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1 Introduction

General relativity (GR) is always considered the most successful theory of gravity [1]. However,
various difficulties of this theory are also well known. On the theoretical side, GR has
singularity and quantization problems [2–4]. On the experimental side, all the observations
in the cosmological scale indicate the existence of so-called dark matter and dark energy [5–
9], which might mean that GR is invalid at this scale. For these reasons, we now must
experimentally test GR in a variety of different spacetime environments and astrophysical
scales. Since then, the gravitational tests on the submillimeter scale [10, 11], in the solar
system [12–18], in the binary-pulsar systems [19–23], and in the astrophysical and cosmological
scales [24–27] have been found to agree remarkably with Einstein’s theory.

The direct observation of gravitational waves (GWs) provided a new probe to test gravity
in extreme-gravity environments. As predicted by GR, the currently observable GW can
only be generated in strong gravitational fields and hardly interacts with matter, carrying
information about the nature of gravity in the strong-field regime. In recent years, Laser
Interferometer Gravitational-wave Observatory (LIGO) and Virgo collaboration have detected
90 GW signals radiated from compact binary coalescence events [28–31], for example, the
well-known GW150914 [32] and GW190521 [33] from binary black holes (BBH) system,
GW170817 [34] from binary neutron stars system, and GW200105 and GW200115 from
neutron stars-black hole system [35]. More information about these identified signals can be
found in refs. [28–31]. Numerous works have used GW data to perform gravitational tests [36–
47]. Currently, the third-generation GW observatories, Einstein Telescope (ET) [48] and
Cosmic Explorer (CE) [49], as well as the space-based detectors, e.g., LISA [50], TianQin [51]
and Taiji [52, 53], are under construction. These detectors are expected to observe several
different astrophysical GW events, among which the compact binary inspirals are still one
of the most promising sources [54–56].

This work focuses on the BBH systems and the radiated GWs during the process of
inspiraling to merging [13, 57, 58]. Because of the extremely strong gravitational field near
the binary system in the pre-merger phase, the radiated GW may encode the distinction
between the alternative gravitational theory and GR. This is why the detection of GWs
generated from BBH is an essential aspect of the gravitational experiment [59–61]. However,
for the detection of GW signals and subsequent extraction of physical parameters from
them, a set of precise theoretical templates is required [62]. GW events will be confirmed
only when a sufficiently high signal-to-noise ratio (SNR) of the signal with the template is
achieved. Thus, the templates have to be highly accurate, because a systematic inaccuracy
can underestimate the SNR and lead to a missed detection. However, these templates for
highly nonlinear and strongly general relativistic processes, e.g., the evolution of BBH systems,
can be constructed only by numerical-relativity simulations [63, 64], which is computationally
expensive, especially for modeling the theories beyond GR [65–67]. The post-Newtonian
(PN) approximation [68, 69] is an alternative method to model the gravitational waveform
from BBH in the pre-merger phase, where the separation between two bodies is much larger
than the gravitational radii of them and, equivalently, the relative velocity is much smaller
than the speed of light in the vacuum, i.e., v2 ∼ m/r ≪ 1. In this framework, thus, the
bodies can be regarded effectively as point particles [68, 69]. Until recently, the analytical PN
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expansion was known for non-spinning systems up to the 3.5PN, i.e., up to the v7 correction
beyond the leading-order quadrupole formula [58, 69–72]. Refs. [73–77] have pushed the
accuracy to the next 4PN level. Adopting such an approach, refs. [13, 58] gave the templates
in Newtonian order for non-spinning BBH systems with circular orbits, or quasi-circular
orbits, more accurately, due to the radiation reaction. And the higher-order corrections
can be found in refs. [78–81].

Quasi-circular orbits are a reasonable choice because the GW dissipation circularizes the
orbits of isolated BBH with an initial eccentricity, by the time their orbital frequency reaches
the sensitive bands of ground-based GW observatories [82]. However, recent analyses [83–85]
found evidence of eccentricity in GW150921 and several other events, indicating these binary
systems formed dynamically in densely populated environments. Ignoring eccentricity will
result in an illusion of a deviation from GR [86–88]. The templates for eccentric binary are
also an essential topic in both numerical simulations [89] and analytical calculations [82, 90].
When regarding the two bodies as point masses in the PN framework, the bound orbits are
accurately elliptic, parameterized by semimajor axis and eccentricity, at the Newtonian-order
approximation. In this simplest case, refs. [82, 91] gave the energy dissipation, and Yunes
et al. [90] obtained the analytic expression for such a frequency-domain template in the
small-eccentricity limit. However, the higher-order effects bring some difficulties in getting
the templates. On the one hand, starting from the 1PN approximation, such correction
induces the well-known periastron advance effect [13], causing the binary orbit to be no longer
closed. To solve this problem, the quasi-Kerperian (QK) parameterization is usually adopted
to integrate the equations of motion (EOM). The results for non-spinning BBH systems
were derived by refs. [13, 92] at 1PN order, by refs. [93, 94] at 2PN order, and by ref. [95] at
3PN order. Based on the precise descriptions of binary motions, the gravitational waveforms
are logically obtained [96–101], where the periastron advance modulates the waveforms with
a much lower frequency. On the other hand, starting from the 1.5PN approximation, the
non-aligned spins of the objects influence the motion via spin-orbit (SO), spin-spin (SS),
and monopole-quadrupole (MQ) couplings [102–107]. In particular, the spins’ components,
perpendicular to the orbit, produce the orbital precession [45] and prevent the orbital
circularization during energy dissipation, disappearing for the spin-aligned case [108, 109].
The efforts involving the spin effects can be found in refs. [108, 110–113]. The corresponding
frequency-domain waveform can be found in refs. [109, 114–120].

The GW-based gravitational test entails comparing the signals predicted by GR and those
by the alternative theories and constraining their differences by observations [45, 46, 121–137],
in which the modified templates via PN approximation are required. Modified gravitational
waveforms have been derived in various extended gravitational theories for quasi-circular [138–
145] and quasi-elliptic [146–148] binary systems at the leading Newtonian order, that is the
leading-order beyond-GR modification and the sub-leading effects are negligible. Unlike
the above theories, as a kind of parity-violating theory [133, 149–151], dynamical Chern-
Simons (DCS) gravity [152, 153] modifies the waveform from BBH at 2PN approximation,
leaving behind a lower-order waveform that is completely consistent with GR [154–157].
The template under quasi-circular and spin-aligned assumption has been reported in our
previous works [156, 157]. Then, the quasi-Keplerian case is taken into consideration in this
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paper, including the periastron advance but still assuming the spin vectors to be aligned
with the orbital angular momentum (OAM). So the spin precession effects [158] exceed
the range of this article.

This work aims to derive the quasi-Keplerian motion, the time-domain gravitational
waveform, orbital evolution due to the radiation reaction, and the frequency-domain waveform
for the non-precessing BBH in DCS gravity. Because of the spin-aligned assumption, the bodies
are always in the orbital plane. So the quasi-Keplerian parameterization [13, 91, 92, 94, 95]
is successfully applied to the DCS extension, involving two elements, the “radial” semimajor
axis ar (equivalently the orbital frequency F or its dimensionless version x) and “radial”
eccentricity er. The final result presents a doubly periodic structure and predicts the
precession rate of the periastron. Precession makes the azimuth angle to be no longer a
suitable periodic variable. Two alternative angular variables, the true anomaly, and the mean
anomaly are used to express the waveform. Both of these versions show the low-frequency
modulation from the precession effect. Based on the motion and time-domain waveform, the
dissipation rate of energy and orbital angular momentum are obtained and we can get the
secular evolution of elements. The orbital circularization is described by equation dx/der,
with analytical solution x = x(er). Although the extra scalar field slightly affects the rate
of circularization, the eccentric orbits are still finally reduced to be quasi-circular through
radiation reaction. To finally calculate the waveform in Fourier space, the eccentricity is
written as a function of frequency, er(F ), up to O(e4

r) order, valid for e0 ≲ 0.3. Therefore,
the stationary phase approximation (SPA) [109, 114] gives the Fourier transformation of the
time-domain waveform and the ready-to-use template. These results will benefit the signal
searches and improve the theoretical constraints of DCS theory in the future.

This paper is organized as follows. In section 2, we briefly review the DCS theory. In
section 3, we give conserved quantities, EOM, and its QK parameterization solution up to
the leading-order DCS modification. Section 4 calculates the scalar and tensor gravitational
waveforms and their polarizations. Furthermore, the energy, angular-momentum fluxes carried
by radiation, and the secular evolutions of QK orbital elements are presented in section 5.
The post-circular frequency-domain waveform is shown in 6. Finally, we make a summary and
discussion in section 7. Some complicated but unimportant modified coefficients are listed in
appendices A, B, C, D, and E. Throughout the paper, we work in geometric units in which
c = G = 1, where c is the speed of light in the vacuum and G is the gravitational constant.

2 DCS gravity

In this section, we outline the basic knowledge of DCS theory [152, 153]. The full action
of the DCS theory is

S =
∫

d4x
√

−g
[ 1

16πR+ α

4 ϑRνµαβR̂
µναβ − β0

2 (∇µϑ)(∇µϑ) + Lm

]
, (2.1)

where the gravity is described by a pseudo scalar field ϑ and the metric gµν . The first
term in eq. (2.1) gives the Einstein-Hilbert action, where g is the determinant of the metric
gµν and R is the Ricci scalar. The second term describes the coupling between a pseudo
scalar field (ϑ) and the Pontryagin density (RνµαβR̂

µναβ) which is a kind of parity-violating
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modification, causing the non-conservation of the DCS topological current. α is the coupling
parameter. Rνµρσ is Riemann tensor and its dual is defined as R̂µναβ ≡ (1/2)ερσαβRµν

αβ,
with ερσαβ being the Levi-Civitá tensor defined in terms of the antisymmetric symbol ϵρσαβ

as ερσαβ = (1/
√

−g)ϵρσαβ , where ϵ0123 = 1. The third one is the dynamical term of the scalar
field, with β0 being another coupling parameter. As in ref. [155], we do not consider the
potential of the scalar field. Finally, Lm is the Lagrangian density of the matter field.

The variation of the full action (2.1) with respect to the metric gµν yields the modified
field equation [152, 153],

Rµν − 1
2gµνR+ 16παCµν = 8π

[
T (m)

µν + T (ϑ)
µν

]
, (2.2)

where Rµν is Ricci tensor and Cµν is Cotton tensor defined as

Cµν = −ερ(µ|αβ|
[
∇αR

ν)
β

]
(∇ρϑ) − R̂κ(µ|ρ|ν)(∇κ∇ρϑ). (2.3)

Note that the Cotton tensor Cµν is traceless, gµνCµν = 0, and satisfies the Bianchi identity,
∇µCµν = 0. T (m)

µν and T
(ϑ)
µν denote the energy-momentum tensors of the matter field and

the DCS scalar field,

T (ϑ)
µν = β0

[
(∇µϑ)(∇νϑ) − 1

2gµν(∇αϑ)(∇αϑ)
]
. (2.4)

The equation of the scalar field can also be derived by variation of the action (2.1) to
the scalar field ϑ, which is

β0□
2
gϑ = −α

4RνµαβR̂
µναβ . (2.5)

We would like to mention here that when the coupling β0 is 0, the full action (2.1) reduces to
that of the non-dynamical Chern-Simons gravity. In this case, the scalar field equation (2.5)
becomes an additional differential constraint, i.e., the Pontryagin constraint on the space
of the allowed solutions, RR̂ = 0. This work will not consider this case but only focus on
the DCS gravity, in which the parameter β0 ̸= 0.

This modification to GR leads to a series of parity-violating effects. One of the most
important predictions is that the amplitude of the left-handed circular polarization mode of
GWs increases (or decreases) during the propagation while the amplitude of the right-handed
mode decreases (or increases). This phenomenon is always called amplitude birefringence
of GWs [133, 153, 157]. The similar phenomenons (as well as the velocity birefringence) are
investigated in other parity-violating theories, such as ghost-free parity-violating theory [159,
160], Nieh-Yan gravity [149, 150, 161, 162], Hořava-Lifshitz gravity [163–165], parity-violating
symmetric teleparallel gravity [151, 166, 167], spatially covariant gravity [136, 168, 169], and
reviewed by refs. [133, 170, 171]. This effect greatly promotes the testing of parity symmetry
in the gravitational sector by GW observation [121, 130–132, 134–136, 172–174].

Due to the parity-violating property, the Pontryagin density generally disappears in
spherically symmetric spacetime. For this reason, the Schwarzschild black hole is still an
exact solution to DCS theory [175]. The GWs radiated from binary Schwarzschild black
holes are the same as those in GR unless the tidal deformation is considered [176, 177]. In
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refs. [155–157] and this article, the spinning BBH is investigated. It should be noted that
there is still no analytic rotating black hole solution with arbitrary spin in DCS theory. This
work focuses on the slowly-rotating approximation [178, 179]. The DCS theory modifies
the SS and MQ coupling [154] between bodies and affects the gravitational waveforms. As
explained in ref. [157], since the time scale of the binary merger is much smaller than that of
the cosmological expansion, the parity-violating effect of the DCS theory does not appear in
the process of GW generation. And because the scalar field is coupled with the second-order
metric perturbation and the Cotton tensor encoding the parity violation is traceless, none
of the extra modes appears in this theory up to the leading order [157, 180], which is much
different from other modified gravity. Unlike general scalar-tensor gravity, in DCS theory,
the monopolar scalar charge of compact bodies is avoided [155, 178, 181], such that the
spin-aligned binary black holes or binary neutron star systems will not produce scalar dipole
radiation, but will produce quadrupole and higher-order radiation [155, 157]. These scalar
radiations still carry the energy and angular momentum, accelerating the orbital decay
and binary coalescence.

3 Eccentric motion

3.1 Conserved energy and orbital angular momentum

This work aims to extend the previous calculation [155–157] in the quasi-circular case to the
eccentric case. As a beginning, we first solve the EOM of the spin-aligned BBH system in DCS
theory. For simplicity, throughout this article, only the Newtonian-order and DCS-modified
terms are retained, and the PN correction of GR is dropped, as these contents can be found
in previous publications, e.g., [69] and references therein.

We start from the conserved quantities of a BBH system, consisting of two spinning,
well-separated bodies, whose mass and spin angular momentum vector are denoted by mA

and SA, respectively. The DCS modified binding energy of such system in center-of-mass
(COM) frame is given by refs. [156, 157]

ε = εN + δε. (3.1)

The Newtonian energy is

εN = 1
2v

2 − m

r
(3.2)

and its DCS modification is determined by so-called “guess-work” [72], which gives

δε = −1
3δϖ

(
m

r

)3
, (3.3)

where v is the relative velocity of the BBH system, m ≡ m1 +m2 is the total mass, and r is
the distance between two bodies. Following ref. [157], the correction coefficient is defined as

δϖ ≡ ζ

{
75
256

1
ν

(
S1
m2

1
· S2
m2

2

)
− 603

3584

[
m2

m2
1

(
S1
m2

1

)2
+ m2

m2
2

(
S2
m2

2

)2
]}
. (3.4)
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This coefficient shows two interactions between black holes induced by DCS modification,
SS and MQ couplings. The symmetric mass ratio ν is defined by ν ≡ m1m2/m

2 and the
dimensionless coupling ζ is

ζ ≡ 16π α2

β0m4 . (3.5)

α and β0 are the coupling parameters introduced in the DCS action (2.1). As we have
mentioned, the DCS theory only modifies the motion of the BBH system in quadratic-spin
coupling due to parity violation, leaving the non-spin effects and SO coupling to be fully
consistent with GR. It is noted that the terms with n̂ · SA have been removed from eq. (3.3)
because of the spin-aligned assumption.

Another important conserved quantity, the OAM, in the COM frame is

h = r(n̂ × v). (3.6)

Unlike the conserved energy, however, the quadratic-spin effect does not modify the OAM up
to 2PN approximation [13]. One can find the lowest-order, 3PN, correction in refs. [104, 182].
The conservation of OAM indicates that the motions of bodies are constrained on the
orbital plane.

It is worth noting that these modifications to conserved quantities are valid in the
following three approximations, small-coupling of ∼ O(ζ), slowly-rotating of ∼ O(S2), and
2PN of ∼ O(v4). Assuming the parameter α, representing the strength of the interaction
between scalar and tensor fields, to be weak and the bodies’ spin to be sufficiently small
admits an analytic solution to black hole spacetime [178, 179], that is valid when dimensionless
spin ≲ 0.3. The PN approximation allows an expansion in terms of the typical velocities of
bodies [69]. The quadratic-spin and 2PN approximation are equivalent to each other because
the quadratic-spin effects first enter the 2PN correction [104, 182].

3.2 Equation of motion

The motions of the non-precessing BBH systems are constrained on the orbital plane. It is
convenient to describe the motion using polar coordinate, radial coordinate r, and azimuth
coordinates ϕ. Thus, one can define the relative direction vector, n̂ = (cosϕ, sinϕ, 0), pointing
2-nd body from 1-st body and λ̂ = (− sinϕ, cosϕ, 0) as another orthogonal direction on the
orbital plane. Therefore, the relative velocity v can be expanded as v = ṙn̂ + rϕ̇λ̂, where
“dot” means the derivative with respect to the time t. Combining the above definitions
and conserved quantifies (3.1), (3.6), one can re-derive the EOM of the BBH system. The
radial and azimuth equations are

ṙ2 = 2ε+ 2γ − j2γ2 + 2
3δϖγ

3, and mϕ̇ = jγ2, (3.7)

respectively, where γ ≡ m/r and mj ≡ h = |h|. The radial equation can be solved through
the following integration,

t− t0 = ±m

j

∫ (1 + 2
3

δϖ
j4 ) + 1

3
δϖ
j2 γ

γ2
√

(γ+ − γ)(γ − γ−)
dγ = ±

∫
T (γ)dγ. (3.8)

– 7 –
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In eq. (3.8), γ± are defined as the periastron and apastron of the binary system, which
is given perturbatively by

γ± = 1 ±
√

1 + 2j2ε

j2

[
1 ± 1

3
δϖ

j4
(1 ±

√
1 + 2j2ε)2√

1 + 2j2ε

]
. (3.9)

t0 is an integration constant, representing the time when the bodies first pass through the
periastron.

Similarly, the solution to the azimuth equation has the following form,

ϕ− ϕ0 = ±
∫ (1 + 2

3
δϖ
j4 ) + 1

3
δϖ
j2 γ√

(γ+ − γ)(γ − γ−)
dγ = ±

∫
Φ(γ)dγ, (3.10)

where ϕ0 is another integration constant, representing the initial azimuth coordinate of
the periastron.

Finally, the extra signs in the integrations (3.8), (3.10) are determined by whether the
bodies move from the periastron to the apastron or vice versa. When the black hole moves
from the periastron to the apastron, these integrations are evaluated as

t− t0 =
∫ γ+

γ
T (γ)dγ, and ϕ− ϕ0 =

∫ γ+

γ
Φ(γ)dγ, (3.11)

and, inversely, they are evaluated as

t− t0 =
∫ γ

γ−
T (γ)dγ +

∫ γ+

γ−
T (γ)dγ, and ϕ− ϕ0 =

∫ γ

γ−
Φ(γ)dγ +

∫ γ+

γ−
Φ(γ)dγ. (3.12)

We would like to note that, when the orbits are no longer closed, the concept of the
period is obscured. In general, a time period is considered as the time interval between two
consecutive passes of a body through the periastron, and the azimuth interval that the bodies
pass during this period is considered an azimuth period. In the Newtonian limit, these two
periods are related by Kepler’s third law. However, after considering the PN correction,
the situation becomes different. It is convenient for us to introduce an alternative angular
variable, true anomaly [183] denoted by V , which is defined as the difference between the
azimuth coordinate and the current periastron. The true anomaly passes through 2π during
a period, while the azimuth is more advanced. This means that the eccentric motion presents
a doubly periodic structure in the PN framework [69].

3.3 Quasi-Keplerian parameterization

The above integrations (3.8), (3.10) in the limit (δϖ = 0) give an elliptic orbit described by
two unique parameters, the eccentricity e and the semimajor axis a. The trajectory, r = r(ϕ),
of relative motion is r = a(1 − e2)/[1 − e cos(ϕ− ϕ0)]. However, when considering the PN
corrections, the gravitational interaction violates the inverse-square law. The eccentricity
and semimajor axis of an unclosed orbit cannot be well defined. To deal with that, the
corresponding QK parameterization introduces two new elements, the “radial” eccentricity
er and the “radial” semimajor axis ar (eccentricity and semimajor axis in short), defined
through periastron and apastron by

ar ≡ 2m γ+γ−
γ+ + γ−

, and er ≡ γ+ − γ−
γ+ + γ−

, (3.13)
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respectively, to simplify integrations (3.8), (3.10). The modified trajectory is parameterized
through

γ = ξ

1 − er cosu, and ξ = m

ar
. (3.14)

u is the eccentric anomaly related to the true anomaly by some geometric relationships,

cosV = cosu− er

1 − er cosu, and sinV =
√

1 − e2
r sin u

1 − er cosu , (3.15)

or equivalently, the direct definition is

V ≡ 2 arctan
[√

1 + er

1 − er
tan

(
u

2

)]
. (3.16)

When setting the eccentricity, er, to zero, the relative distance r reduces to a constant, such
that the quasi-elliptic orbits become quasi-circular ones.

Using eq. (3.9), one can re-express the elements (3.13) in terms of the energy and OAM,

ξ = −2ε
(

1 − 2
3δϖ

ε

j2

)
, and er =

√
1 + 2j2ε

(
1 − 4

3δϖ
ε

j2
1 + j2ε

1 + 2j2ε

)
. (3.17)

We note that neither of the above elements is a geometric quantity like that in the Newtonian
case, but just two parameters related to the conserved quantities, ε and j. Inversely, the
conserved energy and OAM also can be represented by these elements, they are

ε = −ξ

2

(
1 − 1

3δϖ
ξ2

1 − e2
r

)
, and j =

√
1 − e2

r√
ξ

[
1 + 1

6δϖ
(

ξ

1 − e2
r

)2
(3 + e2

r)
]
, (3.18)

respectively. The parameterized time integration (3.8) and azimuth integration (3.10) are
given by

t = m

j

√
1 − e2

r

ξ2

∫ u

0

[
−
(

1 + 2
3
δϖ

j4

)
(1 − er cosu) − 1

3
δϖ

j2 ξ

]
du,

and ϕ =
√

1 − e2
r

∫ u

0

1
(1 − er cosu)2

[
−
(

1 + 2
3
δϖ

j4

)
(1 − er cosu) − 1

3
δϖ

j2 ξ

]
du.

(3.19)

Without the loss of generality, the integration constants, t0 and ϕ0, have been taken as zero.

3.4 Solution and time, azimuth period

After parameterization, the integrations (3.19) can be evaluated directly through integral
formulas∫ du

(1−er cosu)2 = 1
(1−e2

r)3/2 (er sinV +V ), and
∫ cosudu

(1−er cosu)2 = 1
(1−e2

r)3/2 (sinV +erV ).

(3.20)
Starting from eqs. (3.19) and (3.20), we get

t(u) = m

j

√
1 − e2

r

ξ2

{[(
1 + 2

3
δϖ

j4

)
+ 1

3
δϖ

j2 ξ

]
u−

(
1 + 2

3
δϖ

j4

)
er sin u

}
,

and ϕ(u) =
[(

1 + 2
3
δϖ

j4

)
+ 1

3
δϖ

j2

(
ξ

1 − e2
r

)]
V + er

[1
3
δϖ

j2

(
ξ

1 − e2
r

)]
sinV.

(3.21)
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From the integration results (3.21), we can conclude two important parameters, the time
period and azimuth period mentioned in 3.2, are given by

T ≡ t(u = 2π) = 2πm(−2ε)−3/2, and K ≡ ϕ(u = 2π) = 2π
(

1 + δϖ

j4

)
, (3.22)

respectively. In the Newtonian order, the orbit of a binary system is standard ellipses. Such
that the black holes can accurately return to their periastron, completing an azimuth period,
within a time period. However, in the higher-PN order approximation, the azimuthal motion
of BBH exceeds 2π within a time period. The residual azimuth motion is the well-known
periastron-advance effect [13, 92–95].

3.5 Final parameterization

In this subsection, we summarize the final results of quasi-Keplerian motion. The time
and azimuth of the bodies are shown as the function of the true anomaly or eccentric
anomaly (3.21), which are

2π
T
t(u) = u− et sin u, (3.23)

and
2π
K
ϕ(u) = 2 arctan

[√
1 + eϕ

1 − eϕ
tan

(
u

2

)]
≡ v, (3.24)

respectively. Eq. (3.23) is usually called modified Keplerian equation. Together with
r = ar(1 − er cosu), we complete the all steps for parameterization. In the final re-
sults (3.23), (3.24), introducing the “time” and “azimuth” eccentricities, et and eϕ, aims to
simplify the complicated expressions. They are not independent elements but also depend
on the conserved quantities by

et = er

(
1 + 2

3δϖ · ε
j2

)
, and eϕ = er

(
1 − 2

3δϖ · ε
j2

)
. (3.25)

At the same time, we can also write them in terms of “radial” elements by

et = er

(
1 − 1

3δϖ · ξ2

1 − e2
r

)
, and eϕ = er

(
1 + 1

3δϖ · ξ2

1 − e2
r

)
. (3.26)

Additionally, the time and azimuth periods are also expressed by elements ar and er as follows,

T = 2π m

ξ3/2

(
1 + 1

2δϖ · ξ2

1 − e2
r

)
, and K = 2π

[
1 + δϖ

(
ξ

1 − e2
r

)2]
. (3.27)

ξ is one of the bookkeepers of the PN order. An n-PN term generally contains a factor ξn.
And we can find again the DCS theory modifies the BBH motion at 2PN approximation.

The portion of the azimuth period K that exceeds 2π represents the periastron-advance
effect, and the precession rate is defined as

β ≡ K

2π − 1 = δϖ · ξ2

(1 − e2
r)2 . (3.28)
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After a periodic motion, the periastron advances an extra angle 2πβ to the last period. The
well-known 1PN analogue is 6πξ/(1 − e2

r), successfully explaining the perihelion advance
of Mercury [13]. One can find that the DCS modification enters 2PN order, as we have
shown in previous work [157]. Another important point is that the precession rate of the
periastron is nonvanishing when eccentricity is zero. In other words, the precession effect still
exists even in circular-orbit motion, which is incomprehensible. This anomaly originates from
the ill definition of the periastron of the circular orbit. This anomaly can be eliminated in
subsequent derivation by defining the gauge-invariant parameter, orbital frequency

Ω ≡ K

T
= ξ3/2

m

[
1 + δϖ

2
ξ2

(1 − e2
r)2 (1 + e2

r)
]

(3.29)

or the dimensionless frequency

x ≡ (mΩ)2/3 (3.30)

which is another bookkeeper of the PN order. n-PN terms generally carry factors of xn.
Additionally, Kepler’s third law with higher-order modification, relating the elements and
the frequency, is

ξ = x

[
1 − δϖ

3
(1 + e2

r)
(1 − e2

r)2x
2
]
. (3.31)

For the calculation in the next section, we also present the parameterization of the time
derivatives of radial and azimuth coordinates, ṙ and ϕ̇,

ṙ =
√
ξ

er sin u
1 − er cosu

[
1 − 1

6δϖ · ξ2(3 − er cosu)
(1 − e2

r)(1 − er cosu)

]
,

and ϕ̇ = ξ3/2

m

√
1 − e2

r

(1 − er cosu)2

[
1 + 1

6δϖ · ξ
2(3 + e2

r)
(1 − e2

r)2

]
.

(3.32)

4 Gravitational radiation

At present, we have provided a complete solution to BBH motion in DCS gravity, eqs. (3.23)
and (3.24), equipped by parameterization, r = ar(1 − er cosu). Now, we turn to consider
the radiation field observed at the far zone with inclination angle ι and azimuth angle ω.
The line-of-sight vector is N̂ = (sin ι sinω, sin ι cosω, cos ι) and distance is R. As we have
mentioned above, due to the periastron advance, the azimuth coordinate ϕ is not considered
to be a suitable periodic angular variable. In contrast, the true anomaly V and mean anomaly
ℓ are usually used to describe the waveform. In this section, we focus on the true-anomaly
representation. From eq. (3.24), the relationship between ϕ and V is given by

ϕ = 2K arctan
[√

1 + eϕ

1 − eϕ
tan

(
u

2

)]
≃ V (1 + β) + 1

3δϖ · erξ
2

(1 − e2
r)2 sinV, (4.1)

up to the linear order of coupling ζ. This relation gives the periodic function,

sinϕ = sin[(1 + β)V ] + 1
3δϖ · erξ

2

(1 − e2
r)2 cos[(1 + β)V ] sinV,

and cosϕ = cos[(1 + β)V ] − 1
3δϖ · erξ

2

(1 − e2
r)2 sin[(1 + β)V ] sinV.

(4.2)
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Although the parameter β is always a perturbative quantity of order O(ζξ2), βV cannot
be regarded as a small one as V monotonically increases over time. In comparison, the
functions sinV and cosV , with upper and lower limits, always allow a Taylor expansion
in terms of δϖ sinV and δϖ cosV .

Equation (4.2) presents a doubly-periodic structure in the BBH motion. The first period
is given by sin(1 + β)V and cos(1 + β)V . The azimuth of bodies passes through a 2π angle
within this period. The second one is given by sinV and cosV . The bodies return to the
periastron within this period. This structure will enter the gravitational waveform that
will be displayed soon.

4.1 Scalar radiation

The full scalar radiation at infinity is given by our previous work [157],

ϑ = 2mν
R

· 5
16γ

2 α

β0m2
1
ν

[(n̂ · ∆̃) + (N̂ · ∆̃)(N̂ · n̂)]. (4.3)

The difference between bodies’ spins is

∆̃ ≡ m2
m

S1
m2

1
− m1

m

S2
m2

2
, (4.4)

producing a minus sign when exchanging labels 1 ↔ 2, and vanishing when the masses and
spins are exactly equal for these two black holes, m1 = m2 and S1 = S2, meaning again
that scalar field is a pseudoscalar field. For non-precessing binaries, in which (n̂ · ∆̃) = 0,
the radiation field reduces to

ϑ = 2mν
R

· 5
16

α

β0m2
γ2

ν
(N̂ · ∆̃)(N̂ · n̂). (4.5)

Substituting eq. (4.2) into (4.5), we get

ϑ = −2mν
R

5
16

α

β0m2
ξ2

ν

(1 + er cosV )2

(1 − e2
r)2 ∆̃ sin ι cos ι sin(V + ω), (4.6)

with ∆̃ ≡ |∆̃|. When setting the eccentricity and observation azimuth to zero, this expression
becomes that in the quasi-circular case [155, 157].

4.2 Tensor radiation

In the PN framework, the gravitational waveform contains an “instantaneous” term, depending
on the state of the binary at the retarded time only, and a “tail” term, which is sensitive to
the wave field at all previous time [78]. The quadratic-spin correction does not change the
tail term in a non-precessing system [104, 157], such that we focus on the “instantaneous”
term only. In the transverse-traceless (TT) gauge, the metric tensor of GW is

(hTT
ij )inst = 2νm

R
ξTT

ij = 2νm
R

Λ̂ij,klξkl, (4.7)

where Λ̂ij,kl is the TT-projection operator, defined as Λ̂ij,kl(N̂) ≡ ΠikΠjl − (1/2)ΠijΠkl,
with Πij ≡ δij − N̂iN̂j . The reduced metric tensor is decomposed into a Newtonian term
and the DCS modification,

ξij = ξ
(0)
ij + δξij . (4.8)
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The Newtonian term is

ξ
(0)
ij = 2(vivj − γn̂in̂j), (4.9)

and its components are

ξ
(0)
11 = 2

[
(ṙ cosϕ− rϕ̇ sinϕ)2 − m

r
cos2 ϕ

]
,

ξ
(0)
12 = 2

[
(ṙ sinϕ+ rϕ̇ cosϕ)(ṙ cosϕ− rϕ̇ sinϕ) − m

r
sinϕ cosϕ

]
,

ξ
(0)
22 = 2

[
(ṙ sinϕ+ rϕ̇ cosϕ)2 − m

r
sin2 ϕ

]
.

(4.10)

The DCS modification is [157]

δξij = −2 · δϖ · γ3n̂in̂j = −δϖ
(
m

r

)3
(

2 cos2 ϕ 2 sinϕ cosϕ
2 sinϕ cosϕ 2 sin2 ϕ

)
. (4.11)

Using the rotation matrix,

R ≡ Rz(ω)Rx(ι) =

 cosω − sinω 0
sinω cosω 0

0 0 1


 1 0 0

0 cos ι − sin ι
0 sin ι cos ι

, (4.12)

we transform the metric tensor from the binary frame to the propagation frame along the
observational direction, ξij(N̂) = RikRjl · ξkl. TT projecting, Λ̂ij,klξkl, gives the waveforms
ξTT

ij in TT gauge and the plus mode and the cross mode are just

ξ+ ≡ ξTT
11 = ξ

(0)
+ + δξ+ and ξ× ≡ ξTT

12 = ξ
(0)
× + δξ×, (4.13)

where

ξ
(0)
+ =

[(
ṙ2−r2ϕ̇2−γ

)
cos(2ω)−2rṙϕ̇sin(2ω)

]1+cos2 ι

2 cos(2ϕ)

+
[
−
(
ṙ2−r2ϕ̇2−γ

)
sin(2ω)−2rṙϕ̇cos(2ω)

]1+cos2 ι

2 sin(2ϕ)+ 1
2 sin2 ι

[
(ṙ2+r2ϕ̇2)−γ

]
,

ξ
(0)
× =

[
sin(2ω)

(
ṙ2−r2ϕ̇2−γ

)
+2rṙϕ̇cos(2ω)

]
cos ιcos(2ϕ)

+
[
cos(2ω)

(
ṙ2−r2ϕ̇2−γ

)
−2rṙϕ̇sin(2ω)

]
cos ιsin(2ϕ), (4.14)

and

δξ+ = −δϖ · γ3
[

1 + cos2 ι

2 + sin2 ι

2 cos(2ϕ+ 2ω)
]
,

δξ× = −δϖ · γ3 cos ι sin(2ϕ+ 2ω).
(4.15)

As we have commented at section 2, there are no extra modes in the gravitational radiation.
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4.3 Waveforms in terms of true anomaly

In this subsection, we present the final results of the GW polarizations in terms of the true
anomaly. Substituting the r = ar(1−er cosu), and eqs. (4.2), (3.32), (3.15) into (4.14), (4.15),
the final waveforms are expressed as

ξ
(0)
+ = ξ

1 − e2
r

{
−1

2e
2
r

[
(1 + cos2 ι) cos(2βV + 2ω) − sin2 ι

]
− 5

4er(1 + cos2 ι) cos[(1 + 2β)V + 2ω] + 1
2er sin2 ι cosV

−(1 + cos2 ι) cos[(2 + 2β)V + 2ω] − 1
4er(1 + cos2 ι) cos[(3 + 2β)V + 2ω]

}
,

ξ
(0)
× = ξ

1 − e2
r

{
−e2

r sin(2βV + 2ω) − 5
2er sin[(1 + 2β)V + 2ω]

−2 sin[(2 + 2β)V + 2ω] − 1
2er sin[(3 + 2β)V + 2ω]

}
cos ι, (4.16)

and

δξ+ = ξ3

(1−e2
r)3 δϖ

{
− 1

12er(11+6e2
r)(1+cos2 ι)cos[(1+2β)V +2ω]

− 1
8er(4+e2

r)sin2 ιcosV + 3
8e

3
r(1+cos2 ι)sin(2βV +2ω)sinV

− 1
4e

2
r sin2 ιcos2V − 1

4(4+7e2
r)(1+cos2 ι)cos[(2+2β)V +2ω]

− 1
24e

3
r sin2 ιcos3V − 1

48er(76+13e2
r)(1+cos2 ι)cos[(3+2β)V +2ω]

−13
24e

2
r(1+cos2 ι)cos[(4+2β)V +2ω]− 1

16e
3
r(1+cos2 ι)cos[(5+2β)V +2ω]

}
,

δξ× = ξ3

(1−e2
r)3 δϖ

{
−1

6er(11+6e2
r)cos ιsin[(1+2β)V +2ω]− 3

4e
3
r cos ιcos(2βV +2ω)sinV

− 1
2(4+7e2

r)cos ιsin[(2+2β)V +2ω]− 1
24er(76+13e2

r)cos ιsin[(3+2β)V +2ω]

−13
12e

2
r cos ιsin[(4+2β)V +2ω]− 1

8e
3
r cos ιsin[(5+2β)V +2ω]

}
. (4.17)

The waveforms for quasi-circular case with er = 0 and ω = 0 are

ξ
(0)
+ = −ξ(1 + cos2 ι) cos(2 + 2β)V = −ξ(1 + cos2 ι) cos 2ϕ,

ξ
(0)
× = −2ξ cos ι sin(2 + 2β)V = −2ξ cos ι sin 2ϕ,

(4.18)

and
δξ+ = −δϖ · ξ3(1 + cos2 ι) cos(2 + 2β)V = −δϖ · ξ3(1 + cos2 ι) cos 2ϕ
δξ× = −2 · δϖ · ξ3 cos ι sin(2 + 2β)V = −2 · δϖ · ξ3 cos ι sin 2ϕ,

(4.19)

returning to that predicted by our previous work [157].
We briefly summarize the features of these waveforms. Firstly and most importantly,

there are no extra polarization modes, the conclusion of refs. [157, 180]. The scalar field does
not produce the breathing mode as in massless Brans-Dicke gravity [138] and longitudinal
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mode as in massive Brans-Dicke gravity [139]. Secondly, there are no parity-violating effects,
because of the neglect of cosmic expansion. Thirdly, there is a more complicated frequency
spectrum compared with the quasi-circular case. The GWs are emitted at a set of discrete
phases {V, 2V, 3V } at Newtonian order and {V, 2V, 3V, 4V, 5V } at DCS order, rather than
at a single phase 2V for circular motion. These extra frequency modes will disappear at
the circular limit. Finally, the waveforms are modulated by the periastron-advance effect as
we have discussed when calculating the BBH motion. This modulation is non-vanishing for
er = 0 because the periastron is ill-defined in the circular limits. To complete the calculation
in eqs. (4.18) and (4.19). one needs to take the substitution (1 + β)V → ϕ.

5 Radiation reaction

5.1 Energy flux

Although the scalar radiation does not influence the GW polarizations, it carries the energy
and angular momentum, changing the orbital elements of BBH orbit. The total radiated
energy carried by the scalar radiation is defined as

FS = β0R
2
∮

∂Ω
⟨ϑ̇2⟩dΩ, (5.1)

in which the orbital average is defined as

⟨ϑ̇2⟩ = 1
T

∫ T

0

(
∂ϑ

∂t

)2
dt = 1

T

∫ 2π

0

(
∂ϑ

∂V

)2dV

du

du

dt
dV. (5.2)

Using the definition of true anomaly (3.15) and the time integration (3.8), we obtain

dV

du
=

√
1 − e2

r

1 − er cosu = 1 + er cosV√
1 − e2

r

(5.3)

and
dt

du
≈ m

ξ3/2
1 − e2

r

1 + er cosV

[
1 + δϖ

6
ξ2

(1 − e2
r)2 (3 + 2er cosV − e2

r)
]

(5.4)

up to the linear order of the coupling. After a long calculation, the orbital average (5.2) is

β0⟨ϑ̇2⟩ = 1
8π

25
256

ν2ξ7

(1 − e2
r)11/2 ∆2 sin2 ι cos2 ι

×
[
1 + 19

2 e
2
r + 69

8 e
4
r + 9

16e
6
r − 1

4e
2
r

(
1 + 5e2

r + 9
16e

4
r

)
cos 2ω

]
,

(5.5)

where
∆2 ≡ (ζ/ν2)∆̃2 = ζ

{
−2
ν

(
S1
m2

1
· S2
m2

2

)
+
[
m2

m2
1

(
S1
m2

1

)2
+ m2

m2
2

(
S2
m2

2

)2
]}
. (5.6)

This new symbol has the same structure of δϖ (3.4) and also shows the SS and MQ coupling
modified by DCS theory. The solid angle integration in eq. (5.1) is

R2
∮

∂Ω
dΩ = R2

∫ 2π

0
dω

∫ π

0
sin ιdι. (5.7)
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The above calculation finally gives the final expression of energy flux carried by scalar radiation,

FS = 32
5

ν2x5

(1 − e2
r)7/2 · 25

24576∆2 x2

(1 − e2
r)2

[
1 + 19

2 e
2
r + 69

8 e
4
r + 9

16e
6
r

]
. (5.8)

Now, we calculate the flux of tensor radiation, which is defined as follows,

FT = 1
32πR

2
∮

∂Ω
⟨ḣTT

jk ḣ
TT
jk ⟩dΩ = 1

16πR
2
∮

∂Ω
⟨ḣ2

+ + ḣ2
×⟩dΩ = 1

4π (νm)2
∮

∂Ω
⟨ξ̇2

+ + ξ̇2
×⟩dΩ.

(5.9)
Through some similar mathematical processes, we get

FT = 32
5

ν2x5

(1 − e2
r)7/2

[(
1 + 73

24e
2
r + 37

96e
4
r

)
+ δϖ · x2

(1 − e2
r)2

(4
3 + 449

36 e
2
r + 1195

144 e
4
r + 11

48e
6
r

)]
.

(5.10)
Finally, the total dissipative energy is the sum of scalar flux (5.8) and tensor flux (5.10),
shown as

F ≡ FS + FT = 32
5

ν2x5

(1 − e2
r)7/2

{(
1 + 73

24e
2
r + 37

96e
4
r

)

+ x2

(1 − e2
r)2

[( 25
24576∆2 + 4

3δϖ
)

+
( 475

49152∆2 + 449
36 δϖ

)
e2

r

+
( 575

65536∆2 + 1195
144 δϖ

)
e4

r +
( 75

131072∆2 + 11
48δϖ

)
e6

r

]}
.

(5.11)

Setting the coupling to 0, we get the flux in GR, which can be found in many famous
references and textbooks, such as [13, 57, 58, 69, 82]. Comparing the leading order, the
DCS modification appears in the 2PN order. Taking the eccentricity er as 0, this result
is consistent with that obtained by [157]. (We find there are some typos in our previous
work [157]. The coefficient before coupling δϖ in eq. (135) should be 4/3 rather than 8/3.
This typo influences all the subsequent related coefficients in eqs. (140, 148, 157).)

5.2 Angular-momentum flux

Because the eccentric orbits are described by two independent parameters (the semimajor
axis and eccentricity), the secular evolution is influenced by not only the balance of conserved
energy but also the OAM. The angular-momentum flux is also carried by both scalar and
tensor radiations. The scalar sector is defined as

Lk
S = −β0R

2
∫
ϵijk⟨ϑ̇xi∂jϑ⟩dΩ. (5.12)

The vector x is just the direction of the observer, x ≡ N̂, and the gradient operator is
∂j ≡ ∂/∂xj . For simplicity, we define the flux-density vector as τk

S = −ϵijkϑ̇xi∂jϑ, with
components

τx
S = − cot ι sinω(∂ωϑ)ϑ̇+ cosω(∂ιϑ)ϑ̇,
τy

S = − sinω(∂ιϑ)ϑ̇− cot ι cosω(∂ωϑ)ϑ̇,
and τ z

S = (∂ωϑ)ϑ̇,
(5.13)
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respectively. Putting the scalar radiation (4.6) into this definition and averaging it, we get

β0⟨τx
S ⟩ = − 25

65536
(2νm)2

π

ξ11/2

m
∆2 · 8 + 24e2

r + 3e4
r

(1 − e2
r)4 · sin ι cos3 ι sinω,

β0⟨τy
S⟩ = − 25

65536
(2νm)2

π

ξ11/2

m
∆2 · 8 + 24e2

r + 3e4
r

(1 − e2
r)4 · sin ι cos3 ι cosω,

β0⟨τ z
S⟩ = 25

65536
(2νm)2

π

ξ11/2

m
∆2 · 8 + 24e2

r + 3e4
r

(1 − e2
r)4 · sin2 ι cos2 ι.

(5.14)

The x and y-components are proportional to sinω and cosω, respectively, such that integrating
them over the full solid angle gives zero. The only non-zero component is τ z

S . This is the
consequence of the non-precessing assumption. The full solid-angle integral gives the z-
component of angular-momentum flux carried by scalar radiation,

Lz
S = 32

5
mν2x7/2

(1 − e2
r)2 · 25

24576∆2 x2

(1 − e2
r)2

(
1 + 3e2

r + 3
8e

4
r

)
. (5.15)

Now, we turn to the angular-momentum flux by tensor radiation. The definition of flux is

Lk
T = 1

32πR
2
∫
ϵijk⟨2hTT

il ḣTT
jl − ḣTT

lm xi∂jh
TT
lm ⟩dΩ

= 1
8π (νm)2

∫
ϵijk⟨2ξTT

il ξ̇TT
jl − ξ̇TT

lm xi∂jξ
TT
lm ⟩dΩ,

(5.16)

and of the flux density is

τk
T = ϵijk(2νm)2(2ξTT

il ξ̇TT
jl − ξ̇TT

lm xi∂jξ
TT
lm ), (5.17)

with components

τx
T = (2νm)2

{
2cosω

[
(∂ιξ+)ξ̇++(∂ιξ×)ξ̇×

]
−2cot ιsinω

[
(∂ωξ+)ξ̇++(∂ωξ×)ξ̇×

]}
,

τy
T = (2νm)2

{
−2sinω

[
(∂ιξ+)ξ̇++(∂ιξ×)ξ̇×

]
−2cot ιcosω

[
(∂ωξ+)ξ̇++(∂ωξ×)ξ̇×

]}
,

τ z
T = (2νm)2

{
12
[
ξ̇×ξ+−ξ̇+ξ×

]
+2
[
(∂ωξ×)ξ̇×+(∂ωξ+)ξ̇+

]}
.

(5.18)

We find again that the x and y-components contain factors cosω and sinω, which leads to
zero results after full-solid angle integration. The remained component is

Lz
T = 32

5
mν2x7/2

(1 − e2
r)2 ·

[(
1 + 7

8e
2
r

)
+ δϖ · x2

(1 − e2
r)2

(4
3 + 16

3 e
2
r + 35

48e
4
r

)]
. (5.19)

Combining eqs. (5.15) and (5.19), we get the total dissipative OAM, which is

L ≡ Lz
S +Lz

T = 32
5
mν2x7/2

(1−e2
r)2 ·

{(
1+ 7

8e
2
r

)
+ x2

(1−e2
r)2

×
[( 25

24576∆2+ 4
3δϖ

)
+
( 25

8192∆2+ 16
3 δϖ

)
e2

r +
( 25

65536∆2+ 35
48δϖ

)
e4

r

]}
.

(5.20)
The first term is just the result given by GR at the leading order [13, 58]. When setting er

to zero, the OAM flux is related to energy flux by F = Ω · L [58].

– 17 –



J
C
A
P
0
5
(
2
0
2
4
)
0
7
3

5.3 Orbital evolution

Without the radiation loss of energy and OAM, the orbital elements, ar and er, are two
constants related to conserved quantities. However, the energy and OAM dissipation leads to
the secular evolution of these elements. This evolution is determined by the balance equations,

d(µε)
dτ

= −F , and d(µh)
dt

= −L, (5.21)

where µ ≡ mν is the reduced mass of the BBH system. The left-hand sides of eq. (5.21) are

d(µε)
dt

= 4
3δϖ

erx
3

(1 − e2
r)3 e

′
r(t) − 1

2

[
1 − 2 · δϖ · x2

(1 − e2
r)2

]
x′(t), (5.22)

and
dh

dt
= − m√

x

er√
1 − e2

r

[
1 − δϖ

3
x2

(1 − e2
r)2 (8 + e2

r)
]
e′

r(t)

− m

2

√
1 − e2

r

x3/2

[
1 − δϖ

2
x2

(1 − e2
r)2 (2 + e2

r)
]
x′(t).

(5.23)

The balance equation (5.21) gives the independent evolution equation of element er and
gauge-invariant quantity x (as an equivalent substitutes of the semimajor axis ar),

m
dx

dt
= 64

5
νx5

(1 − e2
r)7/2

{(
1 + 73

24e
2
r + 37

96e
4
r

)

+ x2

(1 − e2
r)2

[( 25
24576∆2 + 10

3 δϖ
)

+
( 475

49152∆2 + 43
3 δϖ

)
e2

r

+
( 575

65536∆2 + 133
18 δϖ

)
e4

r +
( 75

131072∆2 + 11
48δϖ

)
e6

r

]}
,

(5.24)

and

m
der

dt
= −304

15
νx4

(1−e2
r)5/2 ·er

{(
1+ 121

304e
2
r

)
+ x2

(1−e2
r)2

×
[( 375

155648∆2+ 421
114δϖ

)
+
( 1125

311296∆2+ 907
228δϖ

)
e2

r +
( 375

1245184∆2+ 143
456δϖ

)
e4

r

]}
.

(5.25)
It is too hard to directly write down the analytic solution to eqs. (5.24) and (5.25). An
alternative method is to construct the evolution of the eccentricity with the frequency.
Dividing eq. (5.24) by (5.25) gives

dx

der
= −12

19
x

er

1 + 73
24e

2
r + 37

96e
4
r

(1 − e2
r)
(
1 + 121

304e
2
r

)
1 − x2

1 − e2
r

W0 + W2e
2
r + W4e

4
r + W6e

6
r(

1 + 121
304e

2
r

)(
1 + 73

24e
2
r + 37

96e
4
r

)
, (5.26)

with some DCS coefficients listed as following

W0 = 325
233472∆2 + 41

114δϖ, W2 = 16925
7471104∆2 − 245

2736δϖ,

W4 = 2325
1245184∆2 + 7151

10944δϖ, W6 = 2225
19922944∆2 − 649

21888δϖ.
(5.27)

– 18 –



J
C
A
P
0
5
(
2
0
2
4
)
0
7
3

The zero-order term is fully consistent with that shown in ref. [58]. The overall minus sign
means that the eccentricity decreases from an initial value during the radiation reaction, in
which the orbital frequency increases. This effect is generally called orbital circularization [58].
Although the sign of DCS modification cannot be determined for unknown bodies’ masses
and spins, the coefficients Wn are always small quantifies, weakly changing the decay rate.
Then the eccentricity tends to zero as the frequency increases. DCS theory does not modify
this conclusion.

The above equation (5.27) can be solved perturbatively. Writing the solution as the
summation of the GR part and DCS modification

x(er) = x0(er) + ζ · x1(er), (5.28)

and putting it into eq. (5.27), the zero-order solution is

x0(er) = c0(1 − e2
r)e−12/19

r

[
1 + 121

304e
2
r

]−870/2299
, (5.29)

while the first-order one is

x1(er) = c1(1 − e2
r)

e
12/19
r (304 + 121e2

r)870/2299
+ 2−63/229919−1740/2299 c3

0(1 − e2
r)e−36/19

r

(121e2
r + 304)870/2299

×
[(

− 325
3735552∆2 − 41

1824δϖ
)

HyperGeometricF
(

−12
19 ,

6338
2299; 7

19; −121
304e

2
r

)

+
( 16925

69730304∆2 − 35
3648δϖ

)
e2

r · HyperGeometricF
( 7

19 ,
6338
2299; 26

19; −121
304e

2
r

)
+
( 6975

129499136∆2 + 7151
379392δϖ

)
e4

r · HyperGeometricF
(26

19 ,
6338
2299 ,

45
19 ,−

121
304e

2
r

)

+
( 445

239075328∆2 − 649
1313280δϖ

)
e6

r · HyperGeometricF
(45

19 ,
6338
2299; 64

19; −121
304e

2
r

)]
.

(5.30)

Here, “HyperGeometricF” is the Hypergeometric function of the first kind [184], and c0, c1
in eqs. (5.29), (5.30) are two integration constants, determined by a specific initial condition
x(er = e0) = x(0), i.e., x0(e0) = x(0) and x1(e0) = 0.

6 Post-circular frequency-domain waveforms

This section focuses on the frequency-domain waveforms, requiring expressing er as a function
of x and writing the time-domain waveforms in terms of another angular variable, mean
anomaly ℓ. However, obtaining the inverse function from eq. (5.30) is almost impossible.
So another necessary approximation, small-eccentricity approximation, is adopted in this
procedure. We expand all involved functions in er and e0 up to the forth order, ∼ O(e4

0).
This expansion is valid for initial eccentricity less than 0.3, i.e., e0 ≲ 0.3 [90]. This scheme
will give an analytic calculation on the Fourier waveforms.
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6.1 Frequency-domain evolution of eccentricity

Firstly, the solution (5.29), (5.30) can be expanded as

x0(er) ≃ x(0)

(
e0
er

)12/19[
1 + 3323

2888(e2
0 − e2

r) + 37765681
33362176e

4
0 − 11042329

8340544 e
2
0e

2
r + 6403635

33362176e
4
r

]
,

(6.1)
and

x1(er) ≃x3
(0)

(
e0
er

)12/19
{[

P̃(0)
−24/19

(
er

e0

)−24/19
+P̃(0)

0

]

+e2
r

[
P̃(2)

−24/19

(
er

e0

)−24/19
+P̃(2)

0 +P̃(2)
14/19

(
er

e0

)14/19
+P̃(2)

2

(
er

e0

)2
]

+e4
r

[
P̃(4)

−24/19

(
er

e0

)−24/19
+P̃(4)

0 +P̃(4)
14/19

(
er

e0

)14/19

+P̃(4)
2

(
er

e0

)2
+P̃(4)

52/19

(
er

e0

)52/19
+P̃(4)

4

(
er

e0

)4
]}
.

(6.2)

It is easy to check that x = x(0) when taking er to e0. For subsequent derivation, we define
the frequency normalized by its initial value,

χ ≡ Ω
Ω0

=
[
x

x(0)

]3/2

≡ χ(er). (6.3)

This quantity can also be regarded as F/F0, with F, F0 being F ≡ Ω/2π and its initial
value as used in ref. [90].

The zero-order expression in terms of χ from eq. (6.1) is

χ0 ≃
(
e0
er

)18/19[
1 + 9969

5776(e2
0 − e2

r) + 73212015
33362176e

4
0 − 99380961

33362176e
2
0e

2
r + 13084473

16681088e
4
r

]
, (6.4)

and the first-order expression from eq. (6.2) is

χ1 ≃ x2
(0)

(
e0
er

)18/19
{[

P(0)
0 + P(0)

−24/19

(
er

e0

)−24/19
]

+ e2
r

[
P(2)

0 + P(2)
−24/19

(
er

e0

)−24/19
+ P(2)

−2

(
er

e0

)−2
+ P(2)

−62/19

(
er

e0

)−62/19
]

+ e4
r

[
P(4)

0 + P(4)
−24/19

(
er

e0

)−24/19
+ P(4)

−2

(
er

e0

)−2
+ P(4)

−62/19

(
er

e0

)−62/19

+ P(4)
−4

(
er

e0

)−4
+ P(4)

−100/19

(
er

e0

)−100/19
]}
.

(6.5)

– 20 –



J
C
A
P
0
5
(
2
0
2
4
)
0
7
3

The coefficients involved in eq. (6.5) are listed in appendix A. One can inversely solve
eqs. (6.4), (6.5) to express the eccentricity as a function of normalized frequency,

er = er(χ) = e0χ
−19/18

[
1+ 3323

1824e
2
0

(
1−χ−19/9

)
(6.6)

+ 15994231
6653952 e

4
0

(
1− 66253974

15994231χ
−19/9+ 50259743

15994231χ
−38/9

)
+ζ
(
δE0+δE2e

2
0+δE4e

4
0

)]
.

The leading-order terms have been shown in eq. (6.6) and the DCS modifications are

δE0 =χ−19/18
[
S(0)

0 +S(0)
4/3χ

4/3
]
, (6.7)

δE2 =χ−19/18
[
S(2)

−19/9χ
−19/9+S(2)

−7/9χ
−7/9+S(2)

0 +S(2)
4/3χ

4/3
]
,

δE4 =χ−19/18
[
S(4)

−38/9χ
−38/9+S(4)

−26/9χ
−26/9+S(4)

−19/9χ
−19/9+S(4)

−7/9χ
−7/9+S(4)

0 +S(4)
4/3χ

4/3
]
.

The expansion coefficients in eq. (6.7) can be found in appendix B. The GR sector in eq. (6.6)
is consistent with the results in ref. [90] and the DCS sector is obtained by this work for
the first time. In this way, we directly express the frequency-domain evolution instead of
time evolution. This will play an important role in the next calculation of the waveforms
in frequency space.

6.2 Waveform in terms of mean anomaly

The so-called mean anomaly is defined by the modified Keplerian equation ℓ(u) ≡ ϕ/K =
u − et sin u (3.24). It grows monotonically over time. Therefore, without considering the
radiation reaction, it is feasible to express the mean anomaly through orbital frequency F ,
as ℓ = Ft(u), bringing great convenience in calculating Fourier waveforms. To complete
this calculation, we firstly re-express eqs. (4.14), (4.15) in terms of azimuth and eccentric
anomaly. The Newtonian approximation is

ξ
(0)
+ = ξ

2
er cosu

1−er cosu sin2 ι− ξ

2
1

(1−er cosu)2 (1+cos2 ι) (6.8)

×
{

[2(1−e2
r)−er cosu+e2

r cos2u] cos(2ϕ+2ω)+2er

√
1−e2

r sinusin(2ϕ+2ω)
}
,

ξ
(0)
× = ξ cos ι

(1−er cosu)2

{
2er

√
1−e2

r sinucos(2ϕ+2ω)−[2(1−e2
r)−er cosu+e2

r cos2u] sin(2ϕ+2ω)
}
.

The DCS modification is

δξ+ = δϖ

6
ξ3

(1−e2
r)3/2

1
(1−er cosu)3 sin2 ι

[
e2

r −3(er cosu)+3(er cosu)2−(er cosu)3
]

+ δϖ

6
ξ3

(1−e2
r)3/2

1
(1−er cosu)3 (1+cos2 ι)

{
2
[
(1+e2

r)(er cosu)−2e2
r

]
(er sinu)sin(2ϕ+2ω)

−
√

1−e2
r

[
6+e2

r −(3+2e2
r)(er cosu)−3(er cosu)2+(er cosu)3

]
cos(2ϕ+2ω)

}
,

δξ× = δϖ

3
ξ3

(1−e2
r)3/2

1
(1−er cosu)3 cos ι

{
2
[
2e2

r −(1+e2
r)(er cosu)

]
(er sinu)cos(2ϕ+2ω)

−
√

1−e2
r

[
6+e2

r −(3+2e2
r)(er cosu)−3(er cosu)2+(er cosu)3

]
sin(2ϕ+2ω)

}
. (6.9)
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The transformation from eccentric anomaly to mean anomaly is the famous solution to the
modified Keplerian equation (3.24) by an infinite Bessel expansion [183, 185], which is

u− ℓ =
∞∑

s=0

2
s
Js(set) sin(sℓ)

≃
[
1 + 1

8e
2
r + δϖ · ξ2

(
−1

3 − 11
24e

2
r

)]
er sin(ℓ)

+ 1
2

[
1 + 1

3e
2
r + δϖ · ξ2

(
−2

3 − 10
9 e

2
r

)]
e2

r sin(2ℓ)

+ 3
8
(
1 − δϖ · ξ2

)
e3

r sin(3ℓ) + 1
3

(
1 − 4

3δϖ · ξ2
)
e4

r sin(4ℓ).

(6.10)

Js(z) is the s-order Bessel function of the first kind. The asymptotic behaviour of the Bessel
function for fixed s and small et is ∝ es

t , such that the higher-order Bessel functions are
dropped in our small-eccentricity scheme. Another relevant angular variable, azimuth, in
eqs. (6.8), (6.9), is also regarded as ϕ = (K/2π)v = (1 + β)v, where v is defined in eq. (3.24).
Up to the order of ∼ O(ζ) and ∼ O(e4

r), using above definition, we have

v=u+
[
1+ 1

4e
2
r +δϖ·ξ2

(1
3 + 7

12e
2
r

)]
er sin(u)+ 1

4

[
1+ 1

2e
2
r +δϖ·ξ2

(2
3 + 4

3e
2
r

)]
e2

r sin(2u)

+ 1
12
(
1+δϖ·ξ2

)
e3

r sin(3u)+ 1
32

(
1+ 4

3δϖ·ξ2
)
e4

r sin(4u), (6.11)

where the “angular” eccentricity are written as eq. (3.26). Substituting eq. (6.10) into (6.11),
we get

v = ℓ+
[
1 − 1

8e
2
r + 1

6δϖ · ξ2e2
r

]
er sin(ℓ) + 5

4

[
1 + 11

30e
2
r + δϖ · ξ2

(
− 2

15 + 4
15e

2
r

)]
e2

r sin(2ℓ)

+ 13
12

[
1 − 4

13δϖ · ξ2
]
e3

r sin(3ℓ) + 103
96

[
1 − 52

103δϖ · ξ2
]
e4

r sin(4ℓ), (6.12)

Finally, combining eq. (6.10) with (6.12), the waveforms in eqs. (6.8), (6.9) are rewritten as

ξ
(0)
+ = x

{ 1
48er

[
3(8−e2

r)sin2 ι+4(1+cos2 ι)(9−4e2
r)cos(2βℓ+2ω)

]
cos(ℓ)

+ 1
24

[
e2

r(12−4e2
r)sin2 ι−3(1+cos2 ι)(8−20e2

r +11e4
r)cos(2βℓ+2ω)

]
cos(2ℓ)

+ 9
32er

[
2e2

r sin2 ι−(1+cos2 ι)(8−19e2
r)cos(2βℓ+2ω)

]
cos(3ℓ)

+ 2
3e2

r

[
e2

r sin2 ι−3(1+cos2 ι)(2−5e2
r)cos(2βℓ+2ω)

]
cos(4ℓ)

− 625
96 (1+cos2 ι)e3

r cos(2βℓ+2ω)cos(5ℓ)− 81
8 (1+cos2 ι)e4

r cos(2βℓ+2ω)cos(6ℓ)

− 1
48(1+cos2 ι)er(36−23e2

r)sin(2βℓ+2ω)sin(ℓ)+ 1
2(1+cos2 ι)(2−5e2

r +3e4
r)sin(2βℓ+2ω)sin(2ℓ)

+ 9
32(1+cos2 ι)er(8−19e2

r)sin(2βℓ+2ω)sin(3ℓ)+2(1+cos2 ι)e2
r(2−5e2

r)sin(2βℓ+2ω)sin(4ℓ)

+625
96 (1+cos2 ι)e3

r sin(2βℓ+2ω)sin(5ℓ)+ 81
8 (1+cos2 ι)e4

r sin(2βℓ+2ω)sin(6ℓ)
}

, (6.13)

– 22 –



J
C
A
P
0
5
(
2
0
2
4
)
0
7
3

ξ
(0)
× = x

{1
6er(9−4e2

r)cos ιsin(2βℓ+2ω)cos(ℓ)− 1
4(8−20e2

r +11e4
r)cos ιsin(2βℓ+2ω)cos(2ℓ)

− 9
16er(8−19e2

r)cos ιsin(2βℓ+2ω)cos(3ℓ)−4e2
r(2−5e2

r)cos ιsin(2βℓ+2ω)cos(4ℓ)

− 625
48 e3

r cos ιsin(2βℓ+2ω)cos(5ℓ)− 81
4 e4

r cos ιsin(2βℓ+2ω)cos(6ℓ)

+ 1
24er(36−23e2

r)cos ιcos(2βℓ+2ω)sin(ℓ)−(2−5e2
r +3e4

r)cos ιcos(2βℓ+2ω)sin(2ℓ)

− 9
16er(8−19e2

r)cos ιcos(2βℓ+2ω)sin(3ℓ)−4e2
r(2−5e2

r)cos ιcos(2βℓ+2ω)sin(4ℓ)

−625
48 e3

r cos ιcos(2βℓ+2ω)sin(5ℓ)− 81
4 e4

r cos ιcos(2βℓ+2ω)sin(6ℓ)
}

, (6.14)

δξ+ = δϖ·x3
{ 1

18er

[
−(12+15e2

r)sin2 ι+(1+cos2 ι)(45+41e2
r)cos(2βℓ+2ω)

]
cos(ℓ)

−
[
e2

r

(
1+ 224

288e2
r

)
sin2 ι+ 1

96(1+cos2 ι)(64−768e2
r −575e4

r)cos(2βℓ+2ω)
]

cos(2ℓ)

− 3
2er

[
e2

r sin2 ι+(1+cos2 ι)(3−10e2
r)cos(2βℓ+2ω)

]
cos(3ℓ)

− 1
9e2

r

[
20er sin2 ι+3(1+cos2 ι)(35−83e2

r)cos(2βℓ+2ω)
]

cos(4ℓ)

− 425
18 (1+cos2 ι)e3

r cos(2βℓ+2ω)cos(5ℓ)− 1365
32 (1+cos2 ι)e4

r cos(2βℓ+2ω)cos(6ℓ)

− 1
18(1+cos2 ι)er(45+31e2

r)sin(2βℓ+2ω)sin(ℓ)+ 1
96(1+cos2 ι)(64−768e2

r −529e4
r)sin(2βℓ+2ω)sin(2ℓ)

+ 3
2(1+cos2 ι)(3−10e2

r)er sin(2βℓ+2ω)sin(3ℓ)+ 1
3(1+cos2 ι)e2

r(35−83e2
r)sin(2βℓ+2ω)sin(4ℓ)

+425
18 (1+cos2 ι)e3

r sin(2βℓ+2ω)sin(5ℓ)+ 1365
32 (1+cos2 ι)e4

r sin(2βℓ+2ω)sin(6ℓ)
}

, (6.15)

and
δξ× = δϖ·x3

{1
9er(45+41e2

r)cos ιsin(2βℓ+2ω)cos(ℓ)− 1
48(64−768e2

r −575e4
r)cos ιsin(2βℓ+2ω)cos(2ℓ)

−3er(3−10e2
r)cos ιsin(2βℓ+2ω)cos(3ℓ)− 2

3e2
r(35−83e2

r)cos ιsin(2βℓ+2ω)cos(4ℓ)

− 425
9 e3

r cos ιsin(2βℓ+2ω)cos(5ℓ)− 1365
16 e4

r cos ιsin(2βℓ+2ω)cos(6ℓ)

+ 1
9er(45+31e2

r)cos ιcos(2βℓ+2ω)sin(ℓ)− 1
48 cos ι(64−768e2

r −529e4
r)cos(2βℓ+2ω)sin(2ℓ)

−3er cos ι(3−10e2
r)cos(2βℓ+2ω)sin(3ℓ)− 2

3e2
r(35−83e2

r)cos ιcos(2βℓ+2ω)sin(4ℓ)

−425
9 e3

r cos ιcos(2βℓ+2ω)sin(5ℓ)− 1365
16 e4

r cos ιcos(2βℓ+2ω)sin(6ℓ)
}

. (6.16)

So far, we have provided the expressions for the GW polarizations using the mean anomaly.

6.3 Overview on frequency-domain waveform

The detected signal is the linear combination of two different polarization modes,

h(t) =h+F++h×F× = 2νm
R

∞∑
n=0

∞∑
k=0

{[
A

(n,k)
SS (ξ,er)sin(nℓ)+A(n,k)

CS (ξ,er)cosnℓ
]
sin(kβℓ)

+
[
A

(n,k)
SC (ξ,er)sin(nℓ)+A(n,k)

CC (ξ,er)cosnℓ
]
cos(kβℓ)

}
,

(6.17)
where h+,× = (2νm/R)ξ+,× and F+,× are the pattern functions of the GW detectors.
A

(n,k)
SS , A

(n,k)
CS , A

(n,k)
SC , A

(n,k)
CC are some coefficients including semimajor axis ξ and eccentricity

er. n is a non-negative integer and k represents the waveform modulation from the precession
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rate. And the frequency and eccentricity are both functions of the time, i.e., F = F (t) and
er = er(t). For convenience, we transform eq. (6.17) to the following form,

h(t) = 2νm
R

∑
nk

Ank(ξ, er)e−i(n+kβ)ℓ, with
∑
nk

≡
∞∑

n=−∞

∞∑
k=−∞

, (6.18)

and the Fourier transformation of eq. (6.18) is given by

h̃(f) =
∫ ∞

−∞
h(t)ei2πftdt = 2νm

R

∑
nk

∫ ∞

−∞
Ank(F )e−i(n+kβ)ℓei2πftdt. (6.19)

The above integration can be calculated by stationary phase approximation (SPA) [58, 109,
113, 138, 139]. The final result is just contributed by the terms calculating stationary points,

h̃(f) ≃ 2νm
R

∑̃
nk

∫ ∞

−∞
Ank(F )ei[2πft−(n+kβ)ℓ]dt

= 2νm
R

∑̃
nk

Ank(Fnk)
√

2π
ψ̈nk

exp
{
i

[
2πftnk − (n+ kβnk)ℓnk − π

4

]}
,

(6.20)

where
ψ̈nk = (n+ kβnk)ℓ̈nk + 2kβ̇nk ℓ̇nk + kβ̈nkℓnk. (6.21)

The new operator
∑̃

nk means summing all the terms involving stationary points, which
is determined by

f = (n+ kβnk) · Fnk. (6.22)

The periastron advance brings some difficulties in calculating the stationary points because
β is also the function of eccentricity and semimajor axis, which further the functions of
frequency under radiation reaction. One can solve the above equation (6.22) perturbatively,

Fnk = Fnk(f) ≈ f

n

[
1 + δFnk(f)

]
. (6.23)

The stationary frequencies in the Newtonian case are f/n, and δFnk is the DCS modification.
The mean anomaly ℓ = Ft(u) should be rewritten as

ℓ(F ) = 2π
∫ t

0
Fdt = 2π

∫ F

F0
(F/Ḟ )dF = ℓc + 2π

∫
(F/Ḟ )dF, (6.24)

involving the radiation reaction. Its first- and second-order derivatives of the mean anomaly
are given by

ℓ̇ = Ḟ
dℓ

dF
= ℓ̇(F ), and ℓ̈ = F̈

dℓ

dF
+ Ḟ 2 d

2ℓ

dF 2 , (6.25)

respectively, where

Ḟ = dF

der

der

dt
, and F̈ = Ḟ

dḞ

dF
. (6.26)
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Compared with the calculation in the quasi-circular case, the expressions of ℓ̇ and ℓ̈ are
eventually expressed as the function of the orbital frequency rather than time. At the
stationary points, we have Fnk = Fnk(f) and then give ℓnk = ℓ(Fnk), ℓ̇nk = ℓ̇(Fnk), and
ℓ̈nk = ℓ̈(Fnk). The derivatives of the precession rate are also obtained similarly,

β̇ = Ḟ
dβ

dF
= β̇(F ), and β̈ = F̈

dβ

dF
+ Ḟ 2 d

2β

dF 2 . (6.27)

So at the stationary point, the precession rate and its derivatives are calculated as βnk =
β(Fnk), β̇nk = β̇(Fnk), and β̈nk = β̈(Fnk). In the end, the time is calculated through

t =
∫ F

F0
Ḟ−1dF = tc +

∫
Ḟ−1dF, (6.28)

and given by tnk = t(Fnk) at the stationary point.
Combining the results tnk, βnk, ℓnk, and ψ̈nk (6.21), the frequency-domain waveform

takes following form,

h̃(f) =
∑̃
nk

Ank(f)eiΨnk(f). (6.29)

The modified amplitude in eq. (6.29) is

Ank = 2νm
R

·
√

2π ·Ank(Fnk) · ψ̈−1/2
nk , (6.30)

and the modified phase is

Ψnk = 2πftnk − (n+ kβnk)ℓnk − π

4 . (6.31)

Here we have completed the overview of the calculation of Fourier waveforms. The corre-
sponding detailed results are reported in the following subsection.

6.4 Results

Now, we present the detailed results at the post-circular approximation or in the small-
eccentricity limit. The considered waveforms up to order ∼ O(ζ) and ∼ O(e4

r) is

h(t) = 2νm
R

∑
n′k′

Ank(ξ, er)e−i(n+kβ)ℓ. (6.32)

The re-defined summing operator represents the sum of 26 terms with n∈n′ ≡ {−6,−5, · · · ,6}
and k∈ k′ ≡ {−2,2}. The amplitudes are separated into GR part and DCS modification, i.e.,
Ank = Ānk+δAnk. All these terms are listed in the appendix C. The Fourier transformation
and SPA approximation give

h̃(f) ≃ 2νm
R

∑̃
n′k′

Ank(Fnk)
√

2π
ψ̈nk

exp
{
i

[
2πftnk − (n+ kβnk)ℓnk − π

4

]}
, (6.33)

which sums the 12 terms including the stationary points with n > 0. ψ̈nk is defined in eq. (6.21).
Following the steps provided in section 6.3, one eventually arrives at the modified amplitude
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and phase defined in eqs. (6.29), (6.30), (6.31). For simplicity, the detailed calculation process
is shown in appendix D. The final modified phase is obtained using eqs. (D.17), (D.13), (D.8),

Ψnk = −nℓc+2πftc− π

4 + 3
256nũ−5

f

{
1− 2355

1462e2
0χ

−19/9
f +e4

0

(5222765
998944 χ

−38/9
f − 2608555

444448 χ
−19/9
f

)}
+ 3

256nũ−5
f ·

ũ4
f

ν4/5

{[
− 125

12288 +e2
0

( 220625
33521664χ

−19/9
f − 255125

71860224χ
−31/9
f

)
+e4

0

( 733136875
30571757568χ

−19/9
f − 8202445375

458755670016χ
−31/9
f − 43995625

1608155136χ
−38/9
f + 1697398625

73650143232χ
−50/9
f

)]
∆2

+

[
8
3

k

n
− 100

3 − 256
3

k

n
χ

5/3
f (2πMF0)5/3ℓc

+e2
0

(
−241

102
k

n
χ

−19/9
f + 126745

16368 χ
−19/9
f − 32185

35088χ
−31/9
f − 512

3
k

n
χ

−4/9
f (2πMF0)5/3ℓc

)
+e4

0

((421173635
14927616 − 800843

93024
k

n

)
χ

−19/9
f +

(22659965
2465136

k

n
− 107411761

6281856

)
χ

−38/9
f − 1695694985

224001792 χ
−31/9
f

+ 214133365
35961984 χ

−50/9
f +

(62560
171 χ

−23/9
f − 106336

171 χ
−4/9
f

)
k

n
(2πMF0)5/3ℓc

)]
δϖ

}
, (6.34)

where
ũf ≡ (2πMf/n)1/3, χf ≡ (1/n)(f/F0). (6.35)

The chirp mass is defined as

M ≡ mν3/5. (6.36)

From eqs. (D.13), (D.14), (D.15), (D.8), (D.9), (D.15), the modified amplitudes in eq. (6.30)
are obtained, which are listed in appendix D. The first line of eq. (6.34) has been obtained
by [90], but our results differ by a minus sign from theirs, because of the different definitions.
Our Ψnk corresponds to −i(π/4 + Ψn) in eq. (4.29) of [90]. We can recall that the DCS
theory modifies the gravitational radiation and reaction at 2PN-order approximation. And
because of the existence of periastron advance, the second derivative of phase function in
the SPA formula should be replaced by eq. (6.21), where ℓ is involved. So there are some
terms including mean anomaly at the coalescence moment, ℓc.

Equation (6.34) and appendix D provide the explicit expression of modified wave-
form (6.29). The waveform depends on the following parameters: the total mass m, the
mass ratio ν, the spins SA, the merging time tc, the azimuth angle ω, the inclination angle
ι of the observer, the merging phase ℓc, initial frequency F0, initial eccentricity e0 (≲ 0.3),
and coupling parameters ζ, which is encoded in δϖ and ∆2, given by eqs. (3.4) and (5.6),
respectively. The frequency-dependent combinations χf and ũf are given by eq. (6.35).
The modified phase and amplitudes are two sets of functions of frequency f with two in-
dices n and k. The summation in the waveform (6.29) over n and k is within the ranges
n′ ≡ {−6,−5, · · · , 6} and k′ ≡ {−2, 2}.

As stated by ref. [128], for circular-orbit binaries (setting er = 0, n = 2, and k = 0 in
eq. (6.34)), there is a strong degeneracy between this parity violation modification and the
spins, which prevented any constraints with the first LIGO observations. The coefficients
δϖ and ∆2 only can be extracted as a linear combination, which is equivalent to that the
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coupling α and the spin parameters SA are degenerate. However, taking the eccentricity into
account, the modified phase includes many different combinations of δϖ and ∆2 at ∼ O(e2

0)
and ∼ O(e4

0) orders, breaking this degeneracy between α and SA in the eccentric binaries.
Furthermore, the complete waveform includes the parts predicted by general relativity and
DCS correction. The spin-orbit, spin-spin, and monopole-quadrupole coupling appear in
1.5PN, 2PN, and 2PN of the post-Newtonian waveform, respectively. However, these terms
are not presented in this article for simplicity. This means that we can distinguish between
the effects of spin and DCS correction.

As a summary, we conclude that the final ready-to-use waveform is valid under four
approximations. Among them, the first three, small-coupling, slowly-rotating, PN have been
discussed in section 3.1. The last one is small initial eccentricity, which allows an analytic
calculation of the frequency-domain evolution of eccentricity. We expand the expression up
to the order of ∼ O(e4

0), which is valid for initial eccentricity e0 ≲ 0.3. Now, we make a
rough estimate of the weakness of DCS correction. The small-coupling assumption requires
ζ to be much smaller than 1, and PN expansion requires the typical velocity v to be much
smaller than 1. In conclusion, compared to the 2PN gravitational waveform, the correction
is of order ζχ2, and compared to the Newtonian-order waveform, that is of order ζv4χ2. It
should be mentioned that the predictions for black hole spin magnitudes depend upon the
formation channel and assumptions about stellar evolution and the low-spin black holes can
be born by multiple mechanisms [31, 186]. Therefore the waveform under slowly-rotating
approximation should be still valid for such systems. However, for the significantly-spinning
system, the waveform templates should be improved further.

Similar to Brans-Dicke and Einstein-dilaton-Gauss-Bonnet gravity, it is expected that
including the eccentricity into the binary parameters enhances the distinguishment between
DCS gravity and GR [187]. To show that, we numerically calculate the mismatch between
the frequency-domain waveforms in DCS theory and GR. The mismatch between waveforms
h̃1(f) and h̃2(f) is defined by [188, 189]

Mismatch ≡ 1 − ⟨h1, h2⟩√
⟨h1, h1⟩⟨h2, h2⟩

, (6.37)

with ⟨·⟩ is the noise-weighted inner production of these two waveforms,

⟨h1, h2⟩ ≡ 4 Re
∫ fhigh

flow

h̃1(f)h̃∗
2(f)

Sn(f) df, (6.38)

where Re means the real part and ∗ means the complex conjugate. fhigh and flow are the
high and low-frequency cutoff of the integration. flow is usually set as 10Hz for the second-
generation ground-based detectors and fhigh should be the corresponding frequency for the
innermost stable circular orbit (ISCO) of the binary, defined by fISCO ≡ 1/(63/2πm) [126].
The PN approximation is no longer valid once the binary distance closes to the ISCO radius.
In this work, h̃1 is the eccentric waveforms in GR, with ζ = 0, and h̃2 in DCS theory, with
various coupling ζ ̸= 0. Sn(f) is the power spectral density of the GW detector. We consider
a GW190521-like source detected by the advanced LIGO [29]. The results of the mismatch
are shown in figure 1, which indicates that the mismatch is enhanced for higher-eccentricity
binaries, in which the distinguishment between DCS theory and GR becomes greater.
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Figure 1. The mismatch between eccentric waveforms between DCS theory and GR detected by
advanced LIGO for different initial eccentricities and couplings. Here we consider a binary system
with masses m1 = 98.4M⊙ and m2 = 57.2M⊙ (GW190521-like), corresponding ISCO frequency is
fISCO ≈ 28.17Hz. In this calculation, the dimensionless spins of these two black holes are 0.15 and
0.18. The upper bound of coupling is taken as 0.2, which is selected according to the small-coupling
approximation, and satisfies the observational constraint given by [47]. The inclination and azimuth
angle of the detector and the polar and azimuth angle of the source are 30 deg, 35 deg, 40 deg, and
50 deg, respectively. The horizontal dashed line indicates mismatch = 0.0226.

Usually, two waveforms are indistinguishable when their mismatch is smaller than
χ2

k(1 − p)/2ρ2 [190], where χ2
k(1 − p) is calculated from the cumulative distribution function

of the chi-square distribution with k degrees of freedom at probability p, and ρ is the SNR.
For spin-aligned eccentric binaries considered in this work, the degrees of freedom k is 5, and
the mismatch criterion reduces to Mismatch ⩽ 4.62/ρ2. The SNR of GW190521 is about
14.3,1 and thus the DCS modification is distinguishable when the mismatch reaches 0.0226.
The corresponding initial eccentricity from figure 1 is about 0.25 for ζ = 0.20. This numerical
result supports our statement that considering the eccentricity of the binaries brings more
distinguishment between DCS gravity and GR. Therefore, our waveform model should be a
reference to future GW observation and gravitational tests in the eccentric BBH systems.

7 Conclusion and discussion

DCS theory [152, 153] is a parity-violating gravitational theory that has recently attracted
more and more attention. Compared with other scalar-tensor gravity, this theory only
modifies the non-spherically symmetric spacetime [175, 178, 179, 191], such that only the
gravitational radiation from binary rotating black holes encodes the distinctions between
DCS and GR. In the PN framework, the DCS modifications to BBH motion, radiation,
orbital secular evolution, and Fourier waveforms always enter 2PN-order correction [155–157].
This is the main conclusion of our previous works [157], in which the quasi-circular orbits
and waveforms have been fully investigated.

1https://gwosc.org/projects/.

– 28 –

https://gwosc.org/projects/


J
C
A
P
0
5
(
2
0
2
4
)
0
7
3

This article focuses on the non-precessing BBH systems with quasi-elliptic orbits. The
motion is constrained on the orbital plane, thus the quasi-Keplerian parameterization firstly
introduced for non-spinning binaries [91] can be successfully extended to the DCS modification,
which also induces the periastron-advance effects in eq. (3.27) and then the BBH orbits
are no longer closed. Therefore, the BBH motion presents a doubly periodic structure, the
azimuth angle of BBH passes through (1+β)v while the true (or eccentric and mean) anomaly
through 2π. Two formal orbital elements, “radial” semimajor ar and “radial” eccentricity
er, are introduced to describe the BBH motion [see eq. (3.21)]. These two elements are
not the true geometric quantifies but two independent parameters related to the conserved
energy and OAM as shown in eq. (3.17).

Based on the PN description of the BBH motion, the scalar and gravitational waveforms
are obtained through quadrupole formula [157], which are expressed in terms of true anomaly,
rather than the azimuth angle. The waveform is shown as the linear combination of sin(nV )
and cos(nV ), with n = 1, 2, 3 for Newtonian limit and n = 1, 2, 3, 4, 5 for DCS modification
[see eqs. (4.6), (4.16), (4.17)]. And again due to the periastron advance, the periodic behavior
of waveform is modulated at a much lower frequency. From the results of the waveforms,
the energy flux and OAM flux carried by scalar and tensor radiation are calculated as
eqs. (5.11), (5.20). Combining the balance equation (5.21), one can obtain the secular
evolution of elements [see eqs. (5.24), (5.25)], which results in the orbits gradually becoming
quasi-circular. The DCS modification changes the rate of circularization but does not influence
the fact that the orbit will become circular. Although the time-domain solution of orbital
frequency x and eccentricity er are unachievable, we can analytically solve the results of x
in terms of er, which indicate that the eccentricity decreases as frequency increases, which
is shown in eq. (5.27) and its solutions (5.29), (5.30).

Due to the complicated form of secular evolution, the Fourier waveform cannot be fully
obtained for arbitrary eccentricity. The small-eccentricity limit or post-circular approximation
is in general adopted. Up to the fourth-order terms of initial eccentricity e0 and the linear
order of DCS coupling ζ, the frequency-domain waveform is reported in section 6. Specifically,
the modified phase is shown in eq. (6.34), and the amplitudes are shown in appendix D,
which completes the template construction. As shown in refs. [126, 129, 137], the observation
of the BBH system without eccentricity can not give the physically meaningful constraint.
However, similar to Brans-Dicke and Einstein-dilaton-Gauss-Bonnet gravity, it is expected
that including the eccentricity into the binary parameters enhances the constraint on DCS
effects [187]. Especially, for the eccentric BBH system formed dynamically in densely
populated environments [83–85], the DCS modification from GR is enhanced. As an example,
the mismatch between eccentric waveforms in GR and DCS is calculated, and the result shown
in figure 1, means that a larger eccentricity will bring greater distinguishability. According
to the above discussion, the BBH systems with significant eccentricity but low spin should
be worth investigating further in future studies.
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A Coefficients involved in eq. (6.5)

In 6.1, we have derived the evolution of the orbital frequency with the changing eccentricity
in the post-circular limits. Some coefficients used in eq. (6.5) are listed as follows,

P(0)
0 = −P(0)

−24/19 = 325
311296∆2+ 41

152δϖ, (A.1)

P(2)
0 = − 3239925

1798045696∆2− 408729
877952δϖ, P(2)

−62/19 = 34620825
12586319872∆2− 964753

6145664δϖ,

P(2)
−2 = 40977425

12586319872∆2+ 10501763
6145664 δϖ, P(2)

−24/19 = − 7559825
1798045696∆2− 953701

877952δϖ, (A.2)

P(4)
0 = 4252453725

5192755970048∆2+ 536463393
2535525376δϖ, P(4)

−24/19 = − 537569626725
236270396637184∆2+ 141346710801

115366404608δϖ,

P(4)
−2 = − 408503949825

72698583580672∆2− 104692075347
35497355264 δϖ, P(4)

−62/19 = 115045001475
10385511940096∆2− 3205874219

5071050752δϖ,

P(4)
−4 = 834586228575

135011655221248∆2+ 314836109183
65923659776 δϖ, P(4)

−100/19 = − 105761708325
10385511940096∆2− 13342246281

5071050752 δϖ.

(A.3)

B Coefficients involved in eq. (6.7)

After obtaining the frequency represented in terms of evolving eccentricity, we inversely solve
this relation to get the frequency-domain evolution of eccentricity, with some coefficients
in eq. (6.7) shown as follows,

S(0)
0 = −S(0)

4/3 = 325
294912∆2+ 41

144δϖ (B.1)

S(2)
−19/9 = − 1079975

179306496∆2− 136243
87552 δϖ, S(2)

−7/9 = 5633725
1255145472∆2+ 49807

204288δϖ,

S(2)
0 = 13338125

3765436416∆2+ 3366541
1838592δϖ, S(2)

4/3 = − 1079975
537919488∆2− 136243

262656δϖ, (B.2)

S(4)
−38/9 = 81672082375

1962330292224∆2+ 10303247315
958169088 δϖ, S(4)

−26/9 = − 5196368177125
178572056592384∆2− 82850130257

87193387008δϖ,

S(4)
−19/9 = − 10507242925

254376148992∆2− 5841770863
372621312 δϖ, S(4)

−7/9 = 18720868175
763128446976∆2+ 165508661

124207104δϖ,

S(4)
0 = 1232639443225

178572056592384∆2+ 455716402373
87193387008 δϖ, S(4)

4/3 = − 5198125075
1962330292224∆2− 655763471

958169088δϖ. (B.3)
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C Coefficients involved in eq. (6.32)

Up to the linear order in DCS couplings and the fourth order in the eccentricity, i.e., ∼ O(ζ)
and ∼ O(e4

r), the time-domain waveform includes 26 modes denoted by different n’s and k’s.
The non-vanishing modes included in eq. (6.32) with k = 2 are

A−1,2 = 1
576xe

3
rF (−)

d e2iω(21 + 80 · δϖ · x2),

A−2,2 = 1
192xe

4
rF (−)

d e2iω(6 + 23 · δϖ · x2),

A1,2 = 1
64xerF (−)

d e2iω[(24 − 13e2
r) + (80 + 64e2

r)δϖ · x2],

A2,2 = − 1
96ξF

(−)
d e2iω[(48 − 120e2

r + 69e4
r) + (32 − 376e2

r − 384e4
r)δϖ · x2],

A3,2 = 3
64xerF (−)

d e2iω[−24 + 57e2
r − (48 − 160e2

r)δϖ · x2],

A4,2 = −1
6xe

2
rF (−)

d e2iω[(12 − 30e2
r) + (35 − 83e2

r)δϖ · x2],

A5,2 = − 25
576xe

3
rF (−)

d e2iω(75 + 272 · δϖ · x2),

A6,2 = − 3
64xe

4
rF (−)

d e2iω(108 + 455 · δϖ · x2),

(C.1)

The other modes with k = −2 are

A1,−2 = 1
576xe

3
rF (+)

d e−2iω(21 + 80 · δϖ · x2),

A2,−2 = 1
192xe

4
rF (+)

d e−2iω(6 + 23 · δϖ · x2),

A−1,−2 = 1
64xerF (+)

d e−2iω[24 − 13e2
r + (80 + 64e2

r)δϖ · x2],

A−2,−2 = − 1
96xF (+)

d e−2iω[(48 − 120e2
r + 69e4

r) + (32 − 384e2
r − 276e4

r)δϖ · x2],

A−3,−2 = − 3
64xerF (+)

d e−2iω[(24 − 57e2
r) + (48 − 160e2

r)δϖ · x2],

A−4,−2 = −1
6xe

2
rF (+)

d e−2iω[(12 − 30e2
r) + (35 − 83e2

r)δϖ · x2],

A−5,−2 = − 25
576xe

3
rF (+)

d e−2iω(75 + 272 · δϖ · x2),

A−6,−2 = − 3
64xe

4
rF (+)

d e−2iω(108 + 455 · δϖ · x2).

(C.2)

The others vanish in the considered order, i.e.,

A0,2 = A−3,2 = A−4,2 = A−5,2 = A−6,2 = A0,−2 = A3,−2 = A4,−2 = A5,−2 = A6,−2 = 0.
(C.3)

We recall that x is the dimensionless orbital frequency, defined by x ≡ (mΩ)2/3 and ω is the
azimuth coordinate of the observer. Additionally, we define a new symbol F (±)

d in terms of
the pattern functions F+,× and the inclination of the observers in the following way,

F (±)
d = (1 + cos2 ι)F+ ± 2i cos ιF×. (C.4)
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D Detailed calculation of frequency-domain waveform

This appendix presents the detailed calculation of the frequency-domain waveform from
eq. (6.33) through the method shown in section 6.3. The stationary points in integration (6.33)
are determined by f = (n + kβnk)Fnk, where the precession rate is

β(F ) = δϖ · ũ4

ν4/5

{
1 + 2e2

0χ
−19/9 + e4

0

[3323
456 χ

−19/9 − 1955
456 χ

−38/9
]}
. (D.1)

Here we defined a new dimensionless frequency ũ ≡ (2πMF )1/3, and the chirp mass M ≡
mν3/5. Therefore, the solution of stationary frequency, corresponding to eq. (6.22), is

Fnk =Fnk(f) ≈ f

n

{
1+ k

n
δϖ

ũ4
f

ν4/5

[
1−2e2

0χ
−19/9
f +e4

0

(1955
456 χ

−38/9
f − 3323

456 χ
−19/9
f

)]}
, (D.2)

where ũf ≡ (2πMf/n)1/3 and χf ≡ (1/n)(f/F0). Using formula (6.26), the first and second
order derivatives of orbital frequency F are given by

5
48πM2Ḟ = ũ11

{
1+ 157

24 e2
0χ−19/9+e4

0χ−19/9
[
−107891

21888 + 521711
21888 χ−19/9

]}
+ ũ15

ν4/5

{[ 25
24576∆2+ 10

3 δϖ
]

+e2
0χ−19/9

[( 2975
3538944 + 51025

3538944χ−4/3
)

∆2+
(50011

1728 + 6437
1728χ−4/3

)
δϖ
]

+e4
0χ−19/9

[( 9885925
3227516928 + 1640489075

22592618496χ−4/3+ 147769375
5648154624χ−19/9− 35064575

1613758464χ−31/9
)

∆2

+
(166186553

1575936 + 339138997
11031552 χ−4/3+ 83973067

5515776 χ−19/9− 4423531
787968 χ−31/9

)
δϖ

]}
, (D.3)

and

25
16896πM3F̈ = ũ11

{
1+ 7379

792 e2
0χ−19/9+e4

0χ−19/9
[24520417

722304 + 315385
22572 χ−19/9

]}
+ ũ15

ν4/5

{[ 325
135168∆2+ 260

33 δϖ
]

+e2
0χ−19/9

[( 1564975
116785152 + 2398175

116785152χ−4/3
)

∆2+
(5173769

57024 + 302539
57024 χ−4/3

)
δϖ
]

+e4
0χ−19/9

[( 5200411925
106508058624 + 77102986525

745556410368χ−4/3+ 752542375
23298637824χ−19/9+ 102500125

1664188416χ−31/9
)

∆2

+
(17192434387

52005888 + 15939532859
364041216 χ−4/3+ 2594060795

11376288 χ−19/9+ 12930785
812592 χ−31/9

)
δϖ

]}
,

(D.4)
respectively. Thus, using eq. (6.24), the mean anomaly is integrated as
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ℓ(F ) = ℓc− 1
32 ũ−5

{
1− 785

272e2
0χ−19/9−e4

0χ−19/9
[2608555

248064 − 5222765
386688 χ−19/9

]}
− 1

32
ũ−1

ν4/5

{[
− 125

24576∆2− 50
3 δϖ

]
+e2

0χ−19/9
[( 220625

25952256 − 255125
40108032χ−4/3

)
∆2+

(126745
12672 − 32185

19584χ−4/3
)

δϖ
]

+e4
0χ−19/9

[(
733136875

23668457472 − 8202445375
256049676288χ−4/3− 1099890625

19297861632χ−19/9+ 1697398625
28509732864χ−31/9

)
∆2

+
(421173635

11556864 − 1695694985
125024256 χ−4/3− 2685294025

75382272 χ−19/9+ 214133365
13920768 χ−31/9

)
δϖ

]}
. (D.5)

The first and second order derivatives are obtained from eq. (6.25), represented as

ℓ̇(F ) = 2πF, (D.6)

and

ℓ̈(F ) = 96
5
ũ11

M2

{
1+ 157

24 e
2
0χ

−19/9+e4
0

[
−107891

21888 χ
−38/9+ 521711

21888 χ
−19/9

]}
+ 96

5
1

M2
ũ15

ν4/5

{[
25

24576∆2+ 10
3 δϖ

]

+e2
0χ

−19/9

[(
2975

3538944 + 51025
3538944χ

−4/3
)

∆2+
(

50011
1728 + 6437

1728χ
−4/3

)
δϖ

]

+e4
0χ

−19/9

[(
9885925

3227516928 + 1640489075
22592618496χ

−4/3+ 147769375
5648154624χ

−19/9− 35064575
1613758464χ

−31/9
)

∆2

+
(

166186553
1575936 + 339138997

11031552 χ
−4/3+ 83973067

5515776 χ
−19/9− 4423531

787968 χ
−31/9

)
δϖ

]}
. (D.7)

Substituting eq. (D.2) into eqs. (D.5), (D.6), (D.7), we obtain the value of mean anomaly
and its derivatives at the stationary points, which are shown as

ℓnk = ℓc− 1
32 ũ−5

f

{
1− 785

272e2
0χ

−19/9
f +e4

0

[5222765
386688 χ

−38/9
f − 2608555

248064 χ
−19/9
f

]}
− 1

32
ũ−1

f

ν4/5

{[
− 125

24576∆2+
(5

3
k

n
− 50

3

)
δϖ
]

+e2
0χ

−19/9
f

[( 220625
25952256 − 255125

40108032χ
−4/3
f

)
∆2+

(
−545

72
k

n
+ 126745

12672 − 32185
19584χ

−4/3
f

)
δϖ
]

+e4
0χ

−19/9
f

[( 733136875
23668457472 − 8202445375

256049676288χ
−4/3
f − 1099890625

19297861632χ
−19/9
f + 1697398625

28509732864χ
−31/9
f

)
∆2

+

((421173635
11556864 − 1811035

65664
k

n

)
− 1695694985

125024256 χ
−4/3
f

−
(2685294025

75382272 − 3321725
65664

k

n

)
χ

−19/9
f + 214133365

13920768 χ
−31/9
f

)
δϖ

]}
, (D.8)

ℓ̇nk = ℓ̇(Fnk) = 2πf

n

{
1+ k

n
δϖ

ũ4
f

ν4/5

[
1+2e2

0χ
−19/9
f +e4

0χ
−19/9
f

(3323
456 − 1955

456 χ
−19/9
f

)]}
, (D.9)
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and

ℓ̈nk = 96
5
ũ11

f

M2

{
1+ 157

24 e
2
0χ

−19/9
f +e4

0χ
−19/9
f

[
521711
21888 − 107891

21888 χ
−19/9
f

]}
+ 96

5
1

M2

ũ15
f

ν4/5

{[
25

24576∆2+
(

10
3 − 11

3
k

n

)
δϖ

]

+e2
0 ·χ−19/9

f

[(
2975

3538944 + 51025
3538944χ

−4/3
f

)
∆2+

(
50011
1728 − 1891

108
k

n
+ 6437

1728χ
−4/3
f

)
δϖ

]

+e4
0χ

−19/9
f

[(
9885925

3227516928 + 1640489075
22592618496χ

−4/3
f + 147769375

5648154624χ
−19/9
f − 35064575

1613758464χ
−31/9
f

)
∆2

+
((

166186553
1575936 − 6283793

98496
k

n

)
+ 339138997

11031552 χ
−4/3
f

+
(

83973067
5515776 − 1451887

196992
k

n

)
χ

−19/9
f − 4423531

787968 χ
−31/9
f

)
δϖ

]}
. (D.10)

Similarly, the precession rate β has been written as the function of orbital frequency, i.e.,
β = β(F ) (D.1). Its derivatives are given by eq. (6.27),

β̇(F ) = δϖ · 128
5

1
M

ũ12

ν4/5

[
1 + 43

8 e
2
0χ

−19/9 + e4
0χ

−19/9
(142889

7296 − 23873
7296 χ

−19/9
)]
, (D.11)

and

β̈(F ) = δϖ · 49152
25

1
M2

ũ20

ν4/5

[
1 + 2615

288 e
2
0χ

−19/9 + e4
0χ

−19/9
(8689645

262656 + 389275
32832 χ

−19/9
)]
.

(D.12)
The corresponding values at the stationary points are

βnk = δϖ ·
ũ4

f

ν4/5

{
1 + 2e2

0χ
−19/9
f + e4

0χ
−19/9
f

[3323
456 − 1955

456 χ
−19/9
f

]}
, (D.13)

β̇nk = δϖ · 128
5

1
M

ũ12
f

ν4/5

{
1 + 43

8 e
2
0χ

−19/9
f + e4

0χ
−19/9
f

[142889
7296 − 23873

7296 χ
−19/9
f

]}
, (D.14)

and

β̈nk = δϖ· 49152
25

1
M2

ũ20
f

ν4/5

[
1+ 2615

288 e
2
0χ

−19/9
f +e4

0χ
−19/9
f

(8689645
262656 + 389275

32832 χ
−19/9
f

)]
, (D.15)

respectively. Finally, from eq. (6.28), the time function is

t(F ) = tc− 5
256Mũ−8

{
1− 157

43 e
2
0χ

−19/9+e4
0

[
1044553
56544 χ−38/9− 521711

39216 χ
−19/9

]}
− 5

256M ũ−4

ν4/5

{[
− 25

12288∆2− 20
3 δϖ

]
+e2

0χ
−19/9

[(
44125

4571136 − 51025
6340608χ

−4/3
)

∆2+
(

25349
2232 − 6437

3096χ
−4/3

)
δϖ

]
+e4

0χ
−19/9

[(
146627375
4168876032 − 1640489075

40478441472χ
−4/3− 8799125

117669888χ
−19/9+ 339479725

4168876032χ
−31/9

)
∆2

+
(

84234727
2035584 − 339138997

19764864 χ
−4/3− 107411761

2298240 χ−19/9+ 42826673
2035584 χ

−31/9

)
δϖ

]}
,

(D.16)
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and the stationary-point value is thus

tnk = tc− 5
256Mũ−8

f

{
1− 157

43 e
2
0χ

−19/9
f +e4

0

[
1044553
56544 χ

−38/9
f − 521711

39216 χ
−19/9
f

]}
− 5

256M
ũ−4

f

ν4/5

{[
− 25

12288∆2+
(

8
3
k

n
− 20

3

)
δϖ

]

+e2
0χ

−19/9
f

[(
44125

4571136 − 51025
6340608χ

−4/3
f

)
∆2+

(
25349
2232 − 109

9
k

n
− 6437

3096χ
−4/3
f

)
δϖ

]

+e4
0χ

−19/9
f

[(
146627375
4168876032 − 1640489075

40478441472χ
−4/3
f − 8799125

117669888χ
−19/9
f + 339479725

4168876032χ
−31/9
f

)
∆2

+
((

84234727
2035584 − 362207

8208
k

n

)
− 339138997

19764864 χ
−4/3
f

−
(

107411761
2298240 − 664345

8208
k

n

)
χ

−19/9
f + 42826673

2035584 χ
−31/9
f

)
δϖ

]}
. (D.17)

Using eqs. (D.17), (D.13), (D.8), the final modified phase defined in eqs. (6.29) or (6.31)
is given in the main text.

E The explicit results of the modified amplitudes

At the end of the main text, we have presented the amplitude and phase of the Fourier
waveform. The modified amplitudes are listed in this appendix. We first define an overall
coefficient as

A(0)
n ≡ −

√
5
96π

−2/3 M5/6

R
f−7/6

(
n

2

)2/3
. (E.1)

The non-vanishing modes in GR are

Ā1,2 = − 7
96A(0)

1 F (−)
d e2iωe3

0χ
−19/6
f , Ā2,2 = − 1

16A(0)
2 F (−)

d e2iωe4
0χ

−38/9
f ,

Ā1,−2 = A(0)
1 F (+)

d e−2iω
{

−3
4e0χ

−19/18
f + e3

0

[10277
2432 χ

−19/6
f − 3323

2432χ
−19/18
f

]}
,

Ā2,−2 = A(0)
2 F (+)

d e−2iω
{

1 − 277
48 e

2
0χ

−19/9
f + e4

0

[3260071
87552 χ

−38/9
f − 920471

43776 χ
−19/9
f

]}
,

Ā3,−2 = A(0)
3 F (+)

d e−2iω
{9

4e0χ
−19/18
f + e3

0

[9969
2432χ

−19/18
f − 40863

2432 χ
−19/6
f

]}
,

Ā4,−2 = A(0)
4 F (+)

d e−2iω
{

4e2
0χ

−19/9
f + e4

0

[3323
228 χ

−19/9
f − 1431

38 χ
−38/9
f

]}
,

Ā5,−2 = 625
96 A(0)

5 F (+)
d e−2iωe3

0χ
−19/6
f , Ā6,−2 = 81

8 A(0)
6 F (+)

d e−2iωe4
0χ

−38/9
f .

(E.2)

The non-vanishing modes in DCS modification are

δA1,2 = A(0)
1 F (−)

d e2iωe3
0χ

−19/6
f

ũ4
f

ν4/5

{( 875
3145728 − 2275

9437184χ
−4/3
f

)
∆2

−
( 287

4608 + 15941
23040χ

−4/3
f + 112

15 χ
3/2
f (2πMF0)5/3ℓc

)
δϖ

}
,
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δA2,2 = A(0)
2 F (−)

d e2iωe4
0χ

−38/9
f

ũ4
f

ν4/5

{( 725
2359296 − 325

1179648χ
−4/3
f

)
∆2

+
(

−371
960 − 41

576χ
−4/3
f + 16

5 χ
−23/9
f (2πMF0)5/3ℓc

)
δϖ

}
, (E.3)

δA1,−2 = A(0)
1 F (+)

d e−2iωχ
−19/18
f

ũ4
f

ν4/5

{[
e0

( 475
393216 − 325

393216χ
−4/3
f

)
+e3

0

( 83075
37748736 − 13338125

5020581888χ
−4/3
f − 1034275

88080384χ
−19/9
f + 3340025

239075328χ
−31/9
f

)]
∆2

+

[
e0

(623
320 − 41

192χ
−4/3
f − 384

5 χ
11/18
f (2πMF0)5/3ℓc

)
+e3

0

(
2070229
583680 − 3366541

2451456χ
−4/3
f − 1587076063

69457920 χ
−19/9
f + 421357

116736χ
−31/9
f

+
(67768

285 χ
−3/2
f − 13292

95 χ
11/18
f

)
(2πMF0)5/3ℓc

)]
δϖ

}
, (E.4)

δA2,−2 = A(0)
2 F (+)

d e−2iω ũ4
f

ν4/5

{[
− 25

49152 +e2
0

( 40175
3538944χ

−19/9
f − 90025

7077888χ
−31/9
f

)
+e4

0

( 133501525
3227516928χ

−19/9
f − 2894366075

45185236992χ
−31/9
f − 11491459625

90370473984χ
−38/9
f + 1059523075

6455033856χ
−50/9
f

)]
∆2

+

[
− 29

15 + 256
5 χ

5/3
f (2πMF0)5/3ℓc+e2

0

(3680737
293760 χ

−19/9
f − 11357

3456 χ
−31/9
f − 7448

45 χ
−4/9
f (2πMF0)5/3ℓc

)
+e4

0

(
643741529
14100480 χ

−19/9
f − 598353517

22063104 χ
−31/9
f − 686542948523

5231278080 χ
−38/9
f + 133662911

3151872 χ
−50/9
f

+
(157387

135 χ
−23/9
f − 162827

270 χ
−4/9
f

)
(2πMF0)5/3ℓc

)]
δϖ

}
, (E.5)

δA3,−2 = A(0)
3 F (+)

d e−2iωχ
−19/18
f

ũ4
f

ν4/5

{[
e0

(
− 475

131072 + 325
131072χ

−4/3
f

)
+e3

0

(
−2759

960 + 41
64χ

−4/3
f + 1496275

29360128χ
−19/9
f − 4426825

79691776χ
−31/9
f

)]
∆2

+

[
e0

(
−9168157

1751040 − 41
192χ

−4/3
f + 384

5 χ
11/18
f (2πMF0)5/3ℓc

)
+e3

0

(
2070229
583680 + 3366541

817152 χ
−4/3
f + 1981498061

69457920 χ
−19/9
f − 558461

38912 χ
−31/9
f

+
(13292

95 χ
11/18
f − 107896

285 χ
−3/2
f

)
(2πMF0)5/3ℓc

)]
δϖ

}
, (E.6)

δA4,−2 = A(0)
4 F (+)

d e−2iωχ
−19/9
f

ũ4
f

ν4/5

{[
e2

0

(
− 25

2304 + 325
36864χ

−4/3
f

)
+e4

0

(
− 83075

2101248 + 10448975
235339776χ

−4/3
f + 678425

4358144χ
−19/9
f − 51675

311296χ
−31/9
f

)]
∆2
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+

[
e2

0

(
−101

30 + 41
18χ

−4/3
f + 512

5 χ
−4/9
f (2πMF0)5/3ℓc

)
+e4

0

(
− 335623

27360 + 2160121
114912 χ

−4/3
f + 39932437

813960 χ
−19/9
f − 6519

152 χ
−31/9
f

+
(106336

285 χ
−4/9
f − 602032

855 χ
−23/9
f

)
(2πMF0)5/3ℓc

)]
δϖ

}
, (E.7)

δA5,−2 = A(0)
5 F (+)

d e−2iωe3
0χ

−19/6
f

ũ4
f

ν4/5

{(
− 78125

3145728 + 203125
9437184χ

−4/3
f

)
∆2

+
(

−16025
4608 + 25625

4608 χ
−4/3
f + 400

3 χ
−3/2
f (2πMF0)5/3ℓc

)
δϖ

}
,

δA6,−2 = A(0)
6 F (+)

d e−2iωe4
0χ

−38/9
f

ũ4
f

ν4/5

{(
− 6525

131072 + 2925
65536χ

−4/3
f

)
∆2

+
(

−63
20 + 369

32 χ
−4/3
f + 864

5 χ
−23/9
f (2πMF0)5/3ℓc

)
δϖ

}
. (E.8)
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