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Abstract

We discuss the evolution of holographic hessence model, which satisfies the holographic principle and can naturally realize the equation of state
crossing −1. By discussing the evolution of the models in the w–w′ plane, we find that, if c � 1, whe � −1 and V̇ < 0 keep for all time, which are
quintessence-like. However, if c < −1, which mildly favors the current observations, whe evolves from whe > −1 to whe < −1, and the potential
is a nonmonotonic function. In the earlier time, the potential must be rolled down, and then be climbed up. Considered the current constraint on
the parameter c, we reconstruct the potential of the holographic hessence model.
© 2007 Elsevier B.V. All rights reserved.

PACS: 98.80.-k; 98.80.Es; 04.30.-w; 04.62.+v

1. Introduction

Numerous and complementary cosmological observations
indicate that the expansion of the universe is undergoing cosmic
acceleration at the present time [1]. This cosmic acceleration
is viewed as due to a mysterious dominant component, dark
energy, with negative pressure. The combined analysis of cos-
mological observations suggests that the universe is spatially
flat, and consists of about 70% dark energy, 30% dust matter
(cold dark matter plus baryons), and negligible radiation. Al-
though we can affirm that the ultimate fate of the universe is
determined by the feature of dark energy, the nature of dark
energy as well as its cosmological origin remain enigmatic at
present. Explanations have been sought within a wide range of
physical phenomena, including a cosmological constant, exotic
fields [2–6], a new form of the gravitational equation [7], etc.
Recently, a new model stimulated by the holographic principle
has been put forward to explain the dark energy [8,9]. Accord-
ing to the holographic principle, the number of degrees of free-
dom of a physical system scales with the area of its boundary.
In the context, Cohen et al. [10] suggested that in quantum field
theory a short distant cutoff is related to a long distant cufoff
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due to the limit set by formation of a black hole, which results
in an upper bound on zero-point energy density. In line with this
suggest, Hsu and Li [8,9] argued that this energy density could
be view as the holographic dark energy satisfying

(1)ρde = 3c2M2
P L−2,

where c is a numerical constant, and MP ≡ 1/
√

8πG is the
reduced Planck mass. If we take L as the size of the current
universe, for instance the Hubble scale H−1, then the dark en-
ergy density will be close to the observed data. However, Hsu
[8] pointed out that this yields a wrong equation of state for
dark energy. Li [9] subsequently proposed that the IR cut-off L

should be taken as the size of the future event horizon

(2)L = Reh(a) = a

∞∫
t

d t̃

a(t̃)
= a

∞∫
a

dã

H ã2
.

Then the problem can be solved nicely and the holographic
dark energy model can thus be constructed successfully. The
holographic dark energy scenario may provide simultaneously
natural solutions to both dark energy problems as demonstrated
in Ref. [9]. The only undetermined parameter c should be fixed
by the observations. If c � 1, which satisfies the original bound
L3ρde � LM2

p , the equation of state (EOS) of dark energy
evolves from the state of w > −1 to w < −1, and the critical
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state of w = −1 must be crossed. If c > 1, the EOS of dark
energy keeps w > −1 [9], which naturally avoided the cos-
mic big rip. However, the original bound L3ρde � LM2

p will
be violated. Since the model we discuss here is only a phenom-
enological framework and it is unclear whether it is appropriate
to tightly constrain the value of c by means of the analogue to
the black hole. As a matter of fact, the possibility of c > 1 has
been seriously dealt with and a modest value of c larger than
one could be favored in the literature [11]. In this Letter, we
consider the general case with c as a free parameter.

For a kind of realized dark energy model, the feature of EOS
crossing −1 cannot be realized by the simple quintessence,
phantom, or k-essence [12]. The quintom is one of the simplest
models with EOS crossing −1, which is the combination of a
quintessence φ1 and a phantom φ2. The hessence is a kind of
simple quintom [13,14], which has the Lagrangian density

(3)Lhe = 1

2
(∂μφ1)

2 − 1

2
(∂μφ2)

2 − V
(
φ2

1 − φ2
2

)
,

where the potential function V (φ2
1 − φ2

2) is free for the mod-
els. Different choice of V follows a different evolution of the
universe. In Ref. [15], the authors found that this kind of mod-
els may be the local effective approximation of the D3-brane
Universe. In Ref. [14], we have proved that the evolution of
potential function can be exactly determined by the EOS of
hessence whe(z) and its evolution w′

he(z). If considered the
holographic constraint in Eq. (1), the EOS of the hessence can
be exactly determined for a fixed c. So the potential function for
the holographic hessence only depends on the parameter c. In
this Letter, we first discuss the evolution of the EOS and poten-
tial of the holographic hessence models for the different c. Then
considered the constraint on c from the current observations, we
reconstruct the potential function of holographic hessence mod-
els.

2. Holographic hessence models

We consider the action

(4)S =
∫

d4x
√−g

(
− R

16πG
+Lhe +Lm

)
,

where g is the determinant of the metric gμν , R is the Ricci
scalar, Lhe and Lm are the Lagrangian densities of the hessence
dark energy and matter, respectively. The Lagrangian density of
hessence is in Eq. (3). One can easily find that this Lagrangian
is invariant under the transformation

(5)φ1 → φ1 cosh(iα) − φ2 sinh(iα),

(6)φ2 → −φ1 sinh(iα) + φ2 cosh(iα),

where α is constant. This property makes one can rewrite the
Lagrangian density (3) in another form

(7)Lhe = 1

2

[
(∂μφ)2 − φ2(∂μθ)2] − V (φ),

where we have introduced two new variables (φ, θ), i.e.,

(8)φ1 = φ cosh θ, φ2 = φ sinh θ.

Consider a spatially flat FRW (Friedmann–Robertson–Walker)
universe with metric

(9)ds2 = dt2 − a2(t)γij dxi dxj ,

where a(t) is the scale factor, and γij = δi
j denotes the flat back-

ground space. Assuming φ and θ are homogeneous, from the
action in (4), we obtain the equations of motion for φ and θ

(10)φ̈ + 3Hφ̇ + φθ̇2 + dV/dφ = 0,

(11)φ2θ̈ + (
2φφ̇ + 3Hφ2)θ̇ = 0,

where H ≡ ȧ/a is the Hubble parameter, an overdot denotes
the derivatives with respect to cosmic time. Eq. (11) implies

(12)Q = a3φ2θ̇ = const,

which is associated with the total conserved charge within the
physical volume due to the internal symmetry [13]. This rela-
tion turns out

(13)θ̇ = Q

a3φ2
.

Substituting this into Eq. (10), we can rewrite the kinetic equa-
tion as

(14)φ̈ + 3Hφ̇ + Q2

a6φ3
+ dV

dφ
= 0,

which is equivalent to the energy conservation equation of the
hessence ρ̇he + 3H(ρhe + phe) = 0. The pressure, energy den-
sity and the EOS of the hessence are

phe = 1

2
φ̇2 − Q2

2a6φ2
− V (φ),

(15)ρhe = 1

2
φ̇2 − Q2

2a6φ2
+ V (φ),

whe =
[

1

2
φ̇2 − Q2

2a6φ2
− V (φ)

] / [
1

2
φ̇2 − Q2

2a6φ2
+ V (φ)

]
,

(16)

respectively. It is easily seen that whe � −1 when φ̇2 �
Q2/(a6φ2), while ωhe � −1 when φ̇2 � Q2/(a6φ2). The tran-
sition occurs when φ̇2 = Q2/(a6φ2). In the case of Q ≡ 0, the
hessence becomes the quintessence model. From the expres-
sion of EOS of hessence, we can find it is only dependant of
the potential function V (φ). If V (φ) is determined, w is also
determined. On the contrary, if w(z) is fixed, the potential func-
tion V (φ) also can be solved. Here we consider the holographic
hessence models, which satisfies the holographic constraint in
Eq. (1). Consider now a spatially flat FRW universe with mat-
ter component ρm (including both baryon matter and cold dark
matter) and holographic hessence component ρhe. The Fried-
mann equation reads

(17)3H 2M2
p = ρm + ρhe,

or equivalently,

(18)
H 2

H 2
0

= Ωm0a
−3 + Ωhe

H 2

H 2
0

.
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Combining the definition of the holographic dark energy (1)
and the definition of the future event horizon (2), we derive

(19)

∞∫
a

d ln ã

H ã
= c

Ha
√

Ωhe
.

We notice that the Friedmann equation (18) implies

(20)
1

Ha
= √

a(1 − Ωhe)
1

H0
√

Ω0
m

.

Substituting (20) into (19), we get easily the dynamics satis-
fied by the dark energy, i.e., the differential equation about the
fractional density of dark energy,

(21)Ω ′
he = Ωhe(1 − Ωhe)

(
1 + 2

c

√
Ωhe

)
,

where the prime denotes the derivative with respect to lna.
This equation describes behavior of the holographic dark en-
ergy completely, and it can be solved exactly. It is easy to prove
that this equation has only one steady attractor solution

(22)Ωhe = 1.

In the solution, the hessence is dominant in the universe, and
the component of matter is negligible.

Important observables to reveal the nature of dark energy are
the EoS w and its time derivative in units of Hubble time w′.
The SNAP mission is expected to observe about 2000 SNIa
each year, over a period of three years. Most of these SNIa are at
the redshift z ∈ [0.2,1.2]. The SNIa plus weak lensing methods
conjoined can determine the present equation of state ratio, ω0,
to 5%, and its time variation, ω′, to 0.11 [16]. It has a power-
ful ability to differentiate the various dark energy models. From
the energy conservation equation of the holographic hessence,
the EOS of the dark energy can be given [9]

(23)whe = −1 − 1

3

d lnρhe

d lna
= −1

3

(
1 + 2

c

√
Ωhe

)
,

and its evolution is

(24)w′
he = −

√
Ωhe

3
(1 − Ωhe)

(
1 + 2

c

√
Ωhe

)
.

It can be seen clearly that the equation of state of the holo-
graphic dark energy evolves dynamically and satisfies −(1 +
2/c)/3 � whe � −1/3 due to 0 � Ωhe � 1. The parameter c

plays a significant role in this model. If one takes c = 1, the
behavior of the holographic dark energy will be more and more
like a cosmological constant with the expansion of the universe,
such that ultimately the universe will enter the de Sitter phase
in the far future. As is shown in [9], if one puts the parameter
Ωhe0 = 0.73 into (23), then a definite prediction of this model,
whe0 = −0.903, will be given. On the other hand, if c < 1, the
holographic dark energy will exhibit appealing behavior that the
equation of state crosses the “cosmological-constant boundary”
(or “phantom divide”) w = −1 during the evolution. This kind
of dark energy is referred to as “quintom” [5] which is slightly
favored by current observations [17]. If c > 1, the equation of
state of dark energy will be always larger than −1 such that

the universe avoids entering the de Sitter phase and the Big Rip
phase. Hence, we see explicitly, the value of c is very impor-
tant for the holographic dark energy model, which determines
the feature of the holographic hessence as well as the ultimate
fate of the universe.

Now, we discuss the dark energy models in the w–w′ plane,
which clearly shows the evolution character of the dark energy.
The simplest model, cosmological constant, has the effective
state of w = −1 and w′ = 0, which corresponds to a fixed point
in the w–w′ plane. Generally, the dynamics model of dark en-
ergy shows a line in this plane, which describes the evolution of
its EOS [18]. The simple quintessence has the state of w � −1,
which only occupies the region of w′ > −3(1 + w)(1 − w).
The phantom field (w � −1) occupies the region of w′ <

−3(1+w)(1−w). The evolution of hessence in the w–w′ plane
is discussed in Ref. [14]. Here we brief it as below. From the ki-
netic equation (14), one can get

(25)1 + 1

6

d lnx

d lna
= − 1

3HV

V̇

1 + whe
,

where a is the scale factor, and we have set the present scalar
factor a0 = 1. The function x is defined by

(26)x ≡
∣∣∣∣1 + whe

1 − whe

∣∣∣∣ =
∣∣∣∣

1
2 φ̇2 − Q2

2a6φ2

V

∣∣∣∣,
and

(27)
d lnx

d lna
= 2w′

he

(1 + whe)(1 − whe)
.

This equation can be rewritten as(
1 + w′

he

3(1 + whe)(1 − whe)

) / (
2V̇

3H(1 + whe)ρhe

)

(28)= −ρhe

2V
< 0

which follows that

(29)FV̇ < 0,

where we have defined F ≡ w′
he + 3(1 + whe)(1 − whe). So the

w–w′ plane is divided into four parts

I : F > 0 and w > −1;
II : F > 0 and w < −1;
III : F < 0 and w < −1;
IV : F < 0 and w > −1.

This can be seen clearly in Fig. 1. From Eq. (29), one can
easily find that V̇ < 0 is satisfied in regions I and II (rolling-
down regions), the field rolling down the potential, and V̇ > 0
is satisfied in regions III and IV (climbing-up regions), the field
climbing up the potential. So from the value of the function
w′ + 3(1 − w)(1 + w) being positive or negative, one can im-
mediately judge how the field evolves at that time. Toward the
holographic hessence models, from Eqs. (23) and (24), we have

F = 1

3

(
2

c
Ω2

he + Ω
3/2
he − 4 + 2c

c2
Ωhe − c + 4

c

√
Ωhe + 8

)
.

(30)
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For a fixed c, F only depends on the value of Ωhe. So the
evolution of potential function of hessence is also exactly de-
termined by the evolution of Ωhe. It is easily to find that this
is a monotonic increasing function with the increasing Ωhe. In
order to exactly determine this function, one must numerically
solve Eq. (21) and get function Ωhe(z). Here we only concern
on that whether the potential function of holographic hessence
is monotonic. If F < 0 is holden for all time, the potential is a
monotonic increasing function. But it is not same with the phan-
tom models, since the cosmological constant can be crossed
in the this hessence. If F > 0 is holden for all time, the po-
tential is a monotonic decreasing function. Since w = −1 also
can be crossed in this case, the models are different from the
simple quintessence. If the state of F = 0 is crossed in the evo-
lution of hessence, the potential function of hessence cannot be
a monotonic function.

Here we focus on the initial and finial states of the holo-
graphic hessence, and investigate them in the w–w′ plane. In
the initial condition with Ωhe → 0, one has

(31)(whe,w
′
he) →

(
−1

3
,0

)
,

(32)F = w′
he + 3(1 + whe)(1 − whe) → 8

3
> 0,

which is in the rolling-down region (region I), and independent
of value of c. So in any case of models, they evolve from the
region I, which is quintessence-like. However, in the finial stage
with Ωhe → 1, one has

(33)whe → −1

3

(
1 + 2

c

)
, w′

he → 0,

and

(34)F = 4

3

(
2 − 1

c
− 1

c2

)
.

For the different choice of c, the finial value of F is different:

(35)c > 1, F > 0 (in the rolling-down region),

(36)c = 1, F = 0 (at the critical point),

(37)c < 1, F < 0 (in the climbing-up region).

In Fig. 1, we have plotted the evolution of three different holo-
graphic hessence models with c = 1.5,1.0,0.5, respectively,
where the arrows indicate the evolution direction of hessence
with the increasing value of Ωhe from Ωhe = 0 to Ωhe = 1.
From this figure, we can find that, if c > 1 is chosen, which
violates the holographic constraint, the hessence is in the re-
gion I (rolling-down region) for all time, so the potential of
hessence is a monotonic damping function, which is similar the
quintessence models. This is consistent to the previous conclu-
sion that holographic dark energy with c > 1 can be described
by the quintessence fields. However, if the fixed c is smaller
than 1, which satisfies the holographic constraint, the hessence
must evolve from region I (rolling-down region) to region IV
(climbing-up region), and finally to region III (climbing-up re-
gion). So the potential of hessence is not a monotonic function.
The field φ rolls down the potential at earlier stage, and later

Fig. 1. The holographic hessence models evolve in the w–w′ plane, where we
have considered three models with c = 0.5,1.0,1.5, respectively. The arrows
denote the evolution direction of the models with the expansion of the universe.

it turns to climb up. With the expansion of the universe, the
state of F = 0 must be crossed. The EOS of hessence also turns
from the region of w > −1 to that of w < −1, and the state
of w = −1 must be crossed. So dark energy is quintom-like.
We note that the time of F = 0 is a little earlier than that of
w = −1. If c = 1 is chosen, the holographic hessence is also in
region I for all time, and finally it turns to the critical state of
(w,w′) = (−1,0) with the expansion of the universe, and the
universe is an exact de Sitter expansion.

3. Reconstruct the holographic hessence models

From the previous discussion, we find the value of the pa-
rameter c should be fixed by the cosmological observations.
This has been discussed by a number of authors [17]. In the
recent work [19], the authors have constrained the holographic
dark energy by the current observations of SNIa (type Ia Su-
pernova), CMB (cosmic microwave background radiation), and
BAO (baryon acoustic oscillation). If setting c, Ωm0 and H0 as
the free parameters, and only using the up-to-date gold sample
of SNIa consisted of 182 data [20], the author found that the
best-fit for the analysis of gold sample of SNIa happens at

(38)c = 0.37, Ωm0 = 0.43, h = 0.64.

By choosing h = 0.64, the 1σ fit values for the parameters are:

(39)c = 0.37+0.56
−0.21, Ωm0 = 0.43+0.08

−0.14.

It is obvious that the SNIa data alone seem not sufficient to
constrain the holographic dark energy models strictly. The con-
fidence region of c is very large, and the best fit of Ωm0 is
evidently different from other constraint [21]. In the previous
work, the authors found that the holographic dark energy model
is very sensitive to the value of the present Hubble parame-
ter h. So it is very important to use other results of CMB and
LSS (large-scale structure), which are observational quantities
irrelevant to h as a complement to SNIa data. The authors con-
sidered the recent observations on the CMB shift parameter
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R = 1.70 ± 0.03 [22] and the measurement of BAO peak in
the distribution of SDSS luminous red galaxies [23]. From the
constraints of the combination of SNIa, CMB and BAO, and
considered the prior h = 0.72 ± 0.08, which is got from the
Hubble Space Telescope Key Project (HST) [24], the fit values
for model parameters with 1σ errors are

(40)c = 0.91+0.23
−0.19, Ωm0 = 0.29 ± 0.03.

It is clear that in the joint analysis the derive value for mat-
ter density Ωm0 is very reasonable, which is important for this
model is the determination of the value of c.

As shown in [25] and the discussion above, the constraint
of h can evidently change the constraint result. In order to show
how strongly biased constraints can be derived from a factitious
prior on h, the author also considered a strong HST prior, fixing
h = 0.72. The constraint in Eq. (40) becomes

(41)c = 0.42 ± 0.05, Ωm0 = 0.24+0.02
−0.03.

We find that the confidence level contours get very evident
shrinkage and left-shift in the c–Ωm0 parameter-plane, which
also changes the evolution of the EOS parameter of the dark en-
ergy and deceleration parameter of the universe [19]. These all
exactly consist with the previous results [25]. We also find that
the constraint of c in (40) and (41) are not overlapped, which is
because that the confidence level in these results are two low. If
considered the fit values for model parameters with 3σ errors,
the conclusion will be much improved [19,25].

However, if setting the Hubble constant as a free parameter
in the range of (0.64,0.80), the constraint becomes

(42)c = 0.82+0.11
−0.13, Ωm0 = 0.28+0.03

−0.02,

which also have shrinkage and left-shift in the c–Ωm0 plane,
comparing with the results in (40).

From these joint analysis, we can find that, though the possi-
bility of c > 1 cannot be excluded in one-sigma error range, the
possibility of c < 1 is much more favored, which determined
that the dark energy is quintom-like, and the EOS crosses −1 at
some time.

From the differential equation (21), we can get the evolution
equation of Ωhe with the redshift z

(43)
dΩhe

dz
= −(1 + z)−1Ωhe(1 − Ωhe)

(
1 + 2

c

√
Ωhe

)
.

For the determined parameters c and Ωhe0 = 1 − Ωm0, one
can numerically solve this equation and get Ωhe = Ωhe(z). In-
serting this into (23) and (24), we can get the EOS of the
holographic hessence w = w(z) and its evolution w′ = w′(z).
In Figs. 2 and 3, we have plotted the EOS and its evolution
of the holographic hessence with best-fit parameters in the
w–z and w–w′ planes. From Fig. 2, we find that, in the ear-
lier stage of universe, the w > −1 holds for all cases, and
the hessence are quintessence-like. But the values of EOS de-
crease with time, and they become phantom-like at present
time for the case of c = 0.37 and c = 0.42. So the cosmo-
logical constant has been crossed. In the cases of c = 0.91
and 0.82, though w > −1 is holden until now, w < −1 will

Fig. 2. From the observations, we solve the EOSs of the holographic hessence
models.

Fig. 3. The reconstructed holographic hessence models evolve in the w–w′
plane, where the arrows denote the evolution direction of the models with the
expansion of the universe.

occur in the near future, and crossing the cosmological con-
stant is unavoidable. This feature determines that this holo-
graphic dark energy cannot be described by the quintessence,
phantom, k-essence, or Yang–Mills field models [6,12]. But in
the hessence models, it can be naturally and simply realized.
From Fig. 3, we find that, in the earlier stage, the hessence
models are all in region I (rolling-down region). With the ex-
pansion of the universe, these all models will cross the line
with F = 0 and enter into the region IV, where although
w > −1 is kept, the hessence fields begin to clime up the
potentials. At last, the hessence models all cross the cosmo-
logical constant bound and stay in the region III, where the
hessences are phantom-like, and the potentials are climbed
up. So the potentials of these holographic hessence are not a
monotonic function, which is consistent to the previous discus-
sion.
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With these solved EOSs, we can reconstruction the potential
of the holographic hessence models. Consider the FRW uni-
verse, which is dominated by the non-relativistic matter and a
spatially homogeneous hessence field φ. The energy conserva-
tion equation of the hessence field is

(44)ρ̇he + 3H(ρhe + phe) = 0,

which yields

ρhe(z) = ρhe0 exp

[
3

z∫
0

(1 + whe) d ln(1 + z̃)

]
≡ ρhe0E(z),

(45)

where the subscript 0 denotes the value of a quantity at the red-
shift z = 0 (present). From the expresses of the pressure and
energy density of the hessence, we get

(46)V (φ) = 1

2
(1 − whe)ρhe,

(47)φ̇2 = Q2

a6φ2
+ (1 + whe)ρhe.

Inserting the formula in these two equations, and after some
normal calculation, we get [14]

(48)
dφ̃

dz
=

√
3

(1 + z)

[
C(1 + z)6φ̃−2 + (1 + whe)E(z)

r0(1 + z)3 + E(z)

]1/2

,

(49)Ṽ [φ] = 1

2
(1 − whe)E(z),

where r0 ≡ Ωm0/Ωhe0 is the energy density ratio of matter to
hessence at present time, and the dimensionless quantities are
defined by

(50)φ̃ ≡ φ

Mp

, Ṽ ≡ V

ρhe0
, C ≡ Q2

ρhe0M2
p

.

These two equations relate the hessence potential V (φ) to the
EOS of the hessence whe(z). Given an effective whe(z), the con-
struction Eqs. (48) and (49) allow us to construct the hessence
potential V (φ).

Using the solved EOSs of the holographic hessence mod-
els in Fig. 2, we numerically solve Eqs. (48) and (49), which
are shown in Figs. 4 and 5, where we have chosen the initial
condition with C = 10.0 and φ0 = 0.1. From Fig. 4, we find
that, for the cases with c = 0.37 and c = 0.42, the potentials
are decreasing with the expansion of the universe in the earlier
stage, which are same with the quintessence models [26]. But
after the time, where z ∼ 1, the potentials begin to increase,
and at present time, the potential functions are increasing func-
tions, which are similar to a phantom model. For the cases of
c = 0.91 and c = 0.82, although the potential functions are
monotonically decreasing until the present time, they all will
begin to increase with time in the near future. Once again,
from Fig. 5, we find that these four potentials are all not the
monotonic functions, since we have used c < 1, which is con-
sistent to the previous analysis. The only difference is that the
lowest positions of these potentials are different, which is de-
termined by the initial condition and the parameter c. These are
different from the simple quintessence, k-essence and tachyon
models [26].

Fig. 4. Evolution of potentials of holographic hessence models.

Fig. 5. Constructed potentials of holographic hessence models.

4. Summary

In this Letter, we have investigated the hessence models,
which satisfy the holographic principle. The potential of the
hessence is determined by the holographic principle. We have
discussed the evolution of the holographic hessence in the w–w′
plane, and found that the potential function only depends on the
parameter c. If c � 1 is chosen, whe � −1 is kept for all time,
and hessence field φ rolls down the potential, which is sim-
ilar to the quintessence models. However if c < 1 is chosen,
which mildly favor the observations, the EOS of the models
evolve from the region of whe > −1 to that of whe < −1, and
state of whe = −1 must be crossed. The potential of model is
not a monotonic function. In the early time, the hessence is
quintessence-like, the EOS is whe > −1 and V̇ < 0. Then it
enters into the region with whe > −1 and V̇ > 0, where the po-
tential begins to be climbed up. At last, the model must enter
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and stay in the phantom-like region with whe < −1 and V̇ > 0.
Considered the current constraint of the parameter c, we have
reconstruct the potential of the holographic hessence models,
which are all the nonmonotonic functions.
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