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In this paper, we systematically study spherically symmetric static spacetimes in the framework of
Einstein-aether theory and pay particular attention to the existence of black holes (BHs). In the theory, two
additional gravitational modes (one scalar and one vector) appear, due to the presence of a timelike aether
field. To avoid the vacuum gravi-Čerenkov radiation, they must all propagate with speeds greater than or
at least equal to the speed of light. In the spherical case, only the scalar mode is relevant, so BH horizons
are defined by this mode, which are always inside or at most coincide with the metric (Killing) horizons.
In the present studies, we first clarify several subtle issues. In particular, we find that, out of the five
nontrivial field equations, only three are independent, so the problem is well posed, as now generically
there are only three unknown functions, FðrÞ, BðrÞ, AðrÞ, where F and B are metric coefficients, and A
describes the aether field. In addition, the two second-order differential equations for A and F are
independent of B, and once they are found, B is given simply by an algebraic expression of F, A and their
derivatives. To simplify the problem further, we explore the symmetry of field redefinitions, and work first
with the redefined metric and aether field, and then obtain the physical ones by the inverse trans-
formations. These clarifications significantly simplify the computational labor, which is important, as the
problem is highly involved mathematically. In fact, it is exactly because of these, we find various
numerical BH solutions with an accuracy that is at least two orders higher than previous ones. More
important, these BH solutions are the only ones that satisfy the self-consistent conditions and meantime
are consistent with all the observational constraints obtained so far. The locations of universal horizons are
also identified, together with several other observationally interesting quantities, such as the innermost
stable circular orbits (ISCO), the ISCO frequency, and the maximum redshift zmax of a photon emitted by a
source orbiting the ISCO. All of these quantities are found to be quite close to their relativistic limits.
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I. INTRODUCTION

The detection of the first gravitational wave (GW) from
the coalescence of two massive black holes (BHs) by
the advanced Laser Interferometer Gravitational-Wave

Observatory (LIGO) marked the beginning of a new era,
the GW astronomy [1]. Following this observation, soon
more than ten GWs were detected by the LIGO/Virgo
Scientific Collaboration [2–4]. More recently, about 50 GW
candidates have been identified after LIGO/Virgo resumed
operations on April 1, 2019, possibly including the
coalescence of a neutron-star/black hole (BH) binary.
However, the details of these detections have not yet been
released [5]. The outbreak of interest on GWs and BHs has
further gained momentum after the detection of the shadow
of the M87 BH [6–11].
One of the remarkable observational results is the

discovery that the mass of an individual BH in these binary
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systems can be much larger than what was previously
expected, both theoretically and observationally [12–14],
leading to the proposal and refinement of various formation
scenarios [15,16]. A consequence of this discovery is that
the early inspiral phase may also be detectable by space-
based observatories, such as the Laser Interferometer
Space Antenna (LISA) [17], TianQin [18], Taiji [19],
and the Deci-Hertz Interferometer Gravitational wave
Observatory (DECIGO) [20], for several years prior to
their coalescence [21,22]. Such space-based detectors may
be able to see many such systems, which will result in a
variety of profound scientific consequences. In particular,
multiple observations with different detectors at different
frequencies of signals from the same source can provide
excellent opportunities to study the evolution of the binary
in detail. Since different detectors observe at disjoint
frequency bands, together they cover different evolu-
tionary stages of the same binary system. Each stage of
the evolution carries information about different physical
aspects of the source.
As a result, multiband GW detections will provide an

unprecedented opportunity to test different theories of
gravity in the strong field regime [23–28]. Massive
systems will be observed by ground-based detectors
with high signal-to-noise ratios (SNRs), after being
tracked for years by space-based detectors in their inspiral
phase. The two portions of signals can be combined to
make precise tests for different theories of gravity.
In particular, joint observations of binary black holes
(BBHs) with a total mass larger than about 60 solar
masses by LIGO/Virgo and space-based detectors can
potentially improve current bounds on dipole emission
from BBHs by more than 6 orders of magnitude [23],
which will impose severe constraints on various theories
of gravity [29].
In recent works, some of the present authors generalized

the post-Newtonian (PN) formalism to certain modified
theories of gravity and applied it to the quasicircular inspiral
of compact binaries. In particular, we calculated in detail
the waveforms, GW polarizations, response functions, and
energy losses due to gravitational radiation in Brans-Dicke
theory [30], and screened modified gravity [31–33] to the
leading PN order, with which we then considered projected
constraints from the third-generation detectors. Such stud-
ies have been further generalized to triple systems in
Einstein-aether (æ-) theory [34,35]. When applying such
formulas to the first relativistic triple system discovered in
2014 [36], we studied the radiation power and found that
quadrupole emission has almost the same amplitude as that
in general relativity (GR), but the dipole emission can be as
large as the quadrupole emission. This can provide a
promising window to place severe constraints on æ-theory
with multiband GW observations [23,26].
More recently, we revisited the problem of a binary

system of nonspinning bodies in a quasicircular inspiral

within the framework of æ-theory [37–42] and pro-
vided the explicit expressions for the time-domain and
frequency-domain waveforms, GW polarizations, and
response functions for both ground- and space-based
detectors in the PN approximation [43]. In particular,
we found that, when going beyond the leading order in the
PN approximation, the non-Einsteinian polarization
modes contain terms that depend on both the first and
second harmonics of the orbital phase. With this in mind,
we calculated analytically the corresponding parametrized
post-Einsteinian parameters, generalizing the existing
framework to allow for different propagation speeds
among scalar, vector, and tensor modes, without assuming
the magnitude of its coupling parameters, and meanwhile
allowing the binary system to have relative motions with
respect to the aether field. Such results will particularly
allow for the easy construction of Einstein-aether tem-
plates that could be used in Bayesian tests of GR in the
future.
In this paper, we shall continuously work on GWs and

BHs in the framework of æ-theory, but move to the
ringdown phase, which consists of the relaxation of the
highly perturbed, newly formed merger remnant to its
equilibrium state through the shedding of any perturbations
in GWs as well as in matter waves. Such a remnant will
typically be a Kerr BH, provided that the binary system is
massive enough and GR provides the correct description.
This phase can be well described as a sum of damped
exponentials with unique frequencies and damping times—
quasinormal modes (QNMs) [44].
The information contained in QNMs provides the keys in

revealing whether BHs are ubiquitous in our Universe and
more important whether GR is the correct theory to
describe the event even in the strong field regime. In fact,
in GR according to the no-hair theorem [45], an isolated
and stationary BH is completely characterized by only three
quantities, mass, spin angular momentum, and electric
charge. Astrophysically, we expect BHs to be neutral, so
it must be described by the Kerr solution. Then, the
quasinormal frequencies and damping times will depend
only on the mass and angular momentum of the final BH.
Therefore, to extract the physics from the ringdown phase,
at least two QNMs are needed. This will require the SNR to
be of the order 100 [46]. Although such high SNRs are not
achievable right now, it was shown that [47] they may be
achievable once the advanced LIGO and Virgo reach their
design sensitivities. In any case, it is certain that they will
be detected by the ground-based third-generation detectors,
such as Cosmic Explorer [48,49] or the Einstein Telescope
[50], as well as the space-based detectors, including LISA
[17], TianQin [18], Taiji [19], and DECIGO [20], as just
mentioned above.
In the framework of æ-theory, BHs with rotations have

not been found yet, while spherically symmetric BHs have
been extensively studied in the past couple of years both
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analytically [51–62] and numerically [63–69]. It was
shown that they can also be formed from gravitational
collapse [70]. Unfortunately, in these studies, the parameter
space has all been ruled out by current observations [71].
Therefore, as a first step to the study of the ringdown phase
of a coalescing massive binary system, in this paper we
shall focus ourselves mainly on spherically symmetric
static BHs in the parameter space that satisfies the self-
consistent conditions and the current observations [71]. As
shown explicitly in [72], spherically symmetric BHs in the
new physically viable phase space can be still formed from
the gravitational collapse of realistic matter.
It should be noted that the definition of BHs in æ-theory

is different from that given in GR. In particular, in
æ-theory there are three gravitational modes, the scalar,
vector, and tensor, which will be referred to as the spin-0,
spin-1, and spin-2 gravitons, respectively. Each of them
moves in principle with a different speed, given, respec-
tively, by [73]

c2S ¼
c123ð2 − c14Þ

c14ð1 − c13Þð2þ c13 þ 3c2Þ
;

c2V ¼ 2c1 − c13ð2c1 − c13Þ
2c14ð1 − c13Þ

;

c2T ¼ 1

1 − c13
; ð1:1Þ

where ci’s are the four dimensionless coupling constants
of the theory, and cij ≡ ci þ cj; cijk ≡ ci þ cj þ ck. The
constants cS, cV , and cT represent the speeds of the spin-0,
spin-1, and spin-2 gravitons, respectively. In order to avoid
the existence of the vacuum gravi-Čerenkov radiation by
matter such as cosmic rays [74], we must require

cS; cV; cT ≥ c; ð1:2Þ

where c denotes the speed of light. Therefore, as far as the
gravitational sector is concerned, the horizon of a BH
should be defined by the largest speed of the three
different species of gravitons. However, in the spherically
symmetric spacetimes, the spin-1 and spin-2 gravitons are
not excited, and only the spin-0 graviton is relevant. Thus,
the BH horizons in spherically symmetric spacetimes are
defined by the metric [75]

gðSÞμν ≡ gμν − ðc2S − 1Þuμuν; ð1:3Þ

where uμ denotes the four-velocity of the aether field,
which is always timelike and unity, uμuμ ¼ −1.
Because of the presence of the aether in the whole

spacetime, it uniquely determines a preferred direction at
each point of the spacetime. As a result, the Lorentz

symmetry is locally violated in æ-theory [76].1 It must
be emphasized that the breaking of Lorentz symmetry can
have significant effects on the low-energy physics through
the interactions between gravity and matter, no matter how
high the scale of symmetry breaking is [81], unless
supersymmetry is invoked [82]. In this paper, we shall
not be concerned with this question. First, we consider
æ-theory as a low-energy effective theory, and second the
constraints on the breaking of the Lorentz symmetry in the
gravitational sector is much weaker than that in the matter
sector [76]. So, to avoid this problem, in this paper, we
simply assume that the matter sector still satisfies the
Lorentz symmetry. Then, all the particles from the matter
sector will travel with speeds less or equal to the speed of
light. Therefore, for these particles, the Killing (or metric)
horizons still serve as the boundaries. Once inside them,
they will be trapped inside the metric horizons (MHs)
forever and never be able to escape to spatial infinities.
With the above in mind, in this paper, we shall carry out a

systematical study of spherically symmetric spacetimes in
æ-theory, clarify several subtle points, and then present
numerically new BH solutions that satisfy all the current
observational constraints [71]. In particular, we shall show
that, among the five nontrivial field equations (three
evolution equations and two constraints), only three of
them are independent. As a result, the system is well
defined, since in the current case there are only three
unknown functions: two describe the spacetime, denoted
by FðrÞ and BðrÞ in Eq. (3.1), and one describes the aether
field, denoted by AðrÞ in Eq. (3.2).
An important result, born out of the above observations,

is that the three independent equations can be divided into
two groups, which decouple one from the other, that is,
the equations for the two functions AðrÞ and FðrÞ
[cf. Eqs. (3.5) and (3.6)] are independent of the function
BðrÞ. Therefore, to solve these three field equations, one
can first solve Eqs. (3.5) and (3.6) for AðrÞ and FðrÞ. Once
they are found, one can obtain BðrÞ from the third equation.
It is even more remarkable, if the third equation is chosen to
be the constraint Cv ¼ 0, given by Eq. (3.10), from which

1It should be noted that the invariance under the Lorentz
symmetry group is a cornerstone of modern physics and strongly
supported by experiments and observations [77]. Nevertheless,
there are various reasons to construct gravitational theories with
broken Lorentz invariance (LI). For example, if space and/or time
at the Planck scale are/is discrete, as currently understood [78],
Lorentz symmetry is absent at short distance/time scales and must
be an emergent low-energy symmetry. A concrete example of
gravitational theories with broken LI is the Hořava theory of
quantum gravity [79], in which the LI is broken via the anisotropic
scaling between time and space in the ultraviolet, t → b−zt,
xi → b−1xi; ði ¼ 1; 2;…; dÞ, where z denotes the dynamical
critical exponent, and d the spatial dimensions. Power-counting
renormalizability requires z ≥ d at short distances, while LI
demands z ¼ 1. For more details about Hořava gravity, see, for
example, the review article [80], and references therein.
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one finds that BðrÞ is then directly given by the algebraic
equation (3.11) without the need of any further integration.
Considering the fact that the field equations are in general
highly involved mathematically, as it can be seen from
Eqs. (3.5)–(3.10) and Eqs. (A1)–(A4); this is important, as
it shall significantly simplify the computational labor, when
we try to solve these field equations.
Another important step of solving the field equations is

Foster’s discovery of the symmetry of the action, the so-
called field redefinitions [83]: the action remains invariant
under the replacements,

ðgμν; uμ; ciÞ → ðĝμν; ûμ; ĉiÞ; ð1:4Þ
where ĝμν, ûμ, and ĉi are given by Eqs. (2.23) and (2.24)
through the introduction of a free parameter σ. Taking the
advantage of the arbitrariness of σ, we can choose it as
σ ¼ c2S, where c

2
S is given by Eq. (1.1). Then, the spin-0 and

metric horizons for the metric ĝμν coincide [63,65,67].
Thus, instead of solving the field equations for ðgμν; uμÞ, we
first solve the ones for ðĝμν; ûμÞ, as in the latter the
corresponding initial value problem can be easily imposed
at horizons. Once ðĝμν; ûμÞ is found, using the inverse
transformations, we can easily obtain ðgμν; uμÞ.
With the above observations, we are able to solve

numerically the field equations with very high accuracy,
as to be shown below (cf. Table I). In fact, the accuracy is
significantly improved and in general at least 2 orders
higher than the previous works.
In theories with breaking Lorentz symmetry, another

important quantity is the universal horizon (UH) [66,67],

which is the causal boundary even for particles with
infinitely large speeds. The thermodynamics of UHs and
relevant physics have been extensively studied since then
(see, for example, Sec. III of the review article [80] and
references therein). In particular, it was shown that such
horizons can be formed from gravitational collapse of a
massless scalar field [72]. In this paper,we shall also identify
the locations of the UHs of our numerical newBH solutions.
The rest of the paper is organized as follows: Sec. II

provides a brief review to æ-theory, in which the intro-
duction of the field redefinitions, the current observational
constraints on the four dimensionless coupling constants
ci’s of the theory, and the definition of the spin-0 horizons
(S0Hs) are given.
In Sec. III, we systematically study spherically sym-

metric static spacetimes and show explicitly that among the
five nontrivial field equations, only three of them are
independent, so the corresponding problem is well defined:
three independent equations for three unknown functions.
Then, from these three independent equations, we are
able to obtain a three-parameter family of exact solutions
for the special case c13 ¼ c14 ¼ 0, which depends in
general on the coupling constant c2. However, requiring
that the solutions be asymptotically flat makes the solutions
independent of c2, and the metric reduces precisely to the
Schwarzschild BH solution with a nontrivially coupling
aether field [cf. Eq. (3.34)], which is timelike over the
whole spacetime, including the region inside the BH. To
further simplify the problem, in this section, we also
explore the advantage of the field redefinitions [83]. In
particular, we show step by step how to choose the initial
values of the differential equations Eqs. (3.63) and (3.64)
on S0Hs, and how to reduce the phase space from four
dimensions, spanned by (F̃H; F̃0

H; ÃH; Ã
0
H), to one dimen-

sion, spanned only by ÃH. So, finally the problem reduces
to finding the values of ÃH that lead to asymptotically flat
solutions of the form (3.79) [63,67].
In Sec. IV, we spell out in detail the steps to carry out our

numerical analysis. In particular, as we show explicitly,
Eq. (3.65) is not independent from other three differential
equations. Taking this advantage, we use it to monitor our
numerical errors [cf. Eq. (4.7)]. To check our numerical code
further, we reproduce the BH solutions obtained in [63,67],
but with an accuracy 2 orders higher than those obtained in
[67] (cf. Table I). Unfortunately, all these BH solutions
have been ruled out by the current observations [71]. So,
in Sec. IV. B, we consider cases that satisfy all the observa-
tional constraints and obtain various new static BH solutions.
Then, in Sec. V, we present the physical metric and

æ-field for these viable new BH solutions, by using the
inverse transformations from the effective fields to the
physical ones. In this section, we also show explicitly that
the physical fields, gμν and uμ, are also asymptotically flat,
provided that the effective fields g̃μν and ũμ are, which are
related to ĝμν and ûμ via the coordinate transformations

TABLE I. The cases considered in [63,67] for various ĉ1 with
the choice of the parameters ĉ2, ĉ3, and ĉ4 given by Eq. (4.3).
Note that for each physical quantity, we have added two more
digits, due to the improved accuracy of our numerical code.

ĉ1 r̃g=rH F̃0
HÃ

2
H γ̃ff

0.1 0.98948936 2.0961175 1.6028048
0.2 0.97802140 2.0716798 1.5769479
0.3 0.96522924 2.0391972 1.5476848
0.4 0.95054650 1.9965155 1.5140905
0.5 0.93304411 1.9405578 1.4748439
0.6 0.91106847 1.8666845 1.4279611
0.7 0.88131278 1.7673168 1.3702427
0.8 0.83583029 1.6283356 1.2959142
0.9 0.74751927 1.4155736 1.1921231
0.91 0.73301185 1.3870211 1.1790400
0.92 0.71650458 1.3563710 1.1652344
0.93 0.69745439 1.3232418 1.1506047
0.94 0.67507450 1.2871125 1.1350208
0.95 0.64816499 1.2472379 1.1183101
0.96 0.61476429 1.2024805 1.1002331
0.97 0.57133058 1.1509356 1.0804355
0.98 0.51038168 1.0889067 1.0583387
0.99 0.41063001 1.0068873 1.0328120
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given by Eq. (3.42). Then, we calculate explicitly the
locations of the metric, spin-0, and universal horizons, as
well as the locations of the innermost stable circular orbits
(ISCO), the Lorentz gamma factor, the gravitational radius,
the orbital frequency of the ISCO, the maximum redshift of
a photon emitted by a source orbiting the ISCO (measured
at the infinity), the radii of the circular photon orbit, and the
impact parameter of the circular photon orbit. All of them
are given in Tables IVand V. In Table VI, we also calculate
the differences of these quantities obtained in æ-theory and
GR. From these results, we find that the differences are very
small, and it is very hard to distinguish GR and æ-theory
through these quantities, as far as the cases considered in
this paper are concerned.
Finally, in Sec. VI, we summarize our main results and

present some concluding remarks. In the Appendix, the
coefficients of the field equations for both (gμν; uμ) and
(g̃μν; ũμ) are given.

II. Æ-THEORY

In æ-theory, the fundamental variables of the gravita-
tional sector are [84]

ðgμν; uμ; λÞ; ð2:1Þ
with the Greek indices μ, ν ¼ 0, 1, 2, 3, and gμν is the four-
dimensional metric of the spacetime with the signature
ð−;þ;þ;þÞ [37,70], uμ is the aether four-velocity, as
mentioned above, and λ is a Lagrangian multiplier, which
guarantees that the aether four-velocity is always timelike
and unity. In this paper, we also adopt units so that the
speed of light is one (c ¼ 1). Then, the general action of the
theory is given by [75]

S ¼ Sæ þ Sm; ð2:2Þ
where Sm denotes the action of matter, and Sæ the
gravitational action of the æ-theory, given, respectively, by

Sæ ¼ 1

16πGæ

Z ffiffiffiffiffiffi
−g

p
d4x½Læðgμν; uα; ciÞ

þ Lλðgμν; uα; λÞ�;

Sm ¼
Z ffiffiffiffiffiffi

−g
p

d4x½Lmðgμν; uα;ψÞ�: ð2:3Þ

Here ψ collectively denotes the matter fields, R and g are,
respectively, the Ricci scalar and determinant of gμν, and

Lλ ≡ λðgαβuαuβ þ 1Þ;
Læ ≡ RðgμνÞ −Mαβ

μνðDαuμÞðDβuνÞ; ð2:4Þ
where Dμ denotes the covariant derivative with respect to
gμν, and Mαβ

μν is defined as

Mαβ
μν ≡ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ − c4uαuβgμν: ð2:5Þ

Note that here we assume that matter fields couple not only
to gμν but also to the aether field uμ. However, in order to
satisfy the severe observational constraints, such a coupling
in general is assumed to be absent [75].
The four coupling constants ci’s are all dimensionless,

and Gæ is related to the Newtonian constant GN via the
relation [85]

GN ¼ Gæ

1 − 1
2
c14

: ð2:6Þ

The variations of the total action with respect to gμν uμ

and λ yield, respectively, the field equations,

Rμν −
1

2
gμνR − Sμν ¼ 8πGæTμν; ð2:7Þ

Æμ ¼ 8πGæTμ; ð2:8Þ

gαβuαuβ ¼ −1; ð2:9Þ

where Rμν denotes the Ricci tensor, and

Sαβ ≡Dμ½JμðαuβÞ þ JðαβÞuμ − uðβJαÞμ�
þ c1½ðDαuμÞðDβuμÞ − ðDμuαÞðDμuβÞ�

þ c4aαaβ þ λuαuβ −
1

2
gαβJδσDδuσ;

Æμ ≡DαJαμ þ c4aαDμuα þ λuμ;

Tμν ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δgμν
;

Tμ ≡ −
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δuμ

; ð2:10Þ

with

Jαμ ≡Mαβ
μνDβuν; aμ ≡ uαDαuμ: ð2:11Þ

From Eq. (2.8), we find that

λ ¼ uβDαJαβ þ c4a2 − 8πGæTαuα; ð2:12Þ

where a2 ≡ aλaλ.
It is easy to show that the Minkowski spacetime is a

solution of æ-theory, in which the aether is aligned along
the time direction, ūμ ¼ δ0μ. Then, the linear perturbations
around the Minkowski background show that the theory in
general possess three types of excitations, scalar (spin-0),
vector (spin-1), and tensor (spin-2) modes [73], with their
squared speeds given by Eq. (1.1).
In addition, among the ten parametrized post-Newtonian

(PPN) parameters [86,87], in æ-theory the only two
parameters that deviate from GR are α1 and α2, which
measure the preferred frame effects. In terms of the four
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dimensionless coupling constants ci’s of the æ-theory, they
are given by [88]

α1 ¼ −
8ðc1c14 − c−c13Þ

2c1 − c−c13
;

α2 ¼
1

2
α1 þ

ðc14 − 2c13Þð3c2 þ c13 þ c14Þ
c123ð2 − c14Þ

; ð2:13Þ

where c− ≡ c1 − c3. In the weak-field regime, using lunar
laser ranging and solar alignment with the ecliptic, Solar
System observations constrain these parameters to very
small values [86],

jα1j ≤ 10−4; jα2j ≤ 10−7: ð2:14Þ
Recently, the combination of the GW event GW170817

[89], observed by the LIGO/Virgo Collaboration, and the
event of the gamma-ray burst 170817A [90] provides a
remarkably stringent constraint on the speed of the spin-2
mode, −3 × 10−15 < cT − 1 < 7 × 10−16, which, together
with Eq. (1.1), implies that

jc13j < 10−15: ð2:15Þ
Requiring that the theory (i) be self-consistent, such as

free of ghosts and instability and (ii) satisfy all the
observational constraints obtained so far, it was found that
the parameter space of the theory is considerably restricted
[71]. In particular, c14 and c2 are restricted to

0≲ c14 ≲ 2.5 × 10−5; ð2:16Þ

0≲ c14 ≲ c2 ≲ 0.095: ð2:17Þ

The constraints on other parameters depend on the values
of c14. If dividing the above range into three intervals:
(i) 0≲ c14 ≤ 2 × 10−7, (ii) 2 × 10−7 < c14 ≲ 2 × 10−6, and
(iii) 2 × 10−6 ≲ c14 ≲ 2.5 × 10−5, in the first and last
intervals, one finds [71]

ðiÞ 0≲ c14 ≤ 2 × 10−7;

c14 ≲ c2 ≲ 0.095; ð2:18Þ

ðiiiÞ 2 × 10−6 ≲ c14 ≲ 2.5 × 10−5;

0≲ c2 − c14 ≲ 2 × 10−7: ð2:19Þ

In the intermediate regime (ii) 2 × 10−7 < c14 ≲ 2 × 10−6,
in addition to the ones given by Eqs. (2.16) and (2.17), the
following constraints must be also satisfied:

−10−7 ≤
c14ðc14 þ 2c2c14 − c2Þ

c2ð2 − c14Þ
≤ 10−7: ð2:20Þ

Note that in writing Eq. (2.20), we had set c13 ¼ 0, for
which the errors are of the orderOðc13Þ ≃ 10−15, which can

be safely neglected for the current and forthcoming experi-
ments. The results in this intermediate interval of c14 were
shown explicitly by Fig. 1 in [71]. Note that in this figure,
the physically valid region is restricted only to the half
plane c14 ≥ 0, as shown by Eq. (2.16).
Since the theory possesses three different modes, and all

of them are moving in different speeds, in general these
different modes define different horizons [75]. These
horizons are the null surfaces of the effective metrics,

gðAÞαβ ≡ gαβ − ðc2A − 1Þuαuβ; ð2:21Þ

where A ¼ S, V, T. If a BH is defined to be a region that
traps all possible causal influences, it must be bounded by a
horizon corresponding to the fastest speed. Assuming that
the matter sector always satisfies the Lorentz symmetry, we
can see that in the matter sector the fastest speed will be the
speed of light. Then, overall, the fastest speed must be one
of the three gravitational modes.
However, in the spherically symmetric case, the spin-1

and spin-2 modes are not excited, so only the spin-0
gravitons are relevant. Therefore, in the present paper,
the relevant horizons for the gravitational sector are the
S0Hs.2 In order to avoid the existence of the vacuum gravi-
Čerenkov radiation by matter such as cosmic rays [74], we
assume that cS ≥ 1, so that S0Hs are always inside or at
most coincide with the metric horizons, the null surfaces
defined by the metric gαβ. The equality happens only
when cS ¼ 1.

A. Field redefinitions

Due to the specific symmetry of the theory, Foster
found that the action Sæðgαβ; uα; ciÞ given by Eqs. (2.3)–
(2.5) does not change under the following field redefini-
tions [83]:

ðgαβ; uα; ciÞ → ðĝαβ; ûα; ĉiÞ; ð2:22Þ

where

ĝαβ ¼ gαβ − ðσ − 1Þuαuβ; ûα ¼ 1ffiffiffi
σ

p uα;

ĝαβ ¼ gαβ − ðσ−1 − 1Þuαuβ; ûα ¼
ffiffiffi
σ

p
uα; ð2:23Þ

and

2If we consider Hořava gravity [79] as the UV complete theory
of the hypersurface-orthogonal æ-theory (the khronometric
theory) [91–94], even in the gravitational sector, the relevant
boundaries will be the UHs, once such a UV complete theory is
taken into account [80].
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ĉ1 ¼
σ

2
½ð1þ σ−2Þc1 þ ð1 − σ−2Þc3 − ð1 − σ−1Þ2�;

ĉ2 ¼ σðc2 þ 1 − σ−1Þ;
ĉ3 ¼

σ

2
½ð1 − σ−2Þc1 þ ð1þ σ−2Þc3 − ð1 − σ−2Þ�;

ĉ4 ¼ c4 −
σ

2

��
1 −

1

σ

�
2

c1 þ
�
1 −

1

σ2

�
c3 −

�
1 −

1

σ

�
2
�
;

ð2:24Þ

with σ being a positive otherwise arbitrary constant. Then,
the following useful relations between ci and ĉi hold:

ĉ2 ¼ σðc2 þ 1Þ − 1; ĉ14 ¼ c14;

ĉ13 ¼ σðc13 − 1Þ þ 1; ĉ123 ¼ σc123;

ĉ− ¼ σ−1ðc− þ σ − 1Þ: ð2:25Þ
Note that ĝαβĝβγ ¼ δαγ and ûα ≡ ĝαβûβ. Then, from

Eq. (2.23), we find that

ĝαβûαûβ ¼ −1; ĝ ¼ σg; ð2:26Þ
where ĝ is the determinant of ĝαβ. Thus, replacing Gæ and

Lλ by Ĝæ and L̂λ in Eq. (2.3), where

Ĝæ ≡ ffiffiffi
σ

p
Gæ; L̂λ ≡ λðĝαβûαûβ þ 1Þ; ð2:27Þ

we find that

Sæðgαβ; uα; ci; Gæ; λÞ ¼ Ŝæðĝαβ; ûα; ĉi; Ĝæ; λÞ: ð2:28Þ
As a result, when the matter field is absent, that is, Lm ¼ 0,
the Einstein-aether vacuum field equations take the same
forms for the fields ðĝαβ; ûα; ĉi; λÞ,

R̂μν −
1

2
ĝμνR̂ ¼ Ŝμν; ð2:29Þ

Æ̂μ ¼ 0; ð2:30Þ

ĝαβûαûβ ¼ −1; ð2:31Þ

where R̂μν and R̂ are the Ricci tensor and scalar made of
ĝαβ. Ŝ

μν and Æ̂μ are given by Eq. (2.10) simply by replacing
ðgμν; uμ; ciÞ by ðĝμν; ûμ; ĉiÞ.
Therefore, for any given vacuum solution of the Einstein-

aether field equations ðgμν; uμ; ci; λÞ, using the above
field redefinitions, we can obtain a class of the vacuum
solutions of the Einstein-aether field equations, given by
ðĝμν; ûμ; ĉi; λÞ.3 Certainly, such obtained solutions may not

always satisfy the physical and observational constraints
found so far [71].
In this paper, we shall take advantage of such field

redefinitions to simplify the corresponding mathematic
problems by assuming that the fields described by
ðgμν; uμ; ci; λÞ are the physical ones, while the ones
described by ðĝμν; ûμ; ĉi; λÞ as the “effective” ones, although
both of the two metrics are the vacuum solutions of the
Einstein-aether field equations, and can be physical, pro-
vided that the constraints recently given in [71] are satisfied.
The gravitational sector described by ðĝμν; ûμ; ĉi; λÞ has

also three different propagation modes, with their speeds ĉA
given by Eq. (1.1) with the replacement ci by ĉi. Each of
these modes defines a horizon, which is now a null surface
of the metric,

ĝðAÞαβ ≡ ĝαβ − ðĉ2A − 1Þûαûβ; ð2:32Þ
where A ¼ S, V, T. It is interesting to note that

ĉ2A ¼ c2A
σ
: ð2:33Þ

Thus, choosing σ ¼ c2S, we have ĉS ¼ 1, and from
Eq. (2.32), we find that

ĝðSÞαβ ¼ ĝαβ; ðσ ¼ c2SÞ; ð2:34Þ
that is, the S0H of the metric ĝαβ coincides with its MH.
Moreover, from Eqs. (2.21) and (2.23), we also find that

gðSÞαβ ¼ ĝαβ; ðσ ¼ c2SÞ: ð2:35Þ

Therefore, with the choice σ ¼ c2S, the MH of ĝαβ is also the
S0H of the metric gαβ.

B. Hypersurface-orthogonal aether fields

When the aether field uμ is hypersurface-orthogonal
(HO), the Einstein-aether field equations depend only on
three combinations of the four coupling constants ci’s. To
see this clearly, let us first notice that, if the aether is HO,
the twist ωμ vanishes [75], where ωμ is defined as
ωμ ≡ ϵμναβuνDαuβ. Since

ωμω
μ ¼ ðDμuνÞðDνuμÞ − ðDμuνÞðDμuνÞ

− ðuμDμuαÞðuνDνuαÞ; ð2:36Þ

we can see that the addition of the term

ΔLæ ≡ c0ωμω
μ ð2:37Þ

to Læ will not change the action, where c0 is an arbitrary
real constant. However, this is equivalent to replacing ci by
c̄i in Læ, where

3It should be noted that this holds in general only for the
vacuum case. In particular, when matter present, the aether
field will be directly coupled with matter through the metric
redefinitions.
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c̄1 ≡ c1 þ c0; c̄2 ≡ c2;

c̄3 ≡ c3 − c0; c̄4 ≡ c4 − c0: ð2:38Þ

Thus, by properly choosing c0, we can always eliminate
one of the three parameters, c1, c3, and c4, or one of their
combinations. Therefore, in this case, only three combi-
nations of ci ’s appear in the field equations. Since

c̄13 ¼ c13; c̄14 ¼ c14; c̄2 ¼ c2; ð2:39Þ

without loss of the generality, we can always choose these
three combinations as c13, c14, and c2.
To understand the above further, and also see the

physical meaning of these combinations, following
Jacobson [94], we first decompose Dβuα into the form

Dβuα ¼
1

3
θhαβ þ σαβ þ ωαβ − aαuβ; ð2:40Þ

where θ denotes the expansion of the aether field, hαβ the
spatial projection operator, σαβ the shear, which is the
symmetric trace-free part of the spatial projection of Dβuα,
while ωαβ denotes the antisymmetric part of the spatial
projection of Dβuα, defined, respectively, by

hαβ ≡ gαβ þ uαuβ; θ≡Dλuλ;

σαβ ≡DðβuαÞ þ aðαuβÞ −
1

3
θhαβ;

ωαβ ≡D½βuα� þ a½αuβ�; ð2:41Þ

with ðA; BÞ≡ ðABþ BAÞ=2 and ½A;B�≡ ðAB − BAÞ=2.
Recall that aμ is the acceleration of the aether field, given
by Eq. (2.11).
In terms of these quantities, Jacobson found

Z
d4x

ffiffiffiffiffiffi
−g

p
Læ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

3
cθθ2

þcaa2 − cσσ2 − cωω2

�
; ð2:42Þ

where

cθ ≡ c13 þ 3c2; cσ ≡ c13;

cω ≡ c1 − c3; ca ≡ c14; ð2:43Þ

and

σ2 ¼ −
1

3
θ2 þ ðDμuνÞðDμuνÞ þ a2: ð2:44Þ

Note that in the above action, there are no crossing terms of
ðθ; σαβ;ωαβ; aαÞ. This is because the four terms on the
right-hand side of Eq. (2.40) are orthogonal to each other,

and when forming quadratic combinations of these quan-
tities, only their “squares” contribute [94].
From Eq. (2.43), we can see clearly that c14 is related to

the acceleration of the aether field, c13 to its shear, while its
expansion is related to both c2 and c13. More interesting,
the coefficient of the twist is proportional to c1 − c3. When
uμ is hypersurface-orthogonal, we have ω2 ¼ 0, so the last
term in the above action vanishes identically, and only the
three free parameters cθ, cσ , and ca remain.
It is also interesting to note that the twist vanishes if and

only if the four-velocity of the aether satisfies the con-
ditions [95]

u½μDνuα� ¼ 0: ð2:45Þ

When the aether is HO, it can be shown that Eq. (2.45) is
satisfied. In addition, in the spherically symmetric case,
Eq. (2.45) holds identically.
Moreover, it can be also shown [95] that Eq. (2.45) is the

necessary and sufficient condition to write the four-velocity
uμ in terms the gradient of a timelike scalar field ϕ,

uμ ¼
ϕ;μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϕ;αϕ

;α
p : ð2:46Þ

Substituting it into the action (2.42), one obtains the action
of the infrared limit of the healthy extension [91,92] of the
Hořava theory [79], which is often referred to as the
khronometric theory,4 where ϕ is called the khronon field.
It should be noted that the khronometric theory and the

HO æ-theory are equivalent only in the action level. In
particular, in addition to the scalar mode, the khronometric
theory has also an instantaneous mode [66,96], a mode that
propagates with an infinitely large speed. This is mainly
due to the fact that the field equations of the khronometric
theory are the four-order differential equations of ϕ. It is the
presence of those high-order terms that leads to the
existence of the instantaneous mode.5 On the other hand,
in æ-theory, including the case with the HO symmetry, the
field equations are of the second order for both the metric
gμν and the aether field uμ. As a result, this instantaneous
mode is absent. For more details, we refer readers to [80]
and references therein.

III. SPHERICALLY SYMMETRIC VACUUM
SPACETIMES

A. Field equations for gμν and uμ

As shown in the last section, to be consistent with
observations, we must assume cS ≥ 1. As a result, S0Hs
must be inside MHs. Since now S0Hs define the boundaries

4In [93,94], it was also referred to as T-theory.
5In the degenerate higher-order scalar-tensor theories, this

mode is also referred to as the “shadowy” mode [97].

ZHANG, ZHAO, LIN, ZHANG, ZHAO, and WANG PHYS. REV. D 102, 064043 (2020)

064043-8



of spherically symmetric BHs, in order to cover spacetimes
both inside and outside the MHs, one way is to adopt the
Eddington-Finkelstein (EF) coordinates,

ds2 ≡ gμνdxμdxν

¼ −FðrÞdv2 þ 2BðrÞdvdrþ r2dΩ2; ð3:1Þ

where dΩ2 ≡ dθ2 þ sin2θdϕ2 and xμ ¼ ðv; r; θ;ϕÞ, while
the aether field takes the general form

uα∂α ¼ AðrÞ∂v −
1 − FðrÞA2ðrÞ
2BðrÞAðrÞ ∂r; ð3:2Þ

which is in respect to the spherical symmetry and satisfies
the constraint uαuα ¼ −1. Therefore, in the current case,
we have three unknown functions, FðrÞ, AðrÞ, and BðrÞ.
Then, the vacuum field equations Eμν ≡Gμν − Sμν ¼ 0

and Æμ ¼ 0 can be divided into two groups [63,67]: one
represents the evolution equations, given by

Evv ¼ Eθθ ¼ Æv ¼ 0; ð3:3Þ

and the other represents the constraint equation, given by

Cv ¼ 0; ð3:4Þ

where Cα ≡ Erα þ urÆα ¼ 0, and Gμν½≡Rμν − Rgμν=2�
denotes the Einstein tensor. Note that in Eq. (35) of [67]
two constraint equations Cv ¼ Cr ¼ 0 were considered.
However, Cr and Cv are not independent. Instead, they are
related to each other by the relation Cr ¼ ðF=BÞCv. Thus,
Cv ¼ 0 implies Cr ¼ 0, so there is only one independent
constraint. On the other hand, the three evolution equations
can be cast in the forms,6

F00 ¼ F ðA; A0; F; F0; r; ciÞ

¼ 1

2r2A4D
ðf0 þ f1F þ f2F2 þ f3F3 þ f4F4Þ; ð3:5Þ

A00 ¼ AðA; A0; F; F0; r; ciÞ

¼ 1

2r2A2D
ða0 þ a1F þ a2F2 þ a3F3Þ; ð3:6Þ

B0

B
¼ BðA; A0; F; F0; r; ciÞ

¼ 1

2rA2D
ðb0 þ b1F þ b2F2Þ; ð3:7Þ

where a prime stands for the derivative with respect
to r, and

D≡ d−ðJ2 þ 1Þ þ 2dþJ; ð3:8Þ
with J ≡ FA2 and

d� ≡ ðc2S � 1Þc14ð1 − c13Þð2þ c13 þ 3c2Þ: ð3:9Þ
The coefficients fn, an, and bn are independent of FðrÞ and
BðrÞ but depend on F0ðrÞ, AðrÞ, and A0ðrÞ, and are given
explicitly by Eqs. (A1)–(A3) in the Appendix. The con-
straint equation (3.4) now can be cast in the form

n0 þ n1F þ n2F2 ¼ 0; ð3:10Þ
where nn’s are given explicitly by Eq. (A4) in the
Appendix.
Thus, we have three dynamical equations and one

constraint for the three unknown functions, F, A, and B.
As a result, the system seems over determined. However, a
closer examination shows that not all of them are inde-
pendent. For example, Eq. (3.7) can be obtained from
Eqs. (3.5), (3.6), and (3.10). In fact, from Eq. (3.10), we
find that the function B can be written in the form

BðrÞ ¼ � 1

2
ffiffiffi
2

p
A2

f2A2½4Jð1þ 2c2 þ c13Þ

− ð2c2 þ c13ÞðJ þ 1Þ2� þ 4rA½2AJ0 − 4JA0

þ c2ðJ − 1ÞðJA0 − A0 − AJ0Þ�
þ r2½c14ðJA0 þ A0 − AJ0Þ2
− ðc2 þ c13ÞðJA0 − A0 − AJ0Þ2�g1=2: ð3:11Þ

Recall that J ¼ FA2. Note that there are two branches of
solutions for BðrÞ with opposite signs, since Eq. (3.10) is a
quadratic equation of B. However, only the “þ” sign will
give us B ¼ 1 at the spatial infinity, while the “−” sign will
yield Bðr → ∞Þ ¼ −1. Therefore, in the rest of the paper,
we shall choose the þ sign in Eq. (3.11). Then, first taking
the derivative of Eq. (3.11) with respective to r, and then
combining the obtained result with Eqs. (3.5) and (3.6), one
can obtain Eq. (3.7).7

To solve these equations, in this paper we shall adopt the
following strategy: choosing Eqs. (3.5), (3.6), and (3.11) as
the three independent equations for the three unknown
functions, F, A, and B. The advantage of this choice is that
Eqs. (3.5) and (3.6) are independent of the function B.
Therefore, we can first solve these two equations to find F
and A, and then obtain the function B directly from
Eq. (3.11). In this approach, we only need to solve two
equations, which will significantly save the computation

6It should be noted that in [67] the second-order differential
equation for F [cf. Eq. (36) given there] also depends on B. But,
since from the constraint Cv ¼ 0, given by Eq. (3.10), one can
express B in terms of A, F and their derivatives, as shown
explicitly by Eq. (3.11), so there are no essential differences here,
and it should only reflect the facts that different combinations of
the field equations are used.

7From this proof, it can be seen that obtaining Eq. (3.7) from
Eq. (3.11) the operation of taking the first-order derivatives was
involved. Therefore, in principle, these two equations are
equivalent modulated an integration constant.
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labor, although we do use Eq. (3.7) to monitor our
numerical errors.
To solve Eqs. (3.5) and (3.6), we can consider them as

the “initial” value problem at a given “moment,” say, r ¼ r0
[63,67]. Since they are second-order differential equations,
the initial data will consist of the four initial values,

fAðr0Þ; A0ðr0Þ; Fðr0Þ; F0ðr0Þg: ð3:12Þ
In principle, r0 can be chosen as any given (finite) moment.
However, in the following, we shall show that the most
convenient choice will be the locations of the S0Hs. It
should be noted that a S0H does not always exist for any
given initial data. However, since in this paper we are
mainly interested in the case in which a S0H exists, so
whenever we choose r0 ¼ rS0H, it always means that we
only consider the case in which such a S0H is present.
To determine the location of the S0H for a given

spherical solution of the metric (3.1), let us first consider
the out-pointing normal vector, Nμ, of a hypersurface
r ¼ constant, say, r0, which is given by Nμ ≡ ∂ðr − r0Þ=
∂xμ ¼ δrμ. Then, the metric and spin-0 horizons of gμν are
given, respectively, by

gαβNαNβ ¼ 0; ð3:13Þ
gðSÞαβ N

αNβ ¼ 0; ð3:14Þ

where Nμ ≡ gμνNν, and g
ðSÞ
αβ is defined by Eq. (1.3). For the

metric and aether given in the form of Eqs. (3.1) and (3.2),
they become

FðrMHÞ ¼ 0; ð3:15Þ
ðc2S − 1ÞðJðrS0HÞ2 þ 1Þ þ 2ðc2S þ 1ÞJðrS0HÞ ¼ 0; ð3:16Þ
where r ¼ rMH and r ¼ rS0H are the locations of the metric
and spin-0 horizons, respectively. Note that Eqs. (3.15) and
(3.16) may have multiple roots, say, riMH and rjS0H. In these
cases, the location of the metric (spin-0) horizon is always
taken to be the largest root of riMH (rjS0H).
Depending on the value of cS, the solutions of Eq. (3.14)

are given, respectively, by

Jðr�S0HÞ ¼
1 ∓ cS
1� cS

≡ J�; cS ≠ 1 ð3:17Þ

and

JðrS0HÞ ¼ 0; cS ¼ 1: ð3:18Þ
It is interesting to note that on S0Hs, we have

DðrS0HÞ ¼ 0; ð3:19Þ

as it can be seen from Eqs. (3.8), (3.9), and (3.16).
As mentioned above, for some choices of ci, Eq. (3.14)

does not always admit a solution; hence, an S0H does not

exist in this case. A particular choice was considered in
[63], in which we have c1 ¼ 0.051, c2 ¼ 0.116, c3 ¼ −c1,
and c4 ¼ 0. For this choice, we find that cS ≃ 1.37404,
Jþ ≃ −0.157556, and J− ≃ −6.34696. As shown in Fig. 1,
the function JðrÞ is always greater than J�, so no S0H is
formed, as first noticed in [63]. Up to the numerical errors,
Fig. 1 is the same as that given in [63], which provides
another way to check our general expressions of the field
equations given above.
In addition, we also find that the two exact solutions

obtained in [53] satisfy these equations identically, as it is
expected.

B. Exact solutions with c14 = c13 = 0

From Eqs. (2.15)–(2.20), we can see that the choice
c14 ¼ c13 ¼ 0 satisfies these constraints, provided that c2
satisfies the condition8

0≲ c2 ≲ 0.095: ð3:20Þ

Then, we find that Eqs. (3.5) and (3.6) now reduce to

F00 ¼ −
2

r
F0 þ c2F̂ ðrÞ

4r2A4
; ð3:21Þ

F A B J

J+

0 1 2 3 4 5 6

0

1

2

3

4

r/rMH

FIG. 1. The solution for c1 ¼ 0.051, c2 ¼ 0.116, c3 ¼ −c1,
and c4 ¼ 0, first considered numerically in [63]. There are outer
and inner MHs, at which F vanishes. But, J does not cross the
constant line of Jþ, so that an S0H is absent. This graph is the
same as the one given in [63] (up to the numerical errors).

8When c14 ¼ c13 ¼ 0, the speeds of the spin-0 and spin-1
modes can be infinitely large, as it can be seen from Eq. (1.1).
Then, cautions must be taken, including the calculations of the
PPN parameters [88].
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A00 ¼ 2

r2ðAþ A3FÞ ½r
2ðA0Þ2 − rAA0 − A2

− rA3A0ðF þ rF0Þ þ A4F� − c2F̂ ðrÞ
4r2ðAþ A3FÞ ; ð3:22Þ

where

F̂ ðrÞ≡ ½rA0 − 2Aþ rA2A0F þ A3ð2F þ rF0Þ�2: ð3:23Þ

Combining Eqs. (3.21) and (3.22), we find the following
equation:

W00 þW02 þ 2

r
W0 −

2

r2
¼ 0; ð3:24Þ

where

W ≡ ln

�
1 − FA2

A

�
: ð3:25Þ

Equation (3.24) has the general solution

W ¼ ln w2 þ ln

�
1þ w1r3

r2

�
; ð3:26Þ

where w1 and w2 are two integration constants. Then, the
combination of Eqs. (3.25) and (3.26) yields

FðrÞ ¼ 1

A2
−
w2

A

�
1

r2
þ w1r

�
: ð3:27Þ

Substituting Eq. (3.27) into Eq. (3.21), we find

F00 ¼ −
2

r
F0 þ F0; ð3:28Þ

where F0 ≡ 9c2w2
1w

2
2=4. Integrating Eq. (3.28), we find

FðrÞ ¼ F2

�
1 −

2m
r

�
þ F0

6
r2; ð3:29Þ

wherem and F2 are two other integration constants. On the
other hand, from Eq. (3.27), we find that

AðrÞ ¼ −
w2

2F

"�
1

r2
þ w1r

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F
w2
2

þ
�
1

r2
þ w1r

�
2

s #
:

ð3:30Þ

Substituting the above expressions for A and F into the
constraint (3.11), we find that

B ¼
ffiffiffiffiffiffi
F2

p
: ð3:31Þ

Note that the above solution is asymptotically flat only
when w1 ¼ 0, for which we have

FðrÞ ¼ F2

�
1 −

2m
r

�
; BðrÞ ¼

ffiffiffiffiffiffi
F2

p
;

AðrÞ ¼ −
w2

2F

�
1

r2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F
w2
2

þ 1

r4

s �
: ð3:32Þ

Using the gauge residual v0 ¼ C0vþ C1 of the metric (3.1),
without loss of the generality, we can always set F2 ¼ 1, so
the corresponding metric takes the precise form of the
Schwarzschild solution,

ds2 ¼ −
�
1 −

2m
r

�
dv2 þ 2dvdrþ r2dΩ2; ð3:33Þ

while the aether field is given by

AðrÞ ¼ −
w2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
2 þ 4r3ðr − 2mÞ

p
2rðr − 2mÞ : ð3:34Þ

It is remarkable to note that now the aether field has no
contribution to the spacetime geometry, although it does
feel the gravitational field, as it can be seen from Eq. (3.34).
It should be also noted that Eqs. (3.33) and (3.34) were a

particular case of the solutions first found in [53] for the
case c14 ¼ 0 by further setting c13 ¼ 0. But, the general
solutions given by Eqs. (3.29)–(3.31) are new, as far as
we know.

C. Field equations for g̃μν and ũμ

Note that, instead of solving the three independent
equations directly for A, B, and F, we shall first solve
the corresponding three equations for Ã, B̃, and F̃, by
taking the advantage of the field redefinitions introduced in
the last section, and then obtain the functions A, B, and F
by the inverse transformations of Eqs. (3.39) and (3.41) to
be given below. This will considerably simplify mathemati-
cally the problem of solving such complicated equations.
To this goal, let us first note that, with the filed

redefinitions (2.23), the line element corresponding to
ĝμν in the coordinates (v; r; θ;ϕ) takes the form

dŝ2 ≡ ĝμνdxμdxν

¼ −
�
F þ ðσ − 1ÞðA2F þ 1Þ2

4A2

�
dv2

þ 2
h
Bþ 1

2
ðσ − 1ÞBðA2F þ 1Þ

i
dvdr

− ðσ − 1ÞA2B2dr2 þ r2dΩ2: ð3:35Þ
To bring the above expression into the standard EF form,
we first make the coordinate transformation

ṽ ¼ C0v − CðrÞ; ð3:36Þ
where C0 is an arbitrary real constant and CðrÞ is a function
of r. Then, choosing CðrÞ so that
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dCðrÞ
dr

¼ 2C0A2Bð ffiffiffi
σ

p
− 1Þ

Jð ffiffiffi
σ

p
− 1Þ þ ð ffiffiffi

σ
p þ 1Þ ; ð3:37Þ

we find that in the coordinates x̃μ ¼ ðṽ; r; θ;ϕÞ the line
element (3.35) takes the form

dŝ2 ≡ ĝμνdxμdxν ¼ g̃μνdx̃μdx̃ν

¼ −F̃ðrÞdṽ2 þ 2B̃ðrÞdṽdrþ r2dΩ2; ð3:38Þ

where

F̃ ¼ J2ðσ − 1Þ þ 2Jðσ þ 1Þ þ ðσ − 1Þ
4C2

0A
2

;

B̃ ¼
ffiffiffi
σ

p
B

C0

: ð3:39Þ

On the other hand, in terms of the coordinates x̃μ, the
aether four-velocity is given by

ûα
∂
∂xα ¼ ũα

∂
∂x̃α ¼ ÃðrÞ∂ ṽ −

1 − F̃ðrÞÃ2ðrÞ
2B̃ðrÞÃðrÞ ∂r; ð3:40Þ

where

Ã ¼ 2C0A
Jð ffiffiffi

σ
p

− 1Þ þ ð ffiffiffi
σ

p þ 1Þ ; ð3:41Þ

which satisfies the constraint ũαũβg̃αβ ¼ −1, with

g̃μν ≡ ∂xα
∂x̃μ

∂xβ
∂x̃ν ĝαβ; ũμ ≡ ∂xα

∂x̃μ ûα: ð3:42Þ

It should be noted that the metric (3.38) still has the
gauge residual,

˜̃v ¼ C1ṽþ C2; ð3:43Þ

where C1 and C2 are two arbitrary constants, which will
keep the line element in the same form, after the rescaling,

˜̃F ¼ F̃
C2
1

; ˜̃B ¼ B̃
C1

: ð3:44Þ

Later we shall use this gauge freedom to fix one of the
initial conditions.
In the rest of this paper, we always refer ðg̃μν; ũαÞ as the

field obtained by the field redefinitions. The latter is related
to ðĝμν; ûαÞ via the inverse coordinate transformations of
Eq. (3.42). Then, the Einstein-aether field equations for
ðg̃μν; ũαÞ will take the same forms as those given by
Eqs. (2.29)–(2.31), but now in terms of ðg̃μν; ũα; c̃iÞ in
the coordinates x̃μ, where c̃i ≡ ĉi.
On the other hand, since the metric (3.38) for g̃μν takes

the same form as the metric (3.1) for gμν, and so does the
aether field (3.40) for ũμ as the one (3.2) for uμ, it is not

difficult to see that the field equations for F̃ðrÞ; ÃðrÞ, and
B̃ðrÞ will be given precisely by Eqs. (3.5)–(3.10), if we
simply make the following replacement:

ðF; A; B; ciÞ → ðF̃; Ã; B̃; c̃iÞ: ð3:45Þ

As a result, we have

F̃00 ¼ F̃ ðÃ; Ã0; F̃; F̃0; r; c̃iÞ

¼ 1

2r2Ã4D̃
½f̃0 þ f̃1F̃ þ f̃2F̃2 þ f̃3F̃3 þ f̃4F̃4�; ð3:46Þ

Ã00 ¼ ÃðÃ; Ã0; F̃; F̃0; r; c̃iÞ

¼ 1

2r2Ã2D̃
½ã0 þ ã1F̃ þ ã2F̃2 þ ã3F̃3�; ð3:47Þ

B̃0

B̃
¼ B̃ðÃ; Ã0; F̃; F̃0; r; c̃iÞ

¼ 1

2rÃ2D̃
½b̃0 þ b̃1F̃ þ b̃2F̃2�; ð3:48Þ

and

C̃ṽ ≡ ñ0 þ ñ1F̃ þ ñ2F̃2 ¼ 0; ð3:49Þ

where

D̃ðrÞ≡ d̃−ðJ̃2ðrÞ þ 1Þ þ 2d̃þJ̃ðrÞ;
J̃ðrÞ≡ F̃ðrÞÃ2ðrÞ;
d̃� ≡ ðc̃2S � 1Þc̃14ð1 − c̃13Þð2þ c̃13 þ 3c̃2Þ: ð3:50Þ

The coefficients f̃n; ãn; b̃n, and ñn are given by fn, an, bn,
and nn after the replacement (3.45) is carried out.
Then, the metric and spin-0 horizons for g̃μν are given,

respectively, by

g̃αβÑαÑβ ¼ 0; ð3:51Þ

g̃ðSÞαβ Ñ
αÑβ ¼ 0; ð3:52Þ

where Ñα ¼ ð∂xμ=∂x̃αÞNμ ¼ δrα̃ ¼ δrα and

g̃ðSÞαβ ≡ g̃αβ − ðc̃2S − 1Þũαũβ: ð3:53Þ

In terms of F̃ and Ã, Eqs. (3.51) and (3.52) become

F̃ðr̃MHÞ ¼ 0; ð3:54Þ
ðc̃2S − 1ÞðJ̃ðr̃S0HÞ2 þ 1Þ þ 2ðc̃2S þ 1ÞJ̃ðr̃S0HÞ ¼ 0; ð3:55Þ

where r ¼ r̃MH and r ¼ r̃S0H are, respectively, the loca-
tions of the metric and spin-0 horizons for the metric g̃μν.
Similarly, at r ¼ r̃S0H, we have
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D̃ðr̃S0HÞ ¼ 0: ð3:56Þ

Comparing the field equations given in this subsection
with the corresponding ones given in the last subsection,
we see that we can get one set from the other simply by the
replacement (3.45).
In addition, in terms of ĝαβ and Nα, Eqs. (3.51) and

(3.52) reduce, respectively, to

ĝαβNαNβ ¼ 0; ð3:57Þ

ĝðSÞαβ N
αNβ ¼ 0: ð3:58Þ

Since r̃ ¼ r, we find that

r̃MH ¼ r̂MH; r̃S0H ¼ r̂S0H; ð3:59Þ
where r̃MH and r̃S0H (r̂MH; r̂S0H) are the locations of the
metric and spin-0 horizons of the metric g̃αβ (ĝαβ). The
above analysis shows that these horizons determined by g̃αβ
are precisely equal to those determined by ĝαβ.

D. σ = c2S
To solve Eqs. (3.46)–(3.49), we take the advantage of the

choice σ ¼ c2S, so that the speed of the spin-0 mode of the
metric ĝμν becomes unity, i.e., ĉS ¼ 1. Since c̃i ¼ ĉi, we
also have c̃S ¼ ĉS ¼ 1. Then, from Eq. (1.1), we find that
this leads to

c̃2 ¼
2c̃14 − 2c̃13 − c̃213c̃14
2 − 4c̃14 þ 3c̃13c̃14

: ð3:60Þ

For such a choice, from Eq. (3.50), we find that d̃− ¼ 0 and

D̃ðrÞ ¼ 2d̃þJ̃ðrÞ ¼ 2d̃þÃ2ðrÞF̃ðrÞ: ð3:61Þ
Then, Eq. (3.56) yields F̃ðr̃S0HÞ ¼ 0, since Ã ≠ 0, which
also represents the location of the MH, defined by
Eq. (3.54). Therefore, for the choice σ ¼ c2S, the MH
coincides with the S0H for the effective metric g̃μν, that is,

r̃MH ¼ r̃S0H; ðσ ¼ c2SÞ: ð3:62Þ

As shown below, this will significantly simplify our
computational labor. In particular, if we choose this surface
as our initial moment, it will reduce the phase space of
initial data from four dimensions to one dimension only.
For c̃S ¼ 1, Eqs. (3.46)–(3.49) reduce to

F̃00 ¼ 1

4d̃þr2Ã6

�
f̃0
F̃
þ f̃1þ f̃2F̃þ f̃3F̃2þ f̃4F̃3

�
; ð3:63Þ

Ã00 ¼ 1

4d̃þr2Ã4

�
ã0
F̃

þ ã1 þ ã2F̃ þ ã3F̃2

�
; ð3:64Þ

B̃0

B̃
¼ 1

4d̃þrÃ4

�
b̃0
F̃

þ b̃1 þ b̃2F̃

�
; ð3:65Þ

ñ0 þ ñ1F̃ þ ñ2F̃2 ¼ 0: ð3:66Þ

As shown previously, among these four equations, only
three of them are independent, and our strategy in this paper
is to take Eqs. (3.63), (3.64), and (3.66) as the three
independent equations. The advantage of this approach is
that Eqs. (3.63) and (3.64) are independent of B̃ðrÞ, and
Eq. (3.66) is a quadratic polynomial of B̃ðrÞ. So, we can
solve Eqs. (3.63) and (3.64) as the initial value problem first
to find F̃ðrÞ and ÃðrÞ, and then insert them into Eq. (3.66)
to obtain directly B̃ðrÞ, as explicitly given by Eq. (3.11),
after taking the replacement (3.45) and the choice of c̃2 of
Eq. (3.60) into account.
From Eqs. (3.63) and (3.64), we can see that they

become singular at r ¼ r̃S0H [recall F̃ðr̃S0HÞ ¼ 0], unless
f̃0ðr̃S0HÞ ¼ ã0ðr̃S0HÞ ¼ 0. As can be seen from the expres-
sions of f0ðrÞ; a0ðrÞ given in the Appendix, f̃0ðr̃S0HÞ ¼
ã0ðr̃S0HÞ ¼ 0 implies b̃0ðr̃S0HÞ ¼ 0. Therefore, to have the
field equations regular across the S0H, we must require
b̃0ðr̃S0HÞ ¼ 0. It is interesting that this is also the condition
for Eq. (3.65) to be nonsingular across the S0H. In addition,
using the gauge residual (3.43), we shall set B̃H ¼ 1, so
Eq. (3.66) [which can be written in the form of Eq. (3.11),
after the replacement (3.45)] will provide a constraint
among the initial values of F̃0

H, ÃH, and Ã0
H, where F̃

0
H ≡

F̃0ðr̃S0HÞ and so on. In summary, on the S0H we have the
following:

F̃H ¼ 0; ð3:67Þ

b̃0ðÃH; Ã
0
H; F̃

0
H; r̃S0HÞ ¼ 0; ð3:68Þ

B̃H ¼ 1: ð3:69Þ

From the expression for b̃0 given in the Appendix, we can
see that Eq. (3.68) is quadratic in Ã0

H, and solving it on the
S0H, in general, we obtain two solutions,

Ã0�
H ¼ Ã0�

HðÃH; F̃0
H; r̃S0HÞ: ð3:70Þ

Then, inserting it, together with Eqs. (3.67) and (3.69), into
Eq. (3.10), we get

ñ�0 ðÃH; F̃0
H; r̃S0HÞ ¼ 0; ð3:71Þ

where the “�” signs correspond to the choices of
Ã0

H ¼ Ã0�
H. In general, Eq. (3.71) is a fourth-order poly-

nomial of F̃0
H, so it normally has four roots, denoted as
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F̃0ð�;nÞ
H ¼ F̃0ð�;nÞ

H ðÃH; r̃S0HÞ; ð3:72Þ

where n ¼ 1, 2, 3, 4. For each given F̃0ð�;nÞ
H , substituting it

into Eq. (3.70), we find a corresponding Ã0ð�;nÞ
H , given by

Ã0ð�;nÞ
H ¼ Ã0ð�;nÞ

H ðÃH; r̃S0HÞ: ð3:73Þ

Thus, once ÃH and r̃S0H are given, the quantities F̃0ð�;nÞ
H and

Ã0ð�;nÞ
H are uniquely determined from Eqs. (3.72) and

(3.73). For each set of (ÃH; r̃S0H), in general, there are
eight sets of ðÃ0

H; F̃
0
HÞ.

If we choose r ¼ r̃S0H as the initial moment, such
obtained ðÃ0

H; F̃
0
HÞ, together with F̃H ¼ 0, and a proper

choice of ÃH, can be considered as the initial conditions for
the differential equations (3.63) and (3.64).
However, it is unclear which one(s) of these eight sets of

initial conditions will lead to asymptotically flat solutions,
except that the one with F̃0

H < 0, which can be discarded
immediately, as it would lead to F̃ ¼ 0 at some radius
r > r̃S0H, which is inconsistent with our assumption that
r ¼ r̃S0H is the location of the S0H [67]. So, in general
what one needs to do is to try all the possibilities.
Therefore, if we choose r ¼ r̃S0H as the initial moment,

the four-dimensional phase space of the initial conditions,
ðF̃H; F̃0

H; ÃH; Ã
0
HÞ, reduces to one-dimensional, spanned by

ÃH only.
In the following, we shall show further that r̃S0H can be

chosen arbitrarily. In fact, introducing the dimensionless
quantity, ξ≡ r̃S0H=r, we find that Eqs. (3.63)–(3.65) and
(3.49) can be written in the forms

d2F̃ðξÞ
dξ2

¼ G1ðξ; c̃iÞ; ð3:74Þ

d2ÃðξÞ
dξ2

¼ G2ðξ; c̃iÞ; ð3:75Þ

1

B̃ðξÞ
dB̃ðξÞ
dξ

¼ G3ðξ; c̃iÞ; ð3:76Þ

CṽðÃðξÞ; Ã0ðξÞ; F̃ðξÞ; F̃0ðξÞ; B̃ðξÞ; ξ; c̃iÞ ¼ 0; ð3:77Þ

where Gi’s are all independent of r̃S0H, Cṽ ≡ r2S0HC̃
ṽ, and

the primes in the last equation stand for the derivatives
respect to ξ. Therefore, Eqs. (3.74)–(3.77), or equivalently,
Eqs. (3.46)–(3.49), are scaling invariant and independent of
r̃S0H. Thus, without loss of the generality, we can always set

r̃S0H ¼ 1; ð3:78Þ

which does not affect Eqs. (3.74)–(3.77) and also explains
the reason why in [63,67] the authors set r̃S0H ¼ 1 directly.
At the same time, it should be noted that once r̃S0H ¼ 1 is

taken, it implies that the unit of length is fixed. For instance,
if we have a BH with r̃S0H ¼ 1 km, then setting r̃S0H ¼ 1
means the unit of length is in km.
Once ÃH is chosen, we can integrate Eqs. (3.74)

and (3.75) in both directions to find F̃ðξÞ and ÃðξÞ,
one is toward the center, ξ ¼ r̃S0H=r ¼ ∞, in which we
have ξ ∈ ½1;∞Þ, and the other is toward infinity,
ξ ¼ r̃S0H=r ¼ 0, in which we have ξ ∈ ð0; 1�. Then, from
Eq. (3.11), we can find B̃ðξÞ uniquely, after the replacement
of Eq. (3.45). Again, to have a proper asymptotical
behavior of B̃ðrÞ, the þ sign will be chosen.
At the spatial infinity ξ ¼ r̃S0H=r → 0, we require that

the spacetime be asymptotically flat, that is [63,67],9

F̃ðξÞ ¼ 1þ F̃1ξþ
1

48
c̃14F̃3

1ξ
3 þ � � � ;

ÃðξÞ ¼ 1 −
1

2
F̃1ξþ

1

2
Ã2ξ

2

−
�
1

96
c̃14F̃3

1 −
1

16
F̃3
1 þ

1

2
F̃1Ã2

�
ξ3 þ � � � ;

B̃ðξÞ ¼ 1þ 1

16
c̃14F̃2

1ξ
2 −

1

12
c̃14F̃3

1ξ
3 þ � � � ; ð3:79Þ

where F̃1 ≡ F̃0ðξ ¼ 0Þ and Ã2 ≡ Ã00ðξ ¼ 0Þ.
It should be noted that the Minkowski spacetime is

given by

F̃ ¼ F̃M; Ã ¼ 1ffiffiffiffiffiffiffi
F̃M

p ; B̃ ¼
ffiffiffiffiffiffiffi
F̃M

q
; ð3:80Þ

where F̃M is a positive otherwise arbitrary constant.
Therefore, in the asymptotical expansions of Eq. (3.79),
we had set F̃M ¼ 1 at the zeroth order of ξ. However, the
initial conditions imposed at r ¼ r̃S0H given above usually
leads to F̃M ≠ 1, even for spacetimes that are asymptoti-
cally flat. Therefore, we first need to use the gauge residual
(3.43) to bring F̃ðξ ¼ 0Þ ¼ Ãðξ ¼ 0Þ ¼ B̃ðξ ¼ 0Þ ¼ 1,
before using Eq. (3.79) to calculate the constants Ã2

and F̃1.
From the above analysis, we can see that finding

spherically symmetric solutions of the æ-theory now
reduces to finding the initial condition ÃH that leads to
the asymptotical behavior (3.79), for a given set of ci ’s.
Before proceeding to the next section, we would like to

recall that when σ ¼ c2S, we have gðSÞαβ ¼ ĝαβ, as shown by
Eq. (2.35). That is, the S0H for the metric gαβ now
coincides with the MH of ĝαβ. With this same very choice,
σ ¼ c2S, the MH for ĝαβ also coincides with its S0H. Thus,
we have

9Note that in [63,67] a factor 1=2 is missing in front of A2 in
the expression of AðxÞ.
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rS0H ¼ r̂S0H ¼ r̂MH ¼ r̃S0H ¼ r̃MH ≡ rH; ðσ ¼ c2SÞ:
ð3:81Þ

It must be noted that rH defined in the last step denotes the
location of the S0H of gαβ, which is usually different from
its MH, defined by

gαβNαNβjr¼rMH
¼ 0; ð3:82Þ

since in general we have cS ≠ 1, so gðSÞαβ ≡ gαβ −
ðc2S − 1Þuαuβ ≠ gαβ. As a result, we have rMH ≠ rS0H for
cS ≠ 1.
However, it is worth emphasizing again that, for the

choice σ ¼ c2S, we have c̃S ¼ ĉS ¼ 1, so the metric and
spin-0 horizons of both ĝαβ and g̃αβ all coincide, and are
given by the same rH, as explicitly shown by Eq. (3.81).
More importantly, it is also the location of the S0Hs of the
metric gαβ.

IV. NUMERICAL SETUP AND RESULTS

A. General steps

It is difficult to find analytical solutions to Eqs. (3.74)–
(3.77). Thus, in this paper, we are going to solve them
numerically, using the shooting method, with the asymp-
totical conditions (3.79). In particular, our strategy is the
following:

(i) Choose a set of physical ci’s satisfying the con-
straints (2.16)–(2.20) and then calculate the corre-
sponding c̃i’s with σ ¼ c2S.

(ii) Assume that for such chosen ci’s the corresponding
solution possesses an S0H located at r ¼ rH, and
then follow the analysis given in the last section to
impose the conditions F̃H ¼ 0 and B̃H ¼ 1.

(iii) Choose a test value for ÃH, and then solve
Eq. (3.71) for Ã0

H in terms of F̃0
H and ÃH, i.e., Ã

0
H ¼

Ã0
HðF̃0

H; ÃHÞ.
(iv) Substitute Ã0

H into Eq. (3.71) to obtain a quartic
equation for F̃0

H and then solve it to find F̃0
H.

(v) With the initial conditions fF̃H; ÃH; F̃0
H; Ã

0
Hg, inte-

grate Eqs. (3.74) and (3.75) from ξ ¼ 1 to ξ ¼ 0.
However, since the field equations are singular at

ξ ¼ 1, we will actually integrate these equations
from ξ ¼ 1 − ϵ to ξ ≃ 0, where ϵ is a very small
quantity. To obtain the values of F ðξÞ at ξ ¼ 1 − ϵ,
we first Taylor expand them in the form

F ð1 − ϵÞ ¼
X2
k¼0

F ðkÞjξ¼1

k!
ð−1Þkϵk þOðϵ3Þ; ð4:1Þ

where F ≡ fÃ; Ã0; F̃; F̃0g and F ðkÞ ≡ dkF=dξk. For
each F , we shall expand it to the second order of ϵ,
so the errors are of the order ϵ3. Thus, if we choose
ϵ ¼ 10−14, the errors in the initial conditions

F ð1 − ϵÞ are of the order 10−42. For F ¼ Ã; F̃, we
already obtained F ð1Þ and F 0ð1Þ from the initial
conditions. In these cases, to get Ã00ð1Þ and F̃00ð1Þ,
we use the field equations (3.74) and (3.75) and
L’Hospital’s rule. On the other hand, for F ¼ Ã0,
expanding it to the second order of ϵ, we have

Ã0ð1 − ϵÞ ¼ Ã0ð1Þ − Ã00ð1Þϵþ 1

2
Ãð3Þð1Þϵ2 þOðϵ3Þ;

ð4:2Þ

where Ãð3Þð1Þ≡ d3ÃðξÞ=dξ3jξ¼1 can be obtained by
first taking the derivative of Eq. (3.75) and then
taking the limit ξ → 1, as now we have already
known Ãð1Þ; Ã0ð1Þ; Ã00ð1Þ; F̃ð1Þ; F̃0ð1Þ, and F̃00ð1Þ.
Similarly, for F ¼ F̃0, from Eq. (3.74), we can
find F̃ð3Þð1Þ.

(vi) Repeat (iii)–(v) until a numerical solution matched
to Eq. (3.79) is obtained, by choosing different
values of ÃH with a bisectional search. Clearly,
once such a value of ÃH is found, it means that we
obtain numerically an asymptotically flat solution of
the Einstein-aether field equations outside the S0H.
Note that, to guarantee that Eq. (3.79) is satisfied, the
normalization of fF̃; Ã; B̃g needs to be done accord-
ing to Eq. (3.80), by using the remaining gauge
residual of Eq. (3.43).

(vii) To obtain the solution in the internal region
ξ ∈ ð1;∞Þ, we simply integrate Eqs. (3.74) and
(3.75) from ξ ¼ 1 to ξ → ∞ with the same value of
ÃH found in the last step. As in the region ξ ∈ ð0; 1Þ,
we cannot really set the initial conditions precisely at
ξ ¼ 1. Instead, we will integrate them from ξ ¼
1þ ϵ to ξ ¼ ξ∞ ≫ 1. The initial values at ξ ¼ 1þ ϵ
can be obtained by following what we did in
Step (v), that is, Taylor expand F ðξÞ at ξ ¼ 1þ ϵ,
and then use the field equations to get all the
quantities up to the third order of ϵ.

(viii) Matching the results obtained from steps (vi)
and (vii) together, we finally obtain a solution of
fF̃ðξÞ; ÃðξÞg on the whole spacetime ξ ∈ ð0;∞Þ
(or r ∈ ð0;∞Þ).

(ix) Once F̃ and Ã are known, from Eq. (3.11), we can
calculate B̃, so that an asymptotically flat black hole
solution for fÃ; B̃; F̃g is finally obtained over the
whole space r ∈ ð0;∞Þ.

Before proceeding to the next subsection to consider the
physically allowed region of the parameter space of ci ’s, let
us first reproduce the results presented in Table I of [67], in
order to check our numerical code, although all these
choices have been ruled out currently by observations [71].
To see this explicitly, let us first note that the parameters
chosen in [63,67] correspond to
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ĉ2 ¼ −
ĉ31

3ĉ21 − 4ĉ1 þ 2
; ĉ3 ¼ 0 ¼ ĉ4 ¼ 0; ð4:3Þ

so that now only ĉ1 is a free parameter. With this choice of
ĉi’s, the corresponding ci’s can be obtained from Eq. (2.25)
with σ ¼ c2S, which are given by

c14 ¼ ĉ1;

c2 ¼
−2c13 þ 2ĉ1 þ 2c13ĉ1 − 2ĉ21 − c13ĉ21

2 − 4ĉ1 þ 3ĉ21
; ð4:4Þ

where c13 is arbitrary. This implies that Eq. (2.25) is
degenerate for the choice of Eq. (4.3). It can be seen from
Eq. (4.4), in all the cases considered in [67], we have
c14 > 2.5 × 10−5. Hence, all the cases considered in
[63,67] do not satisfy the current constraints [71].
With the above in mind, we reproduce all the cases

considered in [63,67], including the ones with c̃1 > 0.8.
Our results are presented in Table I, where

γ̃ff ≡ ũαuobsα ; ð4:5Þ

r̃g ≡ −rH × lim
ξ→0

dF̃ðξÞ
dξ

¼ 2GæMADM; ð4:6Þ

where uobsα is the tangent (unit) vector to a radial free-fall
trajectory that starts at rest at spatial infinity, and MADM
denotes the Komar mass, which is equal to the Arnowitt-
Deser-Misner (ADM) mass in the spherically symmetric
case for the metric g̃αβ [53].
From Table I, we can see that our results are exactly the

same as those given in [67] up to the same accuracy. But,
due to the improved accuracy of our numerical code, for
each of the physical quantity, we provided two more digits.
Additionally, in Fig. 2, we plotted the functions F̃, B̃, Ã,

and C̃ for four representative cases listed in Table I
(ĉ1 ¼ 0.1, 0.3, 0.6, 0.99). Here, the quantity C̃ is defined as

C̃≡
���� d ln B̃dξ

− G3

����; ð4:7Þ

which vanishes identically for the solutions of the field
equations, as it can be seen from Eq. (3.76). In the rest of
this paper, we shall use it to check the accuracy of our
numerical code.
From Fig. 2, we note that the properties of fF̃; Ã; B̃g

depend on the choice of ĉ1. The quantity C̃ is approximately
zero within the whole integration range, which means that
our numerical solutions are quite reliable.

B. Physically viable solutions with S0Hs

With the above verification of our numerical code, we
turn to the physically viable solutions of the Einstein-aether

field equations, in which an S0H always exists. Since c13 is
very small, without loss of the generality, in this subsection,
we only consider the cases with c13 ¼ 0.
As the first example, let us consider the case

c14 ¼ 2 × 10−7, c2 ¼ 9 × 10−7, and c3 ¼ −c1, which sat-
isfy the constraints (2.18). Figure 3 shows the functions F̃,
Ã, B̃, in which we also plot J̃ ≡ F̃Ã2 and the GR limit of F̃,
denoted by F̃GR with F̃GR ≡ 1 − rH=r.
In plotting Fig. 3, we chose ϵ ¼ 10−14. With the shooting

method, ÃH is determined to be ÃH ≃ 2.4558992.10 In our
calculations, we stop repeating the bisection search for ÃH,
when the value ÃH giving an asymptotically flat solution is
determined to within 10−23. Technically, these accuracies
could be further improved. However, for our current
purposes, they are already sufficient.

FIG. 2. In the above graphs, we use a, b, c, and d to
represent Ã, B̃, F̃, and C̃. In each row, ĉ1 is chosen, respectively,
as ĉ1 ¼ 0.1, 0.3, 0.6, 0.99, as listed in Table I. The horizontal axis
is rH=r.

10During the numerical calculations, we find that the asymp-
totical behavior (3.79) of the metric coefficients at ξ≡ rH=r ≃ 0
sensitively depends on the value of ÃH. To make our results
reliable, among all the steps in our codes, the precision is chosen
to be not less than 37.
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As we have already mentioned, theoretically Eq. (3.76)
will be automatically satisfied once Eqs. (3.74), (3.75), and
(3.77) hold. However, due to numerical errors, in practice,
it can never be zero numerically. Thus, to monitor our
numerical errors, we always plot out the quantity C̃ defined
by Eq. (4.7), from which we can see clearly the numerical
errors in our calculations. So, in the right-hand panels of
Fig. 4, we plot out the curves of C̃, denoted by d, in
each case.
Clearly, outside the S0H, C̃ ≲ 10−17, while inside the

S0H, we have C̃ ≲ 10−10. Thus, the solutions inside the
horizon are not as accurate as the ones given outside of
the horizon. However, since in this paper, we are mainly
concerned with the spacetime outside of the S0H, we shall
not consider further improvements of our numerical code
inside the horizon. The other quantities, such as c2S and r̃g,
are all given by the first row of Table II.
Following the same steps, we also consider other cases,

and some of them are presented in Tables II and III. In
particular, in Table II, we fix the ratio of c2=c14 to be 9=2.
In addition, the values of fc2; c14g are chosen so that they
satisfy the constraints of Eq. (2.18). In Table III, the ratio
c2=c14 changes and the values of fc2; c14g are chosen so
that they spread over the whole viable range of c14, given
by Eqs. (2.16)–(2.20).
From these tables, we can see that quantities like ÃH and

r̃g are sensitive only to the ratio of c2=c14, instead of their
individual values. This is understandable, as for c13 ¼ 0

and c14 ≲ 2.5 × 10−5, Eq. (1.1) shows that cS ≃ cSðc2=c14Þ.
Therefore, the same ratio of c2=c14 implies the same
velocity of the spin-0 graviton. Since S0H is defined by
the speed of this massless particle, it is quite reasonable to
expect that the related quantities are sensitive only to the
value of cS.
The resulting F̃, Ã, B̃, and C̃ for the cases listed in

Tables II and III are plotted in Figs. 4 and 5, respectively.

FIG. 3. The solution for c14 ¼ 2 × 10−7, c2 ¼ 9 × 10−7, and
c3 ¼ −c1. Here, Ã, B̃, J̃, F̃, and F̃GR are represented by the red
line (labeled by a), green line (labeled by b), orange line (labeled
by c), blue line (labeled by 1) and cyan line (labeled by 2)
respectively.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Ã, B̃, and F̃ for different combinations of fc2; c14g
listed in Table II and their corresponding C̃’s. Here the horizontal
axis is rH=r. Ã, B̃, F̃, and C̃ are represented by the red solid line
(labeled by a), green dotted line (labeled by b), blue dash-
dotted line (labeled by c), and orange solid line (labeled
by d), respectively. To be specific, (a) and (b) are for the
case f9 × 10−7; 2 × 10−7g, (c) and (d) are for the case
f9 × 10−8; 2 × 10−8g, (e) and (f) are for the case
f9 × 10−9; 2 × 10−9g. Note that the small graphs inserted in
(b), (d), and (f) show the amplifications of C̃’s near r ¼ rH.

TABLE II. c2S, ÃH , and r̃g=rH calculated from different
fc2; c14g with c13 ¼ 0 and a fixed ratio of c2=c14.

c2 c14 c2S ÃH r̃g=rH

9 × 10−7 2 × 10−7 4.4999935 2.4558992 1.1450729
9 × 10−8 2 × 10−8 4.4999994 2.4559003 1.1450730
9 × 10−9 2 × 10−9 4.4999999 2.4559004 1.1450730

TABLE III. c2S, ÃH, and r̃g=rH calculated from different
fc2; c14g with c13 ¼ 0 and changing c2=c14.

c2 c14 c2S ÃH r̃g=rH

2.01 × 10−5 2 × 10−5 1.0049596 1.4562430 1.0005850
7 × 10−7 5 × 10−7 1.3999982 1.6196457 1.0381205
9 × 10−7 2 × 10−8 44.999939 6.4676346 1.2629671
9 × 10−5 2 × 10−7 449.93921 19.053220 1.3091657
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V. PHYSICAL SOLUTIONS (gαβ; uμ)

The above steps reveal how we find the solutions of the
effective metric g̃μν and aether field ũμ. To find the
corresponding physical quantities gμν and uμ, we shall
follow two steps: (i) reverse Eqs. (3.39) and (3.41) to find a
set of the physical quantities fFðξÞ; AðξÞ; BðξÞg (note that
we have ξ ¼ r̃S0H=r ¼ rS0H=r). (ii) Apply the rescaling
v → C0v to make the set of fFðξÞ; AðξÞ; BðξÞg take the
standard form at spatial infinity r ¼ ∞.
To these purposes, let us first note that, near the spatial

infinity, Eqs. (3.79), (3.39), and (3.41) lead to

FðξÞ¼C2
0

σ

�
1þF1ξþ

1

48
c14F3

1ξ
3

�
þOðξ4Þ;

BðξÞ¼ C0ffiffiffi
σ

p
�
1þ 1

16
c14F2

1ξ
2−

1

12
c14F3

1ξ
3

�
þOðξ4Þ;

AðξÞ¼
ffiffiffi
σ

p
C0

�
1−

1

2
F1ξþ

1

2
A2ξ

2

−
�
1

2
A2F1−

1

16
F3
1þ

1

96
c14F3

1

�
ξ3
�
þOðξ4Þ; ð5:1Þ

where

F1 ¼ F̃1; c14 ¼ c̃14;

A2 ¼
ffiffiffi
σ

p
Ã2 −

3

4
ð ffiffiffi

σ
p

− 1ÞF̃2
1: ð5:2Þ

The above expressions show clearly that the spacetimes
described by ðgμν; uμÞ are asymptotically flat, provided that
the effective fields ðg̃μν; ũμÞ are. In particular, setting
C0 ¼

ffiffiffi
σ

p
, a condition that will be assumed in the rest of

this section, the functions F, A, and B will take their
standard asymptotically flat forms.
It is remarkable to note that the asymptotical behavior of

the functions F, A, and B depends only on c14 up to the
third order of ξ, but c2 will show up starting from the four
order of ξ4.

A. Metric and spin-0 horizons

Again, we take the case of c14 ¼ 2 × 10−7,
c2 ¼ 9 × 10−7, and c3 ¼ −c1 as the first example. The
results for the normalized F, A, B, and J in this case are
plotted in Fig. 6. To see the whole picture of these functions
on r ∈ ð0;∞Þ, they are plotted as functions of r=rH inside
the horizon, while outside the horizon they are plotted as
functions of ðr=rHÞ−1. This explains why in the left-hand
panel of Fig. 6, the MH (r ¼ rMH) stays in the left-hand
side of the S0H, while in the right-hand panel, they just
reverse the order. In this figure, we did not plot the GR
limits for B and F since they are almost overlapped with
their counterparts. From the analysis of this case, we find
the following:

(i) The values of F and B are almost equal to their GR
limits all the time. This is true even when r is
approaching the center r ¼ 0, at which a spacetime
curvature singularity is expected to be located.

(ii) Inside the S0H, the oscillations of A and J become
visible, which was also noted in [63].11 Such
oscillations continue and become more violent as
the curvature singularity at the center approaches.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. Ã, B̃, and F̃ for different combinations of fc2; c14g
listed in Table III and their corresponding C̃’s. Here the horizontal
axis is rH=r. Ã, B̃, F̃, and C̃ are represented by the red solid line
(labeled by a), green dotted line (labeled by b), blue dash-dotted
line (labeled by c), and orange solid line (labeled by d), res-
pectively. To be specific, (a) and (b) are for the case f2.01 × 10−5;
2 × 10−5g, (c) and (d) are for the case f7 × 10−7; 5 × 10−7g, (e)
and (f) are for the case f9 × 10−7; 2 × 10−8g, (g) and (h) are for
the case f9 × 10−5; 2 × 10−7g. Note that the small graphs inserted
in (b), (d), (f), and (h) show the amplifications of C̃ near r ¼ rH.

11In [63], the author just considered the oscillational behavior
of Ã. The physical quantities F, A, and B were not considered.
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The functions of fF; A; B; Jg for the other cases listed in
Tables II and III are plotted in Fig. 7. In this figure, the plots
are ordered according to the magnitude of c2S. Besides,
some amplified figures are inserted in (a)–(d) near the
region around the point of F ¼ 0. Similarly, in (e) and (f),
some amplified figures are inserted near the region around
the point of J ¼ Jþ. The position of r ¼ rMH, at which we
have FðrMHÞ ¼ 0, is marked by a full solid circle, while the
position of r ¼ rS0H, at which we have JðrS0HÞ ¼ Jþ [cf.,
Eq. (3.17)], is marked by a pentagram, and in all these cases
we always have rMH > rS0H. The values of Jþ and J− are
given by the brown and purple solid lines, respectively.
Note we always have Jþ > J− for cS > 1. By using these
two lines, we can easily find that there is only one rS0H in
each case, i.e., rþS0H in Eq. (3.17).
From the studies of these representative cases, we find the

following: (i) as we have already mentioned, in all these
cases, the functionsB andF are very close to their GR limits.
(ii) Changing c2S will not influence themaximumofAmuch.
In contrast, themaximumof jJj inside the S0H is sensitive to
c2S. (iii) The oscillation of AðrÞ gets more violent as c2S
increases. (iv) The value of jrMH − rS0Hj gets bigger as c2S
deviates from1. (v) In all these cases, we have only one rS0H,
i.e., only one intersection between JðrÞ and J�, in each case.
(vi) Just like what we saw in Tables II and III, in the cases
with the same cS (but different values of c14 and c2), the
corresponding functions fF; A; B; Jg are quite similar.
From Tables II and III and Fig. 7, we would like also to

note that the value of rMH is always close to the corre-
sponding r̃g. To understand this, let us consider Eq. (5.1),
from which we find that

FðξÞ ¼ 1þ F1ξþ
1

48
c14F3

1ξ
3 þOðξ4; c14; c2Þ ð5:3Þ

after normalization. Recall ξ≡ rH=r and rH ≡ rS0H. Then,
from Eqs. (4.6), (3.79), (5.2), and (5.3), we also find that

r̃g
rS0H

¼ −F̃1 ¼ −F1: ð5:4Þ

On the other hand, from Eq. (3.15), we have

FðξÞjr¼rMH
¼ 1þ F1

rS0H
rMH

þ 1

48
c14F3

1

�
rS0H
rMH

�
3

þOðξ4; c14; c2Þ
¼ 0; ð5:5Þ

from which we obtain

rMH

rS0H
¼ −F1 −

1

48
c14F3

1

�
rS0H
rMH

�
2

þO
�
rS0H
rMH

�
3

¼ r̃g
rS0H

þ 1

48
c14

�
r̃g
rS0H

�
3
�
rS0H
rMH

�
2

þOðξ3; c14; c2Þ; ð5:6Þ

where Eq. (5.4) was used. For the expansion of F to be
finite, we must assume

Oðξ3; c14; c2Þ ≲O
�
1

48
c14

�
r̃g
rS0H

�
3
�
rS0H
rMH

�
2
�
: ð5:7Þ

At the same time, recall that we have c14 ≲ 2.5 × 10−5 and
rS0H ≤ rMH. Besides, we also have r̃g=rS0H ≃Oð1Þ. Thus,
from Eq. (5.6), we find

FIG. 6. The evolutions of the physical quantities F, A, B, and J for the case c13 ¼ 0, c2 ¼ 9 × 10−7, and c14 ¼ 2 × 10−7. Here, A, B, J,
and F are represented by the red solid line, green dotted line, orange dashed line, and blue dash-dotted line, respectively. The positions of
r ¼ rMH and r ¼ rS0H are marked by a small full solid circle and a pentagram, respectively. Note that we have rMH > rS0H . The values Jþ

and J− are given, respectively, by the brown and purple solid lines with Jþ > J−. The left panel shows the main behaviors of the functions
outside the S0H in the range rS0H=r ∈ ð0; 1.105Þ, while the right panel shows their main behaviors inside the S0H in the range
r=rS0H ∈ ð0; 1.2Þ.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Solutions for different combinations of fc2; c14g listed in Tables II and III. Here, A, B, J, and F are represented by the red solid
line, green dotted line, orange dashed line, and blue dash-dotted line, respectively. These figures are ordered according to the magnitude
of c2S. In each of the figures, the values Jþ and J− are given, respectively, by the brown and purple solid lines with Jþ > J−, while the
positions of r ¼ rMH and r ¼ rS0H are marked by a small full solid circle and a pentagram, respectively. Additionally, the value of
rMH=rS0H is also given in each case.
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���� rMH

rS0H
−

r̃g
rS0H

����≲Oðc14Þ: ð5:8Þ

This result reveals why the values of rMH=rS0H and r̃g=rS0H
are very close to each other, although not necessarily the
same exactly.
Finally, let us take a closer look at the difference between

GR and æ-theory, although in the above we already
mentioned that the results from these two theories are
quite similar. To see these more clearly, we first note that
the GR counterparts of F and B are given by

FGR ¼ 1 −
rMH

r
; BGR ¼ 1: ð5:9Þ

Thus, the relative differences can be defined as

ΔF≡ F − FGR

FGR ; ΔB≡ B − BGR

BGR : ð5:10Þ

Again, considering the representative case c2 ¼ 9 × 10−7,
c14 ¼ 2 × 10−7, and c13 ¼ 0, we plot out the differences
ΔF and ΔB in Fig. 8, from which we find that in the range
ξ ∈ ð10−12; 1Þ we have OðΔFÞ≲ 10−9. On the other hand,

in the range ξ ∈ ð1; 1012Þ, we have OðΔFÞ≲ 10−5.
Similarly, in the range ξ ∈ ð10−12; 1Þ, we have
OðΔBÞ ≲ 10−8. In addition, in the range ξ ∈ ð1; 107Þ,
we have OðΔBÞ≲ 10−3. Thus, we confirm that F and B
are indeed quite close to their GR limits.

B. Universal horizons

In theories with the broken LI, the dispersion relation of
a massive particle contains generically high-order momen-
tum terms [80],

E2 ¼ m2 þ c2kk
2

�
1þ

X2ðz−1Þ
n¼1

an

�
k
M�

�
n
�
; ð5:11Þ

from which we can see that both the group and phase
velocities become unbounded as k → ∞, where E and k are
the energy and momentum of the particle considered, and
ck and an’s are coefficients, depending on the species of the
particle, while M� is the suppression energy scale of the
higher-dimensional operators. Note that there must be no
confusion between ck here and the four coupling constants
ci’s of the theory. As an immediate result, the causal

(a) (b)

(c) (d)

FIG. 8. ΔF andΔB for c2 ¼ 9 × 10−7, c14 ¼ 2 × 10−7, and c13 ¼ 0. The panels (a) and (c) show the region outside the S0H, while the
panels (b) and (d) show the region inside the S0H.

SPHERICALLY SYMMETRIC STATIC BLACK HOLES IN … PHYS. REV. D 102, 064043 (2020)

064043-21



structure of the spacetimes in such theories is quite different
from that given in GR, where the light cone at a given point
p plays a fundamental role in determining the causal
relationship of p to other events [98]. In a UV complete
theory, the above relationship is expected even in the
gravitational sector. One of such examples is the healthy
extension [91,92] of Hořava gravity [79,80], a possible
UV extension of the khronometric theory (the HO
æ-theory [93,94]).
However, once LI is broken, the causal structure will be

dramatically changed. For example, in the Newtonian
theory, time is absolute and the speeds of signals are not
limited. Then, the causal structure of a given point p is
uniquely determined by the time difference, Δt≡ tp − tq,
between the two events. In particular, if Δt > 0, the event q
is to the past of p; if Δt < 0, it is to the future; and if
Δt ¼ 0, the two events are simultaneous. In theories with
breaking LI, a similar situation occurs.
To provide a proper description of BHs in such theories,

UHs were proposed [66,67], which represent the absolute
causal boundaries. Particles even with infinitely large
speeds would just move on these boundaries and cannot
escape to infinity. The main idea is as follows. In a given
spacetime, a globally timelike scalar field ϕmay exist [99].
In the spherically symmetric case, this globally timelike
scalar field can be identified to the HO aether field uμ via
the relation (2.46). Then, similar to the Newtonian theory,
this field defines globally an absolute time, and all particles
are assumed to move along the increasing direction of the
timelike scalar field, so the causality is well defined. In such
a spacetime, there may exist a surface at which the HO
aether field uμ is orthogonal to the timelike Killing vector,
ζð≡∂vÞ. Given that all particles move along the increasing
direction of the HO aether field, it is clear that a particle
must cross this surface and move inward, once it arrives at
it, no matter how large its speed is. This is a one-way
membrane, and particles even with infinitely large speeds
cannot escape from it, once they are inside it (cf. Fig. 9). So,
it acts as an absolute horizon to all particles (with any
speed), which is often called the UH [66,67,80]. At the
horizon, as can be seen from Fig. 9, we have [100]

ζ · ujr¼rUH
¼ −

1

2A
ð1þ JÞ

����
r¼rUH

¼ 0; ð5:12Þ

where J ≡ FA2. Therefore, the location of an UH is exactly
the crossing point between the curve of JðrÞ and the
horizontal constant line J ¼ −1, as one can see from Figs. 6
and 7. From these figures, we can also see that they are
always located inside S0Hs, as expected. In addition, the
curve JðrÞ oscillates rapidly and crosses the horizontal line
J ¼ −1 back and forth infinite times. Therefore, in each
case, we have infinite number of rUH−iði ¼ 1; 2;…Þ. In this
case, the UH is defined as the largest value of
rUH−iði ¼ 1; 2;…Þ. In Table IV, we show the locations

of the first eight UHs for each case, listed in Tables II
and III. It is interesting to note that the formation of
multiroots of UHs was first noticed in [67] and later
observed in gravitational collapse [72].

C. Other observational quantities

Another observationally interesting quantity is the ISCO,
which is the root of the equation,

2rF0ðrÞ2 − F½3F0ðrÞ þ rF00ðrÞ� ¼ 0: ð5:13Þ

Note that in GR we have rISCO=rH ¼ 3 [102]. Due to the
tiny differences between the Schwarzschild solutions and
the ones considered here, as shown in Fig. 8, it is expected
that rISCO’s in these cases are also quite close to its GR
limit. As a matter of fact, we find that this is indeed the
case, and the differences in all the cases considered above
appear only after six digits, that is, jrISCO − rGRISCOj ≤ 10−6,
as shown explicitly in Tables V and VI.
In Table V, we also show several other physical quan-

tities. These include the Lorentz gamma factor γff, the
gravitational radius rg, the orbital frequency of the ISCO
ωISCO, the maximum redshift zmax of a photon emitted by a
source orbiting the ISCO (measured at the infinity), and the
impact parameter bph of the circular photon orbit (CPO),
which are defined, respectively, by [67]

γff ¼
�
Aþ 1

4A

�����
r¼rMH

; ð5:14Þ

FIG. 9. Illustration of the bending of the ϕ ¼ constant surfaces,
and the existence of the UH in a spherically symmetric static
spacetime, where ϕ denotes the globally timelike scalar field, and
t is the Painlevé-Gullstrand-like coordinates, which covers the
whole spacetime [101]. Particles move always along the increas-
ing direction of ϕ. The Killing vector ζμ ¼ δμv always points
upward at each point of the plane. The vertical dashed line is the
location of the metric (Killing) horizon, r ¼ rMH . The UH,
denoted by the vertical solid line, is located at r ¼ rUH , which is
always inside the MH.
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rg ¼ −rS0H
dF
dξ

����
ξ→0

; ð5:15Þ

ωISCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dF=dr
2r

r ����
r¼rISCO

; ð5:16Þ

zmax ¼
1þ ωISCOrF−1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F − ω2
ISCOr

2
p ����

r¼rISCO

− 1; ð5:17Þ

bph ¼
rffiffiffiffi
F

p
����
r¼rph

; ð5:18Þ

where the radius rph of the CPO is defined as

�
2F − r

dF
dr

�����
r¼rph

¼ 0: ð5:19Þ

As pointed previously, these quantities are quite close to
their relativistic limits, since they depend only on the

spacetimes described by F and B. As shown in Fig. 8, the
differences of these spacetimes between æ-theory and GR
are very small. To see this more clearly, let us introduce the
quantities,

ΔrISCO ≡ rISCO
rMH

−
�
rISCO
rMH

�
GR

;

ΔωISCO ≡ rgωISCO − ðrgωISCOÞGR;
Δzmax ≡ zmax − ðzmaxÞGR;

Δbph ≡ bph
rg

−
�
bph
rg

�
GR

; ð5:20Þ

where the GR limits of rISCO=rMH, rgωISCO, zmax, and

bph=rg are, respectively, 3; 2 × 6−3=2, 3=
ffiffiffi
2

p
− 1, and

3
ffiffiffi
3

p
=2. As can be seen from Table VI, all of these

quantities are fairly close to their GR limits.
Therefore, we conclude that it is quite difficult to

distinguish GR and æ-theory through the considerations
of the physical quantities rISCO, ωISCO, zmax, or bph, as far as

TABLE IV. rUH−i’s for different cases listed in Tables II and III. Note that here we just show first eight UHs of Eq. (5.12) for each case.

c2S rMH=rUH−1 rMH=rUH−2 rMH=rUH−3 rMH=rUH−4 rMH=rUH−5 rMH=rUH−6 rMH=rUH−7 rMH=rUH−8

1.0049596 1.40913534 9.12519836 68.6766490 524.111256 4006.80012 30638.7274 234291.582 1791613.54
1.3999982 1.39634652 6.27835216 33.1700700 178.825436 967.454326 5237.31538 28355.5481 153524.182
4.4999935 1.36429738 2.74101697 6.42094860 15.6447753 38.6164383 95.7784255 238.000717 591.850964
4.4999994 1.36429738 2.74101595 6.42094387 15.6447581 38.6163818 95.7782501 238.000194 591.849442
4.4999999 1.36429738 2.74101584 6.42094340 15.6447564 38.6163762 95.7782326 238.000141 591.849289
44.999939 1.33939835 1.56980254 1.91857535 2.41278107 3.08953425 4.00154026 5.22142096 6.84725395
449.93921 1.33429146 1.39226716 1.46010811 1.53855402 1.62835485 1.73026559 1.84507183 1.97362062

TABLE V. The quantities rS0H, γff, rISCO, ωISCO, zmax, and bph for different cases listed in Tables II and III.

c2S rMH=rS0H γff rISCO=rMH rgωISCO zmax bph=rg

1.0049596 1.00058469 1.62614814 3.00000083 0.13608278 1.12132046 2.59807604
1.3999982 1.03812045 1.63971715 3.00000002 0.13608276 1.12132035 2.59807621
4.4999935 1.14507287 1.67376648 3.00000000 0.13608276 1.12132034 2.59807621
4.4999994 1.14507298 1.67376647 3.00000000 0.13608276 1.12132034 2.59807621
4.4999999 1.14507299 1.67376647 3.00000000 0.13608276 1.12132034 2.59807621
44.999939 1.26296693 1.69777578 3.00000000 0.13608276 1.12132034 2.59807621
449.93921 1.30916545 1.70149318 3.00000000 0.13608276 1.12132034 2.59807621

TABLE VI. ΔrISCO, ΔωISCO, Δzmax, and Δbph for different cases listed in Tables II and III.

c2S ΔrISCO ΔωISCO Δzmax Δbph
1.0049596 8.3 × 10−7 1.3 × 10−8 1.2 × 10−7 −1.7 × 10−7

1.3999982 1.8 × 10−8 2.2 × 10−10 2.0 × 10−9 −3.2 × 10−9

4.4999935 4.0 × 10−9 1.5 × 10−12 4.9 × 10−11 −4.2 × 10−10

4.4999994 4.0 × 10−10 1.5 × 10−11 −7.2 × 10−11 −3.2 × 10−10

4.4999999 4.0 × 10−11 2.3 × 10−11 −1.2 × 10−10 −4.5 × 10−10

44.999939 1.5 × 10−10 9.6 × 10−11 −5.6 × 10−10 −1.9 × 10−9

449.93921 1.1 × 10−9 1.1 × 10−11 −4.5 × 10−10 −1.1 × 10−9
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the cases considered in this paper are concerned. Thus, it
would be very interesting to look for other choices of
fc2; c13; c14g (if there exists), which could result in dis-
tinguishable values in these observational quantities.

VI. CONCLUSIONS

In this paper, we have systematically studied static
spherically symmetric spacetimes in the framework of
Einstein-aether theory, by paying particular attention to
black holes that have regular S0Hs. In æ-theory, a timelike
vector, the aether, exists over the whole spacetime. As a
result, in contrast to GR, now there are three gravitational
modes, referred to as, respectively, the spin-0, spin-1, and
spin-2 gravitons.
To avoid the vacuum gravi-Čerenkov radiation, all these

modes must propagate with speeds greater than or at least
equal to the speed of light [74]. However, in the spherically
symmetric spacetimes, only the spin-0 mode is relevant in
the gravitational sector [75], and the boundaries of BHs are
defined by this mode, which are the null surfaces with

respect to the metric gðSÞμν defined in Eq. (1.3), the so-called
S0Hs. Since now cS ≥ c, where cS is the speed of the spin-0
mode, the S0Hs are always inside or at most coincide with
the metric (Killing) horizons. Then, in order to cover
spacetimes both inside and outside the MHs, working in
the Eddington-Finkelstein coordinates (3.1) is one of the
natural choices.
In the process of gravitational radiations of compact

objects, all of these three fundamental modes will be
emitted, and the GW forms and energy loss rate should
be different from that of GR. In particular, to the leading
order, both monopole and dipole emissions will coexist
with the quadrupole emission [34,35,38–41,43]. Despite of
all these, it is remarkable that the theory still remains
as a viable theory, and satisfies all the constraints, both
theoretical and observational [71], including the recent
detection of the GW, GW170817, observed by the LIGO/
Virgo Collaboration [89], which imposed the severe
constraint on the speed of the spin-2 gravitational mode,
−3 × 10−15 < cT − 1 < 7 × 10−16. Consequently, it is one
of the few theories that violates Lorentz symmetry and
meantime is still consistent with all the observations carried
out so far [71,103].
Spherically symmetric static BHs in æ-theory have been

extensively studied both analytically [51–61] and numeri-
cally [63–69], and various solutions have been obtained.
Unfortunately, all these solutions have been ruled out by
current observations [71].
Therefore, as a first step, in this paper, we have

investigated spherically symmetric static BHs in æ-theory
that satisfy all the observational constraints found lately in
[71] in detail, and presented various numerical new BH
solutions. In particular, we have first shown explicitly that
among the five nontrivial field equations, only three of

them are independent. More important, the two second-
order differential equations given by Eqs. (3.5) and (3.6) for
the two functions FðrÞ and AðrÞ are independent of the
function BðrÞ, where FðrÞ and BðrÞ are the metric
coefficients of the Eddington-Finkelstein metric (3.1),
and AðrÞ describes the aether field, as shown by
Eq. (3.2). Thus, one can first solve Eqs. (3.5) and (3.6)
to find FðrÞ and AðrÞ, and then from the third independent
equation to find BðrÞ. Another remarkable feature is that
the function BðrÞ can be obtained from the constraint (3.10)
and is given simply by the algebraic expression of F, A and
their derivatives, as shown explicitly by Eq. (3.11). This not
only saves the computational labor, but also makes the
calculations more accurate, as pointed out explicitly in [67],
solving the first-order differential equation (3.7) for BðrÞ
can potentially be affected by numerical inaccuracies when
evaluated very close to the horizon.
Then, now solving the (vacuum) field equations of

spherically symmetric static spacetimes in æ-theory simply
reduces to solve the two second-order differential equa-
tions (3.5) and (3.6). This will considerably simplify the
mathematical computations, which is very important,
especially considering the fact that the field equations
involved are extremely complicated, as one can see from
Eqs. (3.5) to (3.10) and (A1) to (A4). Then, in the case
c13 ¼ c14 ¼ 0, we have been able to solve these equations
explicitly, and obtained a three-parameter family of exact
solutions, which in general depends on the coupling
constant c2. However, requiring that the solutions be
asymptotically flat, we have found that the solutions
become independent of c2, and the corresponding metric
reduces precisely to the Schwarzschild BH solution with a
nontrivially coupling aether field given by Eq. (3.34),
which is always timelike even in the region inside the BH.
To simplify the problem further, we have also taken the

advantage of the field redefinitions that are allowed by the
internal symmetry of æ-theory, first discovered by Foster in
[83], and later were used frequently, including the works of
[63,65,67]. The advantage of the field redefinitions is that it
allows us to choose the free parameter σ involved in the
field redefinitions, so that the S0H of the redefined metric
g̃μν will coincide with its MH. This will reduce the four-
dimensional space of the initial conditions, spanned by
F̃H; F̃0

H; ÃH; Ã
0
H, to one-dimension, spanned only by ÃH, if

the initial conditions are imposed on the S0H. In Sec. III D.
we have shown step by step how one can do it. In addition,
in this same subsection, we have also shown that the field
equations are invariant under the rescaling r → Cr. In fact,
introducing the dimensionless coordinate ξ≡ rS0H=r, the
relevant four field equations take the scaling-invariant
forms of Eqs. (3.74)–(3.77), which are all independent
of rS0H. Thus, when integrating these equations, without
loss of generality, one can assign any value to rS0H.
We would like also to note that in Sec. III. C we worked

out the relations in detail among the fields (gμν; uμ; ci),
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(ĝμν; ûμ; ĉi), and (g̃μν; ũμ; c̃i), and clarified several subtle
points. In particular, the redefined metric ĝμν through
Eqs. (2.23) and (2.24) does not take the standard form
in the Eddington-Finkelstein coordinates, as shown explic-
itly by Eq. (3.35). Instead, only after a proper coordinate
transformation given by Eqs. (3.36) and (3.37), the result-
ing metric g̃μν takes the standard form, as given by
Eq. (3.38). Then, the field equations for (g̃μν; ũμ; c̃i) take
the same forms as the ones for (gμν; uμ; ci). Therefore, when
we solved the field equations in terms of the redefined
fields, they are the ones of (g̃μν; ũμ), not the ones for
(ĝμν; ûμ).
After clarifying all these subtle points, in Sec. IV,

we have worked out the detail on how to carry out expli-
citly our numerical analysis. In particular, to monitor
the numerical errors of our code, we have introduced the
quantity C̃ through Eq. (4.7), which is essentially
Eq. (3.65). Theoretically, it vanishes identically. But, due
to numerical errors, it is expected that C̃ has nonzero values,
and the amplitude of it will provide a good indication on the
numerical errors that our numerical code could produce.
To show further the accuracy of our numerical code, we

have first reproduced the BH solutions obtained in [63,67],
but with an accuracy that are at least 2 orders higher
(cf. Table I). It should be noted that all these BH solutions
have been ruled out by the current observations [71]. So,
after checking our numerical code, in Sec. IV. B, we
considered various new BH solutions that satisfy all the
observational constraints [71] and presented them in
Tables II and III, as well as in Figs. 3–5.
Then, in Sec. V, we have presented the physical metric

gμν and æ-field uμ for these viable new BH solutions
obtained in Sec. IV. Before presenting the results, we have
first shown that the physical fields, gμν and uμ, are also
asymptotically flat, provided that the effective fields g̃μν
and ũμ are [cf. Eqs. (5.1) and (5.2)]. Then, the physical BH
solutions were plotted out in Figs. 6 and 7. Among several
interesting features, we would like to point out the different
locations of the metric and spin-0 horizons for the physical
metric gμν, denoted by full solid circles and pentagrams,
respectively.
Another interesting point is that all these physical

BH solutions are quite similar to the Schwarzschild
one. In Fig. 8, we have shown the differences for the case
c2 ¼ 9 × 10−7, c14 ¼ 2 × 10−7, and c13 ¼ 0, but similar
results also hold for the other cases, listed in Tables II
and III.
In this section, we have also identified the locations of

the UHs of these solutions and several other observatio-
nally interesting quantities, which include the ISCO rISCO,
the Lorentz gamma factor γff, the gravitational radius rg,
the orbital frequency ωISCO of the ISCO, the maximum
redshift zmax of a photon emitted by a source orbiting the

ISCO (measured at the infinity), the radii rph of the CPO,
and the impact parameter bph of the CPO. All of them are
given in Tables IV and V. In Table VI, we also calculated
the differences of these quantities obtained in æ-theory and
GR. Looking at these results, we conclude that it is very
hard to distinguish GR and æ-theory through these quan-
tities, as far as the cases considered in this paper are
concerned. We would also like to note that for each BH
solution, there are infinite number of UHs, r ¼ rUH−i,
ði ¼ 1; 2; 3;…Þ, which was also observed in [67]. In
Table IV, we have listed the first eight of them, and the
largest one is usually defined as the UH of the BH. In
contrast, there are only one S0H and one MH for each
solution. These features are also found in the gravitational
collapse of a massless scalar field in æ-theory [72].
An immediate implication of the above results is that the

QNMs of these BHs for a test field, scalar, vector or tensor
[104], will be quite similar to these given in GR. Our
preliminary results on such studies indicate that this is
indeed the case. However, we expect that there should be
significant differences from GR, when we consider the
metric perturbations of these BH solutions—the gravita-
tional spectra of perturbations [105], as now the BH
boundaries are the locations of the S0Hs, not the locations
of the MHs. This should be especially true for the cases
with large speeds cS of the spin-0 modes, as in these cases
the S0Hs are significantly different from the MHs, and
located deeply inside them. Thus, imposing the non-out-
going radiation on the S0Hs will be quite different from
imposing the non-out-going radiation on the corresponding
MHs. We wish to report our results along this direction
soon in another occasion.
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APPENDIX: THE COEFFICIENTS
OF f n, an, bn, AND nn

In this Appendix, we shall provide the explicit expres-
sions of the coefficients of fn, an, bn, and nn, encountered
in the Einstein-aether field equations in the spherically
symmetric spacetimes, for which the metric is written in the
Eddington-Finkelstein coordinates (3.1), with the aether
field taking the form of Eq. (3.2). In particular, the
coefficients of fn, an, and bn appearing in Eqs. (3.5)–
(3.7) are given by
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f0 ¼ −4ðc2 þ c13Þðc2 þ c13 − ðc2 þ 1Þc14ÞrAðrÞA0ðrÞ
− ðc14c22 − c22 þ c213 þ ðc2 þ 1Þc214 − ðc2 þ 2Þc13c14Þr2A0ðrÞ2
− 4ððc14 þ 1Þc213 þ 2ðc2 þ 1Þc13 þ ðc2 − 2Þc14c13 þ c2ðc2 þ 2Þ − 2ðc22 þ 3c2 þ 1Þc14ÞrAðrÞ4F0ðrÞ
þ 2ðc22 þ ð2 − 3c2Þc14c2 − 9c13c14c2 þ ðc2 þ 1Þc214 − c213ð4c14 þ 1ÞÞr2AðrÞ3A0ðrÞF0ðrÞ
− ð5c14c22 − c22 þ ðc2 þ 1Þc214 þ ð7c2 − 2Þc13c14 þ c213ð4c14 þ 1ÞÞr2AðrÞ6F0ðrÞ2
− 2ðc2 þ c13Þc14ð−c2 þ c13 þ c14 − 4Þr3AðrÞ5A0ðrÞF0ðrÞ2 þ ðc2 þ c13Þc14ðc2 − c13 þ c14Þr3AðrÞ8F0ðrÞ3
− ðc2 þ c13ÞAðrÞ2ð−c14ðc2 − c13 þ c14Þr3A0ðrÞ2F0ðrÞ þ 4c2ðc14 − 1Þ þ 2c13c14Þ;

f1 ¼ −8ðc2 þ c13Þðc14c2 þ c2 þ c13 þ c14ÞrAðrÞ3A0ðrÞ
þ 4ðc22 − 3c13c14c2 þ 2c14c2 þ ðc2 þ 1Þc214 − c213ðc14 þ 1ÞÞr2AðrÞ2A0ðrÞ2
− 4ðð1 − 2c14Þc213 þ ð−c14c2 þ 2c2 þ c14 þ 4Þc13 þ c2ðc2 þ 4Þ þ ð5c22 þ 9c2 þ 4Þc14ÞrAðrÞ6F0ðrÞ
þ 2ðc14c22 þ 3c22 − 3ðc2 þ 1Þc214 þ ð11c2 þ 6Þc13c14 þ c213ð4c14 − 3ÞÞr2AðrÞ5A0ðrÞF0ðrÞ
þ 2ðc22 þ ð3c2 þ 2Þc14c2 þ 3c13c14c2 þ ðc2 þ 1Þc214 þ c213ð2c14 − 1ÞÞr2AðrÞ8F0ðrÞ2
þ 2ðc2 þ c13Þc14ðc2 − c13 þ c14Þr3AðrÞ7A0ðrÞF0ðrÞ2
− 2ðc2 þ c13Þc14AðrÞ4ðð−c2 þ c13 þ c14 − 4Þr3A0ðrÞ2F0ðrÞ − 4ð2c2 þ c13 þ 1ÞÞ;

f2 ¼ 2ðc14c22 þ 3c22 − 3ðc2 þ 1Þc214 þ ð11c2 þ 6Þc13c14 þ c213ð4c14 − 3ÞÞr2AðrÞ4A0ðrÞ2
þ 4ð−ðc14 − 1Þc213 þ 2ðc2 − 1Þc13 þ ðc2 þ 4Þc14c13 þ ðc2 − 2Þc2 þ ð4c22 þ 8c2 þ 2Þc14ÞrAðrÞ8F0ðrÞ
þ 6ððc14 þ 1Þc22 þ c14ð−c13 þ c14 þ 2Þc2 − c213 þ c214Þr2AðrÞ7A0ðrÞF0ðrÞ
þ ð−ðc14 − 1Þc22 þ ðc13 − c14Þc14c2 − ðc13 − c14Þ2Þr2AðrÞ10F0ðrÞ2
þ ð−c2 − c13ÞAðrÞ6ð−c14ðc2 − c13 þ c14Þr3A0ðrÞ2F0ðrÞ þ 8c2 þ 4ð6c2 þ 3c13 þ 4Þc14Þ;

f3 ¼ 8ðc2 þ c13Þðc14c2 þ c2 þ c13 þ c14ÞrAðrÞ7A0ðrÞ þ 8ð2c22 þ 3c13c2 þ c2 þ c213 þ c13Þc14AðrÞ8
þ 4ðc22 − 3c13c14c2 þ 2c14c2 þ ðc2 þ 1Þc214 − c213ðc14 þ 1ÞÞr2AðrÞ6A0ðrÞ2
þ 4ðc2 þ c13Þðc2 þ c13 − ðc2 þ 1Þc14ÞrAðrÞ10F0ðrÞ
þ 2ðc2 − c13 þ c14Þðc2 þ c13 − ðc2 þ 1Þc14Þr2AðrÞ9A0ðrÞF0ðrÞ;

f4 ¼ 4ðc2 þ c13Þðc2 þ c13 − ðc2 þ 1Þc14ÞrAðrÞ9A0ðrÞ − 2ðc2 þ c13Þð2c2ðc14 − 1Þ þ c13c14ÞAðrÞ10
þ ð−c14c22 þ c22 − c213 − ðc2 þ 1Þc214 þ ðc2 þ 2Þc13c14Þr2AðrÞ8A0ðrÞ2; ðA1Þ

a0 ¼ 4ð−ðc14 − 1Þc213 þ ð−c14c2 þ 2c2 þ 2c14 − 2Þc13 þ ðc2 − 2Þc2 þ 2ðc22 þ 3c2 þ 1Þc14ÞrAðrÞ2A0ðrÞ
þ ðc213 þ ð5c2c14 þ 8Þc13 − ðc2 þ 1Þc214 − ðc2 − 8Þc2 − ð5c22 þ 18c2 þ 8Þc14Þr2AðrÞA0ðrÞ2
þ ðc2 þ c13Þc14ðc2 − c13 þ c14Þr3A0ðrÞ3 þ 4ðc2 þ c13Þðc14c2 þ c2 þ c13 þ c14ÞrAðrÞ5F0ðrÞ
− 2ðð2c14 − 1Þc213 þ ðð3c2 − 2Þc14 þ 4Þc13 − ðc2 þ 1Þc214 þ c2ðc2 þ 4Þ þ ð3c22 þ 4c2 þ 4Þc14Þr2AðrÞ4A0ðrÞF0ðrÞ
þ ð−c22 − ðc2 þ 2Þc14c2 þ c13c14c2 þ c213 − ðc2 þ 1Þc214Þr2AðrÞ7F0ðrÞ2
þ ðc2 þ c13Þc14ðc2 − c13 þ c14Þr3AðrÞ6A0ðrÞF0ðrÞ2
− 2ðc2 þ c13ÞAðrÞ3ðc14ð−c2 þ c13 þ c14 − 4Þr3A0ðrÞ2F0ðrÞ þ 2c2 þ 2c2c14 þ c13c14 þ 4Þ;
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a1 ¼ 4ðð2c14 þ 1Þc213 þ ð3c14c2 þ 2c2 þ c14 − 4Þc13 þ ðc2 − 4Þc2 − ð3c22 þ 7c2 þ 4Þc14ÞrAðrÞ4A0ðrÞ
þ ð−ð8c14 − 3Þc213 − ðð23c2 þ 14Þc14 − 8Þc13 þ 3ðc2 þ 1Þc214 − c2ð3c2 − 8Þ − ðc22 − 8c2 − 8Þc14Þr2AðrÞ3A0ðrÞ2
− 2ðc2 þ c13Þc14ð−c2 þ c13 þ c14 − 4Þr3AðrÞ2A0ðrÞ3 − 8ðc2 þ 1Þðc2 þ c13Þc14rAðrÞ7F0ðrÞ
þ 4ððc14 þ 1Þc213 þ 2ðc2c14 − 1Þc13 − ðc2 þ 1Þc214 − c2ðc2 þ 2Þ þ ðc22 þ 2c2 þ 2Þc14Þr2AðrÞ6A0ðrÞF0ðrÞ
þ ðc14c22 − c22 þ c213 þ ðc2 þ 1Þc214 − ðc2 þ 2Þc13c14Þr2AðrÞ9F0ðrÞ2
− 2ðc2 þ c13ÞAðrÞ5ð−c14ðc2 − c13 þ c14Þr3A0ðrÞ2F0ðrÞ − 2c2 − ð6c2 þ 3c13 þ 4Þc14Þ;

a2 ¼ −2ðc2 þ c13Þðð6c2 þ 3c13 þ 4Þc14 − 2ðc2 þ 2ÞÞAðrÞ7
− 4ððc14 þ 1Þc213 þ ðc2ð3c14 þ 2Þ þ 2Þc13 þ c2ðc2 þ 2Þ − 2ð2c2 þ 1Þc14ÞrAðrÞ6A0ðrÞ
þ ð−3c22 þ ð5c2 − 6Þc14c2 þ 19c13c14c2 − 3ðc2 þ 1Þc214 þ c213ð8c14 þ 3ÞÞr2AðrÞ5A0ðrÞ2
þ ðc2 þ c13Þc14ðc2 − c13 þ c14Þr3AðrÞ4A0ðrÞ3 − 4ðc2 þ c13Þðc2 þ c13 − ðc2 þ 1Þc14ÞrAðrÞ9F0ðrÞ
− 2ðc2 − c13 þ c14Þðc2 þ c13 − ðc2 þ 1Þc14Þr2AðrÞ8A0ðrÞF0ðrÞ;

a3 ¼ 2ðc2 þ c13Þð2c2ðc14 − 1Þ þ c13c14ÞAðrÞ9 − 4ðc2 þ c13Þðc2 þ c13 − ðc2 þ 1Þc14ÞrAðrÞ8A0ðrÞ
þ ðc14c22 − c22 þ c213 þ ðc2 þ 1Þc214 − ðc2 þ 2Þc13c14Þr2AðrÞ7A0ðrÞ2; ðA2Þ

and

b0 ¼ 4ðc2 þ 1Þðc2 þ c13Þc14AðrÞ2 − 4ðc2 þ c13Þ2c14rAðrÞA0ðrÞ
þ ðc2 þ c13Þc14ðc2 − c13 þ c14Þr2A0ðrÞ2 − 4ðc2 þ c13Þ2c14rAðrÞ4F0ðrÞ
− 2ðc2 þ c13Þc14ð−c2 þ c13 þ c14 − 4Þr2AðrÞ3A0ðrÞF0ðrÞ
þ ðc2 þ c13Þc14ðc2 − c13 þ c14Þr2AðrÞ6F0ðrÞ2;

b1 ¼ −2ðc2 þ c13Þc14ð−c2 þ c13 þ c14 − 4Þr2AðrÞ2A0ðrÞ2 − 8ðc2 þ 1Þðc2 þ c13Þc14AðrÞ4
þ 2ðc2 þ c13Þc14ðc2 − c13 þ c14Þr2AðrÞ5A0ðrÞF0ðrÞ þ 4ðc2 þ c13Þ2c14rAðrÞ6F0ðrÞ;

b2 ¼ 4ðc2 þ c13Þ2c14rAðrÞ5A0ðrÞ þ 4ðc2 þ 1Þðc2 þ c13Þc14AðrÞ6
þ ðc2 þ c13Þc14ðc2 − c13 þ c14Þr2AðrÞ4A0ðrÞ2: ðA3Þ

On the other hand, the coefficients nn’s appearing in Eq. (3.10) are given by

n0 ¼
c2A0ðrÞ

2rAðrÞ3BðrÞ3 −
c2

2r2AðrÞ2BðrÞ3 −
c13

4r2AðrÞ2BðrÞ3 −
1

r2BðrÞ

−
ðc2 þ c13 þ c14ÞA0ðrÞF0ðrÞ

4AðrÞBðrÞ3 −
ðc2 þ c13 − c14ÞA0ðrÞ2

8AðrÞ4BðrÞ3 þ ðc2 þ 2ÞF0ðrÞ
2rBðrÞ3

−
ðc2 þ c13 − c14ÞAðrÞ2F0ðrÞ2

8BðrÞ3 ;

n1 ¼
ð−c2 − c13 − c14ÞA0ðrÞ2

4AðrÞ2BðrÞ3 −
c2AðrÞ2F0ðrÞ

2rBðrÞ3 þ 2c2 þ c13 þ 2

2r2BðrÞ3

þ ð−c2 − c13 þ c14ÞAðrÞA0ðrÞF0ðrÞ
4BðrÞ3 ;

n2 ¼ −
c2AðrÞA0ðrÞ
2rBðrÞ3 þ ð−c2 − c13 þ c14ÞA0ðrÞ2

8BðrÞ3 þ ð−2c2 − c13ÞAðrÞ2
4r2BðrÞ3 : ðA4Þ
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When cS ¼ 1, i.e., c2 ¼ ð−2c13 þ 2c14 − c213c14Þ=ð2 − 4c14 þ 3c13c14Þ, the coefficients f0, a0, b0, and n0 reduce to

f0 ¼
h
rAðrÞ2F0ðrÞ þ c14c13 þ 2c13 − 2c14

2ðc13 − 1Þc14
i
b0;

a0 ¼
2ðc13 − 1Þc14rA0ðrÞ þ ðc13 − 2Þðc14 − 2ÞAðrÞ

c13ðc14ð2rAðrÞ2F0ðrÞ þ 1Þ þ 2Þ − 2c14ðrAðrÞ2F0ðrÞ þ 1Þ f0;

b0 ¼
1

ðð3c13 − 4Þc14 þ 2Þ2 f−2ðc13 − 1Þ2c214ð4c14c213 þ ð−3c214 − 4c14 þ 4Þc13 þ 4ðc14 − 1Þc14Þr2A0ðrÞ2

−4ðc13 − 1Þ2c214rAðrÞA0ðrÞ½ð4c14c213 þ ð3c214 − 16c14 þ 4Þc13 − 4ðc214 − 4c14 þ 2ÞÞrAðrÞ2F0ðrÞ
þ4ðc13 − 1Þ2c14� − 2ðc13 − 1Þ2c214AðrÞ2½ð4c14c213 þ ð−3c214 − 4c14 þ 4Þc13
þ4ðc14 − 1Þc14Þr2AðrÞ4F0ðrÞ2 þ 8ðc13 − 1Þ2c14rAðrÞ2F0ðrÞ þ 4ðc13 − 1Þððc13 − 2Þc14 þ 2Þ�g; ðA5Þ

and

n0 ¼
c14ð−2c213 þ ð3c14 þ 4Þc13 − 4c14ÞAðrÞ2F0ðrÞ2

8ðð3c13 − 4Þc14 þ 2ÞBðrÞ3
þ F0ðrÞ½ðc14ð−2c213 − 3c14c13 þ 4c13 þ 4c14 − 4ÞrA0ðrÞ − 2ðc14c213 þ ð2 − 6c14Þc13 þ 6c14 − 4ÞAðrÞÞ�
× ½4ðð3c13 − 4Þc14 þ 2ÞrAðrÞBðrÞ3�−1 þ ½8ðð3c13 − 4Þc14 þ 2Þr2AðrÞ4BðrÞ3�−1
× ½c14ð−2c213 þ ð3c14 þ 4Þc13 − 4c14Þr2A0ðrÞ2 − 4ðc14c213 þ 2c13 − 2c14ÞrAðrÞA0ðrÞ
−8ðð3c13 − 4Þc14 þ 2ÞAðrÞ4BðrÞ2 þ ð−2c14c213 þ ð8c14 þ 4Þc13 − 8c14ÞAðrÞ2�: ðA6Þ

It should be noted that, due to the complexities of the expressions given in Eqs. (A1)–(A6), we extract these coefficients
directly from ourMathematica code. In addition, they are further tested by the exact solutions presented in [51,53], as well
as by the numerical solutions presented in [63,67]. In the latter, we find that there are no differences between our numerical
solutions and the ones presented in [63,67], within the errors allowed by the numerical codes.
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