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Abstract
Recent observations have indicated that the Universe at the present stage is in
an accelerating expansion, a process that has great implications. We evaluate
the spectrum of relic gravitational waves in the current accelerating Universe
and find that there are new features appearing in the resulting spectrum as
compared to the decelerating models. In the low-frequency range the peak
of the spectrum is now located at a frequency νE � (

�m

��

)1/3
νH , where νH is

the Hubble frequency, and there appears a new segment of spectrum between
νE and νH . In all other intervals of frequencies �νH , the spectral amplitude
acquires an extra factor �m

��
, due to the current acceleration; otherwise the shape

of the spectrum is similar to that in the decelerating models. The recent WMAP
result of CMB anisotropies is used to normalize the amplitude for gravitational
waves. The slope of the power spectrum depends sensitively on the scale factor
a(τ) ∝ |τ |1+β during the inflationary stage with β = −2 for the exact de Sitter
space. With increasing β, the resulting spectrum is tilted to be flatter with more
power at high frequencies, and the sensitivity of the second science run of the
LIGO detectors puts a restriction on the parameter β � −1.8. We also give a
numerical solution which confirms these features.

PACS numbers: 98.80.−k, 98.80.Es, 04.30.−w, 04.62.+v

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The inflationary expansion of the early Universe can create a stochastic background of relic
gravitational waves, which is important in cosmology and has been extensively studied in the
past [1–5]. The spectrum of relic gravitational waves, as is to be observed today, depends
not only on the details of the early stage of inflationary expansion, but also on the expansion
behaviour of the subsequent stages, including the current one. The calculations of the spectrum
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so far [6–11] have been done for the case that the current stage is in a decelerating expansion.
The resulting spectrum has been put among the candidate list of sources for the gravitational
wave detectors either in operation [12, 13], or under construction [14, 15]. The astronomical
observations on SN Ia [16, 17] indicate that the Universe is currently under accelerating
expansion, which may be driven by the cosmic dark energy (�� ∼ 0.7) plus the dark matter
(�m ∼ 0.3) [18]. This is further supported by the recent WMAP results on CMB anisotropies
[19] with � = 1. So far, in the numerical codes for CMB, such as CMBFAST, the dark energy
effects have been included in calculating CMB temperature anisotropies and polarizations,
but the spectrum of relic gravitational waves has not been given, which can be important
in producing the CMB anisotropies and polarizations. By the wave equation, the evolution
of relic gravitational waves depends on the expanding spacetime background, and the wave
amplitudes depend on whether the wavelengths are inside or outside the Hubble radius. The
Universe under accelerating expansion has a Hubble radius as a function of time that differs
from that in the conventional models of decelerating expansion. Therefore, one can expect
that, if an earlier matter-dominated stage of decelerating expansion is followed by the current
accelerating expansion, the outcome for the spectrum of relic gravitational waves will be
altered.

In this paper we study the impact of the current accelerating expansion on the relic
gravitational waves. We first sketch, as a setup, the well-known formulations of the
gravitational waves in an expanding spacetime [20], and give the explicit scale factor a(τ)

for a sequence of successive expanding epochs, including the current epoch of accelerating
expansion. We then evaluate the power spectrum of relic gravitational waves and find that the
current accelerating expansion does change the spectrum, including its shape and amplitude.
Throughout the paper we work with units with c = h̄ = 1; otherwise it will be pointed out.
We also use notation similar to that of Grishchuk [8] for convenience for comparison.

2. The gravitational wave equation

Incorporating the perturbations to the spatially flat Robertson–Walker spacetime, the metric is

ds2 = a2(τ )[dτ 2 − (δij + hij ) dxi dxj ], (1)

where τ is the conformal time, the perturbations of spacetime hij is a 3 × 3 symmetric matrix
containing generally the scalar, vector and tensor parts. The gravitational wave field is the
tensorial portion of hij , which is transverse-traceless

∂ih
ij = 0, δijhij = 0. (2)

We are interested only in the creation of relic gravitational waves by the expanding spacetime
background; the perturbed matter source is therefore not taken into account. Moreover, as the
relic gravitational waves are very weak, in the sense that hij � 1, so one needs just the study
of the linearized field equation:

∂µ(
√−g∂µhij (x, τ )) = 0. (3)

In quantum theory of gravitational waves, the field hij is a field operator, which is written as
a sum of the plane wave Fourier modes,

hij (x, τ ) =
√

16πlPl

(2π)
3
2

2∑
λ=1

∫ ∞

−∞
d3kε

(λ)
ij (k)

1√
2k

[
a

(λ)
k h

(λ)
k (τ ) eik·x + a

†(λ)

k h
(λ)∗
k (τ ) e−ik·x], (4)

where lPl = √
G is Planck’s length, the two polarizations ε

(λ)
ij (k), λ = 1, 2, are

symmetric and transverse-traceless kiε
(λ)
ij (k) = 0, δij ε

(λ)
ij (k) = 0, and satisfy the conditions
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ε(λ)ij (k)ε
(λ′)
ij (k) = 2δλλ′ and ε

(λ)
ij (−k) = ε

(λ)
ij (k), the creation and annihilation operators satisfy[

a
(λ)
k , a

†(λ′)
k′

] = δλλ′δ3(k − k′), and the initial vacuum state is defined as

a
(λ)
k |0〉 = 0 (5)

for each k and λ. As a matter of fact, this definition depends on the choice of the mode function
h

(λ)
k (τ ); different h

(λ)
k (τ ) define different vacuum states, a point that will be further explained

later. In the vacuum state the energy density of gravitational waves t00 = 1
32πG

hij,0h
ij

, 0 gives
the zero-point energy

〈0|
∫

t00 d3x|0〉 = 1

2
h̄

∫ ∞

−∞
d3k

2∑
λ=1

ωk〈0|a(λ)
k a

(λ)†
k |0〉.

For a fixed wave number k and a fixed polarization state λ, equation (3) reduces to the
second-order ordinary differential equation [20]

h
(λ)′′
k (τ ) + 2

a′

a
h

(λ)′
k (τ ) + k2h

(λ)
k = 0, (6)

where the prime denotes d/dτ . Since the equation of h
(λ)
k (τ ) for each polarization is the same,

we denote h
(λ)
k (τ ) by hk(τ ). One rescales the field hk(τ ) as

hk(τ ) = µk(τ )

a(τ )
, (7)

and the equation for µk is

µ′′
k +

(
k2 − a′′

a

)
µk = 0. (8)

This equation can be regarded as the equation for a one-dimensional oscillator in a given
effective potential barrier a′′/a. For a given spacetime background with a generic power-law
form of the scale factor

a(τ) ∝ τα, (9)

where α is a real number, positive or negative, the general solution is a linear combination of
Hankel’s functions:

µk(τ) = Ak

√
kτH

(1)

(α− 1
2 )

(kτ ) + Bk

√
kτH

(2)

(α− 1
2 )

(kτ ). (10)

Given a model of the expansion of Universe, consisting of a sequence of successive a(τ) as
in equation (9) with different α, one can construct an exact solution µk(τ) by matching its
values and its derivatives at the joining points. One may also numerically solve equation (6)
and give the corresponding power spectrum as we will present later in the paper. The vacuum
state |0〉, determined by the mode function hk(τ ), is therefore fixed by a choice of coefficients
Ak and Bk . In the limit k → ∞, or τ → ±∞,

√
kτH

(1)

(α− 1
2 )

(kτ ) →
√

2

π
i−α e−ikτ ,

√
kτH

(2)

(α− 1
2 )

(kτ ) →
√

2

π
iα eikτ ,

approaching the positive and negative frequency modes, respectively. For instance, if we
choose Bk = 0, then in the limit k → ∞, or τ → ±∞,

hk(τ ) ∝ e−ikτ ,

giving the positive frequency mode. This choice yields the so-called adiabatic vacuum [21]
through (4) and (5). The amplitude of the power spectrum of the gravitational waves depends
only on the initial value of |hk(τ )| at the horizon crossing.
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The following two limiting cases are useful for an approximate evaluation of the spectrum.
Outside the barrier k2 � a′′

a
(equivalent to k � a′

a
) the gravitational wave field reduces to

hk(τ ) → Ak

eikτ

a(τ )
+ Bk

e−ikτ

a(τ )
, (11)

having a decreasing amplitude

hk(τ ) ∝ 1/a(τ). (12)

Inside the barrier k2 � a′′
a

(equivalent to k � a′
a

) the gravitational wave field

hk(τ ) → Ck + Dk

∫ τ dτ ′

a2(τ ′)
. (13)

The second term D
∫ τ dτ ′

a2(τ ′) is small for the models that we shall study in the following, so
the long wavelength limit of hk is simply a constant:

hk(τ ) = Ck. (14)

Thus, as a function of τ , hk(τ ) has simple approximate behaviours in the two limiting cases,
and we will use these to estimate the spectrum at the present stage.

3. Epochs of expanding Universe

The history of the overall expansion of the Universe can be modelled as the following sequence
of successive epochs of power-law expansion.

The initial stage (inflationary)

a(τ) = l0|τ |1+β, −∞ < τ � τ1, (15)

where 1 + β < 0, and τ1 < 0. The special case of β = −2 is the de Sitter expansion.
The z-stage

a(τ) = az(τ − τp)1+βs , τ1 � τ � τs, (16)

where βs + 1 > 0. Towards the end of inflation, during the reheating, the equation of state of
energy in the Universe can be quite complicated and is rather model-dependent [22]. So this
z-stage is introduced to allow a general reheating epoch, as has been advocated by Grishchuk
[8].

The radiation-dominated stage

a(τ) = ae(τ − τe), τs � τ � τ2. (17)

The matter-dominated stage

a(τ) = am(τ − τm)2, τ2 � τ � τE, (18)

where τE is the time when the dark energy density ρ� is equal to the matter energy density ρm.
Before the discovery of the accelerating expansion of the Universe, the current expansion was
usually taken to be in this matter-dominated stage, which is a decelerating one. Now, following
the matter-dominated stage, we add an epoch of accelerating stage, which is probably driven
by either the cosmological constant, or the quintessence, or some other kind of condensate
[23]. The value of the redshift zE at the time τE is given by (1 + zE) = a(τH )/a(τE), where
τH is the present time. Since ρ� is constant and ρm(τ) ∝ a−3(τ ), one has

1 = ρ�

ρm(τE)
= ρ�

ρm(τH )(1 + zE)3
.
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If we take the current values �� ∼ 0.7 and �m ∼ 0.3, then it follows that

1 + zE =
(

��

�m

)1/3

∼ 1.33.

The accelerating stage (up to the present)

a(τ) = lH |τ − τa|−1, τE � τ � τH . (19)

This stage describes the accelerating expansion of the Universe, which is the new feature in
our model and will induce some modifications to the spectrum of relic gravitational waves. It
should be mentioned that the actual scale factor function a(τ) differs from equation (19), since
the matter component exists in the current Universe. However, the dark energy is dominant,
so (19) is an approximation to the current expansion behaviour.

Given a(τ) for the various epochs, the derivative a′ = da/dτ and the ratio a′/a follow
immediately. Except for the βs that is imposed upon as the model parameter, there are ten
constants in the above expressions of a(τ). By the continuity conditions of a(τ) and a(τ)′ at
the four given joining points τ1, τs, τ2 and τE , one can fix only eight constants. The remaining
two constants can be fixed by the overall normalization of a and by the observed Hubble
constant as the expansion rate. Specifically, we put |τH − τa| = 1 as the normalization of a,
which fixes the constant τa , and the constant lH is fixed by the following calculation,

1

H
≡

(
a2

a′

)
τH

= lH , (20)

so lH is just the Hubble radius at present. Then everything is fixed up. In the expanding
Robertson–Walker spacetime the physical wavelength is related to the comoving wave
number by

λ ≡ 2πa(τ)

k
, (21)

and the wave number kH corresponding to the present Hubble radius is

kH = 2πa(τH )

lH
= 2π. (22)

There is another wave number,

kE ≡ 2πa(τE)

1/H
= kH

1 + zE

,

whose corresponding wavelength at the time τE is the Hubble radius 1/H .
By matching a and a′/a at the joint points, we have derived, for example,

l0 = lH bζ
−(2+β)

E ζ
β−1

2
2 ζ β

s ζ
β−βs
1+βs

1 , (23)

where b ≡ |1 + β|−(1+β), which is defined differently from Grishchuk’s [08], ζE ≡ a(τH )

a(τE)
,

ζ2 ≡ a(τE)

a(τ2)
, ζs ≡ a(τ2)

a(τs )
and ζ1 ≡ a(τs )

a(τ1)
. With these specifications, the functions a(τ) and

a′(τ )/a(τ ) are fully determined. In particular, a′(τ )/a(τ ) rises up during the accelerating
stage, instead of decreasing as in the matter-dominated stage. This causes the modifications
to the spectrum of relic gravitational waves.

4. The spectrum of gravitational waves

The power spectrum h(k, τ ) of relic gravitational waves is defined by the following equation,∫ ∞

0
h2(k, τ )

dk

k
≡ 〈0|hij (x, τ )hij (x, τ )|0〉, (24)



1388 Y Zhang et al

where the right-hand side is the vacuum expectation value of the operator hijhij . Substituting
equation (4) into the above, and taking the contribution from each polarization to be the same,
one reads the power spectrum

h(k, τ ) = 4lPl√
π

k|hk(τ )| (25)

Once the mode function hk(τ ) is given, the spectrum h(k, τ ) follows.
The initial condition is taken to be during the inflationary stage. For a given wave number

k, its wave crossed over the horizon at a time τi , i.e. when the wavelength λi = 2πa(τi)/k,

is equal to 1/H(τi), the Hubble radius at time τi . Equation (15) yields 1/H(τi) = l0|τi |2+β/

|1 + β|, and for the exact de Sitter expansion with β = −2 one has H(τi) = l0. Note that a
different k corresponds to a different time τi . Now choose the initial condition of the mode
function hk(τ ) as

|hk(τi)| = 1

a(τi)
. (26)

Then the initial amplitude of the power spectrum is

h(k, τi) = 8
√

π
lPl

λi

. (27)

From λi = 1/H(τi) it follows that a′(τi )

a(τi )
= k

2π
. So the initial amplitude of the power spectrum

is

h(k, τi) = A

(
k

kH

)2+β

, (28)

where the constant

A = 8
√

πb
lPl

l0
. (29)

For the case of β = −2 the initial spectrum is independent of k. The power spectrum for the
primordial perturbations of energy density is P(k) ∝ |h(k, τH )|2, and its spectral index n is
defined as P(k) ∝ kn−1. Thus one reads off the relation n = 2β + 5. The exact de Sitter
expansion with β = −2 will yield the so-called scale-invariant spectral index n = 1.

Once the initial spectrum is specified, we can derive the spectrum h(k, τH ) at the present
time τH .

For k � kE , the wavelengths 2πa(τH )

k
in this range are even greater than the present Hubble

radius lH ; one has k < a′/a throughout the whole expansion up to the present, so the amplitude
remains the same constant as the initial one in equation (28):

h(k, τH ) = A

(
k

kH

)2+β

, k � kE. (30)

During the whole period inside the barrier, the spectral amplitude remains h(k, τi)

approximately until the wave leaves the barrier and begins to decrease as 1/a(τ). Let a∗∗(k)

be the scale factor at this moment. For those very long wavelength modes with kE � k � kH ,
during the current epoch of accelerating expansion, hk(τ ) stops decreasing as soon as the
barrier a′/a becomes higher than k at a time τ(k) earlier than τH , so hk(τ ) has decreased by a
factor a∗∗(k)

a(τ (k))
, and the amplitude of the present spectrum is given by

h(k, τH ) = A

(
k

kH

)2+β
a∗∗(k)

a(τ (k))
. (31)
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The decreasing factor is written as

a∗∗(k)

a(τ (k))
= a∗∗(k)

a(τE)

a(τE)

a(τ (k))
.

During the matter-dominated stage one has a∗∗(k) ∝ τ 2 ∝ k−2 and a(τE) ∝ τ 2
E ∝ k−2

E , and
during the accelerating stage one has a(τE) ∝ τ−1

E ∝ kE and a(τ(k)) ∝ τ−1 ∝ k, so the
decreasing factor is

a∗∗(k)

a(τ (k))
=

(
kE

k

)3

.

Thus one gets

h(k, τH ) = A

(
k

kH

)2+β (
kE

k

)3

= A

(
k

kH

)β−1 1

(1 + zE)3
, kE � k � kH . (32)

where the relation kE

kH
= 1

1+zE
has been used. The spectrum has a rather stiff slope with the

power-law index β − 1. The occurrence of this segment of power spectrum is a new feature of
the model of accelerating expansion that is absent in the decelerating model. The wavelengths
corresponding to this (kE, kH ) segment are very long, comparable to the present Hubble radius,
and can only possibly be observed through the CMB anisotropies at low multipoles.

For all the wave numbers k > kH , as soon as the waves leave the barrier at a∗∗(k), the
modes hk(τ ) decrease all the way up to the present time τH . So it has been reduced by a factor
a∗∗(k)

a(τH )
, and the amplitude of the present spectrum is given by

h(k, τH ) = A

(
k

kH

)2+β
a∗∗(k)

a(τH )
. (33)

We use this formula to obtain the following result for the spectrum of gravitational waves in
the remaining range of wave numbers.

For kH � k � k2, the wave number does not hit the barrier, so

a∗∗(k)

a(τH )
= a∗∗(k)

a(τE)

a(τE)

a(τH )
=

(
kE

k

)2 1

(1 + zE)
,

and one obtains

h(k, τH ) = A

(
k

kH

)β 1

(1 + zE)3
, kH � k � k2. (34)

The spectrum in this interval differs from that of the matter-dominated model by an extra
factor 1

(1+zE)3 = �m

��
∼ 0.43. The wavelengths in this range are very long, but are still shorter

than lH . The spectrum in this interval may contribute to, and, therefore, have its imprints in
CMB anisotropies. Let us estimate the value k2. Assuming that the equality of radiation and
matter occurred at the redshift z2 � 3454, as indicated by the WMAP observation [19], one
has

k2

kE

=
(

a(τE)

a(τ2)

) 1
2

=
(

a(τH )

a(τ2)

) 1
2
(

a(τE)

a(τH )

) 1
2

�
√

3454
1√
1.33

� 51.

For k2 � k � ks , the calculation is similar to the previous case with the result

h(k, τH ) = A

(
k

kH

)1+β (
kH

k2

)
1

(1 + zE)3
, k2 � k � ks. (35)

Again the extra factor 1/(1 + zE)3 appears. Note that this range of frequency covers the one
to which the detectors of LIGO and LISA are sensitive.
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For ks � k � k1, the calculation yields

h(k, τH ) = A

(
k

kH

)1+β−βs
(

ks

kH

)βs kH

k2

1

(1 + zE)3
, ks � k � k1. (36)

It also contains an extra factor 1
(1+zE)3 . This is the high-frequency range which is still beyond

current detection.

5. Determining the parameters

To completely determine the spectrum, we also need to specify the values of ν1, A, νs, βs , which
appear in the expressions for the spectrum h(k, τH ). Since the wave number is proportional
to the frequency, k ∝ ν, the ratios of the wave numbers can be replaced by those of the
frequencies, e.g., k/kH = ν/νH , etc, in the above formulae of the spectrum h(k, τH ). The
Hubble frequency νH = 1/lH = H � 2 × 10−18 Hz.

An estimate of the highest frequency ν1 can be made as given in [8]. From expression
(36) one has

h(k1, τH ) = 8
√

π
lPl

lH

(
ν1

νH

)
= 8

√
π

lPl

l1
, (37)

where expressions (23) for b/l0 and (29) for A have been used. The spectral energy density
parameter �g(ν) of gravitational waves is defined through the relation ρg/ρc = ∫

�g(ν) dν
ν

,
where ρg is the energy density of the gravitational waves and ρc is the critical energy density.
One reads

�g(ν) = π2

3
h2(k, τH )

(
ν

νH

)2

.

If it is imposed that at the highest frequency ν1 the value �g(ν1) does not exceed the level of
10−6, as required by the rate of the primordial nucleogenesis, then one gets ν1 = 3 × 1010 Hz.

Next let us estimate the overall factor A in the spectrum h(k, τH ). If the CMB anisotropies
at low multipoles are induced by the gravitational waves, or if the contributions from the
gravitational waves and from the density perturbations are of the same order of magnitude,
we may assume �T/T � h(k, τH ). This will determine A. The observed CMB anisotropies
[19] at lower multipoles is �T/T � 0.37 × 10−5 at l ∼ 2, which corresponds to the largest
scale anisotropies that have observed so far. Taking this to be the perturbations at the Hubble
radius 1/H yields

h(kH , τH ) = A
1

(1 + zE)3
= 0.37 × 10−5. (38)

Actually the observed �T/T varies with l, for instance, �T/T � 1.04 × 10−5 at l ∼ 10,
which would give an outcome for A greater than that in equation (38) by a factor ∼2.8.
However, if the contributions from relic gravitational waves to �T/T are less than those
from the density perturbations, the normalization of A should be chosen less than that in
equation (38) accordingly.

However, there is a subtlety here in the interpretation of �T/T at low multipoles, whose
corresponding scale is very large ∼lH . At present the Hubble radius is lH , and the Hubble
diameter is 2lH . On the other hand, the smallest characteristic wave number is kE , whose
corresponding physical wave length at present is 2πa(τH )

kE
= lH (1 + zE) � 1.32lH , which

is within the Hubble diameter 2lH , and is theoretically observable. So, instead of (38), if
�T/T � 0.37 × 10−5 at l ∼ 2 were taken as the amplitude of the spectrum at νE , one would
have h(kE, τH ) = A 1

(1+zE)2+β = 0.37 × 10−5, yielding a smaller A than that in equation (38)

by a factor (1 + zE)1−β ∼ 2.2.
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Figure 1. The spectrum h(k, τH ) as a function of the frequency ν in the present Universe in both
accelerating and decelerating expansion.

We now check the range of β allowed. During the inflationary expansion when the k-mode
wave enters the barrier with λi = 1/H(τi), it follows that λi = l0

b

(
kH

k

)2+β
. For the classical

treatment of the background gravitational field to be valid, this wavelength should be greater
than the Planck length, λi > lPl, so(

ν

νH

)2+β

<
8
√

π

A
.

At the highest frequency ν = ν1, this yields a constraint

β < −2 + ln

(
8
√

π

A

)/
ln

(
ν1

νH

)
, (39)

which depends on A. Thus, for A given in (38), one obtains the upper limit β < −1.78. We
remark that this range is larger than that in the decelerating model [8], which allows for only
β < −1.9.

Finally, we give an estimate of the allowed values of βs and νs . Plugging b/l0 given by
(23) into A = 8

√
πb lPl

l0
, using ν2/νH = 58.8 and lH / lPl = 1.238 × 1061, one has

1.484 × 1058 A

(1 + zE)3
=

(
ν1

νH

)−β (
ν1

νs

)βs

. (40)

Given a set values of A and β, one can take νs and βs to satisfy this relation. From equation (36)
it is seen that, for a fixed νs , a smaller βs tends to slightly increase the amplitude h(ν, τH ).
For definiteness, we take νs = 108 Hz as an example in the following. For A given in (38),
taking β = −1.8,−1.9, then βs = 0.598,−0.552, respectively.

With these results we plot the spectrum h(k, τH ) versus the frequency ν for two values
of the parameter β = −1.9,−1.8 in figure 1. Besides, for convenience of comparison, the
spectrum for the non-accelerating model [8] is also plotted for β = −1.9. It is clearly seen
that, for the same parameter β = −1.9 in the whole range ν � νH , the accelerating model has
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Figure 2. The spectrum h(k, τH ) from the numerical calculation.

an amplitude lower by a factor of ∼2.2 than that of the decelerating model. This is due to the
extra factor 1

(1+zE)3 = �m

��
, as has been demonstrated in the previous expressions (34), (35) and

(36). Interestingly, the larger value β = −1.8 gives a flatter spectrum h(ν, τH ) with an overall
higher amplitude in the range ν � ν2. In particular, in the higher frequency range (10−4–0) Hz
covered by LISA, the amplitude is h � 10−19–10−22 for the β = −1.8 case, about 10 to 102

higher than the β = −1.9 case. In the even higher frequency range (10–104) Hz covered by
LIGO, the amplitude is h � 10−23–10−25 for the β = −1.8 case, also 10 to 102 higher than
the β = −1.9 case. Thus an inflationary model of larger index n = 2β + 5 will predict a
stronger signal of relic gravitational waves in higher frequencies.

The recent second science run of the LIGO interferometric detectors [24] gives a sensitivity
3 × 10−24 to 3 × 10−23 in the frequency range (102–103) Hz. The best sensitivity is given by
the 4 km arm L1 detector located at Livingstone, which is about 3 × 10−24 near a frequency
∼300 Hz. Our calculation for the β = −1.9 case yields an amplitude, h � 10−26, much
smaller than this sensitivity of the second run. However, the most interesting case is the model
of β = −1.8, in which the amplitude of the gravitational waves just falls into the sensitivity
of the L1 detector. Since the second run of LIGO has not observed any signal of stochastic
gravitational waves in this frequency range, we arrive at a constraint β � −1.8 on the model
parameter of the inflationary expansion. By the way, if in future LIGO does not detect any
signals of relic gravitational waves at a higher sensitivity of 10−25, then the constraint will be
β � −1.9. Note that this constraint is consistent with, though more stringent than, β < −1.78,
as has been imposed, through equation (39), from the observed CMB anisotropies of WMAP.
Thus, in regard to the index β of the inflationary expansion, so far both observations from
CMB and from relic gravitational waves have given a consistent restriction.

As a double check, we also have numerically solved the differential equation (6) of
the gravitational waves, and found the resulting power spectrum h(ν, t) from the numerical
solution, which is plotted in figure 2. Since the numerical result that we have plotted carries
the oscillating factor cos(2πν(t − tν)), its curve shows an extra small zigzag, as expected.



Relic gravitational waves in the accelerating Universe 1393

Figure 3. The energy spectrum �g(ν) in the present Universe in both accelerating and decelerating
expansion.

Moreover, for the range of small frequencies, ν < νH , cos(2πν(t − tν)) � 1, the oscillating
amplitude is very small, confirming an observation made in [8]. Except for this oscillating
effect, the numerical result of the spectrum in figure 2 agrees with the analytical one in
figure 1.

We also plotted the spectral energy density �g(ν) from the analytic solution in figure 3.
It is similar to the known result, except for the obvious distortions caused by the acceleration
of the Universe expansion in the low-frequency range.

There is one more consistency condition to be satisfied. Since the spacetime is assumed
to be spatially flat (k = 1) with � = 1, the fraction density of relic gravitational waves should
be less than 1, ρg/ρc < 1. Using the normalization of A in equation (38), we have integrated∫

�g(ν) dν
ν

up to the frequency ν1, giving the present values

ρg/ρc = 2.7 × 10−6 for β = −1.9,

ρg/ρc = 1.2 × 10−3 for β = −1.8,

both being less than 1, so the models are consistent. But if a limit of ρg/ρc � 10−4, a
priori, is imposed, then the model β = −1.8 is ruled out. However, in most cosmic scenarios
the contribution from the relic gravitational waves to CMB anisotropies at low multipoles
is approximately �1/4 of that from the density perturbation; the normalization of A in
equation (38) should be reduced correspondingly, and ρg/ρc � 3 × 10−4 for the model
β = −1.8, which will be barely saved.

6. Conclusion

We have presented a calculation of the spectrum of relic gravitational waves in the present
Universe in accelerating expansion. The recent WMAP result of �T/T has been used to
normalize the amplitude of relic gravitational waves. In comparison with the decelerating
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models, the spectrum has been modified due to the particular form of the barrier function a′/a
during the acceleration of current expansion. Specifically, in the very low frequency range
(<νH ) the spectrum has been changed with the peak of spectrum now being located at νE , and
there appears a new segment of spectrum from νE to νH . These very long wavelength features
can be only possibly be detected by the CMB anisotropies at low multipoles. In the higher
frequency range (�νH ) the spectral amplitude acquires an overall factor �m

��
as compared with

the decelerating model. This higher frequency range is pertinent to detection projects such
as LISA and LIGO. A larger value of β yields a flatter spectrum h(ν, τH ) as a function of
ν, producing more power in the higher frequencies. The resulting sensitivity of the second
scientific run of the LIGO detectors has put a restriction on the model parameter β � −1.8,
consistent with that imposed by the normalization at low multipoles of CMB �T/T .
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