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Abstract. Gravitational Faraday Rotation (GFR) is a frame-dragging effect induced by
rotating massive objects, which is one of the important, yet studied characteristics of lensed
gravitational waves (GWs). In this work, we calculate the GFR angle χg of GWs in the weak
deflection limit, assuming it is lensed by a Kerr black hole (BH). We find that the GFR
effect changes the initial polarization state of the lensed GW. Compared with the Einstein
deflection angle, the dominant term of the rotation angle χg is a second-order correction to the
polarization angle, which depends on the light-of-sight component of BH angular momentum.
Such a rotation is tiny and degenerates with the initial polarization angle. In some critical
cases, the GFR angle is close to the detection capability of the third-generation GW detector
network, although the degeneracy has to be broken.
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1 Introduction

According to Einstein’s General Relativity (GR), a massive rotating object changes the
spacetime structure and drags the inertial frame around it [1], which causes various detectable
effects on test particles [2–4]. Detecting these effects provides an excellent opportunity to
study the fundamental properties and the internal structure of gravitational sources [4]. For
instance, refs. [5, 6] described an additional precession of a gyroscope moving in a weak
and slowly-rotating spacetime, precisely measured by Gravity Probe B experiment [7]. The
measured frame-dragging drift rate is −37.2± 7.2 marcsec/yr, which is consistent with the
prediction of GR.

Gravitational Faraday Rotation (GFR) [8–10] is a crucial dragging effect, a general-
relativistic effect analogous to the Faraday rotation [11]. The polarization plane of light
rotates around the propagation direction when it propagates through the magnetic field. The
rotation angle is proportional to the magnetic field along the line of sight (L.O.S.). In GR,
the gravitational field generated by spinning massive objects is analogous to a magnetic field,
interacting with electromagnetic waves (EMWs) and gravitational waves (GWs). The GFR
effect of EMWs, induced by a Kerr black hole (BH), has been studied in the geometrical
optical approximation [1, 12–22].

Like EMWs, the GWs are deflected by the gravitational field of massive objects, e.g., a
galaxy or a BH [23–29]. With the discovery of GW events generated by the mergers of compact
binaries [30–34], the gravitationally-lensing effects of GW signals attract more and more
attention in both observation [35–38] and theory [24, 29, 39, 40]. In addition to the lensing
effects such as multiple images, magnification, phase shift, interference, and diffraction [39–48],
the polarization plane of GW can be dragged by the angular momentum of the lens, i.e.,
the GFR of GWs [10, 29, 49, 50]. The lensing effects of GWs have been explicitly studied in
the geometric optics or diffraction theory framework [51], except for the GFR effect. In this
work, we will present the explicit result of the GFR angle of GWs induced by a Kerr BH by
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solving the geodesic equations of massless particles [1, 14, 24, 26]. We focus on the GFR effect
in the weak deflection limit (WDL) of strong gravitational lensing. The geometric optical
approximation is valid since the wavelength of the GW is assumed to be not comparable with
the gravitational radius of the lens in our studies.

The organization of this article is as follows. Section 2 is a brief introduction to the
Walker-Penrose theorem for Kerr spacetime. Then, we describe a suitable definition of the
GW metric in section 3 and present our derivation of the GFR angle of GW in section 4.
Finally, section 5 shows the evaluation result of the GFR angle of GW. We introduce the
observational effect of GFR in gravitationally-lensed GW signals in section 6. Section 7
concludes and discusses the main results of this paper. In this article, we will use units
c = G = 1, where c is the speed of light in the vacuum, and G is the gravitational constant.

2 Walker-Penrose theorem

A Kerr BH is fully described by its mass M and angular momentum a. In Boyer-Lindquist
coordinates (t, r, θ, ϕ) [52], the metric of Kerr spacetime gµν [53] is

ds2 = −dt2 + ρ2

∆ dr2 + ρ2dθ2 + (r2 + a2) sin2 θdϕ2 + 2Mr

ρ2

(
a sin2 θdϕ− dt

)2
, (2.1)

where ∆ = r2 − 2Mr+ a2 and ρ2 = r2 + a2 cos2 θ. Let xµ = xµ(τ) be an affine-parameterized
null geodesic and kµ be the tangent vector of xµ(τ), kµ ≡ ∂xµ/∂τ , where τ is proper time.
kµ is light-like and parallel transported along the geodesic, i.e. |k|2 = gµνk

µkν = 0 and
kα∇αkµ = 0. The vector fµ is assumed to be orthogonal to kµ, and parallel transports along
the null geodesic, i.e., k · f = gµνk

µfν = 0 and kα∇αfµ = 0. Since the Kerr geometry is of
Petrov type D [1], one can define Walker-Penrose (WP) conserved quantity,

KWP = (A− iB)(r − ia cos θ) = K1 + iK2, (2.2)

WP conserved quantity (2.2) satisfies the WP theorem [54],

kµ∇µKWP = 0, (2.3)

where A ≡ (k ·l)(f ·n)−(k ·n)(f ·l) and iB ≡ (k ·m)(f ·m̄)−(k ·m̄)(f ·m) [1]. {l,n,m, m̄}
is the Newman-Penrose tetrad of Kerr BHs [55]. K1 and K2 are the real and imaginary parts
of KWP, respectively. WP theorem has been used to predict the GFR of EMWs by treating
fµ as the EMW polarization vector [14, 15, 19]. One can always set f t = 0 without loss of
generality. The radiation gauge causes f to always be in the polarization plane. WP theorem
constrains the evolution of polarization vector along a null geodesic. Thus, the polarization
vector f rotates on the polarization plane during propagation.

Far from the BH, the WP conserved quantity (2.2) is
K1 = r

[
−βfθ − (γ sin θ)fϕ

] kr
|kr|

K2 = r
[
+γfθ − (β sin θ)fϕ

] , (2.4)

where β ≡
√
η + a2 cos2 θ − ξ2 cot2 θkθ/|kθ| and γ ≡ ξ csc θ − a sin θ. In (2.4), η is the z-

component of angular momentum, and ξ is the Carter constant of a massless particle [56].
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Since K1 and K2 are finite, fθ and fϕ approach 0 when r is large, and f r also vanishes due
to the gauge condition k · f = 0. Therefore, it is convenient to introduce a unit transverse
vector E with components,

Er ≡ f r, Eθ ≡ −rfθ, Eϕ ≡ −r sin θfϕ. (2.5)

Er vanishes for large r. Thus, E is a vector tangent to a large sphere, with two orthogonal
components Eθ and Eϕ, and conserved norm [(Eθ)2 + (Eϕ)2]1/2 = (K2

1 +K2
2 )1/2. This equality

means that the energy carried by EMWs is conserved during propagation in geometrical optics
approximation. Therefore, the asymptotic form of WP conserved quantity is expressed in Eθ
and Eϕ, 

kr

|kr|
K1 = +βEθ + γEϕ

K2 = −γEθ + βEϕ
. (2.6)

The WP theorem requires that K1 and K2 have the same values along the graviton geodesic.
The conservation of KWP provides an exact translation relation of E between the source and
detector positions. This transformation is given by ref. [14] and the following eq. (4.1) in
section 4.

3 Definition of GW metric

The WP theorem constrains the evolution of the unit transverse vector E and can also
constrain the evolution of GWs. In this section, the GW metric tensor hij is defined to prepare
to derive the GFR angle of gravitationally-lensed GWs by a Kerr BH in the next section.

Firstly, the metric tensor Fµν is defined based on vector f as follows,

Fµν ≡ fµfν , (|f | � 1). (3.1)

Obviously, Fµν is symmetric, orthogonal to the wave vector k, and parallel transported along
null geodesics. Thus, we conclude that the definition (3.1) satisfies the requirements of a
metric tensor for the GW. Secondly, we introduce the traceless condition using transverse-
traceless (TT) projector [57] Λij,kl(k̂) = PikPjl − (1/2)PijPkl with Pij(k̂) = ηij − k̂ik̂j , where
ηij = diag(1, r2, r2 sin2 θ) is the spatial part of a flat background metric at an infinite distance,
k̂ ≡ k/|k|, and k is the spatial part of the wave vector k. Considering a Schwarzschild lens,
the particle orbit will be in the BH’s equatorial plane, and so will the background source
and the detector. This plane is also called the source-lens-detector plane. This conclusion is
generally invalid for a Kerr lens. However, under the WDL approximation, the trajectories of
gravitons deviate sufficiently small from the source-lens-detector plane, which is not generally
the equatorial plane of Kerr BH [14, 19, 24]. Therefore, the source-lens-detector plane can
safely regarded as the orbital plane, presented in figure 1. The source and detector positions
are described as coordinates (rs, θs, ϕs) and (rd, θd, ϕd), which are sufficiently distant from the
BH. Therefore, these two wave vectors are approximated as k̂s = (−1, 0, 0) and k̂d = (1, 0, 0)
at these two positions. The subscripts s and d represent the corresponding quantities evaluated
at the source and detector positions, respectively. TT projector gives an equivalent metric
tensor of (3.1), H ij , in TT gauge,

H ij = Λij,kl(k̂s,d)F kl =

 1
2

(
F θθ − Fϕϕ sin2 θ

)
F θϕ

F θϕ 1
2

(
Fϕϕ − F θθ csc2 θ

) , (3.2)
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Figure 1. Demonstration of GFR of lensed GW system. The gravitons emitted from a source at
(rs, θs, ϕs) pass near a Kerr BH with angular momentum a, and then arrive at a detector at (rd, θd, ϕd).

which is tangent to an infinitely large sphere. The r-component is removed for simplification.
One can find that tensor H ij (3.2) only has two independent components, Hθθ and Hθϕ. As
a result, the tensor H ij describes a beam of GW propagating along with vector k̂s or k̂d
at infinity. Furthermore, after transforming H ij into a Cartesian system, the transformed
tensor H̃ ij (where i, j = x, y, z, x ≡ r sin θ cosϕ, y ≡ r sin θ sinϕ, z ≡ r cos θ) describes GWs
propagating along with the direction (sin θ cosϕ, sin θ sinϕ, cos θ) in TT gauge.

In (2.5), the normalized vector E is introduced. A similar operation is applied to the
metric tensors, which is convenient for constructing basis vectors and projecting metric
tensors. Generally, a vector f can be written as f = f iei = E iêi, where ei = er, eθ, eϕ
are basis vectors and êr ≡ er, êθ ≡ −(1/r)eθ, êϕ ≡ −(1/r sin θ)eϕ are unit basis vectors
in the spherical coordinate system. Similarly, a tensor H can generally be written as
H = H ijeiej = hij êiêj . Combining the above discussion, we define a new metric tensor with
component, hθθ ≡ r2Hθθ, hθϕ ≡ r2 sin θHθϕ, and hϕϕ ≡ r2 sin2 θHϕϕ, which is expressed as

hij =
(
hθθ hθϕ

hθϕ hϕϕ

)
=

 1
2

[
(Eθ)2 − (Eϕ)2

]
EθEϕ

EθEϕ −1
2

[
(Eθ)2 − (Eϕ)2

] . (3.3)

Note that, the metric hij (3.3) is an equivalent expression of F ij (3.1) in TT gauge and is
expressed in unit basis vectors.

In conclusion, the definition of the GW metric comes from the direct product of two
transverse vectors and satisfies all the physical properties of GW. TT gauge is then applied
to remove the residual degree of freedom. The Cartesian-coordinate form of metric tensor is
given in (3.3).

– 4 –
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4 Gravitational Faraday Rotation

In this section, we derive the GFR angle of the lensed GWs and reproduce the previous
results of the EMW case in ref. [14] for comparison. To find the transformation matrix for
polarization (hθθ, hθϕ) between the source and the detector positions, we firstly calculate the
transformation matrix of the unit transverse vector (Eθ, Eϕ). The WP theorem conserves K1
and K2 at the source and detector positions, calculated from (2.6). The conservation gives
βsEθs + γsEϕs = −(βdEθd + γdEϕd ) and −γsEθs + βsEϕs = −γdEθd + βdEϕd . The electric vectors E
at the source and detector positions are related through a transformation matrix [14](

Eθd
Eϕd

)
= T

(
Eθs
Eϕs

)
, (4.1)

which can be written explicitly as

T = − 1
β2
d + γ2

d

(
βdβs − γdγs βdγs + γdβs
βdγs + γdβs γdγs − βdβs

)
. (4.2)

Furthermore, the transformation matrix T can be simply rewritten as

T = 1√
1 + x2

(
1 −x
−x −1

)
, (4.3)

through a new symbol x, defined as

x ≡ γsβd + βsγd
γsγd − βsβd

. (4.4)

The quantity x (4.4) depends on the motion constants and angular coordinates of the source.
In this new form (4.3), the equality β2 + γ2 = η + (ξ − a)2 has been considered. The matrix
T describes the full change in the transverse vector. Only two independent components
remain when applying radiation gauge for transverse vector E . The change between the final
state (Eθd , E

ϕ
d ) and the initial state (Eθs , Eϕs ) represents a rotation on the polarization plane,

determined by WP theorem.

4.1 GW case

Above transformation (4.1) and the definition of hij (3.3) give the transformation of the
independent component of GW metric between the source and detector positions,(

hθθd
hθϕd

)
= S

(
hθθs
hθϕs

)
, (4.5)

with transformation matrix

S = 1
1 + x2

(
1− x2 −2x
−2x x2 − 1

)
. (4.6)

The matrix S describes the total change in the θθ and θϕ components of the metric tensor.
To present the measurement of the GW polarization, we construct a set of basis vectors

as a reference frame, û and v̂, and project metric tensor hij into them. The vectors û and

– 5 –



J
C
A
P
1
0
(
2
0
2
2
)
0
9
5

v̂ need to be orthogonal to k̂ or, equivalently, on the polarization plane. Without loss of
generality, v̂ is assumed to be orthogonal to the orbital plane and û = v̂× k̂ (figure 1). As
mentioned in section 3, the wavevectors k̂s and k̂d are on the orbital plane. The normal
vector of the orbital plane, v, is then determined approximately by v = k̂d × k̂s and the basis
vector is v̂ = (vr, rvθ, r sin θvϕ). Another basis vector û is given by ûs = (0,−v̂ϕs , v̂θs) at the
source position, and ûd = (0, v̂ϕd ,−v̂θd) at the detector position. For simplification, we define
ns ≡ v̂ϕs /v̂θs , nd ≡ v̂

ϕ
d /v̂

θ
d and write them as following form,

ns = sin θs
+ cot θd − cot θs cos(ϕd − ϕs)

sin(ϕd − ϕs)
and nd = sin θd

− cot θs + cot θd cos(ϕd − ϕs)
sin(ϕd − ϕs)

,

(4.7)
to represent v̂s and v̂d, equivalently. The polarization tensors are then constructed as
eij+ ≡ ûiûj − v̂iv̂j and e

ij
× ≡ ûiv̂j + v̂iûj [57], which are expressed explicitly as

eij+ =
(

(ûθ)2−(v̂θ)2 ûθûϕ−v̂θv̂ϕ
ûθûϕ−v̂θv̂ϕ (ûϕ)2−(v̂ϕ)2

)
, and eij× =

(
2ûθv̂θ ûθv̂ϕ+v̂θûϕ

ûθv̂ϕ+v̂θûϕ 2ûϕv̂ϕ

)
, (4.8)

respectively. The polarization tensors are normalized and orthogonal to each other, eijP e
ij
P ′ =

2δPP ′ , where subscripts P,P ′ = +,×. The metric hij is decomposed into plus and cross modes,
hij = h+eij+ + h×eij×. The polarization modes are h+ = (1/2)hije+

ij and h× = (1/2)hije×ij ,
respectively. Rearranging it as a matrix form, we obtain(

h+

h×

)
= K

(
hθθ

hθϕ

)
(4.9)

with projection matrix

K =
(

(ûθ)2 − (v̂θ)2 ûθûϕ − v̂θv̂ϕ
ûθv̂θ − ûϕv̂ϕ ûϕv̂θ + ûθv̂ϕ

)
. (4.10)

The metric tensor hij projects onto two basis tensors through the K matrix, and two
polarization modes h+ and h× of GWs are obtained.

Combining transformation (4.5) and projection (4.9), one can obtain the rotation relation
of the polarization modes from the source to the detector,(

h+
d

h×d

)
= Kd

(
hθθd
hθϕd

)
= KdS

(
hθθs
hθϕs

)
= KdSK−1

s

(
h+
s

h×s

)
. (4.11)

The rotation of a polarization plane (denoted by an angle χg) transforms the polarization
modes of GWs by h+ → h+ cos 2χg−h× sin 2χg and h× → h+ sin 2χg +h× cos 2χg [57], where
the factor 2 comes from the spin-2 symmetry of the graviton. Thus, the production of three
matrices in (4.11) reduces to a rotation matrix,

R ≡ KdSK−1
s =

(
cos 2χg − sin 2χg
sin 2χg cos 2χg

)
, (4.12)

and the GFR angle χg of GWs is given by

χg = 1
1 + x2

(
X − x
1 +X2 −

X

1 +X2x
2 + Y x

)
, (4.13)

– 6 –
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where
X ≡ − ns + nd

1− nsnd
and Y ≡ (ns + nd)2

(1 + n2
s)(1 + n2

d)
. (4.14)

The quantities X and Y depend on the choice of basis vectors û and v̂. The matrix R is real
orthogonal, ensuring the equality (h+

s )2 + (h×s )2 = (h+
d )2 + (h×d )2, i.e. the energy carried by

GW is conserved during propagation.
We should mention that the WP theorem (2.3) is independent of the reference frame,

governing the GFR effect of light and GW rays. Therefore, the polarization angle ψ is
also frame-dependent, describing the polarization states of photons and gravitons. Thus,
defining the two standard polarization directions is necessary to investigate the initial and
final polarization states. Therefore, there are frame-dependent terms (ns and nd) in the final
result (4.13). But we only focus on the GFR angle, the difference between the initial and
final polarization state, which is frame-independent.

In the WDL assumption, k̂s and k̂d are approximately coplanar. For convenience, we
follow the method proposed by ref. [14], requiring the v̂-axis to be perpendicular to the
orbital plane, or equivalently, the û-axis to be in the orbital plane, as shown in figure 1.
The GFR effect disappears for a nonspinning lens. One will find that the angle between the
polarization direction and the û-axis is constant during propagation. Thus, the initial and
final polarization angles are equal, and the GFR angle is zero. For the Kerr lens, the GFR
angle is obtained in the reference frame shown in figure 1. In another frame (for example, one
requires a nonzero angle between the û-axis and orbital plane), the measured polarization
angle is different. However, we can verify that the GFR angle remains unchanged.

In order to prove the frame covariance of GFR angle, we rotate the (û− v̂) plane around
k̂s and k̂d by an angle φ. At this time, the symbols ns and nd will be transformed as follows,

ns→ns(φ) = cosφ[cosθd sinθs−sinθd cosθs cos(ϕd−ϕs)]+sinφsinθd sin(ϕd−ϕs)
−sinφ[sinθs cosθd−sinθd cosθs cos(ϕd−ϕs)]+cosφsinθd sin(ϕd−ϕs)

,

nd→nd(φ) = cosφ[sinθs cosθs−cosθd sinθs cos(ϕd−ϕs)]+sinφsinθs sin(ϕd−ϕs)
+sinφ[sinθs cosθs−sinθs cosθs cos(ϕd−ϕs)]−cosφsinθs sin(ϕd−ϕs)

.

(4.15)

According to (4.14), under the rotation transformation, X and Y will become

X → X(φ) = − (cos θd − cos θs) sin(ϕd − ϕs)
cosϕd cosϕs(cos θd cos θs − 1) + sinϕd sinϕs(cos θd cos θs − 1) + sin θd sin θs

,

(4.16)
and

Y →Y (φ) =
[ (cosθd−cosθs)sin(ϕd−ϕs)

sinθd sinθs sinϕd sinϕs+sinθd sinθs cosϕd cosϕs+cosθd cosθs−1

]2
. (4.17)

Eqs. (4.16) and (4.17) are independent of the rotation angle φ, and are exactly the same as
those given in (4.14), X(φ) = X and Y (φ) = Y . Therefore, X and Y are frame-invariant.
Furthermore, the GFR angle is also frame-invariant.

4.2 EMW case

In this subsection, we present the main results of the GFR of EMWs for comparison. The
unit transverse vector E (2.5) is seen as an electric vector of EMWs. The transformation of E
between source and detector positions is given by (4.1). E is projected onto frame (û, v̂) as

– 7 –
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shown in figure 1 and is decomposed as E = Exû + Eyv̂. These two polarization modes are
given by (

Ex
Ey

)
= N

(
Eθ
Eϕ

)
, N ≡

(
ûθ ûϕ

v̂θ v̂ϕ

)
, (4.18)

where the r-component has been ignored. Similar to GWs, the polarization vector of EMWs
has only two independent components (Eθ, Eϕ). The matrix N projects (Eθ, Eϕ) onto two
basis vectors, and gives two polarization modes (Ex, Ey) of EMWs. Combining (4.18) and (4.1),
the transformation between initial and final polarization modes is obtained(

Exd
Eyd

)
= N d

(
Eθd
Eϕd

)
= N dT

(
Eθs
Eϕs

)
= N dT N−1

s

(
Exs
Eys

)
. (4.19)

The production of these three matrices reduces to a rotation matrix,

N dT N−1
s ≡

(
cosχe − sinχe
sinχe cosχe

)
. (4.20)

This rotation matrix (4.20) relates the initial and final state of the lensed EMW. The change
between the initial and final states is a rotation of the polarization vector in the (û− v̂) plane,
that is, the GFR effect. In the rotation matrix (4.20), χe represents the GFR angle of the
lensed EMWs. Compared with the GW case, the rotation angle of EMW is two times smaller
than that of GWs since the photons are spin-1 particles. Eq. (4.20) gives the GFR angle χe,

χe = 1√
1 + x2

X − x√
1 +X2

. (4.21)

This result is different from the GFR angle of GWs (4.13). Interestingly, the GFR angle of
the lensed EMWs and GWs have the same results under the WDL approximation.

5 Results

This section aims to determine the value of x, X, and Y and then predicts the GFR angle of
GWs induced by a Kerr BH. The source, the lens BH, and the detector are well aligned in a
strong lensing scenario. We define the angular shifts of the gravitons as

∆θ ≡ θd + θs − π and ∆ϕ ≡ ϕd − ϕs − π. (5.1)

These two quantities can be fully determined by the two motion constants, ξ and η, and
the final angular position of graviton relative to Kerr BH, θd. In this study, as the impact
parameter of graviton to the lens BH, rm, is much larger than the gravitational radius of
the BH, i.e. M̃ ≡ M/r

(0)
m , ã ≡ a/r

(0)
m ∼ ε � 1, where r(0)

m =
√
η + ξ2 is the zero-order

approximation of rm. Thus, several quantities are small: ∆θ,∆ϕ, r(0)
m /rs, and r(0)

m /rd, which
allows us to integrate geodesic equations in the WDL. The magnitudes of r(0)

m /rs and r(0)
m /rd

are denoted by ν, which is different from ε. Without loss of generality, we assume the two
have a similar order of magnitude, ν ∼ ε.

We consider a static detector and a static GW source in the asymptotically flat region
of a Kerr BH. The geometric relation between source and detector positions, (rs, θs, ϕs) and
(rd, θd, ϕd), is derived from integrals∫

dr

±
√
R(r)

=
∫

dθ

±
√

Θ(θ)
(5.2)
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and
ϕd − ϕs =

∫ 2Mar − a2ξ

±∆
√
R(r)

dr +
∫

ξ csc2 θ

±
√

Θ(θ)
dθ, (5.3)

where the radial function R(r) = r4 + (a2 − ξ2 − η)r2 + 2Mr[η + (ξ − a)2] − a2η, and the
angular function Θ(θ) = η + (a2 − ξ2 csc2 θ) cos2 θ. The integral path is rs → rm → rd and
θs → θm → θd, with rm being the largest zero point of function R(r), pericenter radius
of gravitons paths. And θm = θmin /max is a root of Θ(θ) = 0, which corresponds to the
maximum or the minimum of the θ coordinate on the trajectory. Up to the order of ε3, the
approximated solutions to rm and θm are

rm ≈ r(0)
m

(
1− M̃ − 3

2M̃
2 + 2M̃ãξ̃ − 1

2 ã
2ξ̃2 − 4M̃3 + 6M̃2ãξ̃ − 2M̃ã2ξ̃2

)
(5.4)

and
cos θm ≈ ±η̃1/2

(
1 + 1

2 ã
2ξ̃2
)
, (5.5)

where the dimensionless motion constants ξ̃ and η̃ are ξ̃ ≡ ξ/r(0)
m and η̃ ≡ η/[r(0)

m ]2.
Following the method provided by [24], we perform the r-integral and θ-integral (5.2)

up to ε3. The results are∫ rd

rs

|dr|√
R(r)

≈ 1
r

(0)
m

(
1 + 1

2 ã
2
)[

π

(
1− 3

4 ã
2η̃ + 15

4 M̃
2 − 15M̃2ãξ̃

)
+4M̃ − 8M̃ãξ̃ + 128

3 M̃3 + 10M̃ã2 − 16M̃ã2η̃

]
− 1
r

(0)
m

(W +Q) ,
(5.6)

and∫ θd

θs

|dθ|√
Θ(θ)

≈ 1
r

(0)
m

(
1− 3

4 ã
2η̃ + 1

2 ã
2
)

×
{
π ∓ arctan

[(
1 + 1

4 ã
2η̃

)
cotσs

]
∓ arctan

[(
1 + 1

4 ã
2η̃

)
cotσd

]}
,

(5.7)

respectively. In (5.7), the rescaled angular coordinate is cosσ ≡ cos θ/| cos θm|. The upper
sign in (5.7) corresponds to the ray that passes through θmin, and the lower sign corresponds
to θmax. The new symbols W and Q in (5.6) are defined as

W = r
(0)
m

rs
+ r

(0)
m

rd
, and Q = 1

6

(r(0)
m

rs

)3

+
(
r

(0)
m

rd

)3 . (5.8)

The last term in (5.6) is absent in ref. [14] since they have assumed that the source and
detector are far from the lens object, equivalently, ε� ν.

Inserting the r-integral (5.6) and θ-integral (5.6) into (5.2), the relationship between θd
and θs is obtaind,

cos θs ≈ − cos δ cos θd ∓ sin δ
{
µ+ ã2

[ 1
2µη̃ξ̃

2 + µ

4
(
η̃ − 2µ2

)]}
, (5.9)

where µ is defined as µ =
√
η̃ − cos θd and δ is

δ = 4M̃+15π
4 M̃2−8M̃ãξ̃+128

3 M̃3−15πM̃2ãξ̃−13M̃ã2η̃+10M̃ã2−
(

1− 1
2 ã

2 + 3
4 ã

2η̃

)
W−Q.
(5.10)

– 9 –



J
C
A
P
1
0
(
2
0
2
2
)
0
9
5

Except for the last two terms, this definition is completely consistent with that provided
by [14, 24]. From (5.9) and (5.3), the angular shifts of the gravitons (5.1) now become

∆θ ≈ ±µ csc θdδ −
1
2 ξ̃

2 cot θd csc2 θdδ
2

± 1
4µ csc θd

(
2η̃ξ̃2 + η̃µ2 − 2µ4

)
ã2δ ± µ

6 δ
3ξ̃2 csc5 θd

(
2µ2 + 2ξ̃2 − 3

)
,

(5.11)

and

∆ϕ= 4M̃ã−8M̃ã2ξ̃+5πM̃2ã+δξ̃ csc2 θd±δ2µξ̃ cotθd csc3 θd+ 1
2 ã

2ξ̃δ

+ 1
4 ã

2δ

[(
−3η̃3+4η̃2µ2+6η̃2+η̃µ4−6η̃µ2−3η̃−2µ6+2µ2

)
ξ̃ csc6 θd

+ 1
2
(
−η̃2+η̃µ2+η̃−2µ2

)
ξ̃ csc4 θd

]
+ 1

3δ
3
(
η̃2+η̃µ2−η̃−2µ4+2µ2

)
ξ̃ csc6 θd.

(5.12)
Approximately, we have ∆θ, ∆ϕ ∼ ε from (5.11) and (5.12) [14, 24]. So far, we have completed
the calculation of the null geodesics equations of gravitons. The angular shifts are determined
by the dimensionless motion constants and detector position.

The quantities x (4.4), X, and Y (4.14) are expressed in angular positions of the source
and detector, (θs, ϕs) and (θd, ϕd), where ϕd can be set as 0 since Kerr BH has an axisymmetric
spacetime. The quantities x, X, and Y can then be expressed as functions of θd and angular
shift, ∆θ and ∆ϕ. We use the angular shifts of gravitons, θd, ∆θ (5.11), and ∆ϕ (5.12) for
x (4.4), X, and Y (4.14). Up to the order of ε3, they are given by

x ≈ ±
[
ξ̃

µ
cot θd∆θ + 1

µ
cos θd sin θdã∆θ − 1

2 ξ̃
(
ξ̃4

µ3 −
ξ̃2

µ3 + 2ξ̃2

µ
+ µ− 2

µ

)
csc2 θd∆θ2

+ 1
2

(
ξ̃3

µ3 −
ξ̃

µ3 + ξ̃

µ

)
sin θd cos θdã2∆θ − 1

2

(
ξ̃4

µ3 −
ξ̃2

µ3 − µ
)
ã∆θ2

−
(
ξ̃5

2µ5 −
ξ̃3

2µ5 + ξ̃3

µ3 −
ξ̃

µ3 + ξ̃

6µ

)
cot θd∆θ3

]
,

(5.13)

X ≈ cos θd∆ϕ+ 1
2 sin θd∆θ∆ϕ+ 1

12
(
1 + 3 cos2 θd

)
cos θd∆ϕ3, (5.14)

and
Y ≈ cos2 θd∆ϕ2 + sin θd cos θd∆θ∆ϕ2. (5.15)

In x’s expression (5.13), the ± symbol comes from the definition of β. Gravitons pass the
maximum or minimum position of θ, corresponding to the upper or lower sign.

In (4.13) and (4.21), the GFR angle of lensed GWs and EMWs are expressed as functions
of symbols x, X, and Y . Inserting (5.13), (5.14), and (5.15) into (4.13), up to ε3, the GFR
angle is finally obtained,

χg = ãW cos θd + 5
4πM̃

2ã cos θd ± µ
(

2M̃ãW − 1
2 ãW

2
)
. (5.16)

The first term is of order ε2, while the last three are of order ε3. For ν & ε, ãW cos θd is the
leading term of GFR angle. Since the dragging effect of Kerr BH causes GFR, the rotation
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angle is proportional to the angular momentum of the BH, where cos θd accounts for the
projection along the L.O.S. When cos θd < 0 (> 0), both the BH and the polarization plane
rotate clockwise (anticlockwise). In the leading and subleading order of approximations,
we find the same GFR angle of EMWs. For the ν � ε case, the first third-order term,
(5/4)πM̃2ã cos θd, will be the leading term, which has been given in ref. [14]. Additionally,
our GFR angle (5.16) is frequency-independent because of geometric optical approximation.

The magnitude of the GFR angle can be estimated from (5.16). We assume that the
mass of a supermassive BH is M ∼ 109M� ∼ 10AU, angular momentum along L.O.S. is
a cos θd ∼ 0.9M and the BH-source distance is rs ∼ 103AU. Let the pericenter of the graviton
path be as close as possible to the event horizon without exceeding the weak deflection limit,
e.g., ∼ 102AU. In this case, the condition ν ∼ ε is satisfied, and the GFR angle can reach
0.5 deg, which is close to the detection sensitivity of the third-generation GW detector network
to polarization angle ψ.

Additionally, substituting (5.13) and (5.14) into (4.21), we derive the GFR angle of
EMWs after a similar calculation. The result of EMW’s GFR angle is same as the GW case,
i.e., χe = χg, which is the consequence of geometrical optics approximation. Ref. [14] has
studied such effect, but they only obtained the first third-order term of our result (5.16).
Because they assume that, the parameter ν is much smaller than ε, this assumption is not
necessary for the real situation. By setting ν � ε (equivalently, W � 1), we reproduce the
same result in ref. [14].

6 Imprints in lensing GW waveform

There are some GFR imprints in gravitationally-lensed GW signals. In the geometric optical
approximation, the lensing GW signal is calculated through

h̃+,×
len (f) = F (f) h̃+,×

unlen(f), (6.1)

where h̃ is the frequency-domain waveform, and f is the frequency of GW without cosmological
redshift. The lensed and unlensed waveform is denoted by subscripts ‘len’ and ‘unlen’. The
complex transmission factor F (f) is a useful tool to describe the wave effects, amplitude
enhancement, and phase shift of gravitationally-lensed GWs. The Kirchhoff integral is derived
from the Huygens principle, and depends on the time delay of all possible paths of photons or
gravitons. The transmission factor is calculated from Kirchhoff integral [25, 40, 42, 47],

F (f) ≡ f(1 + zL)
i

dLdS
dLS

θ2
E

∫
d2ξei2πf(1+zL)τ(ξ,η), (6.2)

where ξ is the 2-dimensional coordinate on the lens plane and η is the 2-dimensional coordinate
of the source object on the source plane. dS , dL, and dLS are the angular diameter distances
from the observer to the source, to the lens, and from the lens to the source, respectively.
In (6.2), θE is the Einstein deflection angle, and zL is the cosmological redshift of the lens
object. τ(ξ,η) is the time delay of a photon or graviton emitted from η passing through ξ,
and finally arriving at detector. The exact definition of time delay is given by [25, 40, 42, 47]

τ(ξ,η) ≡ dLdS
dLS

θ2
E

[1
2(ξ − η)2 − φ(ξ)

]
. (6.3)

φ(ξ) is called the lens potential and can be generally determined from the surface mass density
of the lens object. The nonspinning point-like mass assumption is not necessary. The readers
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can find more details in [25]. For example, the Schwarzschild lens is considered in [40] and
the Kerr lens in [39].

In the geometrical optics limit, the j-th (j = 1, 2 for point-mass lens) image position ξj
is determined by the lens equation, ∇ξτ(ξ,η) = 0. Therefore, the transmission factor F (f) is
contributed by each image and is expressed as

F (f) =
∑
j

Fj(f) =
∑
j

√
|µj |e2πifτj−iπnj , τj ≡ τ(ξj ,η) (6.4)

whereas the Morse indices are nj = 0, 1/2, 1 when ξj is a minimum, saddle and maximum
of the time-delay function τ(ξ,η), respectively. The magnifications µj is defined as µj ≡
[1/ det(∂ξ/∂η)]ξ=ξj

. Specially, the point-mass lens forms two images in the geometrical optics
limit. For a point-mass lens, when |τ1− τ2| is large enough, the amplitude and phase of Fj(f),
i.e.,

√
|µj | and 2πifτj − πnj , describe the amplitude enhancement and phase shift of lensed

GW relative to that of the unlensed one. This framework describes amplitude enhancement,
phase shift, interference, and diffraction. However, the polarization effect of the lensed GW is
not included. If taking the GFR effect into consideration, transformation (6.1) becomes

h̃+
j,len(f) = Fj(f)

[
h̃+
j,unlen(f) cos 2χj − h̃×j,unlen(f) sin 2χj

]
,

h̃×j,len(f) = Fj(f)
[
h̃+
j,unlen(f) sin 2χj + h̃×j,unlen(f) cos 2χj

]
,

(6.5)

or equivalently

h̃L,Rj,len(f) = Fj(f) h̃L,Rj,unlen(f) exp (−i · 2χj) , (6.6)

in terms of left-hand and right-hand polarization modes. We abbreviate the GFR angle of
j-th image as χj . The left-hand and right-hand polarization modes are defined as hL,R ≡
(1/
√

2)(h+ ± ih×) [57]. As shown in (6.5) or (6.6), the lensing effects can be divided into two
parts. Firstly, the unlensed frequency-domain GW waveform will be multiplied by a complex
factor F (f), which contains amplitude enhancement and phase shift effects. Secondly, the
polarization plane rotates by an angle χg caused by the GFR effect. Our work gives the
theoretical prediction of the GFR angle (5.16).

The unlensed signal received by detectors can be written as a linear combination of +
and × polarization modes,

h̃unlen = F+(α, λ, ψ)h̃+
unlen + F×(α, λ, ψ)h̃×unlen. (6.7)

F+,×(α, λ, ψ) is the pattern function of GW detectors [57] for + and × modes. (α, λ) are the
right ascension and declination of GW sources, and ψ is the so-called polarization angle. The
polarization angle is defined in terms of the direction of orbital angular moment of binary
L̂ and GW propagation N̂ [58]. However, this definition is inconvenient for lensing system.
Instead, we define the polarization angle using the basis vectors (û, v̂) shown in figure 1.
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Thus, the lensed GW signal is given by

h̃j,len = h̃+
j,lenF+(α′j ,λ′j ,ψ)+h̃×j,lenF×(α′j ,λ′j ,ψ)

=Fj(f)
{

(h̃+
j,unlen cos2χj−h̃×j,unlen sin2χj)[F+(α′j ,λ′j ,0)cos2ψ−F×(α′j ,λ′j ,0)sin2ψ]

+(h̃+
j,unlen sin2χj+h̃×j,unlen cos2χj)[F+(α′j ,λ′j ,0)sin2ψ+F×(α′j ,λ′j ,0)cos2ψ]

}
=Fj(f)

{
h̃+
j,unlen[F+(α′j ,λ′j ,0)cos2(ψ−χj)+F×(α′j ,λ′j ,0)sin2(ψ−χj)]

+h̃×j,unlen[F+(α′j ,λ′j ,0)sin2(ψ−χj)F×(α′j ,λ′j ,0)cos2(ψ−χj)]
}

=Fj(f)
[
h̃+
j,unlenF

+(α′j ,λ′j ,ψ−χj)+h̃×j,unlenF
+(α′j ,λ′j ,ψ−χj)

]
. (6.8)

In the second step, we use the properties of pattern functions, F+(α,λ,ψ) =F+(α,λ,0)cos2ψ−
F×(α,λ,0)sin2ψ and F×(α,λ,ψ) =F+(α,λ,0)sin2ψ+F×(α,λ,0)cos2ψ. The massive lens
object deflects the path of gravitons, changing the direction of the incoming GW signal from
(α,λ) to (α′j ,λ′j) on the sky plane. From (6.8) we can find that the effect of GFR is equivalent
to a change in the polarization angle ψ in the pattern function, ψ→ψ−χg. Additionally, the
total amplitude of the lensed GW signal at detectors is proportional to |Fj |/DL, where DL is
the luminosity distance of the GW source. The total phase is φc+arg(Fj), where φc is the
coalescence phase of the binary system. Therefore, lensing amplification and the GW source
distance are degenerate, the phase shift and initial phase φc are degenerate [59]. Similarly,
the GFR angle and initial polarization angle ψ are degenerate.

We need to find a way to break the degeneracy between the initial polarization angle and
the GFR angle. In the geometrical optics limit, the lens focuses the original GW from several
paths toward an observer, forming multiple images [26, 39]. Every path’s pericenter radius rm
is usually different. The observed GFR effects from each image are distinguished. A Kerr lens
forms two images on the lens plane in the geometrical optical approximation. The observed
values of the polarization angle of the lensed GW from each image will be ψj = ψ−χj . These
two GFR angles are different because of different graviton paths. Therefore, the difference in
GFR angles is obtained,

∆χg = χ2 − χ1 = ψ2 − ψ1. (6.9)

From the GFR angle (5.16), we find that ∆χg is a third-order quantity, ∼ O(ε3). The first
term in (5.16), ãW cos θd = a(1/rs + 1/rd) cos θd, is independent of the pericenter radius r(0)

m .
The second-order corrections cancel each other out in ∆χg, and all of the three three-order
terms survive. Therefore, by observing the images of lensed GW rays, one can obtain ∆χg and
estimate the spin of the lens black hole accordingly. However, such a method brings more diffi-
culties. Firstly, it requires sophisticated modeling of gravitational lensing. Secondly, it makes
the leading-order term vanish, and one has to compare the tiny difference between multiple
images, which requires highly accurate measurement. We consider a supermassive BH and a
GW source system similar to that in the previous section. The GW signals form two images
on the lens plane. The impact distances of these two graviton orbits are assumed to be 102AU
and 1.1×102AU. Generally, the difference between the two impact distances should not be too
large because the GW rays with a significant impact distance will be too dim to be detected.
Only considering the first three-order term, the subleading terms of the GFR angle of the two
images are about 0.2 deg and 0.15 deg, respectively. As a result, the GFR angle difference is
0.05 deg, which is beyond the detectability of the third-generation GW detector or networks.
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There are other potential methods to address this problem, such as considering the motion
of lens objects or background GW sources. One can consider that the initial polarization angle
of GWs does not change with the motion of the source. However, the propagation path of the
GW and, thus, the GFR angle changes, when the lens object or GW source moves. Therefore,
it is possible to detect the polarization angle changing with time from the lensed GW signals to
obtain characteristics of the GFR effect. However, this method needs to consider the moving
GW source and lens object, and solving the geodesic equation will become more challenging.

The actual measurement of the GFR angle helps reveal the relevant characteristics of
spinning objects. Breaking the degeneracy is of great significance for the observation of GFR.
More works are needed in this field for in-depth discussion.

7 Conclusion and discussion

The gravitationally-lensed GWs can be successfully described by a transmission factor,
evaluated from the Kirchhoff integral [39, 40, 43, 47, 51]. This framework includes the effects
of amplitude enhancement, phase shift, interference, and diffraction, but the GFR effect is
absent. In this work, by applying the Walker-Penrose theorem, we derive an explicit result of
the GFR angle of GWs lensed by a Kerr BH (5.16) in the geometric optical approximation
and WDL assumption.

The GFR effect describes the mixture of original GW polarization modes, is an important
correction to the polarization angle of gravitationally-lensed GW signals. It is a frame-dragging
effect sourced by the angular momentum of spinning lens objects. The GFR of the lensed
GW was not considered in previous works because of its weak effect. However, in this work,
we find that the GFR angle is a second-order correction of the polarization angle rather than
a third-order correction, as predicted in previous work. The GFR angle of the GW signal
lensed by a central supermassive BH in a galaxy has been estimated in section 5 (∼ 0.5 deg).
On the other hand, Fisher estimation for the standard deviation of polarization angle ∆ψ of
the stellar-mass binary is about 0.6 deg for HLV/ET/B-DECIGO network [60]. This kind of
system has been predicted by [61], and its GFR angle χg is close to the detection capability
of the third-generation GW detector network. However, we have to break the degeneracy
between the GFR and polarization angles.

As well known, the amplitude enhancement factor of lensed GWs and the luminosity
distance of the GW source are degenerate, the phase shift and the coalescence phase of
compact binary coalescence of lensed GWs are degenerate [59]. Similarly, the GFR angle and
initial polarization angle ψ are also degenerate. Compared with an unlensed signal, only the
polarization angle changes from ψ to ψ − χg for lensed signals. Theoretically, one can break
the degeneracy between the GFR and the initial polarization angle from the multiple lensed
images, although higher-accuracy observations is required.

The GFR effect is sourced from the angular momentum of spinning lens objects and
changes the initial polarization state of lensed GW signals. As a result, this study may
help future research measure the spin of BHs. Faraday rotation of EMW depends on both
the magnetic field and the rotating gravitational field during propagation. However, the
GFR of GW is only affected by the gravitational field. Therefore, this effect is suitable for
measuring the BH or galaxy spin. Similarly, lensed EMWs and GWs from a binary system
with an electromagnetic counterpart provide a potential method to measure the magnetic
field along the line of sight. It is anticipated that many lensed GW signals will be detected in
the future [35, 37, 38, 62], which will help measure the spin of more supermassive BHs and
galaxies statistically and test the Universe’s chiral symmetry [63].
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