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1 Introduction

The inflationary paradigm offers a dominant framework for understanding the generations of
both the primordial density perturbations and primordial gravitational waves (PGWs) [1–4].
The former provides primordial seeds for the formation of the large-scale structure (LSS)
in the Universe as observed today, and is also responsible for the temperature anisotropies
detected in the cosmic microwave background (CMB) by numerous experiments, including
WMAP [5, 6] and PLANCK [7, 8]. On the other hand, PGWs can imprint distinct signatures
in the CMB spectra [9–13] and influence the galaxy power spectrum [14–20]. In the CMB,
PGWs are expected to generate TT, EE, BB, and TE spectra, while the TB and EB
spectra should be absent if parity symmetry in gravity is preserved [9–13]. This makes their
observation a crucial goal for forthcoming CMB experiments [21–25]. Similarly, in the galaxy
power spectrum, PGWs leave discernible effects in the B-mode polarization, whereas the E-B
correlation is expected to vanish when parity conservation holds [14–20]. As such, upcoming
galaxy surveys may offer critical insights into the physics underlying PGWs [20, 26, 27].

Most inflation models that produce PGWs use the theory of general relativity (GR) as
the theory of gravity. In GR, parity and Lorentz symmetries are two fundamental symmetries.
However, possible violations of these two symmetries may arise in theories that try to unify
quantum physics with gravity. Because of this, various modified theories of gravity have been
proposed to explore the nature of parity and Lorentz violations in gravity, to mention a few,
including the Chern-Simons modified gravity [28, 29], the symmetric teleparallel equivalence
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of GR theory [30, 31], Horava-Lifshitz theories of quantum gravity [32–38], chiral scalar-tensor
theory [39], the Nieh-Yan teleparallel modified gravity [40–42], parity-violating scalar-tensor
theory in teleparallel gravity [43], parity violation induced by couplings between dual Reimann
tensor and Kalb-Ramond two-form field [44], the linearized gravity in standard model exten-
sion [45, 46], Einstein-Æther theories [47–54], and the spatial covariant gravities [55–60], etc.

The violations of parity and Lorentz symmetries in gravity could induce possible deriva-
tions from the standard propagation properties of GWs in GR, the two independent GW
polarizations propagate at the speed of light with an amplitude damping rate as the inverse
of the luminosity distance of the GW sources. Different mechanisms of parity and Lorentz
violations may induce different effects in GW propagations. For example, parity violation
in gravity in general can induce an asymmetry of the propagation speed and amplitude
damping between left- and right-hand polarizations of a GW, which leads to the velocity
and amplitude birefringence, respectively. On the other hand, the Lorentz violation can
result in two distinct effects on the propagation of GWs. First, with Lorentz violation, the
conventional linear dispersion relation of GWs can be modified into a nonlinear one, which in
turn changes the phase velocities of GWs at different frequencies. Second, Lorentz violation
can introduce frequency-dependent friction into the propagation equation of GWs, resulting
in varying damping rates for GWs of different frequencies during their propagation.

Thus, it is expected that the above-mentioned new effects could induce some distinguish-
able signatures in the power spectrum of PGWs. Such considerations have attracted a great
deal of attention lately and several phenomenological implications of both parity and Lorentz
violations on the power spectra of PGWs have already been investigated in several specific
parity- and Lorentz-violating theories of gravity, see refs. [61–69] and references therein. On
the other hand, considering that there are a large number of parity- and Lorentz-violating
gravities, it is challenging to study their observational effects on the PGWs systematically,
instead of studying each specific theory separately. Recently, a systematic parametric frame-
work for characterizing possible derivations of GW propagation in GR was constructed in
refs. [70, 71]. This parameterization provides a general framework for studying the GW
propagation of possible modifications caused by various modified gravitational theories [70, 71].
This parameterization has also been used to study the effect of parity/Lorentz violation on
the modified GW waveforms of the binary inspiral system and their constraints from the
data of compact binary merging events detected by LIGO-Virgo-KAGRA collaboration [71].
For other alternative parametrized frameworks, see refs. [72–75].

In this paper, through the systematic parametrization for characterizing possible deriva-
tions from GW propagation in GR constructed in refs. [70, 71], we investigate both the
parity- and Lorentz-violating effects on the power spectra and the polarization of PGWs.
For this purpose, we employ the third-order uniform asymptotic approximation to calculate
explicitly the power spectrum and the corresponding circular polarization of the PGWs
analytically. We also compare our approximate results with those special cases with exact
results. In addition, the observational implications of the parity- and Lorentz-violating effects
on PGWs are also briefly discussed.

The structure of this paper is organized as follows. In section 2, we introduce the
parameterization for characterizing the possible derivations from GW propagation in GR.

– 2 –



J
C
A
P
0
7
(
2
0
2
4
)
0
0
5

With this parameterization, we then derive the master equation that describes the propagation
of GWs during inflation in section 3. In section 4, by using the third-order uniform asymptotic
approximation, we calculate explicitly the power spectra and the polarization of PGWs during
the slow-roll inflation. We also compare our approximate results with those special cases which
have exact results in section 5. Our main conclusions and outlook are summarized in section 6.

Throughout this paper, the metric convention is choosen as (−, +, +, +), and greek
indices (µ, ν, · · · ) run over 0, 1, 2, 3 and latin indices (i, j, k, · · · ) run over 1, 2, 3.

2 Parameterization for characterizing possible derivations of GW
propagation

In this section, we provide an introduction of a universal parameterization, for characterizing
the possible derivations from GW propagation in GR [70, 71]. To start, let us consider GWs
propagating on a homogeneous and isotropic background,

ds2 = a2(τ)[−dτ2 + (δij + hij)dxidxj ], (2.1)

where a(τ) is the conformal scale factor, and we set its resent value as a0 = 1 in this paper.
τ represents the conformal time which relates to the cosmic time by dt = adτ . xi is the
comoving coordinates. The GWs are represented by hij which are transverse and traceless, i.e.,

δijhij = 0, and ∂ih
ij = 0. (2.2)

It is convenient to expand hij over spatial Fourier harmonics,

hij(τ, xi) =
∑

A=R,L

∫
d3k

(2π)3 hA(τ, ki)eikix
i
eA

ij(ki), (2.3)

where eA
ij is the circular polarization tensor and obeys the following rules

ϵijknie
A
kl = iρAejA

l (2.4)

with ρR = 1 and ρL = −1. Here the unite vector ni ≡ ki/k with k = (kik
i)1/2 which

satisfies nieA
ij = 0.

To study the Lorentz and parity-violating effects in the propagation of GWs, let us first
write the modified propagation equations of the two GW modes in the following parametrized
form [70, 71]

h′′
A + (2 + ν̄ + νA)Hh′

A + (1 + µ̄ + µA)k2hA = 0, (2.5)

where a prime denotes the derivation with respect to the conformal time τ and H = a′/a. Then
the new effects caused by different modified theories are characterized by four parameters, ν̄,
µ̄, νA, and µA. These effects can be divided into the following three categories: 1) the Lorentz-
violating effects induced by frequency-dependent ν̄ and µ̄, including the frequency-dependent
damping and nonlinear dispersion relation of GWs; 2) the parity-violating effects induced
by frequency-dependent νA and µA, including the amplitude and velocity birefringences of
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GWs; and 3) the frequency-independent effects induced by frequency-independent ν̄ and µ̄,
including modifications of the GW friction and speed.

The parameters µ̄ and ν̄, when they are frequency-independent, correspond to the
modifications to the GW speed and friction, respectively. These two modifications can
arise from a broad class of modified gravities that are generally irrelevant for parity and
Lorentz violations, see table I of ref. [71] for the relevant modified theories. Some of Lorentz-
violating theories, in which the Lorentz violations can be induced by the presence of the
background fields including the Einstein-Æther theory [76, 77], the bumblebee gravity [78],
and Lorentz violation with an antisymmetric tensor [79] and a Kalb-Ramond field [44], can
induce modifications to GW speed and friction as well. In the slow-roll inflation phase, these
two modifications lead to an effective sound speed and mass squared terms in the equation of
motion of the PGWs. By treating all the slow-roll quantities in the equation as constants,
the corresponding analytical solution of the PGWs can be solved exactly. Their effects on
the power spectra of PGWs have been well-understood and studied extensively in a broad
class of modified gravities. Therefore, this paper only focuses on the PGWs with new effects
when the four parameters ν̄, µ̄, νA, and µA are frequency-dependent.

The parameters νA and µA correspond to the gravitational parity-violating effects. The
parameter νA induces amplitude birefringence, leading to different damping rates of left-
and right-hand circular polarizations of GWs, while the parameter µA induces velocity
birefringence, leading to different velocities of left- and right-hand circular polarizations of
GWs. For both νA and µA are frequency-dependent, they can be parametrized as [70, 71]

HνA =
[
ρAαν(τ)

(
k

aMPV

)βν
]

,τ

, (2.6)

µA = ρAαµ(τ)
(

k

aMPV

)βµ

, (2.7)

where αν , αµ are arbitrary functions of time and βν , βµ are arbitrary numbers, MPV denotes
the energy scale of the parity violation, and “, τ” represents the derivative with respect to τ .
In principle, the frequency dependencies of HνA and νA may encompass multiple k-terms
characterized by different integers βν and βµ, as well as distinct time-dependent coefficients,
as parameterized in [80, 81]. Indeed, as evidenced by table I in ref. [71], certain modified
theories can give rise to more than one non-GR parameter with multiple k-depencence terms.
However, in our parametrization [70, 71], we assume that among the various k-terms in
each non-GR parameter, only one term is dominant. We focus on this dominant term to
consider its potential effects on observables generally. It is also fairly straightforward to
add up the effects of different k-terms if needed.

The violations of Lorentz symmetry or diffeomorphisms can lead to nonzero and frequency-
dependent ν̄ and µ̄. The parameter µ̄ induces frequency-dependent friction in the propagation
equation of GWs, while µ̄ modifies the conventional linear dispersion relation of GWs to
nonlinear ones. For both ν̄ and µ̄ are frequency-dependent, they can be parametrized as [70, 71]

Hν̄ =
[
αν̄(τ)

(
k

aMLV

)βν̄
]

,τ

, (2.8)

µ̄ = αµ̄(τ)
(

k

aMLV

)βµ̄

, (2.9)
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where αν̄ , αµ̄ are arbitrary functions of time and βν̄ , βµ̄ are arbitrary numbers. MLV means
the energy scale of the Lorentz violation.

The corresponding modified theories with specific forms of the four parameters Hν̄, µ̄,
HνA, and µA, and their GW frequency dependences are summarized in table I of ref. [71].

3 Equation of motion for GWs

Let us now study the propagation equations of GWs with the above parametrization for
possible parity- and Lorentz-violating effects. For later convenience of calculating the
primordial power spectra of GWs, let us introduce a new variable

uA = 1
2zAhA, (3.1)

with

zA = a

[
1 + αν̄(τ)

(
k

aMLV

)βν̄

+ ρAαν(τ)
(

k

aMPV

)βν
]1/2

. (3.2)

Then the equation of motion (2.5) can be rewritten as

u′′
A +

(
ω2

A − z′′
A

zA

)
uA = 0, (3.3)

where
ω2

A

k2 ≡ 1 + ρAαµ(τ)
(

k

aMPV

)βµ

+ αµ̄(τ)
(

k

aMLV

)βµ̄

. (3.4)

In the above expression, we expect the derivations from GR to be small. In this way, one can
expand z′′

A/zA in terms of non-GR parameters about its GR result, which is

z′′
A

zA
≃
[
1 − βν

2 ρAαν

( k

aMPV

)βν

− βν̄

2 αν̄

( k

aMLV

)βν̄
]

a′′

a

+ 1
2

[
(β2

ν − βν)ρAαν

( k

aMPV

)βν

+ (β2
ν̄ − βν̄)αν̄

( k

aMLV

)βν̄
]

a′2

a2

+
[
(1 − βν)ρAα′

ν

( k

aMPV

)βν

+ (1 − βν̄)α′
ν̄

( k

aMLV

)βν̄
]

a′

a

+ 1
2

[
ρAα′′

ν

( k

aMPV

)βν

+ α′′
ν̄

( k

aMLV

)βν̄
]

. (3.5)

Note that in the above expansion, we only consider the first-order terms of each coefficient.
In this article, the PGWs are considered during the inflationary stage, with the background

evolution varying slowly. Under this condition, all the coefficients αν , αν̄ , αµ and αµ̄ can be
treated as slowly varying quantities. Then we can expand the modified dispersion relation
ω2

A in (3.4) and effective time-dependent mass term z′′
A/zA in (3.5) in terms of the slow-roll

quantities as

ω2
A

k2 ≃ 1 + ρAαµ

(
− Hkτ

MPV

)βµ

+ αµ̄

(
− Hkτ

MLV

)βµ̄

, (3.6)
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and

z′′
A

zA
≃ 1

τ2 (2 + 3ϵ1)

+ ρA

2τ2H2

(
− Hkτ

MPV

)βν[
(−3 + βν)βνανH2 + (3 − 2βν)α̇νH + α̈ν

]
+ 1

2τ2H2

(
− Hkτ

MLV

)βν̄[
(−3 + βν̄)βν̄αν̄H2 + (3 − 2βν̄)α̇ν̄H + α̈ν̄

]
. (3.7)

Here H = ȧ/a denotes the Hubble parameter and a dot represents the derivative with
respect to the cosmic time t. Note that in deriving the above expressions, we have used
the approximate relation

a ≃ −1 + ϵ1
τH

, (3.8)

where the slow-roll parameter ϵ1 ≡ −Ḣ/H2.
With the expressions of ω2

A/k2 and z′′
A/zA, the equation of motion in (3.3) can be

changed into the form of

u′′
A +

[
1 −

v2
t − 1

4
k2τ2 + ρAd1(−kτ)βν−2 + d2(−kτ)βν̄−2 + ρAd3(−kτ)βµ + d4(−kτ)βµ̄

]
k2uA = 0,

(3.9)

where

v2
t ≡ 9

4 + 3ϵ1,

d1 ≡
( H

MPV

)βν βν(3 − βν)ανH2 − (3 − 2βν)α̇νH − α̈ν

2H2 ,

d2 =
( H

MLV

)βν̄ βν̄(3 − βν̄)αν̄H2 − (3 − 2βν̄)α̇ν̄H − α̈ν̄

2H2 ,

d3 =
( H

MPV

)βµ

αµ,

d4 =
( H

MLV

)βµ̄

αµ̄. (3.10)

All of these coefficients (i.e. vt, d1, d2, d3, d4) are slowly varying and dimensionless. It is easy
to see that there are no exact and analytical solutions for this equation, even if all the slowly
varying quantities are considered as constants. In this paper, we will employ the uniform
asymptotic approximation to construct the approximate analytical solutions to the above
equations. The uniform asymptotic approximation was developed in a series of papers for
better treatment of the second-order ordinary differential equations with turning points
and poles, and widely applied in the calculations of primordial spectra of various inflation
models [67, 82–86]. This approximation is also used in applications in studying the reheating
process [87] and quantum mechanics [88]. In the next section, an approximate solution of (3.9)
will be constructed through this approximation. Then the corresponding primordial tensor
power spectra with both the parity- and Lorentz-violating effects can be derived.
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4 Power spectra and circular polarization of PGWs in the uniform
asymptotic approximation

4.1 General formula for the power spectra

In this subsection, we present a brief introduction of the general formulas of primordial
perturbation spectra in the uniform asymptotic approximation. Most of the expressions and
results used here can be found in [63, 65, 82, 86].

Firstly, in the uniform asymptotic approximation, we write the equation of motion (3.9)
in the following standard form [82, 85, 89],

d2uA(y)
dy2 =

[
g(y) + q(y)

]
uA(y), (4.1)

where y ≡ −kτ is a dimensionless variable, and

g(y) + q(y) ≡
v2

t − 1
4

y2 − 1 − ρAd1yβν−2 − d2yβν̄−2 − ρAd3yβµ − d4yβµ̄ . (4.2)

Normally, the functions g(y) and q(y) given in the above contain poles and turning points.
Their properties depend on the values of the four parameters βν , βµ, βν̄ , and βµ̄. In this
paper, we focus on those cases with βν , βν̄ ≥ 0 and βµ, βµ̄ ≥ −2. As shown in table. I
of ref. [71], the values of βν , βµ, βν̄ , and βµ̄ with the above conditions include most of the
modified gravities with parity and Lorentz violations. For these cases, it is easy to observe
that the function g(y) + q(y) at least contains a second-order pole at y → 0+. It can also
have another pole at y → +∞ if βν , βν̄ > 2 or βµ, βµ̄ > 0.

In the uniform asymptotic approximation, to make the approximate solution valid around
the second-order pole (the pole at y → 0+), one has to ensure that the error control function
associated with the approximate solution is convergent. For the equation of motion in (4.1)
with g(y) + q(y) given by (4.2), it has been proved in [82, 89] that to make its error control
function to be convergent around the second-order pole at y = 0+, one must select

q(y) = − 1
4y2 . (4.3)

Then g(y) can be written as

g(y) = v2
t

y2 − 1 − yβν−2ρAd1 − d2yβν̄−2 − ρAd3yβµ − d4yβµ̄ . (4.4)

Besides the two poles at y = 0+ and y = +∞, g(y) may have another single zero in the
range y ∈ (0, +∞), which is called a single turning point of g(y). Since we have v2

t ≃ 9
4 + 3ϵ1,

and d1 = 0 = d2 = d3 = d4 in GR, we expect all the new terms with coefficients d1, d2, d3,
and d4 can be considered as small corrections. Then with this consideration and solving
the equation g(y) = 0, we obtain the turning point,

y0 ≃ vt − ρAd1vβν−1
t + d2vβν̄−1

t + ρAd3v
βµ+1
t + d4v

βµ̄+1
t

2 . (4.5)

With the above choices of g(y) and q(y), as given in eqs. (4.3) and (4.4) respectively, the
analytical approximate solution of eq. (4.1) associated with the single turning point y0 can
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be constructed in terms of Airy functions. With these analytical and approximate solutions,
the general formulas of the power spectra of the PGWs can be written as follows [84],

PA
T ≡ 2k3

π2

∣∣∣∣uA(y)
zA

∣∣∣∣2
y→0+

≃ k2

π2
−kτ

z2
Avt

exp
(

2
∫ y0

y

√
g(y′)dy′

)
×
[
1 + H (+∞) + H 2(+∞)

2 + · · ·
]

. (4.6)

Here we only consider the third-order uniform asymptotic approximation and “· · · ” denotes
the contributions beyond the third-order. H (+∞) is the error control function which is
given by [84]

H (+∞) = 5
36

{∫ y

y0

√
g(y′)dy′

}−1
∣∣∣∣∣
y→0+

y→y0

−
∫ y→0+

y0

{
q

g
− 5g′2

16g3 + g′′

4g2

}
√

gdy′. (4.7)

Thus, to calculate the power spectra, one has to perform the integral of
√

g(y) and the
integrals appearing in eq. (4.7), which are presented in appendix A.

4.2 Power spectra and circular polarization of PGWs

With the above general formulas, we can compute the primordial power spectra for each
polarization mode of the PGWs as y → 0. The power spectrum for each polarization mode
is typically calculated using:

PL
T = 2k3

π2

∣∣∣∣uL(y)
zA

∣∣∣∣2 , (4.8)

PR
T = 2k3

π2

∣∣∣∣uR(y)
zA

∣∣∣∣2 . (4.9)

Using (A.4) and (A.16) and after tedious calculations we obtain,

PA
T ≃ 1

2PGR,UAA
T

(
1 −

4∑
i=1

diCi

)
, (4.10)

where

PGR,UAA
T ≡ 362H2

9e3π2

[
1 +

(
2 ln 2 − 496

181

)
ϵ1

]
, (4.11)

represents the power spectrum of PGWs calculated from the third-order uniform asymptotic
approximation [63, 65] and Ci’s represents the contributions from the Lorentz-violating and
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parity-violating effects, and are given by

C1 =
[
1 − 10

543βν(βν − 1)(βν − 2)
] 3βν−1√

πρAΓ
(

βν

2

)
2βν Γ

(
βν+1

2

) , (4.12)

C2 =
[
1 − 10

543βν̄(βν̄ − 1)(βν̄ − 2)
] 3βν̄−1√

πΓ
(

βν̄

2

)
2βν̄ Γ

(
βν̄+1

2

) , (4.13)

C3 =
[
1 − 10

543βµ(βµ + 1)(βµ + 2)
] 3βµ+1√

πρAΓ
(

βµ+2
2

)
2βµ+2Γ

(
βµ+3

2

) , (4.14)

C4 =
[
1 − 10

543βµ̄(βµ̄ + 1)(βµ̄ + 2)
] 3βµ̄+1√

πΓ
(

βµ̄+2
2

)
2βµ̄+2Γ

(
βµ̄+3

2

) . (4.15)

Note that in the above calculations, we have used vt ≃ 3/2 to simplify the expressions of Ci’s.
Setting d1 = d2 = d3 = d4 = 0 one recovers the standard GR result in the uniform asymptotic
approximation. The Lorentz-violating terms (d2 and d4 terms) primarily influence the overall
amplitude of the left- and right-handed polarization modes of GW, while the parity-violating
terms (d1 and d3 terms) distinctly affect the amplitude of these modes, which tend to amplify
the power spectrum of one mode while suppressing that of the other.

We now proceed to evaluate the degree of circular polarization of PGWs, defined as the
amplitude difference between the two circular polarization states:

Π = PR
T − PL

T

PR
T + PL

T

≃ −d1

[
1 − 10

543βν(βν − 1)(βν − 2)
] 3βν−1√

πΓ
(

βν

2

)
2βν Γ

(
βν+1

2

)
− d3

[
1 − 10

543βµ(βµ + 1)(βµ + 2)
] 3βµ+1√

πΓ
(

βµ+2
2

)
2βµ+2Γ

(
βµ+3

2

) . (4.16)

As anticipated, the circular polarization degree Π is exclusively influenced by parity-violating
effects. This formulation aligns with findings from Chern-Simons modified gravity, chiral
scalar-tensor theory, and Hořava-Lifshitz gravity. For comprehensive discussions on these
theories, we refer to ref. [90], ref. [65], and ref. [62], respectively.

5 Some specific examples with exact solutions

In this section, we consider several specific cases of βν̄ = 2, βµ̄ = 2, βν = 1, and βµ = −1,
respectively. For these specific cases, the equations of motion of PGWs have exact and
analytical solutions. Each case can also arise from one or several specific modified gravities.

5.1 βν̄ = 2

The case with βν̄ = 2 can arise from the spatial covariant gravities [55, 91] and the Hořava-
Lifshtz gravity with mixed derivative coupling [37]. This case corresponds to a specific
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Lorentz-violating damping rate on the GW propagation. Constraining these effects with
currently available data of GW events from LIGO-Virgo-KAGRA collaboration and future
ground-based and space-based GW detectors have also been studied in refs. [71, 92].1 For
this case, the equation of motion in eq. (3.9) for GWs takes the form

u′′
A +

(
1 + d2 −

v2
t − 1

4
k2τ2

)
k2uA = 0. (5.1)

This equation has an exact solution if we treat all the slow-rolling quantities and d2 as
constants, which can be expressed analytically as a linear combination of Hankel functions,

uA ≃
√

−πτ

2
[
c1H(1)

vt
(−k̃τ) + c2H(2)

vt
(−k̃τ)

]
, (5.2)

where k̃ =
√

1 + d2k, c1 and c2 are two integration constants, and H
(1)
vt (−k̃τ) and H

(2)
vt (−k̃τ)

are the first and second kinds of Hankel function respectively. Using the asymptotic form of
the Hankel functions in the limit −k̃τ → +∞ and imposing the normalization condition

i

ℏ
(u∗

Au′
A − u∗

A
′uA) = 1, (5.3)

and initial condition

lim
y→+∞

uA(y) ≃ 1√
2ωA

e−i
∫

ωAdτ , (5.4)

the two constants c1 and c2 can be fixed to be

c1 = 1, c2 = 0. (5.5)

Then one can use the above exact solution to calculate the power spectra of PGWs
in the limit −k̃τ → 0. In this limit, the Hankel function H

(1)
vt (−k̃τ) takes the following

asymptotic form

lim
−k̃τ→0

H(1)
vt

(−k̃τ) ≃ − i

π
Γ(vt)

(
−k̃τ

2

)−vt

, (5.6)

and one finds

uA → −i

√
−πτ

2π
Γ(vt)

(
−k̃τ

2

)−vt

. (5.7)

Then the power spectrum of PGWs reads

PL,R
T ≃ 1

2P GR
T

(
1 − 3

4d2

)
, (5.8)

1In general, the constraints derived from gravitational wave event data analysis cannot be directly applied
as bounds on the values of these parameters during the inflationary slow-roll phase. To make this connection
requires prior knowledge of how these parameters evolve over time, from the start of slow-roll inflation through
to the present era.
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where
PGR

T ≡ 2k2

π3
1
a2 Γ2(vt)

(−kτ

2

)1−2vt

, (5.9)

is the power spectrum of PGWs in GR calculated from the exact solution (5.2). The Lorentz-
violating damping effects with βν = 2 case affects the overall amplitude of the power spectrum
of both the left- and right-handed polarization modes of GW in the same way.

Comparing the above exact result (cf. (5.8)) to that in eq. (4.10), we would like to
mention that we have considered the third-order approximation in the uniform asymptotic
approximation. The corresponding relative difference between PGR

T in (5.8) and PGR,UAA
T

in (4.10) is less than 0.15% [86]. Although with such a small error in the calculation of
PGR,UAA

T , the small correction to the power spectrum from the Lorentz-violating damping
with βν = 2 in the bracket of (4.10) exactly reduces to that in the bracket of (5.8).

5.2 βµ̄ = 2

The case with βµ̄ = 2 can arise from a large number of Lorentz-violating theories of gravity,
including the chiral Weyl gravity [93], spatial covariant gravities [55, 91], Hořava-Lifshitz
gravity [32, 33, 35], diffeomorphism/Lorentz violating linear gravity in the standard model
extension [45, 46], consistent four-dimensional Einstein-Gauss-Bonnet gravity [61, 94, 95],
Lorentz-violating Weyl gravity [96], etc. This case corresponds to a nonlinear dispersion
relation of GWs. The new effect for this case on the PGWs has been studied in ref. [95]
with the corresponding exact solution of PGWs. The calculations of the power spectra of
PGWs for this case by using the uniform asymptotic approximation has also been carried
out in refs. [61, 66, 86].

For this case, the equation of motion (3.9) takes the form

u′′
A +

(
1 −

v2
t − 1

4
k2τ2 + d4k2τ2

)
k2uA = 0. (5.10)

By treating all the slow-rolling quantities and d4 as constants, the exact solution of this
equation can be written in terms of the Whittaker functions, which is [95, 97]

uA = 1
d

1/4
4

e
− π

8
√

d4
√

−2τk

[
c3W

(
i

4
√

d4
,
vt

2 , −i
√

d4k2τ2
)

+ c4M

(
i

4
√

d4
,
vt

2 , −i
√

d4k2τ2
)]

, (5.11)

where c3 and c4 are two integration constants, and W
(

i
4
√

d4
, vt

2 , −i
√

d4k2τ2
)

and

M
(

i
4
√

d4
, vt

2 , −i
√

d4k2τ2
)

are Whittaker functions [98, 99]. Using the asymptotic forms
of the Whittaker functions in the limit −kτ → +∞ [99], i.e.

W

(
i

4
√

d4
,
vt

2 , −i
√

d4k2τ2
)

≃ e
i
2

√
d4k2τ2(−i

√
d4k2τ2)

i

4
√

d4 , (5.12)

M

(
i

4
√

d4
,
vt

2 , −i
√

d4k2τ2
)

≃ Γ(1 + vt)
Γ
(

1+vt
2 − i

4
√

d4

)e− i
2

√
d4k2τ2(−i

√
d4k2τ2)

− i

4
√

d4 , (5.13)

and imposing the normalization condition (5.3) and initial condition (5.4), the two constants
c3 and c4 can be fixed to be

c3 = 1, c4 = 0. (5.14)
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Then one can use the above exact solution to calculate the power spectra of PGWs in
the limit −kτ → 0. In this limit, the Whittaker function W

(
i

4
√

d4
, vt

2 , −i
√

d4k2τ2
)

takes
the following asymptotic form

lim
−kτ→0

W

(
i

4
√

d4
,
vt

2 , −i
√

d4k2τ2
)

≃
(
−i

√
d4k2τ2) 1

2 − vt
2 Γ(vt)

Γ
(

1
2 + vt

2 − i
4
√

d4

) , (5.15)

and one finds

uA → 1√
2k

(−i)
1−vt

2 e
− π

8
√

d4 (−kτ)
1
2 −vt . (5.16)

Then the power spectrum of PGWs reads

PL,R
T = 1

2P GR
T

22vtπd
− vt

2
4 e

− π

4
√

d4∣∣∣Γ (1
2 + vt

2 − i
4
√

d4

)∣∣∣2 , (5.17)

where PGR
T is given by eq. (5.9). Considering the correction term d4 is small, one can employ

the following asymptotic form of Gamma function Γ(x + iy) (note that x and y are both
real) for large y [100],2

|Γ(x + iy)| ≃
√

2π|y|x− 1
2 e− πy

2 ×
[
1 +

(
x3

6 − x2

4 + x

12

)
1
y2 + O

( 1
y4

)]
, (5.18)

and then the power spectrum of PGWs can be approximately expressed as

PL,R
T ≃ 1

2P GR
T

(
1 − 5

4d4

)
. (5.19)

Similar to the βν = 2 case, the Lorentz violation with βµ̄ = 2 case only affects the overall
amplitude of the power spectrum of PGWs.

Comparing to (4.10), as we already mentioned in the last subsection, the corresponding
relative difference between PGR

T in (5.8) and PGR,UAA
T in (4.10) is less than 0.15% [86]. We

also observe a ∼ 0.4% relative difference in the coefficient of d4 in the brackets of (5.19)
and (4.10), while the value of the coefficient in (4.10) is −909

724 for βµ̄ = 2 case.

5.3 βν = 1 and βµ = −1

The cases for βν = 1 and βµ = −1 share the same form in equation eq. (3.9), thus we
discuss them together in this subsection. These two cases correspond to two distinct effects.
The βν = 1 case corresponds to the amplitude birefringence of GWs, resulting in different
and frequency-dependent damping rates of left- and right-hand circular polarizations of
GWs. This case can arise from Chern-Simons gravity [28, 29, 101], Palatini-Chern-Simons
gravity [102], spatial covariant gravities [55, 91], chiral scalar-tensor theory [39, 65], parity-
violating scalar-nonmetricity theory [30, 31, 103], and a parity-violating coupling between a
Kalb-Ramond field and the Riemann curvature [44]. The studies of PGWs for this case can
be found in refs. [90, 101]. The βµ = −1 case corresponds to velocity birefringence, leading

2See appendix B in [100] for the derivation of this asymptotic form.
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to different and frequency-dependent velocities of left- and right-hand circular polarizations
of GWs. This case can appear in parity-violating scalar-nonmetricity theory [30, 31, 103],
metric-affine Chern-Simons gravity [104], Nieh-Yan teleparallel modified gravity [40–42],
diffeomorphism-violating linear gravity in the standard model extension [46], the new GR
with parity violation [105], and a parity-violating coupling between a Kalb-Ramond field and
the Riemann curvature [44]. The polarized PGWs for this case have been briefly discussed
in parity-violating scalar-nonmetricity theory in [103].

For these two cases, the equation of motion (3.9) takes the form

u′′
A +

(
1 −

v2
t − 1

4
k2τ2 + dA

13
kτ

)
k2uA = 0, (5.20)

where dA
13 ≡ ρA(d1 + d3). By treating all the slow-rolling quantities and dA

13 as constants, the
exact solution of this equation can be written in terms of the Whittaker functions [98, 99],

uA = (2ikτ)
idA

13
2

√
2k

[
c5W

(
− idA

13
2 , vt, 2ikτ

)
+ c6M

(
− idA

13
2 , vt, 2ikτ

)]
, (5.21)

where c5 and c6 are two integration constants. Using the asymptotic forms of the Whittaker
functions in the limit −kτ → +∞ [99], i.e.,

W

(
− idA

13
2 , vt, 2ikτ

)
≃ e−ikτ (2ikτ)−

idA
13
2 , (5.22)

M

(
− idA

13
2 , vt, 2ikτ

)
≃ Γ(1 + 2vt)

Γ
(

1
2 + vt − idA

13
2

)eikτ (2ikτ)
idA

13
2 , (5.23)

and imposing the normalization condition in eq. (5.3) and initial condition (5.4), the two
constants c5 and c6 can be fixed to be

c5 = 1, c6 = 0. (5.24)

Then one can use the above exact solution to calculate the power spectra of PGWs
in the limit −kτ → 0. In this limit, the Whittaker function W

(
− idA

13
2 , vt, 2ikτ

)
takes the

following asymptotic form

lim
−kτ→0

W

(
− idA

13
2 , vt, 2ikτ

)
≃ (2ikτ)

1
2 −vt Γ(2vt)

Γ
(

1
2 + vt + idA

13
2

) . (5.25)

Then the power spectrum of PGWs reads

PA
T = 1

2P GR
T

e−
πdA

13
2

∣∣∣Γ (1
2 + vt

)∣∣∣2∣∣∣∣Γ(1
2 + vt + idA

13
2

)∣∣∣∣2 , (5.26)
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where PGR
T is given by eq. (5.9). Considering that the correction term dA

13 is small, the power
spectrum can be approximately expressed as

PA
T ≃ 1

2P GR
T

[
1 − π

2 ρA(d1 + d3)
]

. (5.27)

Comparing the above result to (4.10), it is not difficult to check that the correction term in
the bracket of (4.10) exactly reduces to that in (5.27). The cases for βν = 1 and βµ = −1
affect the power spectra of left- and right-handed polarization modes of PGWs in different
ways. This effect is due to the violation of the parity symmetry in gravity. For a positive
value of d1 + d3 in the above expression, the new effect trends to enhance (suppress) the
power spectra of the left (right) -handed modes.

Because of the difference between the two modes of PGWs, the circular polarization
of PGWs can be expressed as

Π ≃ −π

2 (d1 + d3), (5.28)

which is the same as the result given in (4.16) for cases with βν = 1 and βµ = −1 from
the uniform asymptotic approximation.

6 Conclusions

Violations of parity and Lorentz symmetries in gravity can result in several distinct effects
on the propagation of GWs. The parity violation in general leads to an asymmetry of the
propagation speed and amplitude damping between left- and right-hand polarizations of GW,
which induces the velocity and amplitude birefringence, respectively. Lorentz violation, on
the other hand, can result in two distinct effects: one is the modified dispersion relation
and another is a frequency-dependent damping of GWs. These new effects can arise from
a large number of parity- and Lorentz-violating theories of gravity.

In this paper, to study the parity- and Lorentz-violating effects on both power spectra
and circular polarization of PGWs, we employ a systematic parametric framework constructed
in refs. [70, 71], for characterizing possible derivations of GW propagation in GR. It is
also shown in refs. [70, 71] that the GW propagations in a large number of parity- and
Lorentz-violating theories of gravity can be well described by this parameterization.

With this parameterization, we calculate explicitly both the power spectra and for the
two polarization modes and the corresponding degree of circular polarization of PGWs with
parity- and Lorentz-violating corrections in a unified way. To verify the validity and accuracy
of our approximate results, we also compare our approximate power spectra and the circular
polarization derived from the uniform asymptotic approximation with several special cases
that have exact results. It is shown that the approximate results from the uniform asymptotic
approximation fit the exact results extremely well.

Our results show that the power spectra can be modified due to the presence of both
parity and Lorentz violations. The Lorentz violation only affects the overall amplitude of both
left- and right-handed polarization modes of GW. The parity violation, on the other hand,
affects the amplitudes of left- and right-handed polarization modes of GW in different ways.
Because of this, the degree of circular polarization becomes nonzero, which is directly related
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to parity-violating parameters d1 and d3. However, this effect is expected to be very small due
to the suppression of the parity-violating parameters d1, d3 < O(1) and it seems very difficult
to detect it by using the power spectra of future CMB data, as shown in detail in ref. [106].

Here we would like to mention that in our study we only consider the power spectra
and the corresponding circular polarization of PGWs. It is pointed out in [107] that the
parity-violating effects in the non-Gaussianities of PGWs could be large enough and detectable
in the future CMB data and survey of the large-scale structure of the Universe. Thus it
is interesting to explore the possible signatures of the circular polarization of PGWs in
non-Gaussianities, large-scale structure, and EB correlation in the galaxy-shaped power
spectrum, etc. We would like to come back to these issues in our future works.
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A Calculations of the integral of
√

g(y) and the error control function
H (+∞)

In this appendix, we present the detailed calculation of the integral of
√

g(y) in eq. (4.6)
and the error control function H (+∞) in eq. (4.7). To perform these integrals, our strategy
here is to treat all the new terms that arise from the parity and Lorentz violations as small
corrections. With this consideration, we can expand the integrals in terms of the small
coefficients d1, d2, d3, and d4. Most of the formulas or expressions used here can also be
found in the appendix B.2 in ref. [108].

To expand an integral in terms of a small parameter ϵ, let us consider the following formula

I[a(ϵ), b(ϵ), ϵ] =
∫ b(ϵ)

a(ϵ)
F [y′, ϵ]dy′. (A.1)

Now expanding the above integral in terms of ϵ yields

I[a(ϵ), b(ϵ), ϵ] ≃
∫ b(0)

a(0)
F (y′, 0)dy′ + ϵ

∫ b(0)

a(0)
F,ϵ(y′, 0)dy′ + ϵ

[
b,ϵ(0)F (b0, 0) − a,ϵ(0)F (a0, 0)

]
.

(A.2)
Here “,” in F,ϵ, a,ϵ, and b,ϵ denotes the derivative with respect to the small parameter ϵ.
Using this formula, the integral of

√
g(y) in eq. (4.6) can be expanded in terms of the
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coefficients di (i = 1, 2, 3, 4) as∫ y0

y

√
g(y′)dy′ ≃

∫ vt

y

√
g(y′)

∣∣∣
d1,d2,d3,d4=0

dy′

+
4∑

i=1
di

{∫ vt

y

g,di
(y′)

2
√

g(y′)

∣∣∣∣∣
d1,d2,d3,d4=0

dy′ − y0,di

√
g(vt)

∣∣∣
d1,d2,d3,d4=0

}
. (A.3)

Note that in the above expression, we have g(vt)|d1,d2,d3,d4 = 0. Directly performing the
above two integrals, one obtains

lim
y→0+

∫ y0

y

√
g(y′)dy′ ≃ −

(
1 + ln y

2vt

)
vt − d1

vβν−1
t ρA

√
πΓ(βν

2 )
4Γ(1+βν

2 )
− d2

vβν̄−1
t

√
πΓ(βν̄

2 )
4Γ(βν̄+1

2 )

− d3
v

βµ+1
t ρA

√
πΓ(1 + βµ

2 )
4Γ(3+βµ

2 )
− d4

v
βµ̄+1
t ρA

√
πΓ(1 + βµ̄

2 )
4Γ(3+βµ̄

2 )
. (A.4)

Now let us turn to the error control function H (+∞) in eq. (4.7), from which we can
divide H (+∞) into two parts. We first consider the first part, which is

5
36

1
I1[y, y0, di]

∣∣∣∣0+

y0−ε

= 5
36

{ 1
I1[0, y0, di]

− 1
I1[y0 − ε, y0, di]

}
, (A.5)

where

I1[0, y0, di] = lim
y→0+

∫ y

y0

√
g(y′)dy′,

I1[y0 − ε, y0, di] =
∫ y0−ε

y0

√
g(y′)dy′. (A.6)

Here ε is a positive and small quantity, representing the divergences in the expressions. The
integral of I1[0, y0, di] is already calculated in eq. (A.4), which contains a divergent term
ln y

2vt
in the limit y → 0+. Thus we have

5
36

1
I1[0, y0, di]

= 0. (A.7)

Similarly, for I1[y0 − ε, y0, di], using (A.2) one has

I1[y0 − ε, y0, di] ≃ lim
ε→0

∫ vt−ε

vt

√
g(y′)

∣∣∣
d1,d2,d3,d4=0

dy′ +
4∑

i=1
di lim

ε→0
I1,di

[vt − ε, vt, 0], (A.8)

where

I1,di
[vt − ε, vt, 0] =

∫ vt−ϵ

vt

g,di
(y′)

2
√

g(y′)

∣∣∣
d1,d2,d3,d4=0

dy′

+ y0,di

√
g(vt − ε)

∣∣∣
d1,d2,d3,d4=0

− y0,di

√
g(vt)

∣∣∣
d1,d2,d3,d4=0

. (A.9)

Using this expression we find

5
36I1[y0 − ε, y0, di]

≃ 5
36I1[vt − ε, vt, 0] −

4∑
i=1

di
5I1,di

[vt − ε, vt, 0]
36I1[vt − ε, vt, 0]2 . (A.10)
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Then combined with eq. (A.7), the first part of the error control function can be calculated
by using the following formula

5
36

1
I1[y, y0, di]

∣∣∣∣y=0+

y=y0−ε

≃ − 5
36I1[vt − ε, vt, 0] +

4∑
i=1

di
5I1,di

[vt − ε, vt, 0]
36I1[vt − ε, vt, 0]2 . (A.11)

Now let us turn to consider the second part of the error control function. Let us first define

I2[0, y0 − ε, di] ≡ −
∫ 0+

y0−ε

{
q

g
− 5g′2

16g3 + g′′

4g2

}
√

gdy′ =
∫ 0+

y0−ε
G(y′)dy′, (A.12)

with

G(y) ≡ −
{

q

g
− 5g′2

16g3 + g′′

4g2

}
√

g. (A.13)

According to the formula (A.2) we find

I2[0, y0 − ε, di] ≃
∫ 0+

vt−ε
G(y′)

∣∣∣
d1,d2,d3,d4=0

dy′

+
4∑

i=1
di

∫ 0+

vt−ε
G,di

(y′)
∣∣∣
d1,d2,d3,d4=0

dy′ −
4∑

i=1
diy0,di

G(vt − ε)
∣∣∣
d1,d2,d3,d4=0

.

(A.14)

Thus finally we can calculate the error control function by using the following formulas

H (+∞) ≃ − 5
36I1[vt − ε, vt, 0] +

4∑
i=1

di
5I1,di

[vt − ε, vt, 0]
36I1[vt − ε, vt, 0]2 + I2[0, y0 − ε, di], (A.15)

where I1[vt − ε, vt, 0], I1,di
[vt − ε, vt, 0], and I2[0, y0 − ε, di] are given by eq. (A.6), eq. (A.9),

and eq. (A.14), respectively. Then performing the integrals in the expressions of I1[vt −ε, vt, 0],
I1,di

[vt − ε, vt, 0], and I2[0, y0 − ε, di], and after tedious calculations, one obtains

H (+∞) ≃ 1
6vt

+ d1
βν(βν − 1)(βν − 2)

24v2
t

vβν−1
t

√
πρAΓ

(
βν

2

)
2Γ
(

βν+1
2

)
+ d2

βν̄(βν̄ − 1)(βν̄ − 2)
24v2

t

vβν̄−1
t

√
πρAΓ

(
βν̄

2

)
2Γ
(

βν̄+1
2

)
+ d3

βµ(βµ + 1)(βµ + 2)
24v2

t

v
βµ+1
t

√
πρAΓ

(
βµ+2

2

)
2Γ
(

βµ+3
2

)
+ d4

βµ̄(βµ̄ + 1)(βµ̄ + 2)
24v2

t

v
βµ̄+1
t

√
πΓ
(

βµ̄+2
2

)
2Γ
(

βµ̄+3
2

) . (A.16)
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