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Space-based gravitational-wave (GW) detectors, including LISA, Taiji and TianQin, are able to detect
mHz GW signals produced by mergers of supermassive black hole binaries, which opens a new window for
GW astronomy. In this article, we numerically estimate the potential capabilities of the future networks of
multiple space-based detectors using Bayesian analysis. We modify the public package Bilby and employ
the sampler PyMultiNest to analyze the simulated data of the space-based detector networks, and investigate
their abilities for source localization and testing the parity symmetry of gravity. In comparison with the case
of an individual detector, we find detector networks can significantly improve the source localization.
While for constraining the parity symmetry of gravity, we find that detector networks and an individual
detector follow the similar constraints on the parity-violating energy scale MPV. Similar analysis can be
applied to other potential observations of various space-based GW detectors.
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I. INTRODUCTION

While ground-based gravitational-wave (GW) detectors
are giving decent probes of high-frequency GWs [1], low-
frequency GW detection still remains blank. Several
proposed space-based GW detectors with frequency bands
around millihertz, aiming at sources including supermassive
black hole binaries (SMBHBs), extreme mass ratio inspirals
(EMRIs), etc., are going to launch in the early 2030s [2–4].
Their individual properties were well studied in previous
works, but space-based detector network is still a largely
under-explored domain. Moreover, limited by complex
response of space-based GW detectors and accompanying
computation burden, most works on space-based GW
detectors are based on Fisher information matrix analysis,
which can only give a rough estimation of the parameter
uncertainties for the potential observations, if the signal-to-
noise ratio of GWdetection is high enough. In this paper, we
investigate the capabilities of space-based detector networks
with a full Bayesian analysis. We choose two aspects to
illustrate capabilities of detector networks: source localiza-
tion and constraints on parity-violating (PV) gravity.
GW source localization is a crucial step in multimes-

senger astronomy, since the follow-up electromagnetic
observations need the guide from GW detection. For

ground-based detectors, although rapid sky reconstruction
algorithm is used in online searching [5], full Bayesian
analysis is still required for further study due to its rigor and
reliability [6]. Recent work with Fisher information matrix
analysis has shown that a LISA-Taiji network could achieve
the significant improvement compared with a single detec-
tor [7]. In this work, we study the localization improvement
of detector networks LISA-Taiji and LISA-TianQin with a
rigorous Bayesian framework as a complement and veri-
fication to the previous works.
In addition to multimessenger astronomy, GW detection

also opens a brandnewwindow for testingvarious theories of
gravity. With the progress in both theoretical and observa-
tional researches, Einstein’s general relativity (GR) is facing
difficulties, such as quantization, darkmatter and dark energy
problems. Therefore, testing GR is still an important topic in
physical research. Detectable GWs are often produced by the
densest objects with extremely high-energy processes (e.g.,
the coalescence of binary black holes), and have weak
interactions with matter during propagation [8,9]. Thus,
GWs could carry strong and clean information from those
extreme processes, and provide an excellent opportunity to
test the gravitational theories. Space-based GWdetectors are
expected to detect gravitational radiations from SMBHBs,
which are significantly different from current stellar-mass
binary black holes. Hence, it is worthwhile to study the
probability of testing gravity theories with space-based GW
detectors. In this work, as an example of application, wewill
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investigate this issue from the perspective of parity symmetry
of gravity.
Parity symmetry is an important concept in modern

physics. It implies the flip in the sign of spatial coordinates
does not change physical laws. Since people have discov-
ered that weak interaction is not symmetric under parity
[10], tests of parity symmetry for other interactions become
meaningful and necessary. As for gravity, parity is con-
served in GR, but some PV gravitational theories were
proposed for different motivations. For example, in string
theory and loop quantum gravity, the parity violation in the
high-energy regime is inevitable [11–13]. GWs probe
physics in the highest energy scale, so it is nature to test
parity symmetry with GWs. Parity asymmetry in gravity
leads to birefringence in gravitational waves [11,14–18]:
left- and right-hand modes of GW evolve differently in the
Universe. Two kinds to birefringence, amplitude birefrin-
gence and velocity birefringence, and their impact on GW
waveforms, are well studied in previous works [14,15],
which makes it possible to probe asymmetry in gravity. The
analysis has been applied in the current GW events,
detected by LIGO and Virgo collaborations [19]. In this
article, we extend this Bayesian analysis to the space-based
GW detection by simulating the future GW signals pro-
duced by the mergers of SMBHBs. We analyze simulated
data and obtain the potential constraints of parity asym-
metry in gravity provided by the future space-based
detectors. We find that lower bound of parity-violating
energy scaleMPV can be limited toOð1Þ eV by the effect of
velocity birefringence and Oð10−15Þ eV by that of ampli-
tude birefringence.
This paper is organized as follows. In Sec. II we give a

brief introduction of parity-violating gravity, especially the
GW waveform modifications. In Sec. III the configuration
and response of space-based gravitational-wave detectors
are presented. Our method of parameter estimation is
shown in Sec. IV and results are given in Sec. V (locali-
zation) and VI (PV gravity). In Sec. VII, we summarize our
methodology and conclusions. Throughout this paper, we
set c ¼ ℏ ¼ 1.

II. PARITY-VIOLATING GRAVITY

Parity-violating gravitational theories are well studied in
previous works [14,20–25]. In this section, we briefly
summarize the results of Ref. [14] that gives GWwaveform
with PV modification. Considering a general parity-violat-
ing gravitational theory, the action takes the form

S ¼ 1

16πG

Z
d4x

ffiffiffi
g

p ðLGR þ LPV þ LothersÞ; ð1Þ

where LGR is the Einstein-Hilbert Lagrangian density R.
LPV is the PV term, which is determined by the gravita-
tional theories. Lothers represents the Lagrangian density of
the other matters, the scalar field and the modification terms

of gravity, which are not relevant to parity violation. In the
flat Friedmann-Robertson-Walker universe, GW is tenso-
rial perturbation of the metric. We denote spatial perturba-
tion as hij, which satisfies the transverse and traceless
gauge, i.e., δijhij ¼ 0 and ∂ihij ¼ 0. hij can be determined
by the tensor quadratic action, which reads [26]

Sð2Þ ¼ 1

16πG

Z
dtd3xa3

�
1

4
_h2ij −

1

4a2
ð∂khijÞ2

þ 1

4

�
c1

aMPV
ϵijk _hil∂j

_hkl þ
c2

a3MPV
ϵijk∂2hil∂jhkl

��
;

ð2Þ

where a ¼ aðτÞ is the conformal scale factor and τ is
conformal time. A dot means derivative with respect to the
cosmic time t, which obeys the relation dt ¼ adτ. c1 and c2
are dimensionless coefficients, which are functions of
cosmic time in general. MPV is the parity-violating energy
scale, above which parity symmetry of gravity is broken.
The equation of motion of the GW can be derived as
follows:

h00A þ ð2þ νAÞHh0A þ ð1þ μAÞk2hA ¼ 0; ð3Þ

where A ¼ fR;Lg represents right and left modes, respec-
tively. k is wave number, H≡ a0=a is the conformal
Hubble parameter. Throughout this paper, prime denotes
the derivative with respect to the conformal time τ. The
terms νA and μA represent modifications caused by the PV
terms in Lagrangian. In the general PV gravity, they take
the forms

νA ¼ ½ρAανðτÞðk=aMPVÞ�0=H;

μA ¼ ρAαμðτÞðk=aMPVÞ: ð4Þ

Here, ρR ¼ 1 and ρL ¼ −1. αν ¼ −c1 and αμ ¼ c1 − c2 are
two functions that can be determined in a specific model of
modified gravity. In the specific models, αν and αμ are
functions of time through their dependence on scalar field
ϕ, which always acts as dark energy to explain the cosmic
acceleration. From cosmological observations, dark energy
should be close to the cosmological constant in the late
universe, which indicates that the evolution of ϕ is small.
Therefore, we can approximately treat them as constants in
our calculation. In this work, we consider they are ∼Oð1Þ
by absorbing them intoMPV. The difference in the equation
of motion of two circular polarization modes leads to parity
asymmetry in GWs, that is to say, right- and left-hand
modes have different behaviors during propagation, which
is called birefringence. It has been proved that νA leads to
different damping rates of two polarizations in propagation,
which induces the different amplitudes of GW signals. μA
modifies the dispersion relations of GWs, hence two
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polarizations have different velocities. Phenomena men-
tioned above are called amplitude birefringence and veloc-
ity birefringence respectively.
Birefringence in PV gravity induces phase and amplitude

modifications in GW waveform. In general, GW waveform
of PV gravity in frequency domain can be expressed as

hPVA ðfÞ ¼ hGRA ðfÞð1þ ρAδhÞeiρAδΨ; ð5Þ

where

δhðfÞ ¼ −Aνπf;

δΨðfÞ ¼ AμðπfÞ2=H0 ð6Þ

are amplitude and phase modifications. Generally, both of
them exist in PV gravity. Note that δΨðfÞ is about 20 orders
larger than δhðfÞ [14], it is reasonable to only take δΨðfÞ
into consideration when considering PV effects. However,
in some special cases, say, Chern-Simons gravity [11,12],
δhðfÞ exists while δΨðfÞ ¼ 0. Therefore, it is also neces-
sary to constrain the amplitude modification. In this work,
for simplicity, we only discuss PV GWwaveform with only
phase modification or amplitude modification. The former
one represents a general case but drops out the minor
modification, while the latter one represents some special
cases like Chern-Simons gravity.
Aν and Aμ are given by

Aν ¼
1

MPV
½ανð0Þ − ð1þ zÞανðzÞ�;

Aμ ¼
1

MPV

Z
z

0

ð1þ z0Þαμðz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ z0Þ3 þ ΩΛ

p ; ð7Þ

where z is redshift of the GW source. One can also rewrite
the waveform in plus and cross polarizations via
hþ ¼ ðhL þ hRÞ=

ffiffiffi
2

p
, h× ¼ ðhL − hRÞ=

ffiffiffi
2

p
i [27]:

hPVþ ðfÞ ¼ hGRþ ðfÞ − hGR× ðfÞðiδh − δΨÞ;
hPV× ðfÞ ¼ hGR× ðfÞ þ hGRþ ðfÞðiδh − δΨÞ: ð8Þ

This is the waveform we use in this work. For the
background cosmological model, we adopt a flat Planck
cosmology with parameters ΩM ¼ 0.308, ΩΛ ¼ 0.692,
H0 ¼ 67.8 km=s=Mpc [28,29].

III. SPACE-BASED GW DETECTORS

A. Basic information: Configuration and noise

In this section we introduce the configurations and noise
curves of three proposed space-based GW detectors, LISA,
Taiji and TianQin. These are decisive factors for a detec-
tor’s response to a coming GW signal.
All three detectors consist of a triangle of three spacecrafts,

but they have different arm length, i.e., the separation

between two spacecrafts. Arm length determines the sensi-
tive frequency of a GW detector. Longer arm length
corresponds to a lower frequency band (longer wavelength).
LISA has an arm length of 2.5 × 106 km and the designed
sensitive frequency is from 10−4 to 1 Hz [3]. Taiji’s arm
length is 3 × 106 km, which means Taiji is more sensitive to
the lower frequency gravitational waves [7]. TianQin’s arm
length is 1.7 × 105 km [2], so it will be more sensitive at
relative higher frequencies. This is consistent with the noise
power spectral densities (PSDs) of these detectors. For LISA,
we follow the new LISA design [30], in which the PSD is
given by

SnðfÞ ¼
4SaccðfÞ þ Sother

L

�
1þ

�
f

1.29f�

�
2
�
; ð9Þ

where f� ¼ c=2πL is the transfer frequency of the detector
and L is the arm length. The motion of LISA causes
acceleration noise, which takes the form

SaccðfÞ ¼
9 × 10−30 m2Hz3

ð2πfÞ4
�
1þ

�
6 × 10−4 Hz

f

�
2

×

�
1þ

�
2.22 × 10−5 Hz

f

�
8
��

; ð10Þ

and other noise is

Sother ¼ 8.899 × 10−23 m2Hz−1: ð11Þ

For Taiji and TianQin, we employ a general noise curve
for space-based GW detectors [31,32]:

SnðfÞ ¼
�
Sx
L

2 þ 4Sa
ð2πfÞ4L2

�
1þ 10−4 Hz

f

��

×

�
1þ

�
f

1.29f�

�
2
�
; ð12Þ

where
ffiffiffiffiffi
Sa

p ¼3×10−15ms−2=Hz1=2,
ffiffiffiffiffi
Sx

p ¼8×10−12m=
Hz1=2 for Taiji, and

ffiffiffiffiffi
Sa

p ¼ 10−15 ms−2=Hz1=2,
ffiffiffiffiffi
Sx

p ¼
10−12 m=Hz1=2 for TianQin.
Their noise spectra is shown in Fig. 1. As discussed

before, LISA and Taiji are more sensitive than TianQin at
lower frequency because of their longer arms, but less
sensitive at higher frequency.
In addition to arm length, three GW detectors also have

different orbit designs. For instance, LISA’s center of mass
orbits around the Sun in the ecliptic plane and the space-
crafts orbit their center of mass. Both of the two circular
motions have the period of one year. Three spacecrafts
constitute the shape of an equilateral triangle and the plane
of the detector is tilted by 60° with respect to the ecliptic
[3]. The constellation falls behind the Earth by an angle of
∼20°. Taiji has a similar orbit, but it is ahead of the Earth by
20°. As shown in Fig. 2, LISA and Taiji are far apart (about
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0.7 A.U.), by which GW localization could be improved
[7]. Considering circular orbits, the unit vectors along three
arms in the ecliptic frame can be derived. We define the x-y
plane as the ecliptic plane and the z axis as perpendicular to
the x-y plane. Denoting un (n ¼ 1, 2, 3) as the nth arm
defined in Fig. 2 of Ref. [33], it takes the form

un ¼
�
1

2
sin αnðtÞ cosϕðtÞ − cos αnðtÞ sinϕðtÞ;

1

2
sin αnðtÞ sinϕðtÞ þ cos αnðtÞ cosϕðtÞ;ffiffiffi
3

p

2
sin αnðtÞ

�
; ð13Þ

with

αnðtÞ ¼ 2πt=T − π=12 − ðn − 1Þπ=3þ α0; ð14Þ

ϕðtÞ ¼ ϕ0 þ 2πt=T; ð15Þ

where α0 is a constant specifying the orientation of the arms
at t ¼ 0, ϕ0 specifies the detector’s location at t ¼ 0, and T
equals to one year. These vectors will be used in the next
subsection to calculate the instrument response.
As for TianQin (which is also shown in Fig. 2), the orbit is

more complex. Three spacecrafts orbit around the Earth, and
the normal of the detector plane points to the reference source
RX J0806.3þ 1527 [2]. Previous works have derived the
trajectory of TianQin in the ecliptic frame: the nth space-
craft’s positionvector rnðtÞ ¼ ðxnðtÞ; ynðtÞ; znðtÞÞ,n ¼ 1, 2,
3 (shown in Appendix A). Arm direction vectors can be
derived from rnðtÞ. Considering u1 as an example, it is
defined by

u1 ¼
r2 − r1
jr2 − r1j

: ð16Þ

Thus, giving initial location and direction, the detectors’
coordinates and armdirectionvectors in the ecliptic frame are
determined.

B. Response

In this section, we calculate space-based detectors’
response to GWs. All azimuthal variables are defined in
the ecliptic frame.
Generally speaking, a GW detector’s response sðtÞ is a

linear combination of GW’s polarizations [8]:

FIG. 1. Noise power spectra of three space-based GW detec-
tors. Blue, green, and red lines represent LISA, Taiji and TianQin,
respectively. Taiji and LISA have smaller noise in the low
frequency band, while TianQin is more sensitive to the relatively
higher frequencies.

FIG. 2. Configuration of space-based GW detectors. The upper
panel is the LISA-Taiji network configuration [7], in which LISA
and Taiji take heliocentric orbits and are separated by an angle of
40°. The lower panel is TianQin’s orbit configuration in the
heliocentric-ecliptic coordinate system [2]. The ecliptic plane is
spanned by x and y axes. The x axis points toward the direction of
the vernal equinox. β is the longitude of the perihelion. The
normal of TianQin’s detector plane points to the reference source
RX J0806.3þ 1527 whose coordinates in the ecliptic frame
is ðθs;ϕsÞ.
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sðtÞ ¼ FþhþðtÞ þ F×h×ðtÞ; ð17Þ

where hþðtÞ and h×ðtÞ are plus and cross polarizations of
GW. Fþ and F× are antenna response functions, which are
equal to the contraction of detector tensor Dij and GW
polarization tensor eAij with A ¼ fþ;×g, i.e.,

FA ¼ DijeAij; ð18Þ

where eAij in the ecliptic frame is defined by a set of unit
vectors fm̂; n̂; ŵg [34,35],

eþij ¼ m̂im̂j − n̂in̂j; e×ij ¼ m̂in̂j þ n̂im̂j; ð19Þ

with

m̂ ¼ ðcos θe cosϕe cosψe þ sinϕe sinψe

cos θe sinϕe cosψe − cosϕe sinψe;

− sin θe cosψeÞ; ð20Þ

n̂ ¼ ð− cos θe cosϕe sinψe þ sinϕe cosψe

− cos θe sinϕe sinψe − cosϕe cosψe;

sin θe sinψeÞ; ð21Þ

ŵ ¼ ð− sin θe cosϕe;− sin θe sinϕe;− cos θeÞ; ð22Þ

where ðθe;ϕeÞ are spherical coordinates in the Solar
System with the ecliptic as the x-y plane and the Sun at
the center. ψe is the polarization angle. ŵ is propagation
direction of GW, pointing from the source to the Sun.
The detector tensor, however, is worthy of more discus-

sion. The detector tensor is related to the tensor product of
arm direction vectors. For ground-based GW detectors
aiming at short-duration gravitational-wave transient, arm
direction vectors can be regarded as a constant during a GW
event, thus detector tensor is also a constant. However, for
space-based GW detectors whose objects are SMBHBs and
EMRIs, observation often takes months to years. That is to
say, thedetector tensor should be treated as a function of time,
rather than a constant. In addition, since the wavelength of
GWs is comparable to the physical arm length of the detector
(which is not satisfied for ground-based detectors), the
GW frequency also makes a difference. In this case, we
have [34,35]

Dijðt;fÞ¼1

2
½ûiðtÞûjðtÞTðf;û ·ŵÞ− v̂iðtÞv̂jðtÞTðf;v̂ ·ŵÞ�;

ð23Þ
where ûiðtÞ and v̂iðtÞ are unit vectors along the arms of the
detector given in Eq. (13) or Eq. (16). Tðf; û · ŵÞ is transfer
function defined as

Tðf; û · ŵÞ ¼ 1

2

�
sinc

�
f
2f�

ð1 − û · ŵÞ
�

× exp

�
−i

f
2f�

ð3þ û · ŵÞ
�

þ sinc

�
f
2f�

ð1þ û · ŵÞ
�

× exp

�
−i

f
2f�

ð1þ û · ŵÞ
��

; ð24Þ

where sincðxÞ≡ sin x=x. Note that in low-frequency cases
(f ≪ f�), the transfer function tends to 1. The low-frequency
approximation iswidely used in previousworks onLISAand
we will also adopt this approximation. This is reasonable as
the frequency of coalescence of SMBHBs is up to∼10−3 Hz,
while f� of the LISA, Taiji and TianQin detectors are 0.016,
0.019 and 0.28 Hz, respectively. We plot the GW waveform
from SMBHBs of different masses in frequency domain in
Fig. 3, fromwhich we find the low-frequency approximation
works well for SMBHBs with masses higher than 106 M⊙.
In this work, we employ a higher cutoff frequency 10−2 Hz,
above which data is not included in the analysis.
Because of the three-arm design, a single space-based

GW detector can output two independent strains [33].
Thus, a detector corresponds to two detector tensors. In
accordance with time delay interferometry, one can define
two detector tensors Dij

a ; D
ij
e as [36]

Dij
a ¼ 1

6
ðui1uj1 − 2ui2u

j
2 þ ui3u

j
3Þ;

Dij
e ¼

ffiffiffi
3

p

6
ðui1uj1 − ui3u

j
3Þ; ð25Þ

FIG. 3. jhþðfÞj of GWs from different sources. Blue, orange
and green lines are generated from SMBHBs with component
masses of 5 × 105, 5 × 106, and 5 × 107 M⊙, respectively. Here,
we use the waveform template IMRPhenomXHM.
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where ui1; u
i
2; u

i
3 are arm direction vectors for three arms.

Note that this formula is written in the low-frequency limit.
When performing Bayesian analysis, we need GW data

in the frequency domain. It is difficult to do Fourier
transformation directly to Eq. (17), due to antenna pattern
functions’ dependency on time. To solve this problem, we
adopt stationary phase approximation (SPA). In SPA,
frequency domain response can be written as

s̃ðfÞ ¼ Fþ½tðfÞ�h̃þðfÞ þ F×½tðfÞ�h̃×ðfÞ; ð26Þ

that is to say, we can change FþðtÞ into Fþ½tðfÞ� as a
replacement of Fourier transform. The expression of tðfÞ is
given in Appendix B. Here, a tilde denotes the quantity in
frequency domain.
Note that waveform in the frequency domain should

include the time delay to the Sun by adding an extra phase
term as follows:

h̃þ;×ðfÞ¼F ½hþ;×ðtÞ�exp
�
−2πif

�
ŵ · r⃗
c

þ tc− t0

��
; ð27Þ

where F means Fourier transform, tc is coalescence time
and t0 is the start time of data.

IV. METHODOLOGY

A. Bayesian method

The Bayesian method is one of the most widely used
ways of parameter estimation in GWastronomy [37]. Given
observed data and prior distributions of parameters, one can
obtain the posterior distribution by

pðϑ⃗jd⃗ðtÞÞ ¼ pðd⃗ðtÞjϑ⃗Þpðϑ⃗Þ
pðd⃗ðtÞÞ

; ð28Þ

where d⃗ðtÞ is observed data and ϑ⃗ is parameter set. The
denominator, evidence, is often ignored since it is a
normalization constant if we only care about the distribu-
tion of parameters. We define inner product between two
strains as

hãðfÞjb̃ðfÞi ¼ 4ℜ
Z

∞

0

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð29Þ

where a star denotes complex conjugate. SnðfÞ is the PSD
of the detector. The likelihood, pðd⃗ðtÞjϑ⃗; HÞ, takes the form

pðd⃗ðtÞjϑ⃗; HÞ ¼ exp

�
−
1

2

XN
i¼1

hñiðfÞjñiðfÞi
�
; ð30Þ

on the assumption that the noise is Gaussian [37]. Here, the
subscript i denotes the ith data strain and ñiðfÞ is the noise.
For the ith strain that contains data d̃iðfÞ, we simply have

d̃iðfÞ ¼ s̃iðfÞ þ ñiðfÞ; ð31Þ

where s̃iðfÞ is detector’s response to GW signals. Thus, the
likelihood can be written as

pðd⃗ðtÞjϑ⃗; HÞ

¼ exp

�
−
1

2

XN
i¼1

hd̃iðfÞ − s̃iðf; ϑ⃗Þjd̃iðfÞ − s̃iðf; ϑ⃗Þi
�
:

ð32Þ

If the prior probability densities are also set, we can
obtain the posterior distribution of parameters theoretically.
Some numerical ways are developed to generate the
posterior samples for given data and likelihood, including
Markov-chain Monte Carlo method and Nested sampling
method [37]. In this work, we employ a multimodal nested
sampling algorithm MultiNest [38,39]. Nested sampling
works with a set of live points generated from prior
distributions. After each iteration, the point with the lowest
likelihood will be abandoned and the new samples with
higher likelihood will be generated. In the end, those live
points will be mapped to posterior samples.
Several tools for Bayesian parameter estimation in GW

astronomy have been developed [40–42]. We adopt and
modify the PYTHON toolkit Bilby [42] in this work with
sampler PyMultiNest [43]. Codes for this paper could be
found in our Github repository.

B. Waveform and parameters

In this section, we clarify the parameters and the GW
waveform used in this work.
As mentioned in Eq. (8), GW waveform in PV gravity is

GR waveform with phase and amplitude modifications.
Thus, what we need to do is to choose an appropriate
GR waveform template. Previous studies have shown that
the public IMRPhenom waveform with high harmonics
works fairly in Bayesian analysis [44]. Subsequent works
emphasize that the high harmonics play an important role
in parameter estimation for space-based GW detectors
[36,45]. For these reasons, we choose IMRPhenomXHM

[46], a frequency domain model for the GW of non-
precessing black-hole binaries with high harmonics
available. One can decompose waveform into spherical
harmonic modes [47]

hþ ¼
X
l;m

hlm;þ ¼ 1

2

X
l;m

ð2Ylmhlm þ −2Y
�
lmh

�
lmÞ;

h× ¼
X
l;m

hlm;× ¼ i
2

X
l;m

ð2Ylmhlm − −2Y
�
lmh

�
lmÞ; ð33Þ

where 2Ylm is spin-weighted spherical harmonics [47].
Except for the dominant term ðl; mÞ ¼ ð2; 2Þ, we also

QIAN HU, MINGZHENG LI, RUI NIU, and WEN ZHAO PHYS. REV. D 103, 064057 (2021)

064057-6



adopt higher modes including ðl; mÞ ¼ ð2; 1Þ; ð3; 3Þ;
ð4; 4Þ; ð5; 5Þ in our analysis. Note that different modes
correspond to different frequency components of GW, thus
the function tðfÞ from SPA differs from modes to modes.
We have

tlmðfÞ ¼ t22ð2f=mÞ; ð34Þ

where t22ðfÞ is given in Appendix B and Eq. (26) should be
rewritten as

s̃ðfÞ ¼
X
l;m

Fþ½tlmðfÞ�h̃lm;þðfÞ þ F×½tlmðfÞ�h̃lm;×ðfÞ:

ð35Þ

In general, GWs from compact binary black holes have
fifteen basic parameters: masses of two black holes, spins
of two black holes (six components in total), luminosity
distance dL, coalescence time tc, coalescence phase ϕ,
inclination angle ι, polarization angle ψe, and source
direction which in our work is (ϕe; θe). There are other
two parameters in parity-violating gravity that specify
velocity and amplitude birefringence respectively. As dis-
cussed in Sec. II, to investigate the constraint on parity
asymmetry, we consider two cases: (1) GW waveform with
only velocity birefringence. We ignore amplitude modifi-
cation, since it is a minor factor compared with phase
modification. (2) GW waveform with only amplitude
birefringence, as some gravity theories predict only ampli-
tude birefringence.
In PV gravity, δh and δΨ are the two modification terms.

We choose Aμ=H0 and −Aν as additional parameters in
waveform, and denote them as A and B, respectively. The
phase and amplitude modifications can be written as

δhðfÞ ¼ BðπfÞ;
δΨðfÞ ¼ AðπfÞ2: ð36Þ

The posterior distributions of A and B can be easily
converted to MPV through Eq. (7).
A 16-dimensional full Bayesian analysis is extremely

computationally expensive, especially when higher modes
are taken into consideration and several data strains are
included (note that one detector produces two data strains).
To lessen computation burden, we only consider zero-spin
black holes, which means we have nine parameters in GR
and one additional modification parameter for PV gravity.
The major effects of velocity and amplitude birefringence
take place during propagation, so ignoring spins will not
produce significant influence on our conclusions of con-
straints on PV gravity. Plus, employing nonspinning GW
templates has a negligible impact on sky localization, as
previous studies suggest [5,48].

Prior distributions of the remaining parameters are given
as follows:

(i) Component masses: uniform distribution between
105 M⊙ and 107 M⊙.

(ii) Luminosity distance: uniform distribution between
103 and 105 Mpc.

(iii) Coalescence time: uniform distribution between
tc − 10 s and tc þ 10 s, where tc is the coalescence
time of our injection.

(iv) Coalescence phase: uniform distribution in ½0; 2π�.
(v) Polarization angle: uniform distribution in ½0; 2π�.
(vi) Inclination angle: sine distribution in ½0; π�.
(vii) Source direction: uniform distribution in the sky, i.e.,

uniform distribution for ϕe and cos θe.
(viii) A: uniform distribution in ½−103 Hz−2; 103 Hz−2�.
(ix) B: uniform distribution in ½−102 Hz−1; 102 Hz−1�.

V. LOCALIZATION ABILITY OF DETECTOR
NETWORKS

In this section, we show the results of GW source
localization given by different detector networks. We
consider three cases: LISA, LISA-Taiji network and
LISA-TianQin network. We first show parameters can be
correctly estimated with the Bayesian framework, then
present GW localization of sources in different directions.
We simulate 218 seconds (about three days) long GW

data of an SMBHB with masses at order of 106 M⊙ and
luminosity distance of 20 Gpc. Sampling frequency is set to
1=16 Hz, which corresponds to the Nyquist frequency of
0.03125 Hz. This is consistent with the 0.01 Hz cutoff. In
order to cross-check the stability of the results, we have also
considered the cases with sampling frequencies of 1=8 and
1=64 Hz, and found the consistent results. With parallel
computing using 16 processes, it takes the sampler ten
hours to generate the posterior samples for one detector,
and 24 hours for joint observation of two detectors. As an
illustration, we show the corner plots of LISA and LISAþ
Taiji network in Figs. 4 and 5. The signal-to-noise ratio in
LISA is higher than 500, which enables injected parameters
to be correctly reconstructed. Some common correlations
between parameters are also shown, e.g., component
masses m1 and m2, luminosity distance dL and inclination
ι, component masses and phase ϕ. Note that the error bars
of joint observation are reduced compared with a single
detector, which implies that joint observation could sig-
nificantly improve the parameter constraints.
GW source localization depends on the difference of GW

signal’s arrival time in each detector, which is called
triangulation information. However, sources in some spe-
cific directions produce much weaker triangulation infor-
mation, which makes localization difficult. For example,
overhead binaries [45], from θe ¼ 60° and ϕe close to
LISA’s mass center’s ϕe. The distances from the source to
the three spacecrafts of LISA are roughly equal because
LISA’s detector plane is tilted by 60° with respect to the
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ecliptic plane. Therefore, a single LISA may fail to localize
the source in such a direction if observation duration is not
long enough. By contrast, different detectors in a detector
network may be separated by at most 0.7 A.U. and can
avoid the overhead binaries problem.
We simulate three GW sources with θe ¼ 30°; 60°; 90°.

The 90% credible areas of posterior distributions of ðθe;ϕeÞ
are shown in Fig. 6. As anticipated, due to the much longer

baselines, the detector networks could significantly reduce
the localization area. Typical 90% credible area of a single
LISA is Oð10−1Þ deg2, while for detector networks it is
Oð10−2Þ deg2. In the special θe ¼ 60° case, detector net-
works can bring an improvement of 4 orders of magnitude.
Note that the LISAþ Taiji network gives stronger

improvements than the LISAþ TianQin network, which
is understandable. As mentioned above, in this article, we

FIG. 4. Posterior distributions generated with a single LISA observation. The yellow solid lines are injected values, and the blue
dashed lines are 5% and 95% percentiles.
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set a high frequency cutoff of 0.01 Hz. From Fig. 1, we find
that in this frequency range, Taiji has the much lower noise
level,which can produce the larger signal-to-noise ratio in this
frequency band for the given event, hence the improvement
on source localization is more distinct. On the other hand, the
main advantage of TianQin is at the higher frequency range of
f > 0.03 Hz, which is more sensitive to detect the binary
black hole with component mass less than 105 M⊙.

VI. CONSTRAINTS ON PV GRAVITY

We will show the constraints on PV gravity given by
detector networks in this section. In Sec. IV, we defined two
parameters A and B in parity-violating GW waveforms and
explained two cases to consider. Here, we inject GW
signals from SMBHBs with the same masses and distance
as in the previous section, and set A ¼ B ¼ 0 in our fiducial
model. In the Bayesian analysis, we add the PV parameters

FIG. 5. Posterior distributions generated with LISA and Taiji joint observation. The yellow lines are injected values, and blue dashed
lines are 5% and 95% percentiles.
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to the parameter set and obtain their distributions. Note that
the expected values of these PV parameters are zero—our
intention is to investigate the capabilities of constraining PV
gravity of detector networks, sowe focus on the error bars of
PV parameters, which are not sensitive to the injected values.
With an additional PV parameter, the sampling time

increases by roughly 50%. The upper panel of Fig. 7 shows
the violin plots of posterior distribution of effective PV
parameters. Also, MPV can be calculated by effective PV
parameters via Eq. (7) and is shown in the lower panel.
Note that injected PV parameters are zero and the theo-
reticalMPV should be infinite, hence we plot distribution of

M−1
PV instead. Taking the 90% percentiles of M−1

PV as the
lower limit of MPV in the 90% credible level, the velocity
birefringence effect gives Oð1Þ eV and the amplitude
birefringence effect gives Oð10−15Þ eV. It is reasonable
that the velocity birefringence effect follows a higher
constraint than amplitude birefringence because its physi-
cal effect is much stronger.
Compared with the constraints given by ground-based

GW detectors [19,23,49,50], limits given by space detectors
are not strong. For example, using LIGO-Virgo detections,
Ref. [19] gives MPV > 0.07 GeV by constraining velocity

(a)

(c)

(b)

FIG. 6. The 90% credible contours of posterior distribution of ðθe;ϕeÞ for GW sources in three directions. Results of different detector
networks are plotted in a different color. For each panel, the true location is indicated by a red star. 90% credible areas for the case with
θe ¼ 30° are 0.54, 0.034, and 0.20 deg2 for LISA, LISAþ Taiji network, and LISAþ TianQin network, respectively. For the case with
θe ¼ 60°, they are 160.3, 0.035 and 0.22 deg2, respectively. For the case with θe ¼ 90°, they are 0.11, 0.019 and 0.079 deg2,
respectively.
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birefringence, and Ref. [50] gives MPV > 10−13 eV by
constraining amplitude birefringence. We summarize the
known constraints on PV gravity in Table I. As indicated in
Eq. (6), the amplitude and phase modification in PV gravity
are proportional to the GW frequency and square of the
frequency, respectively. Sensitive frequency of a ground-
based GW detector can be 5–6 orders of magnitude larger
than space-based GW detectors, so the weaker limits are
reasonable.

Unlike source localization, there is no statistically
significant improvement of constraining PV gravity if
we use a detector network. Since detector networks provide
much longer baselines and thus the triangulation informa-
tion is enhanced, detector networks can greatly improve the
localization capability. However, the information of parity
violation lies in the arrival time or amplitude difference of
left- and right-hand polarizations, which cannot be signifi-
cantly changed by detector networks, in comparison with
an individual detector. Therefore, joint observations do not
bring a significant improvement.

VII. CONCLUSIONS AND DISCUSSIONS

The gravitational-wave signals, produced by the coa-
lescence of compact binaries, provide the excellent oppor-
tunities to study the abundant physical processes and test
the fundamental properties of gravity in the strong gravi-
tational fields. In addition to various ground-based GW
detectors, several space-based detectors, including LISA,
Taiji and TianQin, are expected to be launched in the near
future. They are sensitive to the GW signals at lower
frequency bands, and will open a new window for the GW
astronomy. In particular, in comparison with the individual

(a) (b)

FIG. 7. The upper panels show the violin plots for effective PV parameters A and B and the lower panels show the distribution ofMPV
derived from different cases. Note that 90% percentiles are plotted in dashed lines. For velocity birefringence, 90% percentiles
correspond to 3.20, 4.53, and 3.24 eV for LISA, LISAþ Taiji network, LISAþ TianQin network, respectively. While for amplitude
birefringence, 90% percentiles are 1.85 × 10−15, 1.70 × 10−15, and 1.82 × 10−15 eV, respectively.

TABLE I. Constraint on parity-violating energy scale from
different tests.

Method
Lower limit
of MPV

LIGO-VIRGO detections velocity
birefringence [19]

0.07 GeV

LIGO-VIRGO detections amplitude
birefringence [50]

10−13 eV

GW speed [51,52] 10 eV
Solar system tests [53] 2 × 10−13 eV
Binary pulsar [54,55] 5 × 10−10 eV
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detectors, detector networks consisting of several detectors
might significantly improve the constraints of various
parameters. In this article, by applying Bayesian analysis,
we investigate the capabilities of space-based detector
networks, and consider two cases as the examples. The
first case is to localize the GW sources with detector
networks, and the second is to constrain the parity
symmetry of gravity with GWs.
As well known, source localization is an important

aspect of GW astronomy as it helps to identify the host
galaxy of the source and directs observations of electro-
magnetic emission. In this work, we investigate the
possible improvement of GW source localization with
the potential observations of future detector LISA, as well
as detector networks consist of LISA, Taiji and TianQin
projects. In analysis, we first simulate GW signals with the
waveform template IMRPhenomXHM, and inject them into
various detectors. Then, employing the modified Bilby
package, we use the Bayesian method to estimate physical
parameters of the compact binaries and constrain the
parameters of source position. We find that a detector
network can improve the localization area by 1 order of
magnitude in a three-day observation of compact binaries
of Oð106ÞM⊙. For GW sources in some special directions,
a detector network is crucial to the successful localization.
In the second case of testing gravity with GWs, we

extend our previous works on testing the parity symmetry
of gravity with GWs produced by the stellar-mass compact
binaries to the case with SMBHBs. By the similar analysis,
we constrain the parameters which quantify the velocity
birefringence and amplitude birefringence effects in PV
gravity. We find that the individual space-based GW
detectors and the detector networks can give the similar

constraints: i.e., the lower bound of the PV energy scale
MPV ≳Oð1Þ eV by constraining the velocity birefringence
effect of GWs andMPV ≳Oð10−15Þ eV by constraining the
amplitude birefringence effect of GWs. Since the space-
based detectors are sensitive to the GW signal of lower
frequencies, this bound is weaker than that derived from the
observations of ground-based GW detectors.
At the end of this paper, we should mention that we have

to simplify the calculation in the following aspects due to
the complexity of space-based GW detector’s response and
nested sampling’s computational burden. First, we adopt
only three-day GW signals for analysis, which is much less
than the realistic duration of future GW detection. Second,
in the Bayesian analysis, we use the nonspinning GW
waveform to reduce the parameter dimensionality. Third, in
order to transfer the responses of detectors from time
domain to frequency domain, we adopt the SPA to simplify
our calculation. We should emphasize, these are common
problems in the community when it comes to Bayesian
analysis of GW signal of space-based detectors, which
should be overcome by various techniques in future works.
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APPENDIX A: TIANQIN’S ORBIT

The orbit of TianQin in the ecliptic frame is given as follows [2]:

xnðtÞ ¼ R1ðcosϕs sin θs sin ðαn − β0Þ þ cos ðαn − β0Þ sinϕsÞ þ R1e1

�
1

2
ðcos 2ðαn − β0Þ − 3Þ sinϕs

þ cos ðαn − β0Þ cosϕs sin θs sin ðαn − β0Þ
�
þ e21

4
R1 sin ðαn − β0Þ

�
ð3 cos 2ðαn − β0Þ − 1Þ

×cosϕs sin θs − 6 cos ðαn − β0Þ sin ðαn − β0Þ sinϕs

�
þ R cosðα − βÞ þ Re

2
ðcos 2ðα − βÞ − 3Þ

−
3Re2

2
cosðα − βÞsin2ðα − βÞ;
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ynðtÞ ¼ R1ðsinϕs sin θs sin ðαn − β0Þ − cos ðαn − β0Þ cosϕsÞ − R1e1

�
1

2
ðcos 2ðαn − β0Þ − 3Þ cosϕs

− cos ðαn − β0Þ sinϕs sin θs sin ðαn − β0Þ
�
þ e21

4
R1 sin ðαn − β0Þ½ð3 cos 2ðαn − β0Þ − 1Þ

× sinϕs sin θs þ 6 cos ðαn − β0Þ sin ðαn − β0Þ cosϕs� þ R sinðα − βÞ þ Re
2
sin 2ðα − βÞ

þ Re2

4
ð3 cos 2ðα − βÞ − 1Þ sinðα − βÞ;

znðtÞ ¼ −R1 sin ðαn − β0Þ cos θs − R1e1 cos ðαn − β0Þ sin ðαn − β0Þ cos θs;

−
1

4
e21R1ð3 cos 2ðαn − β0Þ − 1Þ sin ðαn − β0Þ cos θs; ðA1Þ

where R ¼ 1 A.U. and e ¼ 0.0167 are the semimajor axis and the eccentricity of the geocenter orbit around the Sun;
R1 ¼ 1.0 × 105 km and e1 are the semimajor axis and the eccentricity of the spacecraft orbit around the Earth. θs ¼ −4.7°,
ϕs ¼ 120.5° is the ecliptic coordinates ofRX J0806.3þ 1527.fm equals to1=year andαðtÞ ¼ 2πfmtþ κ0 is themean ecliptic
longitude of the geocenter in the heliocentric-ecliptic coordinate system. κ0 is the mean ecliptic longitude measured from the
vernal equinox at t ¼ 0. β is the longitude of the perihelion. αn represents orbit phase of the nth spacecraft. A specific
introduction of the orbit can be found in [2].

APPENDIX B: tðf Þ IN STATIONARY PHASE APPROXIMATION

In stationary phase approximation, the relation tðfÞ mentioned in Sec. III takes the form [56–60]

tðfÞ ¼ tc −
5

256ðGMcÞ5=3
ðπfÞ−8=3

X7
i¼0

τiðπfGmÞi=3; ðB1Þ

with coefficients

τ0 ¼ 1;

τ1 ¼ 0;

τ2 ¼
743

252
þ 11

3
η;

τ3 ¼ −
32

5
π;

τ4 ¼
3058673

508032
þ 5429

504
ηþ 617

72
η2;

τ5 ¼ −
�
7729

252
−
13

3
η

�
π;

τ6 ¼ −
10052469856691

23471078400
þ 128π2

3
þ 6848γ

105
þ
�
3147553127

3048192
−
451π2

12

�
η;

−
15211

1728
η2 þ 25565

1296
η3 þ 3424

105
ln ½16ðπmfÞ2=3�;

τ7 ¼
�
−
15419335

127008
−
75703

756
ηþ 14809

378
η2
�
π; ðB2Þ

where γ ¼ 0.5772 is the Euler-Mascheroni constant, m is the total mass m1 þm2 of the binary. η ¼ m1m2=ðm1 þm2Þ2 is
the symmetric mass ratio and Mc ¼ η3=5m is chirp mass.
Note that the time-frequency relation tðfÞ defined by Eq. (B1) is for the dominant term. For other modes, we have

tlmðfÞ ¼ tð2f=mÞ: ðB3Þ
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