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Gravitational waves (GWs) provide an excellent opportunity to test the gravity in the strong gravitational
fields. In this article, we calculate the waveform of GWs, produced by the coalescence of compact binaries,
in an extension of the Chern-Simons gravity by including higher derivatives of the coupling scalar field. By
comparing the two circular polarization modes, we find the effects of amplitude birefringence and velocity
birefringence of GWs in their propagation caused by the parity violation in gravity, which are explicitly
presented in the GW waveforms by the amplitude and phase modifications, respectively. Combining the
two modes, we obtain the GW waveforms in the Fourier domain and find that the deviations from those in
general relativity are dominated by effects of velocity birefringence of GWs. In addition, we also map the
effects of the parity violation on the waveform onto the parametrized post-Einsteinian (PPE) framework
and identify explicitly the PPE parameters.
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I. INTRODUCTION

The discovery of gravitational-wave (GW) compact
binary coalescence source GW150914, as well as the
other sources, opens the new window of GW astronomy
[1–3], which also provides an excellent opportunity to
test Einstein’s general relativity (GR) in the strong
gravitational fields [4–9]. In our series of works, we
focus on the test of parity symmetry of gravity with
GWs. According to Poppers argument: Scientists can
never truly “prove” that a theory is correct, but rather all
we can do is to disprove, or more accurately to constrain
a hypothesis. The theory that remains and cannot be
disproved by observations becomes the status quo [10].
Therefore, the studies of GW, in particular the calcu-
lations of GW waveforms, in the alternative gravita-
tional theories, are the crucial role for the tests of
gravity [11,12].
Symmetry permeates nature and is fundamental to all

the laws of physics. One example is the parity sym-
metry, which implies that flipping left and right does not
change the laws of physics. As well known, nature is
parity violated. Since it was first discovered in weak

interactions [13], the experimental tests become more
interesting in the other interactions, including gravity.
The birefringence of GWs is a fundamental phenome-
non when the parity symmetry is violated in the
gravitational sector [14]. In general, the parity violation
can affect the propagation of the GWs in two ways. The
first one is it can modify the conventional dispersion
relation of the GWs. As a result, the velocities of left-
hand and right-hand circular polarization of GWs can be
different. This phenomenon is also called velocity
birefringence of GWs. One of the examples is the
Hořava-Lifshitz theory of gravity [15] (see Refs. [16–
21] for its extensions and a recent review), in which the
parity symmetry can be violated by including the third
and fifth spatial derivative terms in the action of the
theory. The second way of the parity violation is that it
could change the friction term in the propagation
equation of GWs; see examples in the Chern-Simons
(CS) modified gravity [14,22] (see [23] for a review).
Mainly, such additional friction term will modify the
amplitude of GWs, and therefore the amplitude of left-
hand circular polarization of gravitational waves will
increase (or decrease) during the propagation, while the
amplitude for the right-hand modes will decrease (or
increase). This phenomenon is also called amplitude
birefringence of GWs, and its corrections to the GWs
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waveform have been studied in the framework of CS
modified gravity in [24–27].
Recently, based on the specific parity-violating CS

modified gravity, a ghost-free parity-violating theory of
gravity has been explored in [28] by including higher
derivatives of the coupling scalar field. The speed of the
GW in this theory and its constraints by GW170817 has
been explored in [29]. A more general modified theory of
gravity with parity-violating terms has been constructed in
the framework of spatial covariant formulations and its
evolution of the GWs in the cosmological background has
also been discussed [30]. In the ghost-free parity-violating
gravities, the parity violation can lead to both the velocity
and amplitude birefringences in the propagation of the
GWs [31]. In this paper, we study in detail the effects of
both velocity and amplitude birefringences on the GWs
waveform. Decomposing the GWs into the left-hand and
right-hand circular polarization modes, we find that the
effects of velocity and amplitude birefringences can be
explicitly presented by the modifications in the GW phase
and amplitude, respectively. Converting the circular polar-
izations to the general plus and cross modes, we obtain GW
waveforms in the frequency domain and derive the cor-
rection terms in the amplitude and phase of GWs, relative to
the corresponding results in GR. The corresponding para-
metrized post-Einsteinian parameters in the general ghost-
free parity-violating gravities are also identified.
This paper is organized as follows. In Secs. II and III, we

briefly introduce the theories of ghost-free parity-violating
gravity and the propagation of GWs in these theories of
gravity, respectively. In Sec. IV, we discuss the amplitude
and velocity birefringence effects of GWs. In Sec. V, we
calculate the waveform of GWs produced by the coales-
cence of compact binary systems and particularly focus on
the deviations from those in GR. The summary of this work
is given in Sec. VI.
Throughout this paper, the metric convention is chosen

as ð−;þ;þ;þÞ, and Greek indices ðμ; ν;…Þ run over 0, 1,
2, 3 and the Latin indices ði; j; k;…Þ run over 1, 2, 3. We
set the units to c ¼ ℏ ¼ 1.

II. PARITY-VIOLATING GRAVITIES

We consider parity-violating gravity with the action of
the form

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ LPVÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p ðLϕ þ LotherÞ; ð2:1Þ

where R is the Ricci scalar, LPV is a parity-violating
Lagrangian, Lϕ is the Lagrangian for a scalar field, which
may be coupled nonminimally to gravity, andLother denotes
other matter fields. As one of the simplest examples, we
consider the action of the scalar field

Lϕ ¼ 1

2
gμν∂μϕ∂νϕþ VðϕÞ: ð2:2Þ

Here VðϕÞ denotes the potential of the scalar field. The
parity-violating Lagrangian LPV has different expressions
for different theories. CS modified gravity with Pontryagin
term coupled with a scalar field is a widely studied parity-
violating gravity in the previous works. The Lagrangian of
CS reads [23]

LCS ¼
1

8
ϑðϕÞεμνρσRρσαβR

αβ
μν ; ð2:3Þ

with ερσαβ being the Levi-Civitá tensor defined in terms of
the antisymmetric symbol ϵρσαβ as ερσαβ ¼ ϵρσαβ=

ffiffiffiffiffiffi−gp
and

the CS coupling coefficient ϑðϕÞ being an arbitrary
function of ϕ. CS modified gravity is an effective
extension of GR that captures leading-order, gravitational
parity-violating term. The similar versions of this theory
were suggested in the context of string theory [32] and
three-dimensional topological massive gravity [33].
However, this theory has higher-derivative field equation,
which induces the dangerous Ostrogradsky ghosts. For
this reason, CS modified gravity can only be treated as a
low-energy truncation of a fundamental theory. To cure
this problem, the extension of CS gravity by considering
the terms which involve the derivatives of a scalar field is
recently proposed in [28]. LPV1 is the Lagrangian con-
taining the first derivative of the scalar field, which is
given by

LPV1 ¼
X4
A¼1

aAðϕ;ϕμϕμÞLA;

L1 ¼ εμναβRαβρσR
ρ
μνλϕ

σϕλ;

L2 ¼ εμναβRαβρσR
ρσ
μλϕνϕ

λ;

L3 ¼ εμναβRαβρσRσ
νϕ

ρϕμ;

L4 ¼ εμνρσRρσαβR
αβ
μνϕλϕλ; ð2:4Þ

with ϕμ ≡∇μϕ, and aA are a priori arbitrary functions of
ϕ and ϕμϕμ. In order to avoid the Ostrogradsky modes in
the unitary gauge (where the scalar field depends on time
only), it is required that 4a1 þ 2a2 þ a3 þ 8a4 ¼ 0. With
this condition, the Lagrangian in Eq. (2.4) does not have
any higher order time derivative of the metric, but only
higher order space derivatives.
One can also consider the terms which contain second

derivatives of the scalar field. Focusing on only these that
are linear in Riemann tensor and linear/quadratically in the
second derivative of ϕ, the most general LagrangianLPV2 is
given by [28]
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LPV2 ¼
X7
A¼1

bAðϕ;ϕλϕλÞMA;

M1 ¼ εμναβRαβρσϕ
ρϕμϕ

σ
ν ;

M2 ¼ εμναβRαβρσϕ
ρ
μϕσ

ν ;

M3 ¼ εμναβRαβρσϕ
σϕρ

μϕλ
νϕλ;

M4 ¼ εμναβRαβρσϕνϕ
ρ
μϕσ

λϕ
λ;

M5 ¼ εμναβRαρσλϕ
ρϕβϕ

σ
μϕ

λ
ν;

M6 ¼ εμναβRβγϕαϕ
γ
μϕλ

νϕ
λ;

M7 ¼ ð∇2ϕÞL1; ð2:5Þ

with ϕσ
ν ≡∇σ∇νϕ. Similarly, in order to avoid the

Ostrogradsky modes in the unitary gauge, the following
conditions should be imposed: b7 ¼ 0, b6 ¼ 2ðb4 þ b5Þ,
and b2 ¼ −A2�ðb3 − b4Þ=2, where A� ≡ _ϕðtÞ=N and N is
the lapse function. In this paper, we consider a general
scalar-tensor theory with parity violation, which contains
all the terms mentioned above. So, the parity-violating term
in Eq. (2.1) is given by

LPV ¼ LCS þ LPV1 þ LPV2: ð2:6Þ

Therefore, the CS modified gravity in [23], and the ghost-
free parity-violating gravities discussed in [28] are all the
particular cases of this Lagrangian. The coefficients ϑ, aA,
and bA depend on the scalar field ϕ and its evolution.

III. GRAVITATIONAL WAVES IN
PARITY-VIOLATING GRAVITIES

Let us investigate the propagation of GW in the theories
of gravity with the action given by (2.1). We consider the
GWs propagating on a homogeneous and isotropic back-
ground. The spatial metric in the flat Friedmann-
Robertson-Walker Universe is written as

gij ¼ a2ðτÞðδij þ hijðτ; xiÞÞ; ð3:1Þ

where τ denotes the conformal time, which relates to the
cosmic time t by dt ¼ adτ, and a is the scale factor of the
Universe. Throughout this paper, we set the present scale
factor a0 ¼ 1. hij is the GW, which represents the trans-
verse and traceless metric perturbations, i.e.,

∂ihij ¼ 0 ¼ hii: ð3:2Þ

With the above definitions, we need to derive the equation
of motion for the GWs. For this purpose, we first need to
substitute the metric perturbation into the action (2.1) and
expand it to the second order in hij. After tedious
calculations, we find

Sð2Þ ¼ 1

16πG

Z
dτd3xa4ðτÞ½Lð2Þ

GR þ Lð2Þ
PV�; ð3:3Þ

where

Lð2Þ
GR ¼ 1

4a2
½ðh0ijÞ2 − ð∂khijÞ2�; ð3:4Þ

Lð2Þ
PV ¼ 1

4a2

�
c1ðτÞ
aMPV

ϵijkh0il∂jh0kl þ
c2ðτÞ
aMPV

ϵijk∂2hil∂jhkl

�
:

ð3:5Þ

Here, MPV labels the parity-violating energy scale in this
theory. c1 and c2 are the coefficients normalized by the
energy scale MPV, which are given by

c1ðτÞ
MPV

¼ _ϑ − 4 _a1 _ϕ
2 − 8a1 _ϕ ϕ̈þ8a1H _ϕ2 − 2 _a2 _ϕ

2 − 4a2 _ϕ ϕ̈

þ _a3 _ϕ
2 þ 2a3 _ϕ ϕ̈−4a3H _ϕ2 − 4 _a4 _ϕ

2 − 8a4 _ϕ ϕ̈

− 2b1 _ϕ
3 þ 4b2ð2H _ϕ2 − _ϕ ϕ̈Þ

þ 2b3ð _ϕ3ϕ̈ −H _ϕ4Þ þ 2b4ð _ϕ3ϕ̈ −H _ϕ4Þ
− 2b5H _ϕ4 þ 2b7 _ϕ

3ϕ̈; ð3:6Þ

c2ðτÞ
MPV

¼ _ϑ − 2 _a2 _ϕ
2 − 4a2 _ϕ ϕ̈− _a3 _ϕ

2 − 2a3 _ϕ ϕ̈

− 4 _a4 _ϕ
2 − 8a4 _ϕ ϕ̈ : ð3:7Þ

In this paper, a dot denotes the derivative with respect to the
cosmic time t, and H ≡ _a=a is the Hubble parameter. In
Chern-Simons gravity, as shown in [34], the energy scale
MPV of the parity violation has been constrained to be
MPV > 33 meV by using the observation of binary pulsars.
One can also constrain MPV by testing the amplitude
birefringence effects in the observations of GWs [25].
For the ghost-free parity-violating gravities, as we have
shown later in this paper, the parity violation can lead to
another birefringence phenomenon, the velocity birefrin-
gence effects in GWs. It is expected that one could be able
to constrain MPV more tightly by testing velocity birefrin-
gence with current and future GW detections.
We find that the terms bA appear only in the c1

coefficient, while the terms ϑ and aA appear in both
coefficients c1 and c2, which is consistent with the state-
ment in [29]. From these expressions, we obtain the
following quantities:
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c1ðτÞ − c2ðτÞ
MPV

¼ −4 _a1 _ϕ
2 − 8a1 _ϕ ϕ̈þ8a1H _ϕ2

þ 2 _a3 _ϕ
2 þ 4a3 _ϕ ϕ̈−4a3H _ϕ2

− 2b1 _ϕ
3 þ 4b2ð2H _ϕ2 − _ϕ ϕ̈Þ

þ 2b3ð _ϕ3ϕ̈ −H _ϕ4Þ þ 2b4ð _ϕ3ϕ̈ −H _ϕ4Þ
− 2b5H _ϕ4 þ 2b7 _ϕ

3ϕ̈; ð3:8Þ

which will be used in the following discussion.
We consider the GWs propagating in the vacuum and

ignore the source term. Varying the action with respect to
hij, we obtain the field equation for hij,

h00ij þ 2Hh0ij − ∂2hij

þ ϵilk

aMPV
∂l½c1h00jk þ ðHc1 þ c01Þh0jk − c2∂2hjk� ¼ 0;

ð3:9Þ

where H≡ a0=a, and a prime denotes the derivative with
respect to the conformal time τ.
In the parity-violating gravities, it is convenient to

decompose the GWs into the circular polarization modes.
To study the evolution of hij, we expand it over spatial
Fourier harmonics,

hijðτ; xiÞ ¼
X
A¼R;L

Z
d3k
ð2πÞ3 hAðτ; k

iÞeikixieAijðkiÞ; ð3:10Þ

where eAij denotes the circular polarization tensors and
satisfies the relation

ϵijknieAkl ¼ iρAejAl ; ð3:11Þ

with ρR ¼ 1 and ρL ¼ −1. We find that the propagation
equations of these two modes are decoupled, which can be
casted into the form

h00A þ ð2þ νAÞHh0A þ ð1þ μAÞk2hA ¼ 0; ð3:12Þ

where

νA ¼ ρAkðc1H − c01Þ=ðaHMPVÞ
1 − ρAkc1=ðaMPVÞ

; ð3:13Þ

μA ¼ ρAkðc1 − c2Þ=ðaMPVÞ
1 − ρAkc1=ðaMPVÞ

: ð3:14Þ

The effects of the parity-violation terms are fully
characterized by two parameters: μA and νA. The parameter
μA determines the speed of the gravitational waves, which
leads to different velocities of left-hand and right-hand
circular polarizations of GWs. For the left-hand and right-
hand GWs, we find μA have the same value but opposite

signs. As a result, the arrival times of the two circular
polarization modes could be different. The parameter νA, on
the other hand, can provide an amplitude modulation to the
gravitational waveform; therefore, the amplitude of left-
hand circular polarization of gravitational waves will
increase (or decrease) during the propagation, while the
amplitude for the right-hand modes will decrease (or
increase). It is interesting to note that in CS modified
gravity, since c1 ¼ c2 ¼ MPV

_ϑ, which follows that μA ¼ 0.
So, there are no modifications on the velocity of GWs and
the parity violation can only affect the amplitude. However,
in the ghost-free parity-violating gravities with LPV1 and/or
LPV2, both terms νA and μA are nonzero. Therefore, both
amplitude and velocity birefringence effects exist during
the propagation of GWs. In the following section, we shall
study these two effects in detail.

IV. AMPLITUDE AND VELOCITY
BIREFRINGENCES

In this section, we study the phase and amplitude cor-
rections to the waveform of GWs arising from the para-
meters νA and μA. In parity-violating gravities, described by
(2.1), assuming k=MPV ≪ 1, the expressions of νA and μA
in Eqs. (3.13) and (3.14) can be written as

μA ¼ ρAðc1 − c2Þðk=aMPVÞ; ð4:1Þ

νA ¼ ρAðc1 − c01=HÞðk=aMPVÞ: ð4:2Þ

The assumption k ≪ MPV is based on the consideration
that MPV > 33 meV ∼ 1013 Hz [34], which is about 10
orders of magnitude greater than the sensitive frequency
range f ∼ k=2π ≲ 103 Hz for most of GW detectors.
We further decompose hA as

hA ¼ h̄Ae−iθðτÞ; ð4:3Þ

h̄A ¼ AAe−iΦðτÞ; ð4:4Þ

where h̄A satisfies

h̄00A þ 2Hh̄0A þ ð1þ μAÞk2h̄A ¼ 0: ð4:5Þ

HereAA denotes the amplitude of h̄A andΦðτÞ is the phase.
With the above decomposition, θðτÞ denotes the correction
arising from νA, while the corrections due to μA is included
in h̄A.

A. Phase modifications

We first concentrate on the corrections arising from
the parameter μA, which leads to velocity difference of
the two circular polarizations of GWs. To proceed, we
define ūAk ðτÞ ¼ 1

2
aðτÞMPlh̄AðτÞ and then Eq. (4.5) can be

written as
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d2ūAk
dτ2

þ
�
ω2
A −

a00

a

�
ūAk ¼ 0; ð4:6Þ

where

ω2
AðτÞ ¼ k2ð1þ μAÞ ð4:7Þ

is the modified dispersion relation. With this relation, the
speed of the graviton reads

v2A ¼ k2=ω2
A ≃ 1 − ρAðc1 − c2Þðk=aMPVÞ; ð4:8Þ

which leads to

vA ≃ 1 − ð1=2ÞρAðc1 − c2Þðk=aMPVÞ: ð4:9Þ

Since ρA has the opposite signs for left- and right-hand
polarization modes, we find that one mode is superluminal
and the other is subluminal. Considering a graviton emitted
radially at r ¼ re and received at r ¼ 0, we have

dr
dt

¼ −
1

a

�
1 −

1

2
ρAðc1 − c2Þ

�
k

aMPV

��
: ð4:10Þ

Integrating this equation from the emission time (r ¼ re) to
arrival time (r ¼ 0), one obtains

re ¼
Z

t0

te

dt
aðtÞ −

1

2
ρA

�
k

MPV

�Z
t0

te

c1 − c2
a2

dt: ð4:11Þ

Consider gravitons with same ρA emitted at two different
times te and t0e, with wave numbers k and k0 and received at
corresponding arrival times t0 and t00 (re is the same for
both). Assuming Δte ≡ te − t0e ≪ a= _a, then the difference
of their arrival times is given by

Δt0 ¼ ð1þ zÞΔte þ
1

2
ρA

k − k0

MPV

Z
t0

te

c1 − c2
a2

dt;

where z≡ 1=aðteÞ − 1 is the cosmological redshift. Let us
focus on the GW signal generated by nonspinning, quasi-
circular inspiral in the post-Newtonian approximation.
Relative to the GW in GR, the term μA modifies the phase
of GW ΦðτÞ. The Fourier transform of h̄A can be obtained
analytically in the stationary phase approximation, where
we assume that the phase is changing much more rapidly
than the amplitude, which is given by [35]

˜̄hAðfÞ ¼
AAðfÞffiffiffiffiffiffiffiffiffiffiffiffi
df=dt

p eiΨAðfÞ; ð4:12Þ

where f is the GW frequency at the detector and Ψ is the
phase of GWs. In [36], it is proved that the difference of
arrival times as above induces the modification of GWs
phases ΨA as follows:

ΨAðfÞ ¼ ΨGR
A ðfÞ þ δΨAðfÞ; ð4:13Þ

with

δΨAðfÞ ¼ ξAu2; ð4:14Þ

where

ξA ¼ ρA
MPVM2

Z
t0

te

c1 − c2
a2

dt; ð4:15Þ

u ¼ πMf: ð4:16Þ

The quantityM ¼ ð1þ zÞMc is the measured chirp mass,
and Mc ≡ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass of
the binary system with component massesm1 andm2. Note
that the phase modification in Eq. (4.14) is a simple
propagation effect, which is independent of the generation
effect of GWs. Although this formula is obtained in the
stationary phase approximation [36], we expect this result
is also applicable for the GWs in the more general cases in
the presence of spin, precession, eccentricity of compact
binaries, and/or for the GWs produced during the merger
and ring down of compact binaries. This extension has been
adopted by LIGO and Virgo Collaborations in [1,5].

B. Amplitude modifications

Now, let us turn to study the effect caused by νA.
Plugging the decomposition (4.4) into (4.5), one finds
the equation for ΦðtÞ,

iΦ00 þΦ02 þ 2iHΦ0 − ð1þ μAÞk2 ¼ 0: ð4:17Þ

Similarly, plugging the decomposition (4.3) and (4.4) into
(3.12), one obtains

iðθ00 þΦ00Þ þ ðΦ0 þ θ0Þ2
þ ið2þ νAÞHðθ0 þΦ0Þ − ð1þ μAÞk2 ¼ 0: ð4:18Þ

Using the equation of motion (4.17) for Φ, the above
equation reduces to

iθ00 þ 2θ0Φ0 þ θ02 þ ið2þ νAÞHθ0 þ iνAHΦ0 ¼ 0: ð4:19Þ

The phase Φ is expected to be close to that in GR ΦGR, and
Φ0

GR ∼ k, where the wave number relates to the GW
frequency by k ¼ 2πf. Assuming that

θ00 ≪ Φ0θ0 ∼ kθ0; k ≫ H ð4:20Þ

and keeping only the leading-order terms, the above
equation can be simplified into the form

2θ0 þ iHνA ¼ 0; ð4:21Þ
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which has the solution

θ ¼ −
i
2

Z
τ0

τe

HνAdτ: ð4:22Þ

We observe that the contribution of νA in the phase is purely
imaginary. This indicates that the parameter νA leads to
modifications of the amplitude of the GWs during the
propagation. As a result, relative to the corresponding mode
in GR, the amplitude of the left-hand circular polarization
of GWs will increase (or decrease) during the propagation,
while the amplitude for the right-hand mode will decrease
(or increase).
More specifically, one can write the waveform of GWs

with parity-violation effects in the form

hA ¼ hGRA ð1þ δhAÞe−iδΦA ; ð4:23Þ

where

1þ δhA ¼ exp

�
−
1

2

Z
τ0

τe

HνAdτ

�
ð4:24Þ

and δΦA is given by (4.14). Noticing that

1

2
νAH ¼ 1

2

�
ln

�
1 − ρA

kc1
aMPV

��0
; ð4:25Þ

we find

1þ δhA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρAkc1ðτeÞ=½aðτeÞMPV�
1 − ρAkc1ðτ0Þ=½aðτ0ÞMPV�

s

≃ 1þ 1

2
ρAk

�
c1ðτ0Þ

aðτ0ÞMPV
−

c1ðτeÞ
aðτeÞMPV

�
; ð4:26Þ

which gives

δhA ≃
1

2
ρAk

�
c1ðτ0Þ

aðτ0ÞMPV
−

c1ðτeÞ
aðτeÞMPV

�

¼ ρA
πf
MPV

½c1ðτ0Þ − ð1þ zÞc1ðτeÞ�: ð4:27Þ

Using u and M, one can rewrite δhA in the form

δhA ¼ ρAu
MPVM

½c1ðτ0Þ − ð1þ zÞc1ðτeÞ�: ð4:28Þ

This relation indicates that the amplitude birefringence of
GWs depends only on the values of the coefficient c1 at the
emitting and observed times.

C. Post-Newtonian orders of the correction terms

In general, we can write the GWs in the Fourier domain.
Similar to the parametrized post-Einsteinian framework of

GWs developed in [37], for each circular polarization
mode, we can also write the GWwaveform in the following
parametrized form:

h̃AðfÞ ¼ h̃GRA ð1þ αppeA ua
ppe
A ÞeiβppeA u

bppe
A ; ð4:29Þ

where αppeA ua
ppe
A ¼ δhA and βppeA ub

ppe
A ¼ δΨA represent the

amplitude and phase modification, respectively. These two
terms capture non-GR modifications in the waveform in a
generic way. The coefficients appeA and bppeA indicate the
post-Newtonian (PN) orders of these modifications. In
comparison with the results derived in the previous sub-
section, we obtain that

αppeA ¼ ρA
MPVM

½c1ðτ0Þ − ð1þ zÞc1ðτeÞ�; ð4:30Þ

appeA ¼ 1; ð4:31Þ

βppeA ¼ ξA; ð4:32Þ

bppeA ¼ 2: ð4:33Þ

Let us now count the PN order of these parity-violating
corrections relative to GR. The relative correction from GR
is said to be n PN order if it is proportional to f2n=3. Thus,
the amplitude correction enters at 1.5 PN order and the
phase correction enters at 5.5 PN order (note that the phase
of GR ∝ f−5=3 at leading order).

V. MODIFICATIONS TO THE GW WAVEFORM

In order to make contact with observations, it is
convenient to analyze the GWs in the Fourier domain,
and the responses of detectors for the GW signals h̃ðfÞ can
be written in terms of waveform of h̃þ and h̃× as

h̃ðfÞ ¼ ½Fþh̃þðfÞ þ F×h̃×ðfÞ�e−2πifΔt; ð5:1Þ

where Fþ and F× are the beam pattern functions of GW
detectors, depending on the source location and polariza-
tion angle [38].Δt is the arrival time difference between the
detector and the geocenter. In GR, the waveform of the two
polarizations h̃þðfÞ and h̃×ðfÞ is given by

h̃GRþ ¼ ð1þ χ2ÞAeiΨ; ð5:2Þ

h̃GR× ¼ 2χAeiðΨþπ=2Þ; ð5:3Þ

where A and Ψ denote the amplitude and phase of the
waveforms hGRþ×, and χ ¼ cos ι with ι being the inclination
angle of the binary system. In GR, the explicit forms of A
and Ψ have been calculated in the high-order PN approxi-
mation (see, for instance, [39] and references therein). Now
we would like to derive how the parity violation can affect
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both the amplitude and the phase of the above waveforms.
The circular polarization modes h̃R and h̃L relate to the
modes h̃þ and h̃× via

h̃þ ¼ h̃L þ h̃Rffiffiffi
2

p ; h̃× ¼ h̃L − h̃Rffiffiffi
2

p
i

: ð5:4Þ

Similar to the previous work [27], throughout this paper, we
ignore the parity-violating generation effect, which is
caused by a modified energy loss, inspiral rate, and
chirping rate of the binaries. Since the generation effect
occurs on a radiation-reaction timescale, which is much
smaller than the GW time of flight, making its impact on
the evolution of the GW phase negligible [24]. Thus, the
circular polarization modes h̃A are given in (4.29), and the
waveforms for the plus and cross modes become

h̃þ ≃ h̃GRþ − ðiδh − δϕÞh̃GR× ; ð5:5Þ

h̃× ≃ h̃GR× þ ðiδh − δϕÞh̃GRþ ; ð5:6Þ

where δϕ≡ δΨR is given by Eq. (4.14) and δh≡ δhR is
given by Eq. (4.28). Therefore, the Fourier waveform h̃ðfÞ
becomes

h̃ðfÞ ¼ AδAeiðΨþδΨÞ; ð5:7Þ

where

δA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ χ2Þ2F2þ þ 4χ2F2

×

q
×

�
1þ 2χð1þ χ2ÞðF2þ þ F2

×Þ
ð1þ χ2Þ2F2þ þ 4χ2F2

×
δh

−
ð1 − χ2Þ2FþF×

ð1þ χ2Þ2F2þ þ 4χ2F2
×
δϕþOððδhÞ2; ðδϕÞ2Þ

�
;

δΨ ¼ tan−1
�

2χF×

ð1þ χ2ÞFþ

�
þ ð1 − χ2Þ2FþF×

ð1þ χ2Þ2F2þ þ 4χ2F2
×
δh

þ 2χð1þ χ2ÞðF2þ þ F2
×Þ

ð1þ χ2Þ2F2þ þ 4χ2F2
×
δϕþOððδhÞ2; ðδϕÞ2Þ:

ð5:8Þ

From these expressions, we find that relative to the wave-
forms in GR, the modifications of GWs are quantified by
the terms δh and δϕ. In the specific case with δh ¼ δϕ ¼ 0,
the formula in (5.7) returns to that in GR. Since in the
parity-violating gravities, the evolution of polarization
modes hþ and h× is not independent, the mixture of two
modes is inevitable. For this reason, we find that both terms
δh and δϕ appear in the phase and amplitude modifications
of h̃ðfÞ. In the CS modified gravity, we have δϕ ¼ 0 and
δh ≠ 0, and the formulas in Eq. (5.8) return to the
corresponding ones in [27]. However, in the general

ghost-free parity-violating gravities, both correction terms
are nonzero. In the leading order, the modification δA (or
δΨ) linearly depends on δh and δϕ, and it is important to
estimate their relative magnitudes. Let us assume the GW is
emitted at the redshift z ∼Oð1Þ and approximately treat c1
and c2 as constants during the propagation of GW, we find
the ratio of two correction terms is δϕ=δh ∼ t0f, where f is
the GW frequency and t0 ¼ 13.8 billion years is the
cosmic age. As known, f ∼ 100 Hz for the ground-based
GW detectors and f ∼ 0.01 Hz for the space-borne detec-
tors. For both cases, we find δϕ is more than 10 orders of
magnitude larger than δh. So, we arrive at the conclusion:
in the general ghost-free parity-violating gravities, both the
amplitude and phase corrections of GW waveform h̃ðfÞ
mainly come from the contribution of velocity birefrin-
gence rather than that of the amplitude birefringence.

VI. CONCLUSIONS

In the parity-violating gravities, the symmetry between
left-hand and right-hand circular polarization modes of
GWs is broken. So, the effect of birefringence of GWs
occurs during their propagation in the Universe. In this
article, we investigate the GWs in the general ghost-free
parity-violating theories of gravity, which is an extension of
CS modified gravity. We find that, in general, both
amplitude and velocity birefringence effects exist in these
theories, which exactly correspond to the amplitude and
phase modifications of waveforms for the circular polari-
zation modes. Combining these two modes, we obtain the
GW waveforms produced by the compact binary coales-
cence and derive the correction terms relative to that in GR.
We find that, in the general ghost-free parity-violating
theories, the dominant modifications in GW amplitude and
phase are both caused mainly by the velocity birefringence
effect. Considering the current and potential observations
of ground-based and space-borne GW detectors, the
explicit waveforms of GWs derived in this article can be
used as the template to constrain these theories with parity
violation. The comprehensive analysis on this topic will be
carried on in a separate paper of this series of works.
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APPENDIX: THE COEFFICIENTS aA AND bA IN
DARK ENERGY MODELS

In this appendix, we estimate the values of c1 and c2 in
Eqs. (3.6) and (3.7), which depend on the coefficients ϑ, aA,
and bA, as well as the evolution of the scalar field. Since the
scalar field is always motivated to account for the late
acceleration of the Universe, in this appendix, we assume
that ϕ field plays the role of the dark energy, which satisfies
the following slow-roll conditions:

_ϕ2 ≪ VðϕÞ; jϕ̈j ≪ j3H _ϕj: ðA1Þ

With this condition, we find that the quantities c1 and c2 are
slowly varying during the expansion of the Universe, which
can be approximately treated as constants during low-
redshift range. In the expression of c1 − c2, we observe that
it contains only the terms with a1, a2, b1, b2, b3, b4, b5, b7
and their derivatives with respect to ϕ. Considering the
scalar field ϕ with the slow-roll condition (A1), the leading
contribution to c1 − c2 reads

c1 − c2
MPV

≃ 8ð2a1 − a3 þ 2b2ÞM2
PlH

3ϵϕ; ðA2Þ

where H is the Hubble constant, and ϵϕ is the slow-roll
parameter, which is defined as

ϵϕ ¼
_ϕ2

2M2
PlH

2
≪ 1: ðA3Þ

Note that in the above, we have considered that (i) the
coefficients a1;…; a5, b1…; b7 and the derivatives of a1
and a3 with respect to ϕ and X ¼ ϕμϕ

μ, i.e., a1;ϕ, a1;X, a3;ϕ,
a3;X, are all at the same order of magnitudes, where aA;ϕ ≡
daA=dϕ and aA;X ≡ daA=dX; and (ii) the terms higher than
OðϵϕÞ are ignored in the slow-roll approximation. In the
LCDM Universe, the magnitudes of H and ϵϕ (determined
by the equation of state of dark energy) are observables.
Thus, the energy scaleMPV of parity violation in the theory
is determined by the coefficients aA and bA. Note that c1
and c2 can be absorbed by the definition of the energy scale
MPV. For a given constraint of MPV derived from the
potential GW observations, we have the following relation
to estimate the magnitudes of coefficients aA and bA:

OðaA; bAÞ ∼
1

8MPVM2
PlH

3ϵϕ
: ðA4Þ

Note that all these coefficients have the unit of energy−6.
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