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Abstract

Screened modified gravity (SMG) is a unified theoretical framework that describes scalar–tensor gravity with a
screening mechanism. Based on the gravitational-wave (GW) waveform derived in our previous work, in this
article we investigate the potential constraints on SMG theory through GW observation by future spaceborne GW
detectors, including the Laser Interferometer Space Antenna (LISA), TianQin, and Taiji. We find that, for the
extreme-mass-ratio inspirals (EMRIs) consisting of a massive black hole and a neutron star, if the EMRIs are at the
Virgo cluster, the GW signals can be detected by the detectors at quite high significance level, and the screened
parameter òNS can be constrained at about ( )- 10 5 , which is more than one order of magnitude tighter than the
potential constraint given by a ground-based Einstein telescope. However, for the EMRIs consisting of a massive
black hole and a white dwarf, it is more difficult to detect them than in the previous case. For the specific SMG
models, including chameleon, symmetron, and dilaton, we find these constraints are complementary to that from
the Cassini experiment, but weaker than those from lunar laser ranging observations and binary pulsars, due to the
strong gravitational potentials on the surface of neutron stars. By analyzing the deviation of the GW waveform in
SMG from that in general relativity, as anticipated, we find the dominant contribution of the SMG constraint comes
from the correction terms in the GW phases, rather than the extra polarization modes or the correction terms in the
GW amplitudes.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave detectors (676);
Non-standard theories of gravity (1118)

1. Introduction

General relativity (GR) is always considered as the most
successful theory of gravity. However, various difficulties of
this theory are also well known. For instance, in the theoretical
side, GR has the singularity and quantization problems
(DeWitt 1967; Kiefer 2007). In the experimental side, all the
observations in cosmological scale indicate the existence of so-
called dark matter and dark energy, which might hint at the
invalidity of GR at this scale (Sahni 2004; Cline 2013). For
these reasons, since GR was proposed by Einstein in 1915, a
large number of experimental tests have been performed on
various scales, from submillimeter-scale tests in the laboratory
to tests at solar system and cosmological scales (Adelberger
2001; Hoyle et al. 2001; Jain & Khoury 2010; Will 2014;
Burrage et al. 2015; Koyama 2016; Bertoldi et al. 2019;
Sabulsky et al. 2019). Unfortunately, most of these efforts
have focused on the gravitational effects in weak fields. Since
the observable gravitational-wave (GW) signals can only be
generated in strong gravitational fields and are nearly freely
propagating in spacetime once generated (Maggiore 2008),
there is an excellent opportunity to experimentally test the
theory of gravity in the strong-field regime (Abbott et al.
2016a, 2019a, 2019b). Recently, with the discovery of compact
binary coalescence GW signals by the aLIGO and aVirgo
collaborations (Abbott et al. 2016b, 2016c, 2016d, 2017a,
2017b, 2017c, 2017d, 2019c), testing GR in the strong
gravitational fields becomes one of the key issues in GW
astronomy (Kostelecký & Mewes 2016; Miller & Yunes 2019;
Sathyaprakash et al. 2019).

The testing of GR by GW observations entails comparing the
predictions of GW signals in GR and those in the alternative
theories and constraining their differences by observations.

Therefore, the choice of typical alternative gravitational theory
and the calculation of GW waveforms in the theory have
crucial roles (Yunes & Siemens 2013; Berti et al. 2018). A
natural alternative to GR is the scalar–tensor theory, which
invokes a conformal coupling between matter and an under-
lying scalar field (see, for instance, Brans–Dicke gravity; Brans
& Dicke 1961), besides the standard spacetime metric tensor.
The coupling between scalar field and matter leads to the scalar
force (fifth force), and the tight experimental constraints
(Adelberger et al. 2009; Williams et al. 2012) require that the
fifth force must be screened in high-density environments. In
our previous works (Zhang et al. 2016, 2017, 2019a, 2019b,
2019c; Liu et al. 2018b), we studied the general scalar–tensor
gravity with screening mechanisms, which can suppress the
fifth force in dense regions and allow theories to evade the solar
system and laboratory tests, in a unified theoretical framework
called screened modified gravity (SMG). In this framework,
the chameleon, symmetron, dilaton, and f (R) models in the
literature are the specific cases of this theory. We have
calculated the parameterized post-Newtonian (PPN) parameters
(Zhang et al. 2016), the post-Keplerian (PK) parameters (Zhang
et al. 2019b), the effective cosmological constant (Zhang et al.
2016), the effective gravitational constant (Zhang et al. 2016),
and the change in the orbital period of the binary system caused
by the gravitational radiation (Zhang et al. 2017). Based on
these results, we have derived the constraints on the model
parameters by considering the observations in solar system,
cosmological scale, binary pulsar, and lunar laser ranging
measurements (Zhang et al. 2019a, 2019b, 2017, 2016). In
addition, in Liu et al. (2018b), we calculated in detail the GW
waveforms produced by the compact binary coalescences
during the inspiraling stage, and we derived the deviations from
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that in GR, which are partly quantified by the parameterized
post-Einsteinian (PPE) parameters. Utilizing these results, we
also obtained the potential constraints on the theory by the
future ground-based Einstein telescope.

In addition to the ground-based GW detectors, space-borne
detectors are also proposed. In the near future, the missions
Laser Interferometer Space Antenna (LISA), Taiji, and TianQin
will be launched around the 2030s (Danzmann et al. 2016; Luo
et al. 2016; Hu & Wu 2017). Due to the large arm lengths of
these detectors, the sensitive frequency ranges become (10−4,
100) Hz, lower than those of ground-based detectors, and the
extreme-mass-ratio inspirals (EMRIs) are the important GW
sources (Amaro-Seoane et al. 2007; Babak et al. 2017). The
event rate of the EMRIs is difficult to estimate because it
depends on factors that are poorly constrained by observation.
According to the estimations of Babak et al. (2017), at least a
few EMRIs per year can be detected by LISA, irrespective of
the astrophysical model. For the most optimistic astrophysical
assumptions, this number can reach a few thousand per year.
An EMRI normally consists of a stellar compact object, such as
a white dwarf (WD), neutron star (NS), or stellar-mass black
hole (BH), and a massive BH, which is an excellent source for
the test of gravity (Barack & Cutler 2007; Gair et al. 2013). In
previous works (Scharre & Will 2002; Will & Yunes 2004), the
authors have investigated the constraints on Brans–Dicke
gravity, massive gravity, and so on, assuming the GW signals
of BH–NS binaries observed by the LISA mission. Similarly,
in this article, we will study the constraints on SMG theory by
the GW signals produced by the BH–WD and BH–NS binaries.
In our discussion, we will consider both the LISA and TianQin
missions. Taiji is similar to LISA (Wu et al. 2019), so we
suspect the potential constraint from Taiji is also similar to that
from LISA. In the calculation, we consider three different cases
for the detection. In case one, we constrain the SMG by
detecting the extra GW modes. In case two, we constrain the
theory by Fisher information matrix analysis, but consider only
the restricted GW waveforms, and in case three, we do the
same analysis but including the higher order amplitude
corrections in the templates. In comparison with the results in
these cases, we investigate the contributions of extra polariza-
tion modes and the higher order amplitude corrections in the
model constraints.

This paper is organized as follows. In Section 2, a brief
introduction to screened modified gravity is presented, and the
Fourier transform of the GW waveforms in SMG is rewritten
for convenient reference. Two aspects of detector information
that are relevant to our analysis, noise curves and antenna
pattern functions, are introduced in Section 3. In Section 4, the
method employed in this work and the process used to get the
constraints are shown in detail. The results are presented and
discussed in Section 5, where we compare the constraints given
by the forecasts of future space-borne detectors with the
constraints obtained by the current experiments in the three
specific SMG models. The full waveform of 2.5 PN in
amplitude and 3.5 PN in phase with the corrections concerned
with the SMG and the process to derive the antenna pattern
functions are given in Appendixes A and B.

Throughout this paper we adopt the units where = =c 1.
The reduced Planck mass is ( )p=M G1 8Pl , where G
denotes the Newtonian gravitational constant. Because in this
article we consider only the GW sources in the very low
redshift range, the redshifts are not explicitly expressed in the

formulae of this paper. The distance parameter denotes the
luminosity distance, and the chirp mass and total mass in this
paper denote the directly measured values in the detector
frames.

2. Gravitational Waveforms in Screened Modified Gravity

The GW waveforms of binaries with circular orbits in
general SMG have been calculated in previous work (Zhang
et al. 2017; Liu et al. 2018b). In this section, we will present a
brief introduction to screened modified gravity and rewrite the
formulae of waveforms in the SMG. The action of a general
scalar–tensor theory in the Einstein frame is given by

⎡
⎣⎢

⎤
⎦⎥( ) ( )

[ ( ) ] ( )

ò f f

f y

= - -  -

+ mn

S d x g
M

R V

S A g

2

1

2

, , 1m m

4 Pl
2

2

2

where gμν is the matrix in the Einstein frame, g is the
determinant of the matrix, R is the Ricci scalar, f is the scalar
field, and ψm is the matter field. Here, V(f) is a bare potential
that characterizes the scalar self-interaction, and A(f) denotes
a conformal coupling function representing the interaction
between scalar field and matter field. In scalar–tensor theory,
the scalar field can affect the effective mass of a compact
object. As suggested by Eardley (1975), the matter action takes
the form

( ) ( )òå f t= -S m d , 2m
a

a a

where the constant inertial masses of the compact objects are
substituted by a function of the scalar field. The field equations
can be obtained by the variation of the action with respect to
gμν and f,

( ) ( )p= +mn mn mn
fG G T T8 , 3

( ( ) ) ( )f
f

f  =
¶
¶

-m
m V T , 4

where Tμν and mn
fT are the energy–momentum tensor of the

matter field and scalar field, respectively, and T is the trace of
Tμν. The behavior of the scalar field is controlled by both V(f)
and T, by which we define the effective potential

( ) ( )f= -V V T. 5eff

As shown in Zhang et al. (2016), in the SMG, the effective
potential can be rewritten as

( ) ( ) ( )f r f= +V V A , 6eff

where ρ is the conserved energy density in the Einstein frame.
In the wave zone, the metric and the scalar field can be
expanded around the flat background hmn and the scalar
background (the vacuum expectation value (VEV) of the scalar
field) fVEV:

( )h f f df= + = +mn mn mng h , . 7VEV

2
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The bare potential V(f) and the coupling function A(f) can be
expanded as

( ) ( )
( ) ( ) ( )
f df df df df
f df df df df

= + + + +
= + + + +





V V V V V

A A A A A

,

. 8
VEV 1 2

2
3

3 4

VEV 1 2
2

3
3 4

The effective mass of the scalar field is given by

( ) ( )
f

rº = +
f

m
d V

d
V A2 , 9s b

2
2

eff
2 2 2

VEV

where ρb is the background matter density. We can find that the
effective mass of the scalar field depends on the ambient matter
density. In conditions such as the solar system, the matter
density is high and the mass of the scalar field is large, so the
range of the force corresponding to the scalar field is too short
to have detectable effects. In this way, the effects of the scalar
field can be screened in the high-density environment and
evade the tight constraints presented by solar system experi-
ments. However, in the large scale, the matter density is low,
and the scalar field can have significant effects to accelerate the
expansion of the universe. The mass of the compact object
ma(f) can also be expanded as

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )f

df
f

df
f

= + + m m s1 , 10a a a
VEV VEV

2

where ( )f=m ma a VEV . The sensitivity of the ath object sa is
defined as

( )
( )

( )
f

º
¶
¶ f

s
mln

ln
. 11a

a

VEV

In most cases, the deviations from GR are quantified by the
sensitivity (Zhang et al. 2016, 2017, 2019a, 2019b; Liu et al.
2018b). In the SMG, it is proportional to the screened
parameter

( )
f

= s
M2

, 12a a
VEV

Pl

and the screened parameter of a uniform-density object is given
by

( )
f f

=
-
F


M

, 13a
a

a

VEV

Pl

where F = Gm Ra a a is the surface gravitational potential, and
fa is the position of the minimum of the effective potential
inside the object. In this paper, we will focus on the screened
parameter and forecast how tight constraints can be placed on it
by the future space-borne GW detectors.

In the wave zone, the linear field equations are given by

¯ ( )p t= -mn mnh G16 , 14

( ) ( )df p- = - m GS16 , 15s
2

where ¯ h= -mn mn mn l
lh h h1

2
, τμν is the total energy–momentum

tensor, and S is the source term of the scalar field. The solutions
of these equations in the wave zone can be obtained using the
Green’s function method and are expressed in terms of the
mass multipole moments and the scalar multipole moments.

Based on the solutions, the GW waveforms in the SMG were
calculated in previous work (Liu et al. 2018b).
As shown in Liu et al. (2018b), in addition to +

and×polarization modes in GR, the massive scalar field
induces two polarizations: breathing polarization hb and
longitudinal polarization hl. The response of an interferometric
detector is given by

( ) ( )= + + ++ + ´ ´h t F h F h F h F h 16b b l l

where + ´F b l, , , denotes the antenna pattern functions depending
on the direction of GW sources (θ, j), detector configuration,
polarization angle ψ, and the frequency of GWs for space-
borne detectors, and + ´h b l, , , denotes gravitational waveforms
for the plus, cross, breathing, and longitudinal polarization
modes, respectively. Besides the same parameters in wave-
forms of GR (which are total mass m=m1+m2, symmetric
mass ratio η=m1m2/(m1+m2)

2, chirp mass h=M mc
3 5 ,

distance D, inclination angle ι between the line of sight and
the binary orbital angular momentum, the time of coalescence
tc, and the orbital phase of coalescence Ψc), there are five extra
parameters peculiar to SMG. They are the effective mass of the
scalar field ms, the expansion coefficients of the coupling
function A0 and A1, and the screened parameters of binary ò1, ò2
(see Zhang et al. 2017; Liu et al. 2018b for more details). The
Fourier transform can be obtained by using the stationary phase
approximation. The constraint ∣ ∣-A 10 is less than 10−10

according to the solar system experiments (Zhang et al. 2016).
Therefore, similar to Liu et al. (2018b), we can safely adopt
A0=1 in our calculation. As shown in Equation (74) of that
paper (Liu et al. 2018b), the difference between the parameters
in the Einstein frame and those in the Jordan frame is only a
factor A0. The parameters of the waveform in the Einstein
frame and in the Jordan frame are the same when we adopt
A0=1. In addition, because the Compton wavelength -ms

1 is
roughly cosmological scale ( ~-m 1 Mpcs

1 ), as in Zhang et al.
(2017), we set ms=0 in the waveforms, which makes the “l”
polarization vanish ( ˜ ( ) =h f 0l ). The results can be rewritten as
follows. Harmonic number one is given by
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with òd=ò1−ò2. Here, Ψ( f ) takes the form
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where Ψc is the orbital phase of coalescence, and the
coefficients Ψi are presented in Appendix A. Here, Ψi(i�0)
is the coefficient in the 3.5 PN phase function of the Fourier
domain waveform, and the coefficient Ψ−2 is concerned with
the correction of dipole radiation. Harmonic number two is
given by

⎜ ⎟⎛
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⎠

{ }
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with Γ=(ò1m2+ò2m1)/m. And in the expression of ˜ ( )
+ ´h ,

2
,

we have adopted conventions similar to Van Den Broeck &
Sengupta (2006), where ( )( )( ) i= - + -j-

+e P F1 cosi
2,0

22,0

( )i ´i F2 cos .
We also would like to investigate whether the constraints can

be improved if the higher order amplitude corrections of the PN
gravitational waveform are taken into consideration. In the
stage of adiabatic inspiraling, the analytic waveforms can be
obtained by using PN approximation where the waveforms can
be expanded in terms of the orbital velocity. Thanks to great
efforts over the past few decades, the PN waveforms have been
calculated to very high orders and are sufficiently precise to
extract small signals buried in the large noise by matched
filtering in GW experiments. More details can be found in the
review article by Blanchet (2014). Since the matched filtering
method used in the GW detections is more sensitive to the
phase of the templates than the amplitude, the restricted
waveform is the most commonly used waveform model, in
which only the dominant harmonic is taken into account, other
than the leading order all amplitude corrections are discarded,
but all the available orders of phases are included. However,
some works (Van Den Broeck & Sengupta 2006; Arun et al.
2007; Trias & Sintes 2008a, 2008b) have shown that there
can be considerable consequences if higher order amplitude
corrections are included in the templates. Here we consider the
full PN waveform in which amplitude terms are included up to
2.5 PN order and phase terms are included up to 3.5 PN order.
The full waveforms are shown in Appendix A, where we adopt
conventions similar to Van Den Broeck & Sengupta (2006).

3. Space-borne Gravitational Wave Detectors

In this work, we consider two proposed space-borne GW
detectors, LISA and TianQin, to forecast the constraints on
SMG. LISA is a mission led by the European Space Agency
that can detect GWs in the milli-Hertz (0.1 mHz–1 Hz) range
(Danzmann et al. 1996, 2016). LISA consists of three identical
spacecraft that maintain an equilateral triangular configuration
in an Earth-trailing heliocentric orbit between 50 and 65
million km from Earth. The distance between the two
spacecraft is 2.5 million km according to the new LISA design
(Danzmann et al. 2016). The line connecting the Sun and the
center of mass of the detector keeps a 60° angle with respect to
the plane of the constellation. In addition to the revolution
around the Sun, the detector rotates clockwise (viewed from the
Sun) around its center of mass with a period of one year.
Pictures of this orbit configuration can be found in Figure 4.8
of Danzmann et al. (1996) or in Figure 4 of Danzmann et al.
(2016). TianQin has a similar equilateral triangular configura-
tion and is sensitive to the same frequency range. Different
from LISA, TianQin is in a geocentric orbit with a period of
3.65 days. The distance between each pair of spacecraft is
about 1.7×105 km. The normal vector of the detector plane is
fixed and points toward the reference source J0806.3+1527,
which is a candidate ultracompact WD binary in the Galaxy
(longitude=120°.5, latitude=−4°.7 in the ecliptic coordinate
system) and is a strong periodic GW source in the milli-Hertz
range. Illustrations of TianQin’s configuration and orbit can be
found in Figure 1 of Luo et al. (2016) or in Figures 1 and A1 of
Hu et al. (2018). Two aspects of the detectors are relevant to
our analysis, the noise spectrum and the antenna pattern
functions, which will be introduced respectively in the
following subsections.

3.1. Antenna Beam-pattern Functions

In the proper detector frame, the response of a ground-based
laser interferometer to GWs can be calculated using the
equation of geodesic deviation, which is (Maggiore 2008;
Poisson & Will 2014)

̈ ̈ ( )x x= h
1

2
. 27i

ij
j

However, it is not completely correct to straightforwardly
extend the same treatment to the situation of space-borne GW
detectors. In the derivation of the equation of the geodesic
deviation (27), the approximation that the distance between two
test masses is much smaller than the typical scale over which
the gravitational field changes significantly has be adopted.
This means that Equation (27) can be used to derive the
response function when the detector arm length is shorter than
the reduced wavelength of the GWs (see Section 1.3, 9.1 of
Maggiore 2008, and Cornish & Rubbo 2003; Hu et al. 2018 for
more details). The corresponding frequency, which is called the
transfer frequency, is given by

( )
p

=f
c

L2
, 28

*

where L is the arm length of the detector. This condition is satisfied
for the ground-based GW detectors because the sensitive bands of
ground-based detectors are far below their transfer frequency,
while it is not always satisfied for space-borne detectors. For

4
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instance, this critical frequency is 0.019Hz for LISA, and it is
0.28 Hz for TianQin, which are similar to the sensitive frequency
bands of the detectors. The transfer frequencies of LISA and
TianQin are illustrated by vertical dotted blue and orange
lines, respectively, in Figure 1. For science objectives such as
supermassive black hole binaries, Equation (27) can be safely used
(Klein et al. 2016; Feng et al. 2019). But in the case of BH–NS
binaries considered in this work, the rough estimation of last stable
frequency is much higher than the upper limit of the detector’s
sensitive band. It is not proper to use the response function derived
by extending the approach that is used for ground-based
interferometers.

The propagation of GWs in the time during which the
photons travel from laser source to photodetector is neglected if
one uses Equation (27) to derive the response function. When
frequencies are higher than the transfer frequency, there may be
GWs of a few wavelengths passing through the path of photons
during the time between emission and reception of the photons,
which makes the effect of GWs cancel out itself and
deteriorates the response of detectors to the GWs. In order to
get the exact response of detectors, the integration along the
null geodesic of photons between two test masses should be
calculated. The response functions of LISA-like detectors for
two GR polarizations are given by Cornish & Larson (2001),
Cornish & Rubbo (2003), and Rubbo et al. (2004), and the
same process can be extended to other polarizations (Liang
et al. 2019).

We present the general form of antenna pattern functions
here, while the explicit expression and the details of the process
can be found in Appendix B. The response of LISA or TianQin
to GWs has been shown in Equation (16), where the antenna
beam-pattern functions + ´F b l, , , are given by

[ˆ ˆ ( ˆ · ˆ ) ˆ ˆ ( ˆ · ˆ )] ( )W W= -  l lF l l f l l f
1

2
, , , 29A ij

A i j i j
1 1 1 2 2 2

where A denotes different polarizations (A=+,×, b, l),  ij
A

denotes polarization tensors, and l̂1 and l̂2 denote the unit vectors
of two arms. Comparing the antenna beam-pattern functions of
ground-based detectors, we find the differences are quantified by
the transfer functions ( ˆ · ˆ )W lf , 1 and ( ˆ · ˆ )W lf , 2 , which are
given by

⎪

⎪
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where ( ) =xsinc x

x

sin , and Ŵ denotes the unit vector of the GW
propagation direction. In the low-frequency limit f=f*, the
transfer functions ( ˆ · ˆ )W lf , 1 and ( ˆ · ˆ )W lf , 2 approach unity,
which returns to the case of ground-based detectors.
For the equilateral triangular configuration, there are two

independent output signals. The second output signal,
following the previous work (Cutler 1998), is equivalent to
the response of a two-arm detector rotated by π/4 with
respect to the first one, in the assumptions that the noise is
Gaussian, stationary, and totally symmetric. As shown in
Appendix B, (θ′, j′, ψ′) are employed to denote the GW
source direction and the polarization angle in the detector
coordinate system. In terms of (θ′, j′, ψ′), the two output

Figure 1. Sensitivity curves of LISA and TianQin. The vertical dotted blue and orange lines denote the transfer frequency of LISA and TianQin, respectively. The
vertical dashed green line denotes the last stable orbital frequency of the BH–WD binaries used in this paper, which is about 0.0042 Hz. For the BH–NS binaries,
because the last stable orbital frequency is higher than the upper limit of the sensitive bands of both detectors, it is not shown in this figure.
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signals can be expressed as
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where A=(+,×, b, l).

3.2. Noise Spectra of GW Detectors

The noise of a GW detector can be characterized by the one-
side noise power spectral density (PSD) Sn(h). We employ the
noise curve of LISA from Belgacem et al. (2019):
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Here, f*=0.019 Hz is the transfer frequency of LISA, and
LLISA is the arm length, which is 2.5 million km according to
the new LISA design (Danzmann et al. 2016). The acceleration
noise is given by
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The other noise is given by

( )= ´ - -S 8.899 10 m Hz . 34other
23 2 1

In addition to the noise from instruments, the numerous
compact WD binaries in the Galaxy can emit GWs of a few
milli-Hertz and produce confusion noise. The confusion noise
from unresolved binaries is approximated by

( ) { [ ( )]} ( )k= - -- -a
S f

A
e f s f

2
1 tanh , 35s f

conf
7 3

21

with A=(3/20)3.2665×10−44 Hz4/3, s1=3014.3 Hz−α, α=
1.183, s2=2957.7 Hz−1, and κ=2.0928×10−3 Hz.

For TianQin, we employ the noise curve provided by Luo
et al. (2016), Hu et al. (2018), and Feng et al. (2019),
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where f*=0.28 Hz is the transfer frequency of TianQin,
LTianQin=1.73×108 m is the arm length, and Sx=10−24

m2 Hz−1 and Sa=10−30 m2 s−4 Hz−1 are the position noise
and acceleration noise, respectively. The sensitivity curves

( )S fn of LISA and TianQin are presented in Figure 1.

4. Constraining the Screened Modified Gravity

4.1. Fisher Information Matrix

The Fisher matrix approach is widely used to estimate the
precision of future experiments. Compared with techniques like

Monte Carlo analysis, the Fisher matrix is a simpler way to
efficiently estimate errors of parameters in GW detection with
sufficient accuracy in the high signal-to-noise ratio (S/N) cases
(Finn 1992; Finn & Chernoff 1993; Cutler & Flanagan 1994).
The elements of a Fisher matrix are given by

˜( ) ˜( ) ( )L =
¶
¶

¶
¶

h f

p

h f

p
, , 37ij

i i

where ˜( )h f is the Fourier transform of the output h(t) of the
detectors, and pi are the parameters to be estimated. The angle
brackets denote the detector-dependent inner product,

˜( ) ˜( ) ˜( ) ˜ ( ) ˜ ( ) ˜( )
( )

( )òá ñ =
+

a f b f
a f b f a f b f df

S f
, 4

2
, 38

f

f
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where Sn( f ) is the PSD of the detector. The upper limit of
integral interval f2 is determined by min( fLSO, fup), where fup is
the upper limit of the detector’s sensitive band (1 Hz), and fLSO
is the last stable orbital frequency of the binary, which will be
discussed in the Section (4.2). The lower limit of integral
interval f1 is given by max( flow, fobs). Here, flow is the lower
limit of the detector’s sensitive band (10−4 Hz). The fobs
corresponds to the orbital frequency at Tobs earlier from the
time corresponding to f2. Approximately, Tobs can be regarded
as the designed mission duration of the detector. For LISA,
Tobs=4 yr (Danzmann et al. 2016), and for TianQin, Tobs=
5 yr (Luo et al. 2016). Using the formula of orbital decay to
leading order (Equation (43) with òd=0), the relation between
orbital frequency at the beginning and end of any time interval
can be given by
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The Fisher matrix for the combination of the two
independent output signals is given by
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of inner product, the combined S/N of two independent signals
is

( ) ( ) ( )r r r= + , 41I II2 2 2

with ( ) ˜ ˜r = á ñh h,I I I2 and ( ) ˜ ˜r = á ñh h,II II II2 . The covariance
matrix Σ can be derived by taking the inverse of Fisher matrix
Λ, that is, Σ=Λ−1, and the estimation of the rms error of a
parameter pi is given by D = Spi ii . The correlation
coefficients between parameters pi and pj are given by

( )
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S

S S
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1 2

4.2. Constraining Screened Modified Gravity

As shown in Zhang et al. (2017) and Liu et al. (2018b), the
orbital decay of a compact binary, due to gravitational
radiation, is given by
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where ω is the orbital angular frequency and òd=ò1−ò2 is the
difference between the screened parameters of two objects. We
find that the asymmetric binary systems can induce more phase
corrections, which induces the foremost difference between
SMG and GR. Therefore, in this work, we consider the
asymmetric systems, BH–NS binaries and BH–WD binaries, as
the GW sources.

Because the stationary phase approximation, which is used
to get the Fourier transform of a detector’s response, is
maintained only in the stage where the change in orbital
frequency is negligible in the period of a single circle, and the
PN waveforms are not accurate enough in the late stage, a
specific frequency must be chosen where the waveforms are
truncated. As rough estimations, we employ the Roche radius
of a rigid spherical body as the last stable distance between the
two objects (Scharre & Will 2002), which is given by

⎛
⎝⎜

⎞
⎠⎟ ( )=d R

M

M
2 . 44comp

BH

comp

1
3

Here, Rcomp denotes the radius of the companion, and MBH and
Mcomp denote the mass of the black hole and the companion,
respectively. The corresponding orbital frequency is given by

( )
( )

p
=

+
f

G M M

d

1

2
. 45

BH comp

3

For the NS, the typical values of mass and radius are
MNS=1.4 Me and RNS=10 km. For the WD, we employ
the parameters of the target in PSR J1738+0333, which are
given by MWD=0.181 Me and RNS=0.037Re (Antoniadis
et al. 2012). For the massive BH in the binary systems, we
consider two cases in this paper, MBH=1000 Me and
MBH=10,000 Me. The last stable orbital frequencies of
BH–WD binaries are approximately 0.0042 Hz for both
binaries with different BH masses, which are illustrated by
the vertical dashed green line in Figure 1. Since the fLSO of
BH–NS binaries exceeds the upper limit of the detectors’
sensitive band, it is not shown in Figure 1. Similar to previous
work (Will & Yunes 2004), the locations of the GW sources
are set to the Virgo cluster, where the distance D=16.5 Mpc
and the celestial position in the ecliptic coordinate system is
longitude 181°.04 and latitude 14°.33.

Because the screened parameter of BH is zero (Liu et al.
2018b), the terms related to ò1ò2 vanish, and ∣ ∣d becomes the
screened parameter of the companion òNS or òWD because the
GW waveforms contain the term  NS,WD

2 rather than òNS,WD.
For this reason, similar to Liu et al. (2018b) and Zhang et al.
(2019b), we constrain the parameter  NS, WD

2 instead of òNS,WD

in our analysis. In addition, because A1 and òd always appear
together in the GW waveforms, to evade a singular matrix in
the practical computations of the Fisher matrix, we consider
A1òd as a combination and constrain it, instead of the parameter
A1.

In the Fisher matrix analysis, there are 11 free parameters in
the full response functions, which are

( ) ( )i h q j yY  M r t A M, ln , ln , ln , , , , , , , . 46c c c d d1 Pl
2

As mentioned above, the rms errors of the parameters can be
estimated by the Fisher matrix method for future GW
experiments. The GW waveforms return to those of GR when

A1=0 and òNS,WD=0. So, in this article, we set A1=
òNS,WD=0 in the fiducial waveforms, and their rms errors can
be considered as the upper limits of A1 and òNS,WD by the
potential observations. The values of the other parameters in
fiducial waveforms are set as ( )y= Y = =t 0, 0, 0c c . The
fiducial waveforms are presented in Figure 2, where we have
set the inclination angle ι=45° and the mass of BH is chosen
to be 1000Me.
In our analysis, we consider three different cases to

investigate the capabilities of LISA and TianQin:

1. In the first case, we assume the GW detectors will
constrain SMG only by observing the extra polarization
modes of GWs. As mentioned in the previous discussion,
it includes only the breathing polarization mode hb,
because we have set the mass of the scalar field m 0s
in our calculation. The expansion coefficient of the
coupling function A1 is set to a specific value. The f (R)
gravity can be cast into the form of scalar–tensor theory,
and the scalar degree of freedom can be suppressed in
high-density regions by the chameleon mechanism. The
coupling function in f (R) gravity is given by ( )f =A

( )( )
= xf

¢
exp

f R M

1

Pl
with x = 1 6 (Liu et al. 2018a).

Here, we choose =A M 1 61 Pl as a characteristic value.
Thus, the amplitude of hb is quantified by the screened
parameter òNS,WD, which will be constrained by the
potential observation. We consider the values of òNS,WD

that can make the S/N reach 10 as the constraints of
screened parameters of NSs or WDs.

2. In the second case, we constrain the SMG by analyzing
the deviation of the GW waveform in SMG from that in
GR. The Fisher matrix technique will be employed for the
analysis. Because the GW detectors are sensitive to the
GW phases, rather than the amplitudes, in this case only
the phase correction induced by dipole radiation is taken
into consideration. We consider a waveform model
including the restricted waveforms where all phase
corrections are included while all amplitude corrections
except the leading order are discarded and the phase
correction induced by dipole radiation. As shown in Liu
et al. (2018b), the standard PPE framework can be
applied to the waveforms in SMG when we consider the
two tensor polarizations h+ and h×. The general form of
the detector’s response function is given by

˜( ) ˜ ( )[ ( ) ] ( )( )a p= + b ph f h f M f e1 , 47c
i M f

GR
a

c
b

3 3

where a ba b, , , are the four PPE parameters and ˜ ( )h fGR
denotes the response function in GR. In this case, we
only consider the non-GR correction in phase. The
PPE parameters are taken to be a b= = =a 0,

h- = - b, 7d
5

14336
2 2 5 , and the restricted waveforms

are employed in ˜ ( )h fGR . Since the terms related to A1

only present in the amplitude corrections are discarded in
this case, there are 10 parameters remaining in the Fisher
matrix.

3. In the third case, the higher order amplitude corrections
of PN waveforms are included, and all available
correction terms of GW waveforms are taken into
account. The full response functions are presented in
Appendix A. In order to investigate the influence of
higher order amplitude corrections on the constraints of
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SMG, we use the waveform model that includes 3.5 PN
phase corrections, 2.5 PN amplitude corrections, and
corrections concerned with the SMG both in amplitude
and phase as the input signals of the Fisher matrix. The
11 parameters in Equation (46) all exist in the Fisher
matrix, and we can obtain the constraints of both A1MPl òd
and NS,WD from the Fisher matrix analysis.

5. Result and Discussion

5.1. Constraints on the Screened Parameters of Neutron Star
and White Dwarf

Using the process discussed in the last section, we forecast
the potential constraints on òNS and òWD from future space-
borne GW detectors. Applying the analysis to the BH–WD
systems, we find the constraint on òWD cannot be derived

because the S/N values for these signals are all less than 10.
We can give an example in which GW signals from a BH–WD
binary with mBH=1000Me are observed by LISA for four
years. The last orbital frequency can be estimated by
Equation (45) as 0.004216. The designed mission duration of
LISA is four years. The orbital frequency corresponding to four
years before the last orbit is 0.004200, which is given by
Equation (39). We can observe from Figure 2 that the signals
observed in the whole mission duration of detectors are nearly
sinusoidal. Therefore, the integral interval of the inner product
(38) is about 10−5 order of magnitude for this example. The
order of magnitude of the response ˜( )h f and the noise ∣ ( )∣S fn

can be roughly read out from Figures 2 and 1, respectively, and
is 10−17 and 10−20. The S/N of this signal detected by LISA
can be roughly estimated as 10 . In fact, the S/N values of the
other cases are also less than 10. Therefore, we conclude that

Figure 2. Detector responses ˜( )h f to the GWs, produced by BH–NS binaries and BH–WD binary, where we have set mBH=1000Me and ι=45° in this figure. In
each panel, the dashed blue line denotes the full waveforms in GR, the dashed–dotted orange line denotes the full waveforms in SMG, and the solid green line denotes
the restricted waveforms in GR. In order to show the deviation from GR, we consider the extreme case with òd=1 in this picture. The frequency intervals are
determined by the rules discussed in Section 4.1. The waveforms are truncated by the last stable frequency. For the BH–WD binary, this frequency is about 0.0042 Hz.
For the BH–NS, this frequency is higher than the upper limit of the detectors’ sensitive band. The lower bands of frequency are determined by the designed mission
duration of the detectors. The frequency intervals of BH–WD binaries are very small where the orbital frequency of the binaries has hardly any change. Since the full
waveforms in GR are close to the restricted waveforms, especially at low frequency, the blue lines denoting the full waveforms in GR are overlapped with the green
lines denoting the restricted waveforms. The oscillations in low frequency are induced by the motion of space-borne detectors, which are absent for ground-based
detectors, and the irregular fluctuations in high frequency are due to the transfer functions in Equation (30).
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the GW signals of BH–WD considered in this paper cannot be
detected by the space-borne LISA, Taiji, or TianQin missions,
and the constraint on òWD is not available.

Let us turn to the cases with BH–NS binaries as the GW
sources. We considered two kinds of binaries with different BH
mass, mBH=1000Me and mBH=10,000Me, and for each
case we consider the different inclination angles of the binary
system. As shown in Equations (17) and (21), we find that
the contributions of non-GR polarization induced by SMG to
the detector’s response depend on ι by the sin function, and the
polarization hb vanishes when ι=0°. So, in order to avoid
singularity, we choose ι=0°.1 instead of ι=0° in the
analysis.

The constraints of screened parameters for the three cases
are presented in Tables 1 and 2 for TianQin and LISA,
respectively. From these results, we find the constraint of
parameter òNS is quite loose in case I, where only the extra
breathing mode is used to constrain the SMG theory. Since the
amplitude of this mode is much smaller than that of plus and
cross modes, its contribution to the GW waveform modification
is subdominant (Liu et al. 2018b). For this reason, although the
production of the extra polarization mode is a significant non-
GR effect, it is hard to detect in the actual observations.
However, in case II and case III, the constraints ( )~ -  10NS

5

are more than four orders tighter than that in case I. In addition,
in comparison with case II and case III, we find that the
constraints have only slight improvement, if taking into
account the contribution of higher order amplitude corrections
of the PN waveform. These results confirm the conclusions: for
the test of SMG by space-borne detectors, the most important
modifications of GW waveforms are caused by the correction
terms in GW phases, rather than by the extra polarization
modes or the correction terms in GW amplitudes.

For each case, we can compare the corresponding results of
the TianQin and LISA missions. For the case with the same BH
mass and inclination angle, we find that TianQin gives the
better results for the cases of smaller BH mass (i.e.,
mBH=1000Me), and LISA gives the better results for the
cases of larger BH mass (i.e., mBH=10,000Me). Therefore,
we conclude that, at least for constraining the SMG theory,

TianQin is compatible with the smaller EMRIs, and LISA is
compatible with the larger EMRIs. Meanwhile, by comparing
the two cases of BH mass, we find that one can get tighter
constraints from the binaries with lighter BH for TianQin, yet
the difference between the two cases is not obvious for LISA.
By observing the form of the Fisher matrix (Equations (37) and
(38)), we can find that two kinds of information are inputted to
the Fisher matrix. One is the noise spectrum of a detector, and
another is the partial differential of response ˜( )h f to different
parameters, which represents how the response ˜( )h f depends
on a parameter. If the response ˜( )h f sensitively depends on a
parameter, one can expect the small rms of this parameter or the
tight constraint on this parameter. For the parameter  NS

2 , when
deriving the partial differential, we find there is a factor -mBH

7 3

emerging where we have approximated h m

m
NS

BH
and M;mBH

for EMSIs (extreme-mass-ratio inspirals). Therefore, it is
reasonable that the constraints on  NS

2 become loose when the
BH mass increases. Note that the noise spectrum and antenna
pattern function also influence the constraints on  NS

2 . We
attribute the regular pattern observed above to the different
forms of noise spectrum and antenna pattern function for the
two detectors.
In case I with fixed BH mass, we find that the constraints are

looser for the smaller inclination angles, because the polariza-
tion b depends on the inclination angle by sin function. For
case I, where only b polarization is taken into account, the
values of òNS need to be higher when the inclination angle is
small in order to make the S/N reach 10. However, in case II
and case III with fixed BH mass, the smaller inclination angle
follows the tighter parameter constraint because, relative to the
edge-on sources, the face-on sources can be detected at the
larger S/N.
In case III with the full GW waveform modifications, in

addition to òNS, the model parameter A1 can also be
constrained. The results of A1 are shown in Tables 3 and 4.
We find that this parameter cannot be constrained well when
the ι is too small, and the constraints are better for smaller
inclination angle and heavier BH mass. LISA is more sensitive

Table 1
Constraints on òNS Given by TianQin for Two Cases of Black Hole Mass with Various Inclination Angles

1000 Me 10,000 Me

ι(deg) Case 1 Case 2 S/N Case 3 S/N Case 1 Case 2 S/N Case 3 S/N

0.1 3.14 3.8×10−5 110 3.3×10−5 110 4.21 6.2×10−5 310 5.4×10−5 300
30 0.73 3.7×10−5 99 3.5×10−5 99 0.16 6.6×10−5 270 5.5×10−5 270
45 0.17 4.1×10−5 83 3.6×10−5 83 0.11 7.1×10−5 230 5.8×10−5 220
60 0.14 4.6×10−5 65 4.0×10−5 66 0.09 8.0×10−5 180 6.2×10−5 180
90 0.12 5.7×10−5 43 4.7×10−5 43 0.08 9.4×10−5 120 7.3×10−5 120

Table 2
Constraints on òNS Given by LISA for Two Cases of Black Hole Mass with Various Inclination Angles

1000 Me 10,000 Me

ι(deg) Case 1 Case 2 S/N Case 3 S/N Case 1 Case 2 S/N Case 3 S/N

0.1 3.40 4.8×10−5 140 4.2×10−5 140 3.90 5.0×10−5 500 4.1×10−5 480
30 0.77 5.2×10−5 110 4.4×10−5 110 0.13 5.4×10−5 430 4.4×10−5 420
45 0.73 5.7×10−5 92 4.6×10−5 95 0.09 5.8×10−5 360 4.6×10−5 350
60 0.71 6.6×10−5 71 5.0×10−5 72 0.07 6.6×10−5 280 5.0×10−5 270
90 0.69 8.4×10−5 40 6.1×10−5 41 0.06 8.5×10−5 160 6.2×10−5 150
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to the mass of the BH. The constraints given by LISA are
enhanced more when the mass of BH increases.

In summary, we find the best constraints expected to be reached
by the LISA mission are òNS�4.2×10−5 and A1MPlòd�
6.0×10−3 with mBH=1000Me, and òNS� 4.1×10−5 and
A1MPl òd�2.6×10−3 with mBH= 10,000Me. For TianQin, the
forecasts are òNS�3.3×10−5 and A1MPlòd�4.4×10−3 with
mBH=1000Me, and òNS� 5.4×10−5 and A1MPl òd�3.0×
10−3 with mBH= 10,000Me, in the best case. Note that, in
previous work (Liu et al. 2018b), we have calculated the potential
constraint of òNS by the future ground-based Einstein telescope,
and we found that òNS<6×10−4(104/NGW)

1/4, where NGW is
the total number of GW events observed by the Einstein
telescope. Compared with this constraint, we find that constraints
given by space-borne GW detectors are more than one order of
magnitude tighter than those given by the third-generation
ground-based GW detectors.

5.2. Comparison with Other Observational Constraints

In this section, we would like to compare the above results,
which are forecasts for the future space-borne GW detectors,
with the constraints placed by the present experiments,
including pulsar timing observations, lunar laser ranging
(LLR), and the Cassini experiment. We find that the constraint
given by GW observations is complementary to the constraint
from the Cassini experiment, but weaker than those from LLR
and binary pulsars. Due to the strong surface gravitational
potentials of neutron stars, although the screened parameter of a
neutron star can be constrained quite well, the constraint of the
scalar background fVEV is worse than that given by LLR. As
for pulsar timing experiments of binary pulsars, the constraints
on fVEV are actually from the constraints on the orbital period
decay caused by energy loss through gravitational radiation.
This is similar to GW observations that constrain fVEV by
using the GW waveform. As we can see from the waveform
(Equations (71), (72), and (82)), the terms concerned with
SMG include the terms relevant to (2πfGm)−1, ( )p -fGm2

1
3 ,

( )p -fGm
2
3 in amplitude (Equations (71), (72)) and ( )p -fGm n2

2
3

in phase (Equation (82)), which means that the SMG effects are
more obvious in the lower frequency range. The most sensitive
frequency of space-borne GW detectors is about 10−2 Hz,
while the orbital period of binary pulsars is on the order of

0.1 day. It is reasonable that the constraints given by pulsar
timing are better than the constraints given by GW observa-
tions. This result implies that, at least for the three SMG models
considered in this work, the GW observations by space-borne
detectors may be not a good tool for the task of testing SMG
theories.
Pulsar binary systems provide very useful tools for testing

gravity theories. The first indirect evidence of the existence
of GWs was given by the measurement of binary pulsar
orbital period decay (Taylor & Weisberg 1982). By monitoring
the orbital period change, the deviation from GR can be
constrained. During the Apollo program and the Lunokhod
missions, laser reflectors were installed on the moon. The laser
pulses emitted on Earth can be reflected by the reflectors.
By measuring the round-trip time, the Earth–Moon distance can
be measured with extreme accuracy. The constraints on the
Nordtvedt parameter and time variation of the gravitational
constant can be given by LLR experiments (Hofmann et al.
2010). In this paper, we adopt the constraints in our previous
work (Zhang et al. 2019a), which gave the upper bound on the
scalar background fVEV (the VEV of the scalar field in SMG) as

⎛
⎝⎜

⎞
⎠⎟ ( )

f
´ -

M
4.4 10 , 48VEV

Pl pulsar

8

by pulsar observations of PSRs J1738+0333 and J0348+0432
at 95.4% confidence level (CL), and the constraints by LLR at
95.4% CL of

⎛
⎝⎜

⎞
⎠⎟ ( )

f
´ -

M
7.8 10 . 49VEV

Pl LLR

15

The Cassini satellite was in solar conjunction in 2002. The
Shapiro time-delay measurements using the Cassini spacecraft
yielded a very tight constraint on the PPN parameter γ (Bertotti
et al. 2003):

∣ ∣ ( )g - ´ -1 2.3 10 . 50obs
5

These constraints will be compared with the potential
constraint from future GW observations in this subsection.
In SMG, the screened parameter of an NS or WD can be

approximated by (Zhang et al. 2017)

( )
f

=
F


M

, 51a
a

VEV

Pl

where a denotes NS or WD, F = Gm Ra a a is the surface
gravitational potential of the a object, and fVEV is the scalar
background in SMG. The constraints on the screened parameter
òa can be converted to the constraints on the scalar background
fVEV, and vice versa. Here, we consider the best constraint
on the screened parameter given by TianQin, which is òNS�
3.3×10−5, and compare with other observational constraints
on SMG. The corresponding constraint on fVEV given by
TianQin is

⎛
⎝⎜

⎞
⎠⎟ ( )

( )

f
´ -

M
7.6 10 . 52VEV

Pl GW NS

6

Similarly, we also consider the best result of A1,

( )´ - A M 2.6 10 , 531 Pl NS
3

Table 3
Constraints on A1MPl òNS Given by TianQin

ι(deg) 1000Me 10,000Me

0.1 2.6 1.8
30 9.0×10−3 6.2×10−3

45 6.3×10−3 4.4×10−3

60 5.1×10−3 3.5×10−3

90 4.4×10−3 3.0×10−3

Table 4
Constraints on A1MPl òNS Given by LISA

ι(deg) 1000Me 10,000Me

0.1 3.5 1.5
30 1.2×10−2 5.4×10−3

45 8.5×10−3 3.8×10−3

60 6.9×10−3 3.1×10−3

90 6.0×10−3 2.6×10−3
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as a typical value of constraint on A1 to compare with other
constraints. In the following, we will compare these constraints
in three specific SMG models: chameleon, symmetron, and
dilaton theories.

5.2.1. Chameleon

The chameleon model was proposed by Khoury & Weltman
(2004a, 2004b), who introduced the screening mechanism by
making the mass of the scalar field depend on the environment
density. The original chameleon model has been ruled out by
the combined constraints from the solar system and cosmology
(Hees & Füzfa 2012; Zhang et al. 2016). The idea of the
chameleon can be revived by introducing a potential and
coupling function that has an exponential form (Brax et al.
2004)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )f

a
f

f
bf

= L
L

=
a

V A
M

exp , exp . 544
4

Pl

Here, α, β are positive dimensionless constants, and Λ denotes
the energy scale of the theory, which is required by the
cosmological constraints to be close to the dark energy scale

´ -2.24 10 3 eV (Hamilton et al. 2015; Zhang et al. 2016). The
scalar background fVEV in the chameleon model is given by
(Zhang et al. 2016, 2017)

⎡
⎣⎢

⎤
⎦⎥ ( )f

a
br

=
L a+ a+M

, 55
b

VEV
Pl

4
1

1

where ρb is the background matter density corresponding to the
galactic matter density ρgal ; 10−42 GeV4 (Zhang et al. 2017).
The PPN parameter γ in the chameleon model is given by

(Zhang et al. 2016)

( )g
bf

= -
FM

1
2

, 56VEV

Pl Sun

where FSun denotes the surface gravitational potential of the
Sun. The expansion coefficient of coupling function A1 is given
by Zhang et al. (2016), which is b=A A M1 0 Pl. Recall that
what we actually get by the process discussed above is the
constraints on A1MPlòNS, which takes the form

( )b
f

=
F

A M
M

, 571 Pl NS
VEV

Pl NS

where we have adopted =A 10 . Using the above formulae
(Equations (55)–(57)), the constraints on the parameters of the
chameleon model can be obtained by the constraints on fVEV,
A1, and γ (Equations (48)–(50), (52), (53)). We find that the
expression of A1 in Equation (57) is similar to that of the PPN
parameter γ in Equation (56). The comparison can be glimpsed
by comparing β fVEV/MPl, which is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

bf bf
´ ´- - 

M M
5.4 10 , 2.4 10 .

58
A

VEV

Pl

4 VEV

Pl Cassini

11

1

Since the constraint given by A1 is much weaker than that
derived from other observations, the allowed range will fill
the full region of Figure 3. For this reason, the constraint
corresponding to A1 is not shown in Figure 3.
The other four constraints are illustrated in Figure 3, where

the dashed line denotes the forecast for the GW constraint, the
solid lines denote the constraints of real experiments (pulsar
and LLR), their allowed regions the areas to the right of the
corresponding lines, and the region allowed by the Cassini
experiment is illustrated by the yellow area. Although the GW
observations can give the tight constraint on the screened

Figure 3. Parameter space of the exponential chameleon model. The dashed blue line denotes the forecast of constraints given by future space-borne GW detectors.
The solid green and orange lines denote the constraints given by the real experiments, the pulsar observations and LLR, respectively. The allowed regions are the areas
to the right of the corresponding lines. The allowed region of constraint given by the Cassini experiment is illustrated by the yellow area.
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parameter of the NS, the constraint on the scalar background
fVEV cannot be improved simultaneously because the surface
gravitational potential of NS is much larger than that of a WD
or the solar system. We find that the most stringent bound on
chameleon is still given by the combined constraint of LLR and
Cassini (Zhang et al. 2019a), which gives α�0.35.

5.2.2. Symmetron

The symmetron models are characterized by a Mexican hat
potential and a quadratic coupling function (Hinterbichler &
Khoury 2010; Hinterbichler et al. 2011; Davis et al. 2012),

( ) ( ) ( )f m f
l
f f

f
= - + = +V V A

M

1

2 4
, 1

2
, 590

2 2 4
2

2

where μ and M are mass scales, λ is a positive dimensionless
coupling constant, and V0 is the vacuum energy of the bare
potential V(f). In the symmetron model, the VEV fVEV is
given by (Zhang et al. 2016, 2017)

( )f
l

=
m

2
, 60s

VEV

which is proportional to the scalar mass. Similar to the
chameleon model, the constraints on the scalar background
fVEV can be interpreted as the constraints on the parameters ms

and λ of the symmetron model, which are shown in the upper
panel of Figure 4. The ms is the effective mass of the scalar
field background. The scalar field background plays the role of
dark energy, which should have effects on large scales to
accelerate the expansion of the universe. So the -ms

1 is
considered as roughly cosmological scale (∼1 Mpc; Zhang
et al. 2017).

The PPN parameter γ in the symmetron model is (Zhang
et al. 2017, 2016)

( )g
f

= -
FM

1 2 . 61VEV
2

2
Sun

Thus, we can obtain the constraint on the scalar background
fVEV with mass scale M from the Cassini experiment, which is
presented in the bottom panel of Figure 4. The expansion
coefficient of coupling function A1 is given by (Zhang et al.
2016)

( )
f

=A
M

. 621
VEV

2

The term A1MPl òNS, which is treated as a parameter in the
computations, takes the form

( )
f

=
F

A M
M

. 631 Pl NS
VEV
2

2
NS

Thus, we can compare the constraints of A1 with the
constraints of the Cassini experiment by comparing f MVEV

2 2

directly:

⎛
⎝
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⎞
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64
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VEV
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2
4 VEV

2
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11

1

Since the surface gravitational potential of NS is much larger
than that of the Sun, the constraint given by A1 is much weaker

than that given by the Cassini experiment. The constraint given
by A1 is also not plotted in Figure 4.
The other four constraints are illustrated in Figure 4. The

upper panel shows the upper bound on the mass of scalar field
ms (or the lower bound on -ms

1) with the coupling constant λ.
The dashed line denotes the forecast for GW constraints, and
the solid lines denote the constraints of real experiments (pulsar
and LLR). The most stringent constraint is given by LLR. If

- m 1s
1 Mpc, the constraint on λ given by LLR is λ�10−85.3.

The bottom panel shows the constraints in parameter space
(fVEV, M). The yellow area denotes the allowed region of
constraint given by the Cassini experiment. The dashed and solid
vertical lines represent the constraints on fVEV given by the
forecast of GWs (Equation (52)) and the real experiments
(Equations (49) and (48)), respectively. The corresponding
allowed regions are the areas to the left of the lines. The most
stringent constraint is still given by the combined constraints of
LLR and Cassini.

5.2.3. Dilaton

In the dilaton model, the potential and coupling functions
take the forms (Damour & Polyakov 1994a, 1994b; Brax et al.
2010)

( ) ( ) ( ) ( ) ( )f
f

f
f f

= - = +
- V V

M
A

M
exp , 1

2
, 650

Pl

2

2

where V0 is a constant that has the dimension of energy density,
M denotes the energy scale of the theory, and få represents the
approximate value of the scalar field today. The scalar
background fVEV and PPN parameter γ are given by (Zhang
et al. 2016, 2017)

( )
( )f f

r

r
g

f f
= + = -

-
F

L


M

M M
, 1 2 . 66

b
VEV

2

Pl

VEV
2

2
Sun

0

Here, ρb is the background matter density, which is the galactic
matter density ρgal ; 10−42 GeV4 in our calculation, and rL0

denotes the density of dark energy, which is r ´L 2.51
0

-10 GeV47 4 (Zhang et al. 2016). The screened parameter of a

object takes the form = f f-
F

a M
a

a

VEV

Pl
, where f f= +

r

r
L

a

M

M a

2
0

Pl
is

the minimum of the effective potential inside the object, and ρa
is the matter density inside the object. Because the matter
density in compact objects is much larger than that in the

cosmological background, we can drop the term
r

r
LM

M a

2
0

Pl
in the

relation between the screened parameter òa and the parameterM
of the dilaton model, which has the form

( )
r

r
F = L

M

M
. 67a a

b

2

Pl
2

0

Another parameter for which we can get the constraints from
GW observation takes the form

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟ ( )

r

r
=

F
LA M

M

M

1
. 68

b
1 Pl NS

Pl

2 2

NS

0

As in the previous models, the constraints on screened
parameters òa, A1, and PPN parameter γ can be switched to
the constraints on the parameter M of the dilaton model. The
results are shown in Table 5. As mentioned before, although
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the future observations of GWs from BH–NS binaries can
constrain the screened parameter of NSs very stringently, the
constraint on the mass scale M by GW observations is not
stringent, due to the large gravitational surface potential of NS.
The tightest constraint on the dilaton model is still given by
LLR observation.

6. Conclusion

Gravitational waves provide an excellent opportunity to test
GR, which is always considered as the most successful theory
of gravity, in the strong gravitational fields. In this issue, the
calculation of GW waveforms in alternative gravitational
theory is important. The SMG is one of the simplest extensions
of GR in the scalar–tensor framework, which naturally explains
the acceleration of cosmic expansion by introducing the scalar
field. In addition, in this theory, the fifth force caused by the
scalar field can be suppressed in the dense regions to satisfy
various tests in the solar system and laboratories. For these
reasons, the SMG theory and its specific models, including
chameleon, symmetron, dilaton, and f (R), have been widely
studied in the literature. Based on the GW waveforms produced
by the coalescence of compact binaries in general SMG derived
in Liu et al. (2018b), in this article we investigate the potential
constraints on the general SMG theory from future GW

observations. In our calculations, we focus on future space-
borne missions, including LISA, TianQin, and Taiji, and
assume EMRIs, including BH–NS and BH–WD in the Virgo
cluster, as the GW targets. By comparing three different cases,
we find that the extra polarization modes, the breathing mode
and the longitude mode, have little contribution to the
constraining of model parameters. The modifications of GW
waveforms in the plus and cross modes, in particular the
correction terms in the GW phases, dominate the constraint of
SMG parameters. If a GW signal produced by the coalescence
of a BH–NS system is detected by LISA, Taiji, or TianQin, the
screened parameter òNS can be constrained at the level of

( )< - 10 5 . On the other hand, limited by the durations and the
sensitive frequency bands of the GW detectors, we find that the
GW signals produced by the coalescence of BH–WD systems
are difficult to detect by LISA, Taiji, or TianQin. For three
specific SMG models (chameleon, symmetron, and dilaton), we
compare this potential constraint with the other existing
constraints derived by the Cassini experiment, LLR observa-
tions, and binary pulsars. We find that the constraint from GW
observation is complementary to that from the Cassini
experiment, but weaker than those from LLR observations
and binary pulsars.

This work is supported by NSFC grants No. 11773028, No.
11633001, No. 11653002, No. 11421303, No. 11903030, No.
11903033, the Fundamental Research Funds for the Central
Universities, the China Postdoctoral Science Foundation grant
No. 2019M652193, and the Strategic Priority Research
Program of the Chinese Academy of Sciences grant No.
XDB23010200.

Figure 4. Constraints on the symmetron model. The upper panel shows the upper bound on the scalar mass ms (or the lower bound on the -ms
1) with the coupling

constant λ. If - m 1s
1 Mpc, the constraint on λ given by LLR is λ�10−85.3. The bottom panel presents the constraints in parameter space (fVEV, M). The yellow

area denotes the allowed region of the constraint given by the Cassini experiment. The dashed line denotes the forecast of the constraints given by future space-borne
GW detectors, and the two solid lines denote the constraints given by pulsar and LLR experiments. The corresponding allowed regions are the areas to the left of the
lines.

Table 5
Constraints of the Dilaton Model Derived from Various Observations

GW(òNS) GW(A1) Pulsar LLR Cassini

M/MPl �0.55 �920 �0.042 �1.8×10−5 �0.20
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Appendix A
Post-Newtonian Waveform

As shown in previous works (Van Den Broeck &
Sengupta 2006; Arun et al. 2007; Trias & Sintes 2008a,
2008b), for space-borne detectors, considerable consequences
can result if higher order amplitude corrections are taken into
consideration. In order to investigate whether including higher
PN order amplitude corrections can affect the constraints on
SMG or not, we adopt a waveform that combines the SMG
corrections which were derived in our previous work (Liu et al.
2018b) and the full GR waveform, which is up to 3.5 PN in the
phase and 2.5 PN in the amplitude. In this appendix, we present
explicitly this waveform in which the corrections caused by
SMG and the Doppler modulation peculiar to space-borne
detectors are included. We adopt conventions similar to Van
Den Broeck & Sengupta (2006), where the full waveforms in
GR have been presented.

In the PN approximation, the waveforms can be expressed as
expansions in the typical internal speed of the source. The
general forms of two GR polarizations are written as

( ) {

} ( )

( ) ( ) ( )

( ) ( ) ( )

h
= + +

+ + +

+ ´ + ´ + ´ + ´

+ ´ + ´ + ´

h t
m

D
x H x H x H

x H x H x H

2

, 69

, ,
0 1 2

,
1 2 1

,
1

3 2
,
3 2 2

,
2 5 2

,
5 2

where x is the expansion parameter, which is defined as
x=[2πmF(t)]2/3 with F(t) the orbital frequency. The expansion
coefficients ( )

+ ´H s
, consist of linear combinations of [ ( )]Yn tcos and

[ ( )]Yn tsin , where Ψ(t) is the orbital phase and the number of
harmonics n=7 for 2.5 PN order in amplitude. The explicit
expressions of ( )

+ ´H s
, can be found in Arun et al. (2004, 2005). As

mentioned in Equation (16), the response function depends not
only on the waveforms but also on the antenna pattern functions.
The analytic expressions for the Fourier transform of a detector’s
response function can be obtained by using a stationary phase
approximation. The expressions are the sum of seven harmonics:

˜( ) ˜ ( ) ( )( )å=
=

h f h f . 70
k

k

1

7

Taking into account the corrections caused by SMG, the
explicit expressions of ˜ ( )( )h fk are as follows:
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,
, and ( )

+ ´D n s
,
, denote the prefactors of ( )Yncos ( )Ynsin

in ( )
+ ´H s

, , respectively, which can be found in Arun et al.
(2004, 2005), and we will not repeat them here. Note that fLSO
is the last orbital frequency where the waveforms are truncated.
We employ the Roche radius of rigid spherical bodies in
Equation (44) as a rough estimation of the last stable distance
between two objects of a binary. The SMG corrections enter
the waveform in harmonic one (71) and harmonic two (72).
The terms relevant to (2πfGm)−1 and ( )p -fGm2

1
3 in harmonic

one (71) are directly added into the waveform. These two terms
correspond to Equation (17). The term relevant to ( )p -fGm

2
3 in

harmonic two (72), which corresponds to the terms having the
same power of (πfGm) in Equations (21) and (23), is also
directly added into the waveform. The above three terms are
zero in the waveform of GR. The term relevant to (πfGm)0 in
harmonic two (72) is the modified leading-order term, which
can return to the case of GR when TFb=0 and Q=1. The
rest terms are all from higher order amplitude corrections in
GR, which can also be found in Van Den Broeck & Sengupta
(2006).Different from ground-based detectors, the antenna
pattern functions of space-borne detectors depend on time. In
the Fourier transform of a detector’s response function obtained
using stationary phase approximation, the time t in F+, F×, and
Fb is replaced by function t( f ), which is given by
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Here, γ=0.5772 is the Euler–Mascheroni constant, τ−2 is
concerned with the corrections induced by SMG, and τi(i�0)
is concerned with the frequency evolution at 3.5 PN in phase
(Buonanno et al. 2009). The phase Ψ( f ) is given by
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with γ=0.5772 the Euler–Mascheroni constant. Here,
Ψi(i�0) is the coefficient in the 3.5 PN phase function of
the Fourier domain waveform, and the coefficient Ψ−2 is
concerned with the correction of dipole radiation in SMG. Note
that ΨD denotes the Doppler modulation, which is the
difference between the phase of the wavefront at the detector
and at the barycenter. The expression of ΨD is given by
(Cutler 1998; Hu et al. 2018)

⎡
⎣⎢

⎤
⎦⎥

( ) ( )p q
p

jY = + -fR
t f

T
b2 sin cos

2
, 83D 0

where θ and j are the ecliptic colatitude and longitude of the
GW source, =R 1 au, T is one year, and b0 is the ecliptic
longitude of the detector at t=0. Finally, the other parameters,
E, Q, S−1, and T, are defined by Equations (19), (24), (25),
and (26).

Appendix B
Antenna Pattern Function

The response functions of LISA-like detectors can be found
in Cornish & Larson (2001), Cornish & Rubbo (2003), Rubbo
et al. (2004), and Liang et al. (2019). In this appendix, we will
give the expressions of antenna pattern function in a specific
coordinate system.

The general form of antenna pattern function for LISA-like
detectors is given in Equations (29) and (30). In the low-
frequency range, the transfer functions ( ˆ · ˆ )W lf , 1 and

( ˆ · ˆ )W lf , 2 approach unity, and the antenna pattern functions
return to the cases that are similar to the ground-based
detectors. Here we will write explicitly the polarization tensor
 ij

A and the vectors l̂1, l̂2, Ŵ in a specific coordinate system. This
process is similar to the case of ground-based detectors
(Maggiore 2008; Poisson & Will 2014) or the case of space-
borne detectors in the low-frequency approximation (Cutler
1998; Hu et al. 2018).

We choose the coordinate system tied to the detector, which
is denoted by ˆ ˆ ˆxyz. The interferometer arms are put in this
coordinate system, as shown in Figure 5. The unit vectors of
two arms can be expressed as

⎛
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in this coordinate system.
In a general metric theory, there are up to six possible

polarization modes. Besides the h+ and h× modes in GR, there
are the purely transverse hb mode, the purely longitudinal hl
mode, and two mixed modes hx and hy. In the coordinates
( ˆ ˆ ˆ )x x x, ,1 2 3 where the GW travels along the x̂3 direction, these
polarizations can be expressed as

⎛

⎝
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⎞

⎠
⎟⎟⎟ ( )=

+
-

+ ´

´ +h

h h h h
h h h h

h h h
. 85ij

b x

b y

x y l

In SMG, there are four modes: h+, h×, hb, and hl (Liu et al.
2018b). We can use polarization tensors  ij

A to expand the

metric perturbation as

( ) ( ) ( )å= h t h t , 86ij
A

ij
A

A

where = + ´A b l, , , labels the polarization modes. By using
the unit vector Ŵ (which points in the propagation direction of
the GW) and the unit vectors û and v̂ (which are orthogonal to
Ŵ and orthogonal to each other), the polarization tensors can be
rewritten as

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ( )

= - = +

= + = W W

+ ´ 

 

u u v v u v v u

u u v v

, ,

, . 87

ij i j i j ij i j i j

ij
b

i j i j ij
l

i j

Thus, FA can be derived straightforwardly once the unit vectors
Ŵ, û, v̂, and l̂1, l̂2 are expressed in the same coordinate system.
We employ (θ′, j′) to represent the direction of the GW source
in the detector coordinate system, where j′ is the azimuth angle
and θ′ is the altitude angle (we use the definition of θ′, which is
the angle between the direction of the GW source and the
direction of ẑ in this work). Here, ψ′ denotes the polarization
angle in the detector coordinate system. Therefore, the vectors
Ŵ, û, v̂ in the detector coordinate system can be given by
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Figure 5. Detector coordinate system.
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Different from the ground-based detectors, the timescale of a
GW signal detected by space-borne detectors is comparable to
the timescale of the detector motion. The motion of space-
borne detectors cannot be neglected, so (θ′, j′, ψ′) are
considered to be time-dependent. We need to find the
relationships between the direction of the GW source, as well
as the polarization angle in the detector coordinate system, and
those in the heliocentric coordinate system, which are denoted
by (θ, j, ψ). The relationships depend on the motion of the
detectors. We will discuss LISA first.

We employ ˆˆ ˆi j k to denote the heliocentric coordinates tied to
the ecliptic and (θ, j, ψ) to represent the direction of the GW
source and the polarization angle in the heliocentric coordinate
system, respectively. Recalling the orbital configuration of
LISA, which was introduced in Section 3, the unit vectors x̂, ŷ,
and ẑ of the detector coordinate system can be written in terms
of the heliocentric coordinate system as
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, 89

where ( ) = + pa t a t

T0
2

LISA
is the phase of rotation around the

detector’s center, and ( ) = + pb t b t

T0
2

LISA
is the phase of

revolution around the Sun. For the motion of LISA, the
periods of rotation around the detector’s center and the
revolution around the Sun are both one year. The initial phases
a0 and b0 are constant. We can take a0=0 and b0=0 without
loss of generality. The direction of the GW source r̂ can be
given in ˆˆ ˆi j k coordinates as

ˆ ( ) ˆ ( )ˆ ( ) ˆ ( )q j q j q= + +r i j ksin cos sin sin cos . 90

Using the geometry relationships of those vectors and angles, θ′
and j′ can be obtained:

ˆ · ˆ ˆ · ˆ
ˆ · ˆ

( )q f¢ = ¢ =r z
r y
r x

cos , tan . 91

As for polarization angle ψ′, we follow the definition in
Cutler (1998). An ellipse can be obtained by projecting the
binary’s circular orbit on the plane of the sky (i.e., the plane
orthogonal to the GW propagation direction). The major axis
of this ellipse is defined as the vector û mentioned above.
The polarization angle is defined as the angle between
the vector û and the vector pointing in the direction of
increasing θ′. A useful figure can be referred to in the literature

(Poisson & Will 2014, Figure 11.5). According to this
definition, the polarization is given by

[ ˆ ( ˆ · ˆ) ˆ] · ˆ
(ˆ ˆ ) · ˆ

( )y¢ =
-

´
L L r r z

r L z
tan , 92

where L̂ denotes the unit vector parallel to the orbital angular
momentum vector of the binary. The vector L̂ in the detector
coordinates ˆ ˆ ˆxyz is time-dependent, so we prefer to express L̂ in
the heliocentric coordinates ˆˆ ˆi j k. The vector L̂ in the coordinates
ˆˆ ˆi j k can be given by

ˆ [
( )] ˆ

[
( )]ˆ

[ ] ˆ ( )

i q j

i y j q j y
i y j

j i q q i y

i q q i y

=

+ +
+ -

+ +

+ -

L

i

j

k

cos sin cos

sin cos sin cos cos sin
sin cos cos

sin cos sin cos sin sin

cos cos sin sin sin . 93

In the above equation, inclination angle ι is the angle between
L̂ and r̂, and the polarization angle ψ in heliocentric
coordinates ˆˆ ˆi j k has the definition similar to ψ′ in the
coordinates ˆ ˆ ˆxyz, which is the angle between the major axis
of the projection ellipse and the vector pointing to the direction
of increasing θ.
The parameters (θ′, j′, ψ′) in the detector coordinates can be

eventually expressed in terms of the parameters (θ, j, ψ, ι) in the
heliocentric coordinates, which are considered to be time-
independent, and the variables a(t), b(t) describing the motion
of detectors in the heliocentric coordinates, which have simple
relationships with time. Substituting Equation (88) into
Equation (87), we can obtain the polarization tensors in the
detector coordinates. The transfer functions can also be obtained
by putting the expressions of l̂1, l̂2, Ŵ (Equations (88), (84)) into
Equation (30). Substituting these results and Equation (84) into
Equation (29), the antenna pattern functions can finally be
assembled. The final results are straightforward but cumber-
some. To avoid redundancy, the results are not presented here.
A similar calculation is also applicable for TianQin.

Compared with LISA, TianQin will run in a geocentric orbit,
and the orientation of TianQin is fixed to the reference source
J0806.3+1527 instead of varying with time. A brief introduction
to TianQin’s orbit was given in Section 3. The base vectors of
TianQin’s detector coordinates ( ˆ ˆ ˆ)x y z, , TianQin can be given by

ˆ [ ( ) ( ) ] ˆ
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sin cos sin cos cos

sin sin ,
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0 0 0

0 0 0

0

0 0 0

0 0 0

0

0 0 0 0 0

in the heliocentric coordinates, where (θ0, j0) denote the
direction of the reference source, and ( ) = + pa t a t

T0
2

TianQin

represents the rotation phase of the detector. Here, TTianQin is
the period of TianQin’s rotation, which is about 3.65 days.
Following the same process as discussed above, the antenna
pattern functions of TianQin can be derived.
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