what category each BFM type falls into. Note that all BFM categories use
same transaction type (data class), but various fields may not be used for e.g. a response
transaction. Often the three BFM categories are implemented in a single class to enable code
reuse and easier maintenance, but they could also be implemented as independent classes.

For some protocols the BFM must be able to handle overlapping transactions. Below, the
behaviour for a single transaction is outlined for each of the three BFM categories.

5.3.1 Requestor BFM Type

A requestor bfm has an initiating nature (master) and only starts sending on the DUV interface if
a transaction is sent from the bro (originates e.g. from the agen or the dtst). Activity cannot be
initiated by the DUV interface. For each transaction, a requestor bfm goes through the following
steps:

1. The bfm waits until the bro sends a transaction.
2. The requestor bfm drives the transaction on the DUV interface, and awaits any possible

response. This process may take several clock cycles and/or sequence of activities on the
DUV interface.

3. When the response has been received, the bfm aggregates the complete transaction, and
sends this back to the bro.

4. For some protocols, exchange of multiple sub transactions between the bro and the bfm
might be required to complete a single transaction.

5. The sequence is restarted at #1.

5.3.2 Responder BFM Type

A responder bfm has an awaiting nature (slave) and awaits activity on the DUV interface before
communicating any transactions with the bro. Activity cannot be initiated by the bro. For each
transaction, a responder bfm goes through following steps:

1. The bfm awaits a valid request on the DUV interface.
2. A received request is packaged in a transaction, and sent to the bro, which is responsible

for retrieving an answer for that request, e.g. from the agen or the dtst.

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

11

3. The bro must send a response transaction back in same time step, otherwise the bfm will
be unavailable to serve the request and will probably break the physical protocol, or in
the best case cause wait states to be inserted on the protocol.

4. When the bfm has received a response transaction from the bro, the physical transaction
can be completed.

5. The bfm aggregates the complete transaction, and sends this back to the bro.
6. For some protocols, exchange of multiple sub transactions between the bro and the bfm

might be required to complete a single transaction.
7. The sequence is restarted at #1.

5.3.3 Passive BFM Type

A passive bfm type has an awaiting nature, and furthermore does not interact actively with the
physical protocol – it only listens (monitor). The role of the monitor is to listen for a transaction
on the protocol, and forward this transaction. For each transaction, a passive bfm goes through
following steps:

1. The bfm awaits a valid transaction on the DUV interface.
2. The bfm aggregates the complete transaction, and sends this out to the brc.
3. The sequence is restarted at #1.

Scoreboarding, coverage, feeding reference models and alike shall be done based on actual
protocol traffic. This is done by using a monitor bfm, and distributing the data packages from the
monitor to these receivers.

Note that an idle DUV interface does not carry any transactions. A monitor listening to such an
idle interface will not produce any transactions until real protocol activity happens.

5.3.4 BFM Example

The following example shows how the three different BFM categories easily can be
implemented into a single class. The protocol used in the example has a MASTER side
(requestor type), SLAVE side (responder type) and a MONITOR (passive type). The control of
the pins on the DUV interface for each of the three types is implemented in the three methods:
do_master(), do_slave() and do_monitor(). Furthermore, the example shows how constraints and
coverage for protocol specific delays are implemented.

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

12

Figure 3 – bfm Class Definition Example

class cl_mysvvc_bfm extends vmm_xactor_syo;
 // Transaction input channel
 cl_mysvvc_data_channel in_chan;

 // BFM kind
 typedef enum {NOTSET, MASTER, SLAVE, MONITOR} tp_kind;
 tp_kind kind;

 // Protocol delays to be randomized
 rand int master_delay; // Protocol master delay

 // Constrain the randomization of the protocol delays
 constraint co_master_delay {
 ...
 }

 // Cover the randomized delays
 covergroup cg_master_delays;
 cp_master_delay : coverpoint master_delay {...}
 ...
 endgroup

 ...
 // VMM compliant API
 extern function new (cl_mysvvc_cfg cfg = null,
 virtual ifduv vi,
 tp_kind kind = cl_mysvvc_bfm::NOTSET);

 extern virtual task automatic main();
 extern virtual task automatic reset();

 extern protected virtual task automatic do_master (
 ref cl_mysvvc_data tr);

 extern protected virtual task automatic do_slave (
 ref cl_mysvvc_data tr);

 extern protected virtual task automatic do_monitor(
 ref cl_mysvvc_data tr);

 // pre_randomize and post_randomize allows modifying the
 // randomization result
 extern function void pre_randomize();
 extern function void post_randomize();

endclass

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

13

The following example shows the main loop of the BFM. Note how the protocol delays are
randomized by invoking this.randomize() and how the protocol delay coverage is sampled. At
the very end of the loop the pin control method that corresponds to the BFM type is invoked on
the transaction with randomized delays.

Figure 4 – bfm main() Method Example

task automatic cl_mysvvc_bfm::main();
 cl_mysvvc_data tr;
 bit drop;

 ...

 // Main loop to drive the Protocol bus
 while (1) begin
 if (this.kind == cl_mysvvc_bfm::MASTER) begin
 // BFMs of REQUESTOR type
 // Get a transaction from the input channel
 this.in_chan.get(tr);

 // Randomize the BFM delays
 if (!this.randomize()) `vmm_error(log, "...");
 end else if (this.kind == cl_mysvvc_bfm::SLAVE) begin
 // BFMs of RESPONDER type
 ...
 end else begin
 // BFMs of PASSIVE type
 ...
 end

 ...

 // Do coverage of protocol delays
 case (kind)
 cl_mysvvc_bfm::MASTER : cg_master_delays.sample();
 ...
 endcase

 // Process the transaction
 case (this.kind)
 cl_mysvvc_bfm::MASTER : do_master(tr);
 cl_mysvvc_bfm::SLAVE : do_slave(tr);
 cl_mysvvc_bfm::MONITOR: do_monitor(tr);
 default : `vmm_error(log, "Unknown BFM kind");
 endcase
 ...
 end
endtask

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

14

5.4 The Broker (Class cl_svvc_broker)

The motivation for introducing the bro in the SVVC framework is to standardize how to
exchange transactions between the bfm and the agen, dtst and other producers.

Generators simply produce transactions on a channel and do not expect a response. The agen
generator is an example of this. On the other hand, transactors produce transactions on a channel,
and expect to receive a response from a channel to operate properly. The dtst is an example of
this. The bro has been introduced to shield the typically rather complex bfm implementation
from these details.

Similarly to the bfm, the bro can be either of requestor or responder type. No passive type can
exist. A requestor type bro awaits an initiative from a producer before sending a transaction to
the bfm, whereas a responder type bro awaits an initiative from the bfm before attempting to send
a transaction to a producer. Obviously, a requestor type bro is used together with a requestor
type bfm, and a responder type bro together with a responder type bfm.

The broker concept is currently limited to only having a single client with an input channel (e.g.
a dtst) registered on a responder type broker. No such limitation exists on a requestor type
broker.

A standard bro will work using the algorithms outlined below. Note that any number of
generators can be registered on the bro.

5.4.1 Requestor Type

1. When a producer sends a request transaction to the bro, the bro forwards the transaction
to the bfm. The bro also keeps track of the producer identification number which the
transaction was tagged with.

2. When the bfm returns the transaction after processing it, and possibly updating the
transaction with the protocol response, the bro sends back the transaction to the producer
originally creating the transaction (this is the case for a typical dtst). If the producer
return channel does not exist, the return transaction is simply discarded by the bro (this is
the case for an agen).

3. Continue at #1. Note that the steps #1 and #2 can run in parallel, such that the bfm can
process multiple transactions in parallel.

5.4.2 Responder Type

1. When the bfm sends a request transaction, the bro tries to deliver it to a producer:
a. If only a generator with no input channel (e.g. an agen) is present and has a

response transaction ready, then that response transaction is sent to the bfm
immediately and the original bfm request transaction is discarded.

b. Otherwise, if a transactor with an input channel (e.g. a dtst) is present, then the
request transaction from the bfm is sent to the transactor. The bro will then await
a response transaction from that transactor, which has to arrive in same time step
to avoid breaking the protocol, or in the best case cause protocol wait states to be

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

15

inserted. When the transactor sends a response transaction, this is forwarded to
the bfm. This mechanism allows a transactor to produce a response transaction
based on the request transaction from the bfm.

2. If both steps #1.a and #1.b failed to service the bfm request, a fatal error is reported, as
the protocol breaks.

3. Continue at #1.

5.5 The Direct Test Transactor (Class cl_svvc_dtst)

The direct test transactor (dtst) is responsible for offering an API that allows a directed test case
to create transactions to be sent on an interface (requestor type BFM), as well as respond to
requests on an interface (responder type BFM). As protocols vary much in nature, the offered
API will be very protocol specific, beyond the fact that such method calls either belongs to a
requestor or responder BFM type.

A dtst on a requestor BFM side will remain silent unless the test bench or a test case invokes a
method which creates a transaction. Such method calls can be both blocking and non-blocking,
depending on whether they wait and return the response coming from the responder side.

A dtst on a responder BFM side will typically have blocking method calls, which returns once a
transaction arrives on the DUV interface. The dtst service agent (test bench or a test case) should
then immediately call a method delivering the response, to avoid breaking the physical protocol.

The arguments to dtst method calls are typically simple data types and not data class objects.
This allows a directed test case writer to carry out his work without even knowing the existence
of data class objects. The dtst method calls basically come in two different flavours:

1. A simple call either sending a transaction or waiting for a transaction. This simple call
basically just sends/gets a transaction and assembles/disassembles a transaction of the
data class type.

2. A more complex call sending a transaction and also awaiting a response before returning.
Such functionality requires mechanisms for keeping track of ongoing and returning
transactions, for instance based on the transaction ID numbers carried by each transaction
or a tagging mechanism on the DUV interface.

The following example gives a simple implementation of a dtst object providing a simple API,
which consists of a single method, namely the write() method. The write() method takes an
address and data as input arguments. It creates a data object containing the write transaction, and
sends it to the broker through the out_chan.

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

16

Figure 5 – dtst Class Definition Example

5.6 The Stimuli and Response Coverage (Class cl_svvc_cover)

The cov SVVC member is designed to collect functional coverage of the transactions sampled by
the monitor type BFM. This will check if all possible transactions have been exercised on each
interface. The implementation of this is highly protocol specific.

class cl_mysvvc_dtst extends vmm_xactor_syo;
 // Transaction channels
 cl_mysvvc_data_channel out_chan, ...;

 // Factory object - can be used to further constrain the objects
 // to be sent on the out_chan towards the BFM
 cl_mysvvc_data randomized_obj;

 // Configure whether this transactor is blocking
 // Can be changed runtime
 bit blocking = 0;

 // VMM compliant API
 extern function new (cl_mysvvc_cfg cfg = null, ...);

 extern virtual task main();

 // Generic object creation method
 task automatic send_obj(cl_mysvvc_data obj);
 cl_mysvvc_data o;
 $cast(o, obj.copy());
 if (blocking) begin
 out_chan.put(o);
 end else begin
 out_chan.sneak(o);
 end
 endtask

 // MASTER : Specific object methods
 task automatic write (logic [31:0] i_adr, logic [31:0] i_dat);
 int status;
 status = randomized_obj.randomize() with
 { op == cl_mysvvc_data::WRITE;
 adr == i_adr;
 dat == i_dat;
 };
 if (!status) `vmm_error(log, "Randomization failed!");
 send_obj(randomized_obj, ...);
 endtask
endclass

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

17

5.7 The Configuration (Class cl_svvc_cfg)

The cfg SVVC member contains a number of data members, which allow configuration of:

• General SVVC settings.
• Shared settings between SVVC parts.
• SVVC component specific settings.

For instance, component specific settings may be constraints for maximum bus latencies used
when randomizing the bus protocol delays in the BFM. Such settings will be used both for
constraints and coverage goals.

5.8 The SVVC Top Level (Class cl_svvc_env)

The SVVC top level is based on the hierarchical test bench approach described in section 4.0.
This approach makes it very simple to instantiate an SVVC in the test bench, and connects it to
the respective DUV interface. The SVVCs sub components (agen, bfm, etc) should not be
directly instantiated in a test bench.

The example below shows an implementation of the SVVC top level. Remember that it is a sub
environment derived from vmm_env_syo, in which all the objects that constitute the SVVC are
instantiated.

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

18

Figure 6 – SVVC Class Definition Example

The test bench does not need to call the various vmm_env_syo step methods (build(), start(), etc)
inside the SVVC. The test bench writer only needs to “register” the SVVC in the test bench
environment, which automatically will call these methods in the SVVC as shown below.

class cl_mysvvc_env extends vmm_env_syo;
 // Protocol DUT interface
 virtual ifduv if1;

 // Atomic generator
 cl_mysvvc_data_atomic_gen agen;

 // Transactor for directed testing
 cl_mysvvc_dtst dtst;

 // Broker for BFM arbitration between dtst and agen
 cl_mysvvc_broker bro;

 // BFM for protocol interface
 cl_mysvvc_bfm bfm;

 // Monitor BFM for protocol interface
 cl_mysvvc_bfm mon;

 // Broadcast for scoreboard/referencemodel/coverage
 vmm_broadcast_syo brc;

 // Coverage transactors
 cl_mysvvc_cover cov;

 // Configuration
 cl_mysvvc_cfg cfg;

 // The BFM type acting/reacting on the protocol
 // interface
 cl_mysvvc_bfm::tp_kind bfm_kind;
 ...
 // Constructor
 extern function new(..., virtual ifduv if1,
 cl_mysvvc_bfm::tp_kind bfm_kind, ...);

 // The 9 VMM environment steps
 extern virtual function void gen_cfg();
 extern virtual function void build();
 ...
 extern virtual task automatic report();
endclass: cl_mysvvc_env

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

19

Figure 7 – SVVC Execution Sequence

Typically, the constructor is responsible for the creation of each object inside a container object,
such as the SVVC environment, but in this case the creation of the agen, bfm, bro etc. is done in
the build() method. Hence, the creation of these objects can depend on the configuration
generated by the gen_cfg() method. The example below gives an example of such a build()
method. Note how the agen and dtst are registered to the broker.

gen_cfg()

Test bench vmm_env

build()

SVVC vmm_env(s)

new()
1. Construction
and configuration
of SVVCs

2. Registration of
SVVCs, implies
execution of
gen_cfg() and
build() for each
SVVC

gen_cfg()

build()

reset_dut() reset_dut()

cfg_dut() cfg_dut()

wait_for_end()

stop()

cleanup()

report()

wait_for_end()

stop()

cleanup()

report()

reset_dut() and the
methods below are
all potentially time
consuming tasks.
For each SVVC,
these sub methods
are called in
parallel using a
fork-join structure.

Create each SVVC
sub component
(bfm, agen, dtst,
mon, etc)

Reset physical
protocol (bfm)

Also start all
SVVC sub
component VMM
transactors

Stop all sub
component VMM
transactors

start() start()

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

20

Figure 8 – SVVC build() Method

6.0 SVVC Verification
Too often, the work of a verification engineer developing VIP and test benches is started after
the RTL design process has finished or at least reached a stable design state. As the complete
verification task has grown to overshadow the RTL design task in both a matter of working
hours but often also the complexity, it is important that the verification development process is
decoupled from that of the RTL design. To avoid verification being the bottleneck, this process
should be initiated as soon as design specifications are created and DUV interfaces have been
documented.

Verification components (VIP and test benches) should – if possible – be reused from an existing
code base. If components are to be engineered from scratch or simply updated with new features,
a methodology of how to verify the verification components (sic!) is important.

function void cl_mysvvc_env::build();
 // Call super’s build
 super.build();

 // Create BFM and broker
 case (bfm_kind)
 cl_mysvvc_bfm::MASTER : begin
 bfm = new(cfg,..., dutif, cl_mysvvc_bfm::MASTER);
 bro = new(cfg,..., cl_mysvvc_broker::REQUESTOR);
 end
 cl_mysvvc_bfm::SLAVE : ...
 default : `vmm_fatal(log, "This MYSVVC env ...");
 endcase

 // Create atomic random generator
 agen = new(...);

 // Create transactor for directed testing
 dtst = new(cfg,...);

 // Do the hook up of broker and bfm
 bro.bfm_out_chan.connect(bfm.in_chan);

 ...
 // Register agen and dtst on broker
 // agen has to be first as it has no input channel. Remember the
 // broker only support a single transactor with in/out channels
 // (the dtst), and that has been registered last
 bro.register_transactor(agen.out_chan);
 bro.register_transactor(dtst.out_chan, dtst.in_chan);

 ...
endfunction

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

21

The SVVC framework for creating VIP has a well defined methodology for how to verify
verification components in a stand-alone fashion, offering several advantages:

• The SVVC is protocol compliant, and does not contain the same bugs as the RTL, which
could happen if the SVVC is verified against a particular RTL implementation.

• The SVVC can be developed prior to RTL being available. This allows the SVVC and
test bench to be developed before or simultaneously with the RTL, and to be ready when
the RTL is in a state that allows verification to begin. This removes the SVVC and test
bench creation from being in the critical path of the design and verification development
cycle. A requirement is that the DUV interface is implemented before the SVVC
development begins.

Based on the assumption that an SVVC always implements both sides of the protocol (e.g. both
master and slave), the SVVC is mounted in a test bench as shown in the figure below. The
SVVC is basically verified against itself by running both directed and random stimuli over a
DUV interface connecting the two instances of the SVVCs. Protocol assertions serve as a
reference model, checking that the BFM correctly implements the protocol. It is therefore very
important that the assertions are implemented.

By running this setup, the SVVC developer initially is able to inspect if the SVVC runs the
protocol correctly, e.g. if the requestor and the responder are able to communicate. A scoreboard
will be attached, verifying that both the requestor BFM, the responder BFM and the passive
BFM (monitor) have the same understanding of valid transactions on the interface.

Note how the scoreboard is attached directly to the BFMs. Normally a scoreboard only attaches
to an SVVC via the brc, but since the BFM knows which transaction it has processed it can
easily provide this information.

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

22

Figure 9 – SVVC Standalone Verification

The following criteria have to be met before an SVVC is considered verified and ready for
integration into an RTL test bench:

1. Exercise all functionality of the direct test method calls using the dtst.
2. Run large number of random tests using the agen and sgen.
3. Obtain full coverage on the stimuli (in the cov).
4. Obtain full coverage on the protocol delays (in the bfm).
5. No scoreboard compare failure, all 4 queues from the requestor, responder and monitor

should have same contents.
6. All assertions on the interface should hold and be covered.

Some protocols may have a special nature that requires that the SVVC verification methodology
is carried out differently. But it should always be the goal to verify the SVVC standalone before
integrating it into an RTL test bench.

7.0 Authoring VMM Test Benches Using SVVCs

agen

dtst

<other
gen>

sgen

bro

bfm

cfg
mon

brc

cov

SVVC

agen

dtst

<other
gen>

sgen

bro

bfm

cfg

SVVC

mon

brc

cov

Scoreboard 4 queues

Protocol
Assertions

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

23

7.1 Constructing, Registration and Accessing an SVVC

An SVVC is not usable as a standalone component. Rather, it is intended to be constructed inside
a test bench, typically one SVVC per actual DUV interface. The figure below shows how
SVVCs are used together with the test bench and the RTL.

Figure 10 – SVVC Hook Up

An SVVC is a dynamic, run-time created component, not instantiated in a traditional HDL
fashion. Therefore, no static hook up is performed, but still the SVVC has to access an RTL
component, namely a SystemVerilog DUV interface. This is done by using the virtual interface
hook up method, where the SVVC via its constructor is passed a pointer to an DUV interface.
The SVVC then drives and samples that same DUV interface by reference throughout the
simulation. The reference is typically not changed to be a different DUV interface instance in the
middle of a simulation. However, the SVVC concept offers the opportunity for performing run-
time changes to the standard SVVC configuration, both using class inheritance and call-back
run-time code replacement. Moreover, an SVVC can be disconnected from the DUV interface
during simulation, and be replaced by another SVVC taking over its task. This is obviously
relevant for run-time configurable DUV interfaces.

The code below shows an example of declaring, constructing and registration of an SVVC inside
a vmm_env_syo class, which is inherited from the vmm_env class in order to add functionality
supporting the easy registration and run-time management of SVVCs. Remember, once the
SVVC has been registered, all its subtasks are run automatically in sync with the top
environment (here cl_myenv).

SVVC

Test bench
(vmm_env_syo)

SVVC

RTL DUV

Virtual Hookup of
SystemVerilog DUV
interfaces

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

24

Figure 11 – SVVC Construction and Hook Up

7.2 Hook Up of Scoreboards and Reference Models

An SVVC also hooks up to external scoreboards and reference models. This is done by
performing run-time registration of the channels feeding these external components on the brc
inside the SVVC. All transactions sampled from the interface by the monitor are then
automatically sent to the external components. The code below shows how easily scoreboards
hook up to the SVVC. The same approach is used in an analogous fashion for reference models.

class cl_myenv extends vmm_env_syo;
 …

 // Declare the scoreboard
 cl_scb scb;

function void build();
 …
 // Construct, hook up and start scoreboard
 scb = new(tbconfig);
 if1_svvc.brc.new_output(scb.rtl);
 scb.start_xactor();

 …
endfunction

 …
endclass

class cl_myenv extends vmm_env_syo;

// Declare SVVC:
cl_mysvvc_env if1_svvc;

function void build();
 super.build();
 // Construct SVVC:
 // Args: instance_name, virtual_if, vmm_log, config_params
 if1_svvc = new("if1", if1, log, …);
 // Register SVVC

 register_localenv(if1_svvc);
 // Additional configuration of SVVC
 if1_svvc.cfg.someoption = …;
 …

endfunction

 …
endclass

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

25

Figure 12 – Hooking Up Scoreboard to SVVC

8.0 Authoring Test Cases
For a test bench (or test case) to control what transactions a SVVC sends and receives on a DUV
interface, it should access the agen, dtst and similar objects inside the SVVC. All objects inside
an SVVC that constitute the API to the test case are deliberately set to be public, so that objects
and methods inside these SVVC subcomponents can be accessed directly. This provides great
flexibility when writing test cases. For instance, to initialize a random sequence, the test bench
may call the start_xactor() method of the agen. This use of public SVVC objects opposes normal
object oriented coding recommendations, but is required in order to give the SVVC user access
to the rich VMM feature set available within each of the SVVC sub components.

Below is shown how the test bench can access the objects inside the SVVCs. In this case, the dtst
transactor is used to apply a DUV configuration just after reset.

Figure 13 – Controlling SVVC Transactor

As in a standard VMM test bench, test cases are simply class extensions of the top level test
bench environments. In doing this operation, test case specific code is added to mainly the
extension of the start() method, but other methods may also be extended, for instance cfg_dut().

The example below displays a simple random test case, in which the blueprint [2] technique is
used to constrain the randomly generated transactions flowing to the DUV. Note how easily the
SVVC concept integrates into the test case – the test case writer knows by default that the atomic
generator inside the SVVC will be named agen. Any other engineer familiar with the SVVC
concept, who is trying to read the test case, therefore easily understands what the test case does
without having to search for objects names and their declaration in a huge test bench.

class cl_myenv extends vmm_env_syo;
 …

 task automatic cfg_dut();
 super.cfg_dut();
 …
 // Apply DUT configuration (just after HW rst)
 if1_svvc.dtst.master_write(adr, data, …);
 if1_svvc.dtst.master_getresp(response, …);
 …
 endtask

 …
endclass

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

26

Figure 14 – Test Case Accessing SVVC Resources

9.0 Industry Experience
On a large ASIC project, in the range of 25 SVVCs were developed to accommodate the need
for block and system level verification. Experience shows that well trained SVVC developers are
capable of writing a new on-chip protocol SVVC from scratch in less than 1-2 weeks, whereas
engineers new to the SVVC concept needed in the range of 3-4 weeks.

With the verified SVVCs in hand, other engineers could easily design VMM test benches for the
RTL blocks. Focus could be placed on the test bench specifics, such as reference models,
scoreboards, functional coverage as well as assertions, while simply plugging in the SVVCs as
previously described, without worrying about the exact implementation of the physical protocol.
Once the block test bench was ready for a module, the RTL designer could perform initial
simulation based bring-up of her/his block, largely without having to debug the test bench, as the
SVVCs were already verified. In the order of a few weeks, quite complex test benches could be
composed. Also, engineers with little or no prior knowledge of VMM found it easy to integrate
simple SVVC based VMM test benches, and were capable of doing so in quite a short time.

On top of the SVVCs and the test benches, engineers with no experience or in-depth knowledge
of these elements were able to create both simple directed test cases as well as constrained
random test cases while only being exposed to a limited learning curve. This shows that a project
or company wide decision of creating VIP and test benches based on the SVVC concept yields a

// Inherit cl_mysvvc_data class to add constraint

class cl_mysvvc_data_smalladdr extends cl_mysvvc_data;
 constraint co_addr {
 addr < ‘h100;
 }
endclass

// Extend the test bench environment into test case

class cl_mytestcase extends cl_myenv;

 task automatic start();
 super.start();
 begin
 cl_mysvvc_data_smalladdr bp;
 bp = new();
 if1_svvc.agen.randomized_obj = bp;
 end

 if1_svvc.agen.stop_after_n_insts = 10;
 if1_svvc.agen.start_xactor();
 …

endtask

 …
endclass

SNUG Europe 2007 Standardizing Verification IP Reuse by Introducing
SystemVerilog Verification Components

27

superior productivity and usability for the average engineers when compared to just using VMM
out-of-the box.

10.0 Conclusion
The VMM framework is very flexible and allows verification components to be written in many
different ways. However, it can be difficult to combine and reuse existing verification
components coming from different sources and it often requires a considerable amount of effort
to glue them together.

The concept of SystemVerilog Verification Components (SVVCs) provides a standard way of
writing VIP and ensures that no glue is required. Components can be reused without
modification from the block level to the system level in a scalable way. Restrictions on the
VMM feature set provide uniformity and avoid some common pitfalls. With a little help from
assertions an SVVC can verify itself, which enables test bench development to occur in parallel
with the design.

Together, these features provide an efficient framework for the verification of large and complex
designs, all the way from the block to the system level.

11.0 Acknowledgements
We would like to recognize the support we receive from Synopsys employees Martine Chegaray,
Shawn Honess and Göran Larsson.

Thanks also go to Robert Fairlie (Verilab), Kasper Tonsberg (SyoSil) and Michael Andersen
(SyoSil) for reviewing this paper and Lasse Lauridsen for valuable feed back in the early phases
of conceiving the SVVC framework.

12.0 References
[1] IEEE Standard for SystemVerilog. IEEE 1800-2005.
[2] Verification Methodology Manual for SystemVerilog. Bergeron et al. Springer 2005.

About SyoSil:

SyoSil is a consulting company holding broad expertise within the field of System-on-Chip and
ASIC solutions, including specification, methodologies, design and verification. We are
specialized in verification strategies, advanced EDA verification tools including formal methods
(property checking) and SystemVerilog for RTL design, assertions (SVA) and object oriented
test benches (SVTB).

