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Improved calculation of relic gravitational waves

Zhao Wen(ë ©)†

Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310014, China

(Received 16 October 2006; revised manuscript received 27 April 2007)

In this paper, we have improved the calculation of the relic gravitational waves (RGW) in two aspects. First, we

investigate the transfer function by taking into consideration the redshift-suppression effect, the accelerating expansion

effect, the damping effect of free-streaming relativistic particles, and the damping effect of cosmic phase transition, and

give a simple approximate analytic expression, which clearly illustrates the dependence on the cosmological parameters.

Second, we develop a numerical method to calculate the primordial power spectrum of RGW in a very wide frequency

range, where the observed constraints on ns (the scalar spectral index) and PS(k0) (the amplitude of primordial scalar

spectrum) and the Hamilton–Jacobi equation are used. This method is applied to two kinds of inflationary models,

which satisfy the current constraints on ns, α (the running of ns) and r (the tensor–scalar ratio). We plot them in

the r − Ωg diagram, where Ωg is the strength of RGW, and study their measurements from the cosmic microwave

background (CMB) experiments and laser interferometers.
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1. Introduction

Recently, many observations on the cosmic mi-

crowave background (CMB) power spectra[1−9] and

the large scale structure (LSS)[10−12] have supported

inflation as a good phenomenological model of describ-

ing the evolution of the universe at very early stage,

which naturally answers the origin of the primordial

fluctuations with a nearly scale-invariant and gaus-

sian spectrum. In addition to the density perturba-

tions, the inflationary models also predict a stochas-

tic background of relic gravitational waves (RGW),

which is also called the tensor perturbation. The am-

plitude of RGW is directly related to the energy scale

of inflation. Although this background has not yet

been observed, and only some loose constraints have

been achieved,[3−5,13−15] its detection can provide in-

controvertible evidence that the inflation has actually

occurred and can set strong constraints on the dy-

namic of inflation.[16−20] So it is always regarded as

the ‘smoking-gun’ evidence for the inflation.

There are two main kinds of experiments that

are underway to detect the RGW at different fre-

quencies. The first kind of experiment is the CMB

experiment, which can find the RGW by observing

the CMB B-polarization power spectrum.[21−25] This

method is sensitive to the waves with very low fre-

quencies, ν ∈ (10−17, 10−15)Hz. Now, the first-

three-year results of Wilkinson microwave anisotropy

probe (WMAP)[3] have not revealed evidence of the

gravitational waves, but have only given a constraint

r < 0.28 (95% confidence limit), where r is the so-

called tensor–scalar ratio. The next experiment, the

Planck satellite[26], has a higher sensitivity to polariza-

tion, is scheduled for launch in 2007, and is expected to

be able to observe the RGW if r > 0.1. The ground-

based experiment, Clover (Cl-Observer), which is a

bolometric CMB polarization imaging experiment, is

also under development[27], and is expected to be able

to observe the RGW if r > 0.005. The second kind of

experiment is laser interferometry, including the BBO

(Big Bang Observer)[28,29] and DECIGO (Deci-hertz

Interferometer Gravitational Wave Observatory),[30]

which can detect the gravitational waves with very

high frequencies ν ∼ 0.1Hz. The former can detect the

RGW when Ωg > 2×10−17 holds true, where Ωg is the

strength of RGW at 0.1Hz, and the latter is expected

to be able to observe the RGW if Ωgh
2 > 10−20. It

should be noticed that the waves with very high fre-

quencies can be observed by an electromagnetic reso-

nant system.[31−35] This is also an important method

to detect the relic gravitational waves.

A lot of studies of the RGW detection by these

experiments have been carried out.[36−38] In the previ-

ous work,[39] we have discussed the predicted values of

RGW (r and Ωg) for some kinds of inflationary mod-
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els, where we have used a simple power-law function

to describe the primordial power spectrum of RGW,

which is a very good approximation for the waves with

very low frequencies, but for the waves with high fre-

quencies, this may generate a large error. In that

work, we have not considered the damping effect of

cosmic phase transition on the RGW, such as the

quark confined into hadrons (QCD transition).[40−44]

e+e− annihilation and so on. In this paper, we dis-

cuss this topic more precisely. First, we consider the

damping effect of a general cosmic phase transforma-

tion, which can be described by a simple damping

factor. And then we give a simple form of the to-

tal transfer function, which applies to the waves with

ν ≫ 10−16 Hz. This function is dependent on the val-

ues of ΩΛ and Ωm (the present energy densities of vac-

uum and matter, respectively), the value of τ0 (the age

of the universe), the value of H0 (the present Hubble

constant), the values of g∗ and g∗s (the effective num-

ber of relativistic degrees of freedom when the waves

exactly crossed the horizon), and the fraction f of

the background (critical) energy density of the free-

streaming relativistic particles in the universe when

the waves exactly crossed the horizon. So this func-

tion includes abundant cosmic information. Second,

we use a numerical method to calculate the primordial

power spectrum of RGW, where the Hamilton–Jacobi

formula is used. Compared with the result from the

simple power-law form, this numerical result has lit-

tle change in the value of Ωg when r is smaller, say,

r < 0.02. But when the value of r is larger, the nu-

merical result is obviously smaller than that from the

simple power-law approximation.

The rest of this paper is organized as follows: in

Section 2, we simply review the evolutive equation of

the RGW. In Section 3, we mainly discuss the damp-

ing effects. In Section 4, we introduce the numerical

method by discussing two kinds of inflationary mod-

els. Finally, we give a conclusion and discussion in

Section 5.

2. The relic gravitational waves

Incorporating the perturbation into the spatially

flat Robertson–Walker (FRW) spacetime, the metric

is

ds2 = a(τ)2[dτ2 − (δij + hij)dxidxj ] , (1)

where a is the scale factor of the universe, τ is the

conformal time, which is related to the cosmic time by

adτ ≡ dt. The perturbation of spacetime hij is a 3×3

symmetric matrix. The gravitational wave field is the

tensorial portion of hij , which is transverse-traceless

∂ih
ij = 0, and δijhij = 0. Since the gravitational

waves are very weak, |hij | ≪ 1, one needs to study

just the following linearized evolutive equation:

∂µ(
√−g∂µhij) = 16πGa2(τ)Πij , (2)

where Πij is the tensor part of the anisotropy stress,

which satisfies Πii = 0 and ∂iΠij = 0, and couples

with hij like an external source in this equation, which

is always generated by the free-streaming relativistic

particles,[45−47] the cosmic magnetic,[48,49] and so on.

It is convenient to perform the Fourier transform as

follows:

hij(τ, x)=
∑

λ

√
16πG

∫

d k

(2π)3/2
ǫ
(λ)
ij (k)hλ

k
(τ)eikx, (3)

Πij(τ, x)=
∑

λ

√
16πG

∫

d k

(2π)3/2
ǫ
(λ)
ij (k)Π λ

k (τ)eikx, (4)

where λ = ‘ + ‘ and ‘×′ denote the two polariza-

tion states of the gravitational waves. The polar-

ization tensors are symmetries, transverse-traceless

kiǫ
(λ)
ij (k) = 0, and δijǫ

(λ)
ij (k) = 0, and satisfy the

conditions ǫ(λ)ij(k)ǫ
(λ′)
ij (k) = 2δλλ′ and ǫ

(λ)
ij (−k) =

ǫ
(λ)
ij (k). Since the RGW under consideration is

isotropic, and polarization states each are the same,

h
(λ)
k

(τ) can be denoted by hk(τ), and Π
(λ)
k

(τ) by

Πk(τ), where k = |k| is the wavenumber of the grav-

itational wave, which is related to the frequency by

ν ≡ k/2π (the present scale factor is set to be a0 = 1).

So Eq.(2) can be rewritten as

ḧk + 2
ȧ

a
ḣk + k2hk = 16πGa2(τ)Πk(τ) , (5)

where the overdot indicates a conformal time deriva-

tive d/dτ .

The RGW was generated during the early in-

flation stage. The inflation is an extremely attrac-

tive idea of describing the very early universe, which

has received strong supports from the observations of

CMB anisotropies and from the studies of the large-

scale distribution of galaxy. In this paper, we con-

sider only the simplest single field model. This kind

of model is enough to account for the current obser-

vations on ns, α, and r. In the context of slow-roll

inflationary model, the most observables depend on

three slow-roll parameters:[50,51]

ǫ
V
≡ M2

Pl

2

(V ′

V

)2

, η
V
≡ M2

Pl

(V ′′

V

)

,

and ξ
V
≡ M4

Pl

(V ′V ′′′

V 2

)

, (6)
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where MPl ≡ (8πG)−1/2 = mPl/
√

8π is the reduced

Planck energy. In the following discussion, we use the

units of MPl ≡ 1 and mPl =
√

8π. V (φ) is the infla-

tionary potential, and prime denotes derivative with

respect to the field φ. Here, ǫ
V
, η

V
and ξ

V
quanti-

tate the ‘steepness’ of the slope of the potential, the

‘curvature’ of the potential, and the ‘jerk’ respectively.

All the parameters must be smaller than one for the

inflation to occur. The most important prediction of

the inflationary model is the primordial scalar pertur-

bation power spectrum, which is almost gaussian and

nearly scale-invariant. This spectrum is always writ-

ten in the form

PS(k) = PS(k0)
( k

k0

)ns(k0)−1+ 1

2
α ln(k/k0)

, (7)

where α ≡ dns/d ln k, and k0 is some pivot wavenum-

ber. In this paper, k0 = 0.002 Mpc−1 is used. The

observations of WMAP indicate PS(k0) ≃ 2.95 ×
10−9A(k0) and A(k0) = 0.813+0.042

−0.052.
[3] Another key

prediction of inflationary model is that the existence

of the RGW. The primordial power spectrum of RGW

is defined as

PT(k) ≡ 32Gk3

π
h+

k hk . (8)

The strength of the gravitational wave is characterized

by their energy spectrum

Ωg(k) =
1

ρc

dρg

d ln k
, (9)

where ρc = 3H2
0/8πG is the critical density and

H0 = 100h km s−1 Mpc−1 is the present Hubble con-

stant. One can relate Ωg to the primordial power spec-

trum by the following formula:[36,47]

Ωg(k) =
1

12H2
0

k2PT(k)T 2
f (k) , (10)

where the transfer function Tf(k) reflects the damp-

ing effect of the gravitational wave when evolving in

the expansion universe. It is convenient to define a

function T (k) ≡ k2T 2
f /12H2

0 , so the strength of RGW

becomes Ωg(k) = T (k)PT(k). In the following sec-

tions, we discuss T (k) and PT(k), separately.

3. The transfer function

In this section, we discuss three kinds of damp-

ing effects. First we ignore the anisotropies stress in

Eq.(5), and consider only the redshift-suppression ef-

fect. So Eq.(5) becomes

ḧk + 2
ȧ

a
ḣk + k2hk = 0 . (11)

This is the evolutive equation of RGW in vacuum,

which only depends on the evolution of the scale fac-

tor a(τ). It is clear that the mode function of the

gravitational waves behaves simply in two regimes

when evolving in the universe: far outside the hori-

zon (k ≪ aH), and far inside the horizon (k ≫ aH).

When waves are far outside the horizon, the amplitude

of hk keeps constant, and when inside the horizon,

they damp with the expansion of the universe

hk ∝ 1

a
. (12)

In the simple cosmic model, the evolution of the

universe may be separated into three stages: the

radiation-dominant stage, the matter-dominant stage,

and the vacuum-dominant stage. In this model, by

numerically integrating Eq.(11), one has found that

the transfer function can be approximately described

with a damping function (for the waves with k ≫
10−18 Hz)[39,52−55]

t1(k)=
3

(kτ0)2
Ωm

ΩΛ

√

1.0+1.36
( k

keq

)

+2.50
( k

keq

)2

, (13)

where keq = 0.073Ωmh2 Mpc−1 is the wavenumber

corresponding to the Hubble radius at the time when

matter and radiation have equal energy densities. And

τ0 = 1.41 × 104 Mpc is the present conformal time.

Ωm and ΩΛ are the present energy densities of matter

and vacuum, respectively. It is obvious that, when

k ≪ keq, under which the waves have entered the

horizon in the matter-dominant or vacuum-dominant

stage, t1(k) ∝ k−2, but when k ≫ keq, under which

the waves have entered the horizon in the radiation-

dominant stage, t1(k) ∝ k−1, which is for the dif-

ferent evolutions of scale factor in different stages.

The factor Ωm/ΩΛ is the effect of accelerating ex-

pansion, which has been discussed in the previous

work.[39,53,56,57]

The second is the damping effect of the free-

streaming relativistic particles,[45] especially the neu-

trinos, which can generate the anisotropic stress Πk on

the right-hand side of Eq.(5), when they are the free-

streaming relativistic particles. This effect was first

considered by Weinberg, and Eq.(5) can be rewritten

as a fairly simple integro-differential equation. The

solution shows that anisotropy stress can reduce the

amplitude for the waves that have re-entered the hori-

zon during the radiation-dominated stage, and the

damping factor is only dependent on the fraction f of
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the background (critical) energy density of the free-

streaming relativistic particles in the universe. The

effect is less for the waves that enter the horizon at

later time. A lot of work has been done on simplify-

ing this effect, and in the work[47] the authors found

that it could be approximately described by a transfer

function t2 for the waves with ν > 10−16 Hz (which

re-enter the horizon at the radiation-dominant stage),

t2 =
15(14406f4 − 55770f3 + 3152975f2 − 48118000f + 324135000)

343(15 + 4f)(50 + 4f)(105 + 4f)(180 + 4f)
. (14)

When the waves with frequencies in a range of

10−16 Hz < ν < 10−10 Hz re-enter the horizon, the

temperature in the universe is relatively low (< 1

MeV), we are fairly confident that the neutrinos are

the only free-streaming relativistic particles. So we

choose f = 0.4052, corresponding to three stan-

dard neutrino species, and the damping factor to be

0.80313. But for the waves with very high frequen-

cies (ν > 10−10 Hz), the temperature of the universe

is very high when they re-enter the horizon, and the

value of f is much uncertain. Thus, the detection of

RGW at this frequency offers the probability of learn-

ing about the free-streaming fraction f in the very

early universe.

The third is the effect due to the successive

changes in the relativistic degrees of freedom during

the radiation-dominant stage, here we also call it the

effect due to the cosmic phase transition, which in-

cludes the QCD transition, the e+e− annihilation, the

electroweak phase transition and so on. In an adia-

batic system, the entropy per unit comoving volume

must be conserved,[40,58]

S(T ) = s(T )a3(T ) = constant,

and s(T ) =
2π2

45
g∗s(T )T 3, (15)

where the entropy density, s(T ), is given by the en-

ergy density and pressure: s = (ρ + p)/T . Combining

it with the expressions of energy density and pressure

in the radiation-dominant universe,

ρ(T ) =
π2

30
g∗(T )T 4, p(T ) =

1

3
ρ(T ) . (16)

one can immediately obtain the relation

ρ ∝ g∗g
−4/3
∗s a−4, (17)

where we have defined the ‘effective numbers of rela-

tivistic degrees of freedom’, g∗ and g∗s, following the

Refs.[40,58]. These quantities, g∗ and g∗s, count the

effective numbers of relativistic species contributing

to the radiation energy density and entropy, respec-

tively. From this relation, one can find that, if the

phase transitions are not considered, g∗ and g∗s are

both constant, and this relation turns into the general

expression of ρ ∝ a−4. However, it does not always

hold, as some particles become non-relativistic before

the others stop contributing to the radiation energy

density. In other words, the evolution of ρ during

the radiation era is sensitive to how many relativis-

tic species the universe has at a given epoch. As the

equation of gravitational waves constraints (ȧ/a)ḣk,

the solution of hk can be affected by g∗ and g∗s via

the Friedmann equation:

(H(τ)

H0

)2

=
( g∗

g∗0

)( g∗s
g∗s0

)−4/3

Ωr

( a

a0

)−4

+ Ωm

( a

a0

)−3

+ ΩΛ, (18)

where the subscript 0 denotes the quantity with

the present value. Here we have considered the

Friedmann equation in a Lambda cold dark matter

(ΛCDM) universe, which is supported by a number

of observations.[1−9,59−62] Inserting this into Eq.(11),

one can numerically calculate the value of hk,[40] which

can take a very long computer time, since one must

integrate that equation from the end of the inflation

to the present time, and calculate the waves from

ν = 10−16Hz to 0.1 Hz which we are interested in.

Here we give an approximate method, which can de-

scribe this effect by a simple factor t3. We consider

the wave hk with the wavenumber k, which crosses

the horizon at a = ak, and the corresponding Hub-

ble parameter Hk. So one has k = akHk/a0. It is

known that when the waves are in side the horizon,

hk(τ) ∝ 1/a(τ), damping with the expansion of uni-

verse, and when the waves are out side the horizon,

the hk = constant, keeping its initial value. So one
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can define a factor as follows:

Fk ≡ hk(τ0)

hk(τi)
=

ak

a0
, (19)

where τi is the conformal time at the beginning of the

radiation era. During the radiation era, one has

H = B
( g∗

g∗0

)1/2( g∗s
g∗s0

)−2/3( a

a0

)−2

, (20)

where B = H0Ω
1/2
r , which is a constant. Using

expressions (19) and (20) and the relation of k =

akHk/a0, one obtains

Fk =
B

k

(g∗(Tk)

g∗0

)1/2(g∗s(Tk)

g∗s0

)−2/3

, (21)

where Tk is the temperature when the wave hk exactly

crosses the horizon. First we can assume that g∗ = g∗0

and g∗s = g∗s0 are always satisfied, which is the con-

dition without changes in the relativistic degrees of

freedom during the radiation era, which follows that

F̃k = B/k. Inserting this into expression (10), one

finds that the value of Ωg(k) is independent of the

wavenumber k. However, here we are interested in

the condition where g∗ and g∗s are variable, and the

factor t3 exactly denotes the difference between the

two conditions, i.e.

t3 =
Fk

F̃k

=
(g∗(Tk)

g∗0

)1/2(g∗s(Tk)

g∗s0

)−2/3

, (22)

where g∗0 = 3.3626 and g∗s0 = 3.9091. This factor

depends on the values of g∗ and g∗s at the early uni-

verse. Figure 1 presents the evolutions of the values of

g∗ and g∗s, showing that the value of g∗ has an obvious

accretion when T > 0.1MeV. The difference between

g∗ and g∗s exists only when T < 0.1MeV. In the ex-

pression of Ωg(k), this effect is described by a factor

t 2
3 . Compared with the accurate numerical calcula-

tions, this approximation has an error smaller than

10%. The total transfer function is the combination

of these three effects

Tf(k) = t1 × t2 × t3 , (23)

where t1 is most important, and it approximately

shows the evolution of RGW in the expanding uni-

verse. The function of t2 is most uncertain in this

discussion. In one extreme condition where f and

t2 are fixed at 0 and 1 respectively, i.e. no damping,

and in another extreme condition where f and t2 are

fixed at 1 and 0.59 respectively, this function arrives

at its smallest value. The case of f = 0.4052 and t2 =

0.80321 only contributes a damping factor of 0.645 to

the strength of the RGW. The value of t3 is fairly

small. For the extreme condition with Tk > 106MeV

(k > 2 × 10−4Hz), one has g∗ = g∗s = 106.75 in the

Standard Model (g∗ = g∗s = 228.75 in the Minimal

Supersymmetric Standard Model (MSSM)), the case

of t3 = 0.62 (t3 = 0.55 in MSSM) only contributes a

damping factor of 0.38 (0.30 in MSSM) to the strength

of the RGW.

Fig.1. Evolution of g∗ with temperature. The solid and

dot lines represent g∗ in the Standard Model (SM) and in

the Minimal Supersymmetric Standard Model (MSSM),

respectively. At the energy scales below ∼ 0.1 MeV,

g∗ = 3.3626 and g∗s = 3.9091; g∗ = g∗s otherwise. This

figure is cited from Ref.[40].

The experiments which can directly detect the

RGW are all sensitive to waves with k ≫ keq, which

have re-entered the horizon during the radiation era.

From the previous discussion, one can obtain a simple

expression of all these damping effects

T (k) =
( 15

8k2
eqH

2
0 τ4

0

)(

Ωm

ΩΛ

)2(g∗(Tk)

g∗0

)(g∗s(Tk)

g∗s0

)−4/3

×
(15(14406f4

k − 55770f3
k + 3152975f2

k − 48118000fk + 324135000)

343(15 + 4fk)(50 + 4fk)(105 + 4fk)(180 + 4fk)

)2

, (24)
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where fk is the value of the function f when wave

hk exactly crosses the horizon. This function is de-

pendent on the values of ΩΛ and Ωm (the present en-

ergy densities of vacuum and matter, respectively),

the value of τ0 (the age of the universe), the value of

H0 (the present Hubble constant), the values of g∗(Tk)

and g∗s(Tk) (the effective numbers of relativistic de-

grees of freedom), and fk (the fraction of the back-

ground (critical) energy density of the free-streaming

relativistic particles in the universe). So this function

includes abundant cosmic information. Using this, the

strength of RGW becomes

Ωg(k) = PT(k)T (k) . (25)

Here we are interested in the wave with ν = 0.1 Hz,

which is the sensitive frequency of laser interferom-

eters, BBO and DECIGO. Choosing the cosmic pa-

rameters h = 0.72, Ωm = 0.27, ΩΛ = 0.73, g∗ = g∗s =

106.75 and fk = 0, one acquires

T (k) = 4.15 × 10−7,

and Ωg(k) = 4.15 × 10−7PT(k). (26)

4. The primordial power spec-

trum of RGW

The primordial spectrum of RGW is always de-

scribed in a simple form

PT(k) = PT(k0)
( k

k0

)nt(k0)+
1

2
αt ln(k/k0)

, (27)

where nt(k) is the tensor spectral index, and αt ≡
dnt/d ln k is its running. In the single-field infla-

tionary model, a standard slow-roll analysis gives the

following relations between observable quantities and

slow-roll parameters:

nt = − r

8
, αt =

r

8

[(

ns − 1
)

+
r

8

]

, and r =
8

3
(1 − ns) +

16

3
η

V
, (28)

where r(k) ≡ PT(k)/PS(k), is the so-called tensor–scalar ratio. These formulae relate nt and αt to the other

two functions ns and r, which are easy to observe. But the relation between r and ns is dependent on η
V
, which

depends on the specific inflationary potential. Inserting these into expression (27), one obtain

PT(k) = PS(k0) × r ×
( k

k0

)(−r/8)+(r/16)[(ns−1)+r/8] ln(k/k0)

, (29)

where r denotes the tensor–scalar ratio at k = k0, i.e. r ≡ r(k0), which also holds true in the following

sections. So the primordial spectrum of RGW only depends on ns and r. The recent constraints come from the

observations of three-year WMAP,[3] which are

ns = 0.951+0.015
−0.019 (68% C.L.) , and r < 0.28 (95% C.L.) . (30)

Using expression (26), one obtains

Ωg(k) = 9.98 × 10−16r
( k

k0

)(−r/8)+(r/16)[(ns−1)+r/8] ln(k/k0)

, (31)

where we have chosen A(k0) = 0.813. We have plotted

the function Ωg (where Ωg ≡ Ωg(k1), and k1 = 0.1Hz)

versus r in Fig.(2), where ns = 0.951 is used. This

result is consistent with that in our previous work, a

larger r leads to a larger Ωg. It is well known that

the formula in expression (27) is a very good approx-

imation when the wavenumber k is not much larger

(or smaller) than k0. But it may be not a good ap-

proximation at k1, which is 16 order more than k0. So

it is necessary to numerically calculate PT(k). It is

not easy to perform the exact numerical calculation,

since one must calculate the spectrum in a very wide

range in wavenumber (larger than 16 order), and for

each k one must integrate it from the initial condition

to the end of the inflation. In this section, we use

a semi-numerical method to calculate the primordial

power spectrum of RGW. We introduce this method

by discussing two kinds of inflationary models, which
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satisfy the current constraints of ns, α and r.

Fig.2. The inflationary models in the r − Ωg diagram.

r is the tensor–scalar ratio at k = 0.002 Mpc−1, and Ωg

is the strength of RGW at k = 2π × 0.1Hz. The dot line

represents the curve of the approximate formula in expres-

sion (31) and ns = 0.951. The vertical (dot) lines from

right to left are the sensitive limit curves of current obser-

vations, Planck and Clover, respectively. The horizontal

(dot) lines from up to down are the sensitive limit curves

of BBO and ultimate DECIGO, respectively. The solid

lines are the predicted curves of the inflationary models,

where ns ∈ [0.94, 0.98], and the arrows denote the direc-

tion of increasing ns. The stars denote the models with

ns = 0.951.

First we consider the model with potential

(Mod.1.1) V (φ) = Λ
4(φ/µ)2, which belongs to the

large-field model, and predicts a fairly larger r.[63−65]

From expression (6), one obtains

ǫ
V

=
2

φ2
, η

V
=

2

φ2
, and ξ

V
= 0, (32)

where we have used MPl ≡ 1. So the slow-roll con-

dition requires that φ ≫
√

2, which is the so-called

large-field model. At the end of inflation, ǫ
V

= 1 is

satisfied, which leads to φend =
√

2. In the initial

condition, one has[50,51]

ns − 1 = −6ǫ
V

+ 2η
V
, r = 16ǫ

V
,

and PS(k0) =
V

24π2ǫ
V

, (33)

which follows that

φini =
√

8/(1 − ns), r = 4(1 − ns)

Λ
4/µ2 = 0.75π2PS(k0)(1 − ns)

2. (34)

Inserting these into the Hamilton–Jacobi formula,

2[H ′(φ)]2 − 3H2(φ) = −V (φ) , (35)

one can immediately obtain the function H(φ) by the

numerical calculation. We define the e-fold number N ,

and the scale factor as a = ainie
N . When k0 crosses

the horizon, we set the scale factor a = aini = 1 i.e.

N = 0. The relation between N and φ is

dφ

dN
= −2

H ′

H
, (36)

where H is the Hubble parameter during inflation,

and H ′ ≡ dH/dφ. One can define a Hubble slow-

roll parameter ǫ ≡ 2(H ′/H)2, so the primordial power

spectrum of RGW is (to the first slow-roll order)[66]

PT(k) =
2

π2

[

1 − c + 1

4
ǫ
]

H2
∣

∣

∣

k=aH
, (37)

where c = 4(ln 2 + γ) − 5 ≃ 0.0814514 (with γ being

the Euler–Mascheroni constant) is a constant. Us-

ing Eqs.(35) and (36), one can numerically calculate

H(N). Inserting it into expression (37), one can have

the primordial spectrum of RGW, at the same time

the total e-fold N is also obtained. The value of Ωg is

also obtained by using expression (26). We have plot-

ted log Ωg versus log r in Fig.2, where we have chosen

ns ∈ [0.94, 0.98]. It is easily found that the value of

r is in the range r ∈ [0.08, 0.24]. Compared with the

value from approximate formula (31), the numerical

value is much small: When ns = 0.951, the value is

only one-third of the approximate value.

Now we consider another model V (φ) = Λ
4[1 −

(φ/µ)2], which belongs to the small-field model, and

it predicts a very small r.[63−65] From expression (6),

one achieves

ǫ
V

=
1

2

[ 2x/µ

1 − x2

]2

, η
V

=
2/µ2

x2 − 1
, and ξ

V
= 0, (38)

where x ≡ φ/µ. At the end of inflation, φend = µ, i.e.

xend = 1, where V = 0 is satisfied. The initial value of

x must be very small to account for the slow-roll con-

dition. Since it cannot be obtained from the observed

ns and PS(k0), we must set it before the calculation.

First we consider the model with xini = 0.1 (Mod.2.1),

using expression (33), we immediately have

µ2 = 4.89746/(1− ns), r = 0.06667(1− ns), and Λ
4 = 0.99693(1− ns)PS(k0). (39)



No. 10 Improved calculation of relic gravitational waves 2901

Second we consider the model with xini = 0.2 (Mod.2.2), which follows that

µ2 = 6.07693/(1− ns), r = 0.22857(1− ns), and Λ
4 = 3.52486(1− ns)PS(k0). (40)

The third model has xini = 0.3 (Mod.2.3), which follows that

µ2 = 7.72854/(1− ns), r = 0.45(1− ns), and Λ
4 = 7.32086(1− ns)PS(k0). (41)

Then using the Hamilton–Jacobi formula in Eq.(35)

and the relation between N and φ which here becomes

dφ/dN = 2H ′/H , one can also achieve the function

H(N). Using the formula (37), the values of r, PT(k),

Ωg(k) and N are also acquired, which are plotted in

Figs.2 and 3. From Fig.3, one finds that a larger ns

leads to a larger N , which holds for all these four in-

flationary models. When ns = 0.951, N = 41.96 for

the Mod.1.1, and N = 62.47 for the Mod.2.3, which

are in the region of N ∈ [40, 70] and acceptable.[67,68]

But for the Mod.2.1, N = 97.90, and for the Mod.2.2,

N = 74.59, which are too large to be acceptable. From

Fig.2, one finds that when ns ∈ [0.94, 0.98], r < 0.02

is satisfied for Mod.2.1, Mod.2.2 and Mod.2.3 at the

very small values. And values of Ωg are exactly the

same as the approximate results. So one cam draw

a conclusion: when r is small, formula (31) is a very

good approximation, but when r is larger (r > 0.1),

the approximate formula (31) is not very good, and

the numerical calculation is necessary to be carried

out.

Fig.3. The evolution of the value of the e-fold N with the

scalar spectral index ns for the inflationary models. The

dot line denotes the curve with ns = 0.951.

5. Conclusion and discussion

Inflation has received strong supports from the

observations of the CMB and LSS. As a key predic-

tion of inflationary models, the detection of RGW can

provide incontrovertible evidence that the inflation ac-

tually occurred and set strong constraints on the dy-

namics of inflation. A lot of experiments are under

development for the RGW detection, which mainly

include two kinds: The CMB experiments, including

Planck, Clover, and others; the laser interferometers,

including BBO, DECIGO and so on. For investigat-

ing the detection abilities of these two kinds of experi-

ments, it is convenient to study the distribution of the

inflationary models in the r−Ωg diagram. So it is nec-

essary to accurately calculate the RGW in the whole

frequency range. In this paper, we have improved the

previous calculation in two aspects. First, we have

studied the transfer function by taking into consider-

ation the redshift-suppression effect, the accelerating

expansion effect, the damping effect of free-streaming

relativistic particles, and the damping effect of cos-

mic phase transition, and given a simple approximate

formula of the transfer function, which applies to the

waves with k > keq. This function depends on the

values of the cosmic parameters: Ωm, ΩΛ, H0, keq, τ0,

g∗, g∗s, and fk. Second, we have developed a numer-

ical method of calculating the primordial power spec-

trum of RGW, especially at high frequencies, where

the observed constraints on ns and PS(k0) and the

Hamilton–Jacobi equation are used. We have applied

this method to two kinds of inflationary models, which

satisfy the current constraints on ns, α and r.

From Fig.3, one can find that in all these infla-

tionary models, a larger ns follows a larger N . For

the first kind of model, when ns > 0.97, the value of

N > 70 is satisfied, which is unsuitable. To account

for the constraint of N ∈ [40, 70], ns can be only in

a very narrow region ns ∈ [0.948, 0.970]. For the sec-

ond kind of model, the initial conditions of xini = 0.1

and xini = 0.2 are not acceptable, which predict too

large an e-fold. The condition of xini = 0.3 is suitable,

which predicts N = 62.47 when ns = 0.951. But to

account for the constraint N < 70, ns < 0.956 must be

satisfied. From Fig.2, one can find that for Mod.1.1,
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when ns ∈ [0.94, 0.98], the value of r is in the region

r ∈ [0.08, 0.24], which is mostly in the sensitive region

of Planck satellite. The value of Ωg is in the region

from 5.6 × 10−17 to 2.2 × 10−18. In most of region

of ns, a larger ns follows a smaller r, and corresponds

to a larger Ωg, which is an unexpected result. This is

obviously different from the result of the approximate

formula. When ns = 0.951, Ωg = 1.3×10−17, which is

in the sensitive region of ultimate DECIGO, but be-

yond the sensitive limit of BBO. This value is only one

third of the value from the approximate formula in ex-

pression (31). For Mod.2.1, Mod.2.2 and Mod.2.3, a

larger ns follows a smaller r and a smaller Ωg. These

models predict a very small r, when ns ∈ [0.94, 0.98],

r < 0.02 is always satisfied, and the value of Ωg is

exactly the same as the value from the approximate

formula in expression (31). For Mod.2.3, which pre-

dicts an acceptable e-fold, the values of r are all in

the sensitive region of Clover, but beyond which of

Planck; the values of Ωg are all in the sensitive region

of ultimate DECIGO, but beyond that of BBO.
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