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The standard model extension (SME) is an effective field theory framework that can be used to study the
possible violations of Lorentz symmetry and diffeomorphism invariance in the gravitational interaction. In
this paper, we explore both the Lorentz- and diffeomorphism-violating effects on the propagations of
gravitational waves in the SME’s linearized gravity. It is shown that the violations of Lorentz symmetry and
diffeomorphism invariance modify the conventional linear dispersion relation of gravitational waves,
leading to anisotropy, birefringence, and dispersion effects in the propagation of gravitational waves. With
these modified dispersion relations, we then calculate the dephasing effects due to the Lorentz and
diffeomorphism violations in the waveforms of gravitational waves produced by the coalescence of
compact binaries. With the distorted waveforms, we perform full Bayesian inference with the help of the
open source software BILBY on the gravitational wave events of the compact binary mergers in the LIGO-
Virgo-KAGRA catalogs GWTC-3. We consider the effects from the operators with the lowest mass
dimension d ¼ 2 and d ¼ 3 due to the Lorentz and diffeomorphism violations in the linearized gravity. No
signature of Lorentz and diffeomorphism violations arsing from the SME’s linearized gravity are found for
most GWevents, which allows us to give a 90% confidence interval for each Lorentz- and diffeomorphism-
violating coefficient.
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I. INTRODUCTION

General relativity (GR) stands as the preeminent theory of
gravity, having undergone rigorous experimental validation
across a diverse range of scales with remarkable precision
[1–10]. Despite its empirical success, GR encounters sig-
nificant challenges related to the theoretical singularities and
issues of quantization, as well as the unresolved phenomena
of dark matter and dark energy. Conversely, several candi-
date theories of quantum gravity, including string theory
[11,12], loop quantum gravity [13], and braneworld scenar-
ios [14], propose frameworks wherein Lorentz and diffeo-
morphism invariances in the gravitational sector may be
spontaneously violated. This potential breakdown of
Lorentz and diffeomorphism invariances presents intriguing

avenues for addressing some of the limitations of GR and
advancing our understanding of fundamental physics.
A common method to investigate potential violations

of Lorentz and diffeomorphism symmetries in gravity is
through the approach of effective field theory. The
Standard-Model extension (SME) offers a comprehensive
framework for examining deviations from Lorentz and
diffeomorphism invariance [15,16]. Within this approach,
any components that might disrupt Lorentz or/and diffeo-
morphism invariance can be systematically included in the
Lagrangian. Over recent decades, the SME has been widely
applied to test Lorentz invariance in the matter sector. In
the context of gravity, studies leveraging the SME to
evaluate the Lorentz violations have encompassed a range
of techniques including lunar laser ranging [17,18], atom
interferometry [19], cosmic ray observations [20], precision
pulsar timing [21–26], planetary orbital analyses [27], and
superconducting gravimeters [28]. Studies in the gravity
domain are primarily concerned with the interaction
between gravity and matter [29]. Our focus, however, is
on the Lorentz and diffeomorphism-violating effects on
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gravitational wave (GW) propagation in the pure gravity
sector within a linear approximation [30–32].
In linearized Lorentz-violating gravity, the possible

Lorentz-violating terms involving quadratic metric varia-
tions in the Lagrangian can be classified by their mass
dimension, d. These terms are further divided into two
categories: diffeomorphism-invariant terms and diffeomor-
phism-violating terms, depending on whether they remain
invariant under the gauge transformation hμν → hμν þ
∂μξν þ ∂νξμ. Here, hμν represents metric perturbations in
Minkowski space-time, and ξμ is an arbitrary small vector
field. Diffeomorphism invariance requires thatd ≥ 4 [32,33].
The effects of Lorentz violations on gravitational waves
(GWs) and their observational constraints have been exten-
sively studied for the diffeomorphism-invariant case; for
example, [32–43] and references therein. In contrast, for the
diffeomorphism-violating case, the Lorentz-violating terms
in the Lagrangian can have mass dimensions d ¼ 2 or/and
d ¼ 3 [32].
An exhaustive classification of Lorentz-violating

Lagrangians with quadratic metric variations, whether dif-
feomorphism-invariant or -violating, is provided in [32].
These terms modify GW dispersion relations, leading to
effects such as anisotropy, birefringence, and dispersion,
which alter GWwaveforms.Waveformmodifications for the
diffeomorphism-invariant case are discussed in [43] and can
be analyzed using Bayesian inference to compare observed
GW signals with theoretical models, constraining the
Lorentz-violating coefficients in the SME’s linearized grav-
ity sector. A parametrized framework for describing sym-
metry-breaking effects on GWs is presented in [37], which
has been used for calculating the symmetry-breaking effects
on the primordial GWs [44]. In this paper, we investigate
both Lorentz-violating and diffeomorphism-violating effects
on GW propagation and calculate the resulting dephasing in
waveforms from compact binary coalescences.
The direct detection of GWs from compact binary coa-

lescences by the LIGO-Virgo-KAGRA (LVK)Collaboration
has ushered in a new era of gravitational physics [45–52].
These GWs carry crucial information about the local
spacetime properties of compact binaries, enabling tests of
fundamental gravitational symmetries. Numerous studies
have tested Lorentz and parity symmetries using data from
LVK GW events [33,39–41,53–69]; see [70] for a recent
review. While previous tests in Lorentz-violating linearized
gravity for diffeomorphism-invariant cases focused on terms
with mass dimension d ≥ 4, this paper examines the effects
of diffeomorphism violations induced by Lorentz-violating
terms with d ¼ 2 and d ¼ 3, along with their observational
constraints from LVK GW events. Using the SME frame-
work for Lorentz-violating linearized gravity, we perform
Bayesian inference with modified waveforms incorporating
diffeomorphism-violating effects on GW events from the
GWTC-3 catalog. We find no significant evidence of
diffeomorphism violations in most GW data and provide

90% confidence intervals for each diffeomorphism-violating
coefficient.
This paper is organized as follows. In the next section,

we provide a brief overview of GW propagation in the SME
framework, incorporating both Lorentz and diffeomor-
phism violations and their modified dispersion relations.
Section III examines phase modifications to GW wave-
forms caused by Lorentz-violating and diffeomorphism-
violating coefficients in the SME. In Sec. IV, we describe
the matched-filter analysis within Bayesian inference, and
in Sec. V, we present constraints on each diffeomorphism-
violating coefficient using data from GW events in the
GWTC-3 catalog. Finally, the conclusions and summary
are provided in Sec. VI.
Throughout this paper, we adopt the metric convention

ð−;þ;þ;þÞ, with Greek indices ðμ; ν;…Þ running over 0,
1, 2, 3 and Latin indices ði; j; kÞ running over 1, 2, 3.
Natural units are used, setting ℏ ¼ c ¼ 1.

II. GRAVITATIONAL WAVE PROPAGATIONS
IN THE LINEAR GRAVITY OF SME

In this section, we present a brief introduction to the
GWs in the linearized gravity sector of the SME and the
associated modified dispersion relation of GWs due to the
effects of the Lorentz and diffeomorphism violations.

A. Linearized gravity with Lorentz
and diffeomorphism violations

The quadratic Lagrangian density for GWs in the
linearized gravity sector of the SME is given by [32]

L ¼ 1

4
ϵμρακϵνσβληκλhμν∂α∂βhρσ

þ 1

4
hμν
X
K;d

K̂ðdÞμνρσhρσ; ð2:1Þ

where one expands the metric gμν of the spacetime in the
form of gμν ¼ ημν þ hμν with ημν being the constant
Minkowski metric, and ϵμρακ is the Levi-Civita tensor.
The first term in the above expression represents the
quadratic approximation to the Lagrangian density for
the Einstein-Hilbert action, while the second term which
consists of operators K̂ðdÞμνρσ denotes the modifications due
to the Lorentz and diffeomorphism violations. The operator
K̂ðdÞμνρσ is the product of a coefficientKðdÞμνρσα1α2���αd−2 with
d − 2 derivatives ∂α1∂α2 � � � ∂αd−2 , i.e.,

K̂ðdÞμνρσ ¼ KðdÞμνρσα1α2���αd−2∂α1∂α2 � � � ∂αd−2 : ð2:2Þ

The coefficient KðdÞμνρσα1α2���αd−2 has mass dimension 4 − d
and are assumed small and constant over the scales relevant
for the gravitational phenomenon considered in this paper.
As pointed out in [32], to contribute nontrivially to the
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equation of motion, the K̂ðdÞμνρσ has to satisfy the require-
ment K̂ðdÞðμνÞðρσÞ ≠ �K̂ðdÞðρσÞðμνÞ, where � corresponds to
odd d and even d respectively.
According to the symmetries of the coefficient

KðdÞμνρσα1α2���αd−2 under the permutations of its indices,
K̂ðdÞμνρσ can be divided into three different types,

K̂ðdÞμνρσ ¼ ŝðdÞμρνσ þ q̂ðdÞμρνσ þ k̂ðdÞμρνσ: ð2:3Þ
These three types of operators have different symmetries
in their indices. Specifically, ŝðdÞμρνσ is antisymmetric in
both “μρ” and “νσ,” q̂ðdÞμρνσ is antisymmetric in “μρ” and
symmetric in “νσ,” and k̂ðdÞμρνσ is totally symmetric. One
can further decompose each type of operator into several
irreducible pieces and explore their properties on the
gravitational wave propagations. It is shown in [32]
such a decomposition leads to 14 independent classes of
operators in total, as presented in Table I, see also Table I
of Ref. [32].
The s-type operators ŝðdÞμρνσ areCPT even, denoting that

these operators are invariant under the combined symmetry
of charge conjugation, parity transformation, and time
reversal (CPT). They consist of three irreducible pieces
in the decomposition,

ŝðdÞμρνσ ¼ ŝðd;0Þμρνσ þ ŝðd;1Þμρνσ þ ŝðd;2Þμρνσ; ð2:4Þ
with

ŝðd;0Þμρνσ ¼ sðd;0Þμρα1νσα2α3…αd−2∂α1…∂αd−2 ;

ŝðd;1Þμρνσ ¼ sðd;1Þμρνσα1…αd−2∂α1…∂αd−2 ;

ŝðd;2Þμρνσ ¼ sðd;2Þμρα1νσα2α3…αd−2∂α1…∂αd−2 : ð2:5Þ

The q-type operators q̂ðdÞμρνσ are CPT odd, denoting that
they change sign under the symmetry of CPT. They consist
of six irreducible pieces in the decomposition,

q̂ðdÞμρνσ ¼ q̂ðd;0Þμρνσ þ q̂ðd;1Þμρνσ þ q̂ðd;2Þμρνσ

þ q̂ðd;3Þμρνσ þ q̂ðd;4Þμρνσ þ q̂ðd;5Þμρνσ; ð2:6Þ

where

q̂ðd;0Þμρνσ ¼ q̂ðd;0Þμρα1να2σα3α4…αd−2∂α1…∂αd−2 ;

q̂ðd;1Þμρνσ ¼ q̂ðd;1Þμρνσα1α2…αd−2∂α1…∂αd−2 ;

q̂ðd;2Þμρνσ ¼ q̂ðd;2Þμρνα1σα2…αd−2∂α1…∂αd−2 ;

q̂ðd;3Þμρνσ ¼ q̂ðd;3Þμρα1νσα2…αd−2∂α1…∂αd−2 ;

q̂ðd;4Þμρνσ ¼ q̂ðd;4Þμρνα1σα2α3α4…αd−2∂α1…∂αd−2 ;

q̂ðd;5Þμρνσ ¼ q̂ðd;5Þμρα1να2σα3α4…αd−2∂α1…∂αd−2 : ð2:7Þ

And the k-type operators are CPT even and consist of five
irreducible pieces,

k̂ðdÞμνρσ ¼ k̂ðd;0Þμνρσ þ k̂ðd;1Þμνρσ þ k̂ðd;2Þμνρσ

þ k̂ðd;3Þμνρσ þ k̂ðd;4Þμνρσ; ð2:8Þ

where

k̂ðd;0Þμνρσ ¼ k̂ðd;0Þμα1να2ρα3σα4α5…αd−2∂α1…∂αd−2 ;

k̂ðd;1Þμνρσ ¼ k̂ðd;1Þμνρσα1…αd−2∂α1…∂αd−2 ;

k̂ðd;2Þμνρσ ¼ k̂ðd;2Þμα1νρσα1α2…αd−2∂α1…∂αd−2 ;

k̂ðd;3Þμνρσ ¼ k̂ðd;3Þμα1να2ρσα3α5…αd−2∂α1…∂αd−2 ;

k̂ðd;4Þμνρσ ¼ k̂ðd;4Þμα1να2ρα3σα4α5…αd−2∂α1…∂αd−2 : ð2:9Þ
The properties of the above 14 coefficients are summarized
in Table I, see also Table I in [32] for more detailed
properties of these coefficients. These 14 classes thus
characterize all possible phenomenological effects in lin-
earized gravity, affecting the propagating properties of
gravitational waves.
If we restrict the theory to be diffeomorphism invariance,

the quadratic action S ∼
R
d4xL of the linearized gravity

should be invariant under the gauge transformation
hμν → hμν þ ∂μξν þ ∂νξμ, which requires the condition

K̂ðdÞðμνÞðρσÞ
∂ν ¼ �K̂ðdÞðρσÞðμνÞ

∂ν holds. With this condition,
the operator K̂ðdÞμνρσ can only be decomposed into three
independent classes [32], which are represents by ŝðd;0Þμρνσ,
q̂ðd;0Þμρνσ , and k̂ðd;0Þμρνσ, respectively. It is obvious that the
diffeomorphism-invariance case only allows the Lorentz-
violating operators with mass dimension d ≥ 4, while the
diffeomorphism-violating case allows operators with mass
dimension d ≥ 2.

B. GW propagations with Lorentz- and
diffeomorphism-violating effects

The equations of motion for GWs can be derived by
varying the quadratic action S ∼

R
d4xL with respect to hμν

with Lagrangian density L given by (2.1), which yields

1

2
ηρσϵ

μρακϵνσβλ∂α∂βhκλ − δMμνρσhρσ ¼ 0; ð2:10Þ

where the tensor operators

δMμνρσ ¼ −
1

4
ðŝμρνσ þ ŝμσνρÞ − 1

2
k̂μνρσ

−
1

8
ðq̂μρνσ þ q̂νρμσ þ q̂μσνρ þ q̂νσμρÞ: ð2:11Þ

Here

ŝμρνσ ¼
X
d

ŝðdÞμρνσ; ð2:12Þ

q̂μρνσ ¼
X
d

q̂ðdÞμρνσ; ð2:13Þ
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TABLE I. Properties of the coefficients K̂ðdÞμνρσα1…αd−2 in each irreducible class. A similar table can also be found in Table I of
Ref. [32].

Coefficients K̂ðdÞμνρσα1…αd−2 Young Tableau d Number

ŝðd;0Þμρα1νσα2α3…αd−2 Even d ≥ 4 ðd − 3Þðd − 2Þðdþ 1Þ

ŝðd;1Þμρνσα1…αd−2 Even d ≥ 2 ðd − 1Þðdþ 2Þðdþ 3Þ

ŝðd;2Þμρα1νσα2α3…αd−2 Even d ≥ 4 4
3
ðd − 2Þdðdþ 2Þ

q̂ðd;0Þμρα1να2σα3α4…αd−2 Odd d ≥ 5 5
2
ðd − 4Þðd − 1Þðdþ 1Þ

q̂ðd;1Þμρνσα1α2…αd−2 Odd d ≥ 3 1
2
ðd − 3Þðdþ 4Þðdþ 1Þ

q̂ðd;2Þμρνα1σα2…αd−2 Odd d ≥ 3 ðd − 1Þðdþ 2Þðdþ 3Þ

q̂ðd;3Þμρα1νσα2…αd−2 Odd d ≥ 3 1
2
dðdþ 3Þðdþ 1Þ

q̂ðd;4Þμρνα1σα2α3α4…αd−2 Odd d ≥ 5 5
3
ðd − 3Þðdþ 2Þðdþ 1Þ

q̂ðd;5Þμρα1να2σα3α4…αd−2 Odd d ≥ 5 4
3
ðdþ 2Þdðd − 2Þ

k̂ðd;0Þμα1να2ρα3σα4α5…αd−2 Even d ≥ 6 5
2
ðd − 5Þdðdþ 1Þ

k̂ðd;1Þμνρσα1…αd−2 Even d ≥ 2 1
6
ðdþ 3Þðdþ 4Þðdþ 5Þ

k̂ðd;2Þμα1νρσα1α2…αd−2 Even d ≥ 4 1
2
ðdþ 1Þðdþ 3Þðdþ 4Þ

k̂ðd;3Þμα1να2ρσα3α5…αd−2 Even d ≥ 4 ðd − 1Þðdþ 2Þðdþ 3Þ

k̂ðd;4Þμα1να2ρα3σα4α5…αd−2 Even d ≥ 6 5
3
ðd − 3Þðdþ 2Þðdþ 1Þ
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k̂μρνσ ¼
X
d

k̂ðdÞμρνσ: ð2:14Þ

In GR, the metric perturbation hμν contains only two
degenerate, traceless, and transverse tensor modes.
However, when Lorentz-violating and diffeomorphism-
violating modifications are introduced, hμν may acquire
additional degrees of freedom, depending on the specific
nature of the violations. These include two scalar modes
and two vector modes. As shown in [34], in Lorentz-
violating linearized gravity, the extra scalar and vector
modes of gravitational wave (GW) polarization can be
directly induced by the two tensorial modes. Here in this
paper we restrict our study to the two transverse and
traceless modes of GWs. Observationally, all the GW
signals observed by the LIGO/Virgo/KAGRA collabora-
tion exhibit compatibility with the two tensor polarization
modes, showing no statistically significant signatures of
additional polarization modes [46]. Even if additional
modes exist, their effects are expected to be be subdomi-
nant compared to the two tensorial modes. In this paper,
assuming these additional modes are small, and following a
similar treatment to that in [33], we focus exclusively on the
effects of Lorentz- and diffeomorphism-violating modifi-
cations on the two traceless and transverse tensor modes.
We note that this assumption imposes certain limitations, as
our conclusions may not fully account for scenarios where
such subdominant modes play a more substantial role. We
left the analysis with the vector and scalar modes for future
studies.
With the above considerations, we restrict our analysis to

the modes hij that satisfy the conditions

ηijhij ¼ 0; ∂
ihij ¼ 0: ð2:15Þ

Under these constraints, the equations of motion for GWs
given in Eq. (2.10) reduce to

ð∂2t −∇2Þhij þ 2δMijmnhmn ¼ 0: ð2:16Þ

In the linearized gravity sector of SME, it is convenient to
decompose the GWs into circular polarization modes. To
study the evolution of hij, we expand it in terms of spatial
Fourier harmonics as

hijðτ; xiÞ ¼
X
A¼R;L

Z
d3k
ð2πÞ3 hAðτ; k

iÞeikixieAijðkiÞ; ð2:17Þ

where eAij are the circular polarization tensors, and R and L
denote the right-handed and left-handed GW polarizations,
respectively. The circular polarization tensors eAij satisfy the
relation

ϵijknjeAkl ¼ iρAeiAl ; ð2:18Þ

with ρR ¼ 1 and ρL ¼ −1. Using this decomposition, the
equations of motion in Eq. (2.16) can be rewritten as

ḧA þ k2hA þ 2ϵAijδM
ijmneBmnhB ¼ 0; ð2:19Þ

or equivalently, in matrix form 
∂
2
t þk2þ2eRijδM

ijmneRmn 2eRijδM
ijmneLmn

2eLijδM
ijmneRmn ∂

2
t þk2þ2eLijδM

ijmneLmn

!

×

�
hR
hL

�
¼ 0: ð2:20Þ

Then, following methods developed for the study of
Lorentz violation in the photon sector of the SME [71] as
well as GW propagations with diffeomorphism invariance,
the modified dispersion relation of GWs with 4-momentum
kμ ¼ ðω;kÞ can be derived by requiring the determinant
of the above 2 × 2 matrix vanishes, which yields (see also
in [33])1

ω ¼ ð1 − ζ0 � jζjÞjkj; ð2:21Þ

where

ζ0 ¼ −
1

2jkj2 ðe
R
ijδM

ijmneRmn þ eLijδM
ijmneLmnÞ; ð2:22Þ

and

jζj2 ¼ 1

4jkj4 ½ðe
R
ijδM

ijmneRmn − eLijδM
ijmneLmnÞ2

þ 4ðeRijδMijmneLmnÞðeLklδMklpqeRpqÞ�: ð2:23Þ

And jζj2 ≡ ðζ1Þ2 þ ðζ2Þ2 þ ðζ3Þ2 with

ζ1 − iζ2 ¼ 1

jkj2 ðe
R
ijδM

ijmneLmnÞ; ð2:24Þ

ζ1 þ iζ2 ¼ 1

jkj2 ðe
L
ijδM

ijmneRmnÞ; ð2:25Þ

ζ3 ¼ 1

2jkj2 ðe
R
ijδM

ijmneRmn − eLijδM
ijmneLmnÞ: ð2:26Þ

The modified dispersion relation in the above leads to the
phase velocities (v ¼ ω=k) of the GWs

v� ¼ 1 − ζ0 � jζj: ð2:27Þ

1It is worth noting here that the Lorentz- and diffeomorphism-
violating operators introduced in (2.1) only affect the dispersion
and the corresponding phase velocities of GWs. It is shown in
[57,58,72,73] that the Lorentz-violating terms with mixed time
and spatial derivatives can change the damping rates of GWs.
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Here “�” correspond to two modes propagating at different
velocities. Therefore, the two tensorial modes can be
decompose into two modes propagate at different veloc-
ities, one is the fast mode (denoted by hf with velocity vþ)
while another is the slow mode (denote by hs with
velocity v−).
Now we need to connect (hf, hs) with the circular

polarization modes (hL, hR). For this purpose, one can
substitute the dispersion relation in Eq. (2.21) to the
equation of motion (2.20) for fast and slow modes
respectively. Note that in the substitution, we use the
relation ∂2t ¼ −ω2. For fast mode, by using the expressions
of ζ0 and ζ in Eqs. (2.22) and (2.23), one has

2jkj2
�

ζ3 − jζj ζ1 − iζ2

ζ1 þ iζ2 −ζ3 − jζj

��
hR
hL

�
¼ 0: ð2:28Þ

This equation admits a set of solution in the form of

�
hR
hL

�
fast

¼
�
e−iφ=2 cos ϑ

2

eiφ=2 sin ϑ
2

�
; ð2:29Þ

where the angles φ and ϑ are defined as

sin ϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1Þ2 þ ðζ2Þ2

p
jζj ; ð2:30Þ

cos ϑ ¼ ζ3

jζj ; ð2:31Þ

e�iφ ¼ ζ1 � ζ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1Þ2 þ ðζ2Þ2

p : ð2:32Þ

Similarly, for slow mode, one has

�
hR
hL

�
slow

¼
 
−e−iφ=2 sin ϑ

2

eiφ=2 cos ϑ
2

!
: ð2:33Þ

Therefore, Eqs. (2.29) and (2.33) can be written as a unique
equation as

�
hR
hL

�
¼
 
e−iφ=2 cos ϑ

2
−e−iφ=2 sin ϑ

2

eiφ=2 sin ϑ
2

eiφ=2 cos ϑ
2

!�
hf
hs

�
: ð2:34Þ

It is also convenient to express ðhf; hsÞ in terms of
ðhR; hLÞ as

�
hf
hs

�
¼
 

eiφ=2 cos ϑ
2

e−iφ=2 sin ϑ
2

−eiφ=2 sin ϑ
2

e−iφ=2 cos ϑ
2

!�
hR
hL

�
: ð2:35Þ

The circular polarization modes hR and hL relate to the
modes hþ and h× via

hþ ¼ hL þ hRffiffiffi
2

p ; ð2:36Þ

h× ¼ hL − hRffiffiffi
2

p
i

: ð2:37Þ

Then we can write ðhf; hsÞ in terms of hþ and h× as

�
hf
hs

�
¼ 1ffiffiffi

2
p
 
−eiφ=2 sin ϑ

2
þ e−iφ=2 cos ϑ

2
ieiφ=2 sin ϑ

2
þ ie−iφ=2 cos ϑ

2

eiφ=2 cos ϑ
2
þ e−iφ=2 sin ϑ

2
−ieiφ=2 cos ϑ

2
þ ie−iφ=2 sin ϑ

2
Þ

!�
hþ
h×

�
: ð2:38Þ

And inversely,

�
hþ
h×

�
¼ 1ffiffiffi

2
p
 

eiφ=2 cos ϑ
2
− e−iφ=2 sin ϑ

2
e−iφ=2 cos ϑ

2
þ eiφ=2 sin ϑ

2

−ie−iφ=2 sin ϑ
2
− ieiφ=2 cos ϑ

2
−ieiφ=2 sin ϑ

2
þ ie−iφ=2 cos ϑ

2

!�
hf
hs

�
: ð2:39Þ

In the modified dispersion relation (2.21), the coefficient
ζ0 and ζ are functions of the frequency ω and wave vector
k [40]. Considering it is also direction-dependent and
to describe its effects on the propagation of GWs, it is
convenient to expand its coefficients in terms of spin-
weighted spherical harmonics sYjmðn̂Þ as

ζ0 ¼
X
d;jm

ωd−4Yjmðn̂ÞkðdÞðIÞjm; ð2:40Þ

ζ1 ∓ iζ2 ¼
X
d;jm

ωd−4
�4Yjmðn̂Þ

h
kðdÞðEÞjm � kðdÞðBÞjm

i
; ð2:41Þ

ζ3 ¼
X
d;jm

ωd−4Yjmðn̂ÞkðdÞðVÞjm; ð2:42Þ

where n ¼ −k is the direction of the source, Yjmðn̂Þ ¼
0Yjmðn̂Þ is the scalar spherical harmonics function, and
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jsj ≤ j ≤ d − 2. The index m takes −j;…; j. The spherical
coefficients for Lorentz and diffeomorphism violations

kðdÞðIÞjm, k
ðdÞ
ðEÞjm, k

ðdÞ
ðBÞjm, and kðdÞðVÞjm are linear combinations

of the tensor coefficients in Eqs. (2.5), (2.7), (2.9), which

obey the relation kðdÞ�jm ¼ ð−1ÞmkðdÞj−m. The expansions of the
coefficient ζ0, ζ1 � iζ2, and ζ3 are also a combination of
operators at multiple mass dimensions, but they have
different expansion properties. The mass dimension d of
the expansion coefficients can take even numbers of d ≥ 2

for the expansion of ζ0, odd numbers of d ≥ 3 for ζ3, and
even number of d ≥ 6 for ζ1 � iζ2.
For convenience, the frequency and direction depend-

ence can be separated, and we introduce several energy-
independent coefficients as

ζ0ðdÞðnÞ ¼
X
jm

Yjmðn̂ÞkðdÞðIÞjm; ð2:43Þ

ζ1ðdÞðnÞ ∓ iζ2ðdÞðnÞ
¼
X
jm

�4Yjmðn̂Þ
h
kðdÞðEÞjm � ikðdÞðBÞjm

i
; ð2:44Þ

ζ3ðdÞðnÞ ¼
X
jm

Yjmðn̂ÞkðdÞðVÞjm: ð2:45Þ

Then the phase velocity of the GWs can be rewritten as

v� ¼ 1 − ωd−4
�
ζ0ðdÞðnÞ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1ðdÞðnÞ2 þ ðζ2ðdÞðnÞ2 þ ðζ3ðdÞðnÞ2

q �
; ð2:46Þ

for a specific mass dimension d. The new effects arising
from the Lorentz and diffeomorphism violations in the
linearized gravity of SME are fully characterized by

the coefficients, kðdÞðIÞjm, k
ðdÞ
ðVÞjm, and kðEÞðEÞjm� ikðdÞðBÞjm. These

coefficients determine the speed of the GWs and all lead to
frequency-dependent dispersions. Specifically, the coeffi-

cients kðdÞðVÞjm and kðEÞðIÞjm � ikðdÞðBÞjm lead to different velocities

of two independent tensorial modes of GWs, a fast mode hf
and a slow mode hs, as we mentioned in Eq. (2.35).
Therefore, the arrival times of the fast and slow modes
could be different. This is also called the velocity birefrin-

gence of the GWs. The coefficients kðdÞðIÞjm induce the

nonbirefringent dispersion of GWs. For this case (except
d ¼ 4 case), the two independent tensorial modes have the
frequency-dependent velocity in the same form. For d ¼ 4
case, the velocity is independent of the frequency of the

GWs. In addition, all the coefficients, kðdÞðIÞjm, k
ðdÞ
ðVÞjm, and

kðdÞðEÞjm � ikðdÞðBÞjm are also direction-dependent if j ≠ 0 and

induce the anisotropic phase effects on the propagation of
the GWs.
In summary, all the coefficients can provide frequency

and direction-dependent phase modifications to the GWs.
In the following, we are going to study the phase mod-
ifications due to these Lorentz- and diffeomorphism-
violating coefficients in detail.

III. PHASE MODIFICATIONS
TO THE WAVEFORM OF GWS

In this section, we consider the propagation of GWs
with Lorentz- and diffeomorphism-violating effects in a
Friedman-Robertson-Walker (FRW) background, whose
metric is given by,

ds2 ¼ −dt2 þ a2ðtÞdr2; ð3:1Þ

where t is the cosmic time, aðtÞ is the scale factor governing
the expansion of the universe. Now we consider a graviton
emitted radially at r ¼ re and received at r ¼ 0, we have

dr
dt

¼ −
1

a

�
1 − ζ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1Þ2 þ ðζ2Þ2 þ ðζ3Þ2

q �
: ð3:2Þ

Integrating this equation from the emission time (when
r ¼ re) to arrival time (when r ¼ 0), one obtains

re ¼
Z

t0

te

dt
aðtÞ−ωd−4

�
ζ0ðdÞðnÞ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1ðdÞðnÞÞ2þðζ2ðdÞðnÞÞ2þðζ3ðdÞðnÞÞ2

q �Z
t0

te

dt
ad−3

:

ð3:3Þ

Considering gravitons emitted at two different times te and
t0e, with wave numbers k and k0, and received at corre-
sponding arrival times t0 and t00 (re is the same for both).
Assuming Δ≡ te − t0e ≤ a=ȧ, then, the difference in their
arrival times is given by

Δt0 ¼ð1þ zÞΔteþðωd−4
e −ω0d−4

e Þ
�
ζ0ðdÞðnÞ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1ðdÞðnÞÞ2þðζ2ðdÞðnÞÞ2þðζ3ðdÞðnÞÞ2

q �Z
t0

te

dt
ad−3

;

ð3:4Þ

where z ¼ 1=aðteÞ − 1 is the cosmological redshift.
Let us focus on the GW signal generated by nonspin-

ning, quasicircular inspiral in the post-Newtonian approxi-
mation. Relative to the GW in GR, the Lorentz- and
diffeomorphism-violating effects modify the phase of
GWs. The phase corrections to the GR-based waveform
due to Lorentz- and diffeomorphism-violating effects can
be computed using the stationary phase approximation

MODIFIED GRAVITATIONAL WAVE PROPAGATIONS IN … PHYS. REV. D 111, 084064 (2025)

084064-7



(SPA) during the inspiral phase of the binary system
[54,74]. As demonstrated in [75], the waveforms modified
by propagation effects and derived using the SPA agree
with those derived using the WKB approximation. In WKB
approximation, the corrections to the GR-based waveform
are only due to the propagation effect, and thus it is in
principle independent of the GW emission mechanism or
radiated stages of the binary system [75]. This implies that
one can extend the modified waveforms obtained using
the SPA [54,74] to the entire signal including the inspiral,
merger, and ringdown phases of a coalescing binary
system.
In the SPA, the Fourier transform of hAðtÞ can be

obtained analytically, which is given by [76]

h̃AðfÞ ¼
AAðfÞffiffiffiffiffiffiffiffiffiffiffiffi
df=dt

p eiΨðfÞ; ð3:5Þ

where f is the GW frequency at the detector, AAðfÞ is the
amplitude, and Ψ is the phase of GWs. In [2,74], it was
proved that the difference of arrival times in (3.4) induces
the modification to the phase of GWs Ψ in the following
form,

ΨðfÞ ¼ ΨGRðfÞ þ δΨðfÞ; ð3:6Þ

where ΨGRðfÞ is the phase predicted in GR and δΨðfÞ is
the phase corrections due to the Lorentz- and diffeomor-
phism-violating effects. According to the time difference in
Eq. (3.4), the phase corrections can be divided into two
parts,

δΨðfÞ ¼∓ δΨ1ðf;nÞ þ δΨ2ðf;nÞ; ð3:7Þ

where δΨ1ðf;nÞ corresponds to the velocity birefringence
effect and δΨ2ðf;nÞ represents the nonbirefringent effects.
δΨ1 is induced by the Lorentz- and diffeomorphism-

violating coefficients kðdÞðVÞjm and kðEÞðIÞjm � ikðdÞðBÞjm, while

δΨ2 is induced by kðdÞðIÞjm.
For d ≠ 3, where ∓ correspond to fast and slow modes,

respectively, and

δΨ1ðf;nÞ ¼
2d−3

d − 3

ud−3

Md−3

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1ðdÞðnÞÞ2 þ ðζ2ðdÞðnÞÞ2 þ ðζ3ðdÞðnÞÞ2

q
×
Z

t0

te

dt
ad−3

; ð3:8Þ

δΨ2ðf;nÞ ¼
2d−3

d − 3

ud−3

Md−3 ζ
0
ðdÞðnÞ

Z
t0

te

dt
ad−3

; ð3:9Þ

where u ¼ πMf with f ¼ ω=2π being the frequency of
the GWs, M ¼ ð1þ zÞMc is the measured chirp mass,

and Mc ≡ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass of
the binary systemwith componentmassesm1 andm2.When
d ¼ 3, the phase corrections δΨ1 and δΨ2 are given by

δΨ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1ðdÞðnÞÞ2 þ ðζ2ðdÞðnÞÞ2 þ ðζ3ðdÞðnÞÞ2

q
× ln u

Z
t0

te

dt; ð3:10Þ

δΨ2 ¼ ζ0ðdÞðnÞ ln u
Z

t0

te

dt: ð3:11Þ

In this paper, we adopt the above modified waveforms for
later analysis with the open data of compact binary merging
events detected by the LIGO-Virgo-KAGRA collaboration.
Let us turn to derive the modified waveform of GW with

Lorentz- and diffeomorphism-violating effects in the lin-
earized gravity sector of the SME. For this purpose, we
closely follow the derivation presented in [43,54,77]. Then
the fast and slow modes ðhf; hsÞ with phase corrections can
expressed as

hf ¼ hGRf eðδΨ2þδΨ1Þ; ð3:12Þ

hs ¼ hGRf eðδΨ2−δΨ1Þ: ð3:13Þ

By using the relation in (2.35), one can transform the above
results to the circular polarization modes

hR ¼ eiδΨ2

h
ðcos δΨ1 − i cosϑ sin δΨ1ÞhGRR

− i sin ϑe−iφ sin δΨ1hGRL
i
; ð3:14Þ

hL ¼ eiδΨ2

h
ðcos δΨ1 þ i cosϑ sin δΨ1ÞhGRL

− i sin ϑeiφ sin δΨ1hGRR
i
: ð3:15Þ

The corresponding waveforms for hþ and h× are

hþ ¼ eiδΨ2

h
ðcos δΨ1 − i cosφ sinϑ sin δΨ1ÞhGRþ

− ðcos ϑþ i sinϑ sinφÞ sin δΨ1hGR×
i
; ð3:16Þ

h× ¼ eiδΨ2

h
ðcos δΨ1 þ i cosφ sin ϑ sin δΨ1ÞhGR×

þ ðcosϑ − i sin ϑ sinφÞ sin δΨ1hGRþ
i
: ð3:17Þ

Here we would like to add two remarks about the above
modified waveforms and their tests with GW signals
detected by LIGO-Virgo-KAGRA detectors. First, the
modified waveform presented in the above represents the
most general waveform with Lorentz- and diffeomorphism-
violating effects in the linearized gravity. Here we note that

WANG, YAN, ZHU, and ZHAO PHYS. REV. D 111, 084064 (2025)

084064-8



the modified waveforms with Lorentz-violating but diffeo-
morphism invariant coefficients for d > 4 has been consid-
ered in Refs. [33,38–41]. The waveforms with phase correc-
tions presented above generalize those in Refs. [33,38–41] to
the Lorentz- and diffeomorphism-violating case, valid for
d ≥ 2. Second, the constraints on the Lorentz-violating
coefficients with mass dimensions d ¼ 5 and d ¼ 6 have
been studied by comparing the above modified waveforms
with GW signals detected by LIGO-Virgo-KAGRA detec-
tors have been performed in Refs. [38–40]. And the main
purpose of the rest part of this paper is to use the above
modifiedwaveforms to derive the constraints on the Lorentz-
and diffeomorphism-violating coefficients for d ¼ 2 and
d ¼ 3 cases.
Then we would like to consider several special limits of

the above general waveform. Considering that the operators
with the lowest mass dimension are expected to have the
dominant Lorentz- and diffeomorphism-violating effects on
the propagation of GWs, in the following we only discuss
specific cases with relative lower mass dimensions, for
example, d ¼ 2, 3, 4, 5, 6. Note that Ref. [78] explores
isotropic Lorentz-violating effects on GWs, which corre-
spond to operators with mass dimensions d ¼ 7 and d ¼ 8.

A. Nonbirefringent dispersion
by the even d coefficients kðdÞðIÞjm

The coefficients kðdÞðIÞjm for even d ≥ 2 induce the non-

birefringent dispersion of GWs,

ω ¼
�
1 − ωd−4

X
jm

Yjmðn̂ÞkðdÞðIÞjm

�
jkj: ð3:18Þ

This leads to the nonbirefringent phase velocity of GWs,

v ¼ 1 − ωd−4
X
jm

Yjmðn̂ÞkðdÞðIÞjm: ð3:19Þ

This phase velocity is direction-independent for j ¼ 0 but

anisotropic for j ≠ 0. For the effect induced by kðdÞðIÞjm, it is
obvious to see that the phase modification δΨ1 ¼ 0. In the
following, we consider the phase corrections for mass
dimensions d ¼ 2, d ¼ 4, and d ¼ 6, respectively.

1. d = 2

For mass dimension d ¼ 2 case, since 0 ≤ j ≤ d − 2, j

andm have to take j ¼ 0 ¼ m. For this case, kð2ÞðIÞjm only has

one component kð2ÞðIÞ00, which is obvious direction indepen-

dent. The phase correction for this case is given by

δΨ2 ¼ −
ðπfÞ−1
4
ffiffiffi
π

p kð2ÞðIÞ00

Z
t0

te

adt: ð3:20Þ

As we mentioned, the d ¼ 2 case can only be induced by
the diffeomorphism violations of the linearized gravity
described by the Lagrangian (2.1).

2. d = 4

For the d ¼ 4 case, the phase velocity is independent of
the frequency of the GWs, so they do not give any
observable dephasing effects and modify the speed of
GWs in a frequency-independent way. This effect can be
constrained by comparison with the arrival time of the
photons from the associated electromagnetic counterpart.
For the binary neutron star merger GW170817 and its
associated electromagnetic counterpart GRB170817A [79],
the almost coincident observation of the electromagnetic
wave and the GW place an exquisite bound on

−7 × 10−17 <
X
jm

Yjmðn̂Þkð4ÞðIÞjm < 3 × 10−15: ð3:21Þ

Since this case does not lead to any dephasing effects, we
are not going to include this case in our later analysis with
GW signals in GWTC-3. In addition, it is shown in [34] that

with the effects of the anisotropic coefficients kð4ÞðIÞjm, the
extra polarizations of GWs can be directly generated by the
two tensorial modes under certain conditions.

3. d = 6

For the mass dimension d ¼ 6 case, the index j can take
0, 1, 2, 3, 4, and the index m runs from −j to j. Note that

each of kð6ÞðIÞjm are complex function which satisfies

kð6Þ�ðIÞjm ¼ ð−1Þmkð6ÞðIÞj−m. Thus the number of independent

components for coefficients kð6ÞðIÞjm are ðd − 1Þ2 ¼ 25. The

phase correction in the modified waveform for this case is
given by

δΨ2 ¼
8

3
ðπfÞ3

�X
jm

Yjmðn̂Þkð6ÞðIÞjm

�Z
t0

te

dt
a3

: ð3:22Þ

The coefficients kð6ÞðIÞjm can be constrained by comparing the

modified waveform with the GW strain data from the GW
detectors, see Ref. [70] for a review. The analysis with the
isotropic effect of Lorentz violation which corresponds to
j ¼ 0 in the linearized gravity has been carried out through
full Bayesian parameter estimations on the GW events
observed by the LIGO/Virgo/KAGRA detectors in a series
of papers [37,57,67–69], while the anisotropic case has
been considered in [38].
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B. Birefringent dispersion by the
odd d coefficients kðdÞðVÞjm

The coefficients kðdÞðVÞjm for odd d ≥ 3 produces fre-

quency-dependent dispersion and birefringence effects in
GWs, i.e.,

ω ¼
�
1� ωd−4

X
jm

Yjmðn̂ÞkðdÞðVÞjm

�
jkj: ð3:23Þ

Note that here ∓ corresponds to the fast and slow modes
respectively. This leads to the birefringent phase velocity
of GWs,

v� ¼ 1� ωd−4
X
jm

Yjmðn̂ÞkðdÞðVÞjm: ð3:24Þ

Similarly, this velocities are direction-independent for j ¼
0 but anisotropic for j ≠ 0. In this case, the fast and slow
modes are circularly polarized, and we have ϑ ¼ 0; π. For

the effects induced by kðdÞðVÞjm, it is obvious that the phase

corrections δΨ2 ¼ 0.

1. d = 3

For mass dimension d ¼ 3 case, the index j can take 0
and 1, and index m runs from −j to j. Considering

kð5Þ�ðVÞjm ¼ ð−1Þmkð5ÞðVÞj−m, it is known that there are only 4

independent components for the coefficients kð3ÞðVÞjm, they

are kð3ÞðVÞ00, k
ð3Þ
ðVÞ10, Rek

ð3Þ
ðVÞ11, and Im kð3ÞðVÞ11, in which k

ð3Þ
ðVÞ11 is

a complex function so it contains two independent com-
ponents. The phase correction for this case is given by

δΨ1 ¼ ln u

�X
jm

Yjmðn̂Þkð3ÞðVÞjm

�Z
t0

te

dt: ð3:25Þ

Similarly, one can constrain the coefficients kð3ÞðVÞjm by

comparing the modified waveform with the GW strain
data from the GW detectors. The analysis with the isotropic
effect for d ¼ 3 case (which corresponds to j ¼ 0 case) has
been performed in Refs. [37,57,80].

2. d = 5

For mass dimension d ¼ 5 case, the index j can take 0, 1,
2, 3, and index m runs from −j to j. Here the coefficients

kð5ÞðVÞjm have ðd − 1Þ2 ¼ 16 components in total. The phase

corrections for this case are given by

δΨ1 ¼ 2ðπfÞ2
�X

jm

Yjmðn̂Þkð3ÞðVÞjm

�Z
t0

te

a−2dt: ð3:26Þ

The constraints on the isotropic effect for d ¼ 5 case
have been performed in a series of papers, see

Refs. [37,53,55,57,60], while the anisotropic effects has
been constrained in [39,40,42,81].

C. Birefringent dispersion by the
even d coefficients kðdÞðEÞjm and kðdÞðBÞjm

The coefficients kðdÞðEÞjm and kðdÞðBÞjm for even d ≥ 6

produces frequency-dependent dispersion and birefrin-
gence effects in GWs, i.e.,

ω ¼
�
1� 1

2
ωd−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1ðdÞðnÞÞ2 þ ðζ2ðdÞðnÞÞ2

q �
jkj: ð3:27Þ

For this case, we have ϑ ¼ π=2 and δΨ2 ¼ 0.
For mass dimension d ¼ 6, the index j ¼ 4 and index m

runs from 0 to 4. In this case, the coefficients kðdÞðEÞjm and

kðdÞðBÞjm have 18 components in total. The phase corrections

for this case is given by

δΨ1¼
8

3
ðπfÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ1ð6ÞðnÞÞ2þðζ2ð6ÞðnÞÞ2

q Z
t0

te

a−3dt: ð3:28Þ

The constraints on the coefficients kðdÞðEÞjm and kðdÞðBÞjm for

d ¼ 6 case have been performed in [40,42,81].

IV. BAYESIAN INFERENCE
AND PARAMETER ESTIMATION

In this section, we present a brief introduction to the
Bayesian inference used to constrain the coefficients of
Lorentz and diffeomorphism violation in the linearized
gravity in the framework of the SME. Bayesian inference
plays a pivotal role in modern astronomy, enabling the
extraction of physical parameters from observational data.
Given GW data di, we compare it with the predicted GW
strain incorporating Lorentz- and diffeomorphism-violating
effects to infer the posterior distribution of parameters θ⃗
that characterize the waveform model. According to Bayes’
theorem, the posterior distribution is expressed as

Pðθ⃗jd;HÞ ¼ Pðdjθ⃗; HÞPðθ⃗jHÞ
PðdjHÞ ; ð4:1Þ

where Pðθ⃗jd;HÞ represents the posterior probability dis-
tributions of the model parameters θ⃗, and H is the wave-
form model. Pðθ⃗jHÞ is the prior distribution for parameters
θ⃗, Pðdjθ⃗; HÞ is the likelihood function for a given set of
model parameters and PðdjHÞ is the normalization factor,
commonly referred as the “evidence”
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PðdjHÞ≡
Z

dθ⃗Pðdjθ⃗; HÞPðθ⃗jHÞ: ð4:2Þ

In most cases, GW signals are weak and embedded
within noise, making matched filtering a crucial method for
signal extraction. Assuming Gaussian and stationary noise
[82–84], the likelihood function for matched filtering is
given by

Pðdjθ; HÞ ∝
Yn
i¼1

e−
1
2
hdi−hðθÞjdi−hðθÞi; ð4:3Þ

where hðθÞ is the GW strain predicted by the waveform
model H, and i indexes the individual GW detectors. The
noise-weighted inner product hAjBi is defined as

hAjBi ¼ 4Re

�Z
∞

0

AðfÞBðfÞ�
SðfÞ df

�
; ð4:4Þ

where � denotes the complex conjugate, and AðfÞ repre-
sents the measured GW strain signal at the LIGO/Virgo/
KAGRA detectors, and BðfÞ represents the theoretical GW
predicted by the waveform model. SðfÞ is the power
spectral density (PSD) of the detector. To ensure stable
and reliable parameter estimation, we use the PSD data
provided in the LVK posterior sample, which is more
robust compared to PSDs derived from strain data using
Welch averaging [48,85,86].
We consider the cases of Lorentz- and diffeomorphism-

violatingwaveforms in (3.16) and (3.17)with different mass
dimension d separately. It is mentioned in the previous
section that the caseswithmass dimensionsd ¼ 5 andd ¼ 6
have been explored in Refs. [38–40,42,81], which will not
be considered here. For this reason, we explore the cases
with d ¼ 2 and d ¼ 3 cases in this paper. To perform the
parameter estimation on the modified waveforms (3.16)
and (3.17) with the Lorentz- and diffeomorphism-violating
effects, we employ the Python package BILBY [87,88]. We
perform Bayesian inference on GW data from the 88
compact binary coalescence events in GWTC-3, which
include binary neutron stars like GW170817, neutron
star–black hole binaries, and binary black holes. Two events,
GW200308_173609 andGW200322_091133, are excluded
in our analysis due to the possible uncertainties of their
inferred source properties [46]. It is also shown in [89] from
a new analysis that these two events could be generated by
Gaussian noise fluctuations. We use the IMRPhenomXPHM

template [90–92] for the GR waveform hGRþ;×ðfÞ except
for the binary neutron star event GW170817, and use
IMRPhenomPv2_NRTidal for GW170817.
Considering that the spherical expansion coefficient

formulas in Eqs. (2.46), (2.44), and (2.45) provide a general
solution for different events within the same coordinate
system, we can combine the posterior distributions of
individual events as

Pðθ⃗jfdig; HÞ ∝
YN
i¼1

Pðθ⃗jdi; HÞ; ð4:5Þ

where di represents the data from the ith GW event, and N
is the total number of selected GW events.

V. RESULTS

In this section, we present the results of the constraints
on the Lorentz- and diffeomorphism-violating coefficients
for mass dimensions d ¼ 2 and d ¼ 3 cases. In the
following, we present the results for d ¼ 2 and d ¼ 3
separately.

A. d = 2

For the mass dimension d ¼ 2 case, the phase correc-
tions (with δΨ1 ¼ 0) in the modified waveform in (3.16)
and (3.17) is expressed

δΨ2 ¼ Aμ̄ðπfÞ−1; ð5:1Þ

where

Aμ̄ ¼ −
1

4
ffiffiffi
π

p kð2ÞðIÞ00

Z
z

0

ð1þ z0Þ−2
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þΩΛ

p dz0: ð5:2Þ

Here we adopt a Planck cosmology with Ωm ¼ 0.315,
ΩΛ ¼ 0.685, and H0 ¼ 1.44 × 10−42 GeV [93]. The
parameter Aμ̄ is the parameter we sampled in the
Bayesian inference along with other GR parameters. We
use the uniform prior for parameter Aμ̄ in our analysis. Then
from the marginal posterior distributions of Aμ̄ and the
redshift z of the analyzed GW events, one can obtain

posterior distributions of kð2ÞðIÞ00. In Fig. 1 we display the

marginalized posterior distributions of kð2ÞðIÞ00 from selected

GW events in the GWTC-3. For most GW events we
analyze in each test, we do not find any significant
signatures of Lorentz and diffeomorphism violation due

to the coefficient kð2ÞðIÞ00. A few events that suggest nonzero

values for the non-GR coefficients Aμ̄ are excluded from
our analysis due to their contradiction with GR. The

posterior posterior distributions for kð2ÞðIÞ00 from the excluded

GW events are presented in Fig. 2. It is mentioned
in [60,66] that these results may arise from limitations in
current waveform approximants, such as systematic errors
during the merger phase or unaccounted physical effects
like eccentricity. Consequently, we have excluded these
events from our analysis. Table II presents the list of
excluded events along with the estimated constraints on

kð2ÞðIÞ00 for each excluded event.
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In addition, we consider the coefficient kð2ÞðIÞ00 as a

universal parameter for all GW events, then we obtain
its combined constraint by multiplying the posterior dis-
tributions of the individual events together, which gives

−0.5 × 10−63 GeV2 < kð2ÞðIÞ00 < 1.3 × 10−63 GeV2 ð5:3Þ

at 90% confidence level. The lower and upper limits of

kð2ÞðIÞ00 are represented by the vertical dash line in Fig. 1.

B. d = 3

For the mass dimension d ¼ 3, the phase correction
(with δΨ2 ¼ 0) in the modified waveform in (3.16) and
(3.17) takes the form

δΨ1 ¼ Aμ ln u; ð5:4Þ

with

Aμ ¼
�X

jm

Yjmðn̂Þkð3ÞðVÞjm

�

×
Z

z

0

ð1þ z0Þ−1
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þΩΛ

p dz0: ð5:5Þ

Here Aμ is the parameter we sampled in the Bayesian
inference along with other GR parameters. We use the
uniform prior for parameter Aμ in our analysis. As we
mentioned, for mass dimension d ¼ 3, the coefficients

kð3ÞðVÞjm have four independent components, kð3ÞðVÞ00, k
ð3Þ
ðVÞ10,

Rekð3ÞðVÞ11, and Im kð3ÞðVÞ11. These components are entirely

tangled together. Here we adopt an approach by using the
“maximum-reach” method, with which one can constrain
each of these components separately [40,42,81]. This
implies that when one considers one of these components,
the others are set to zero.

Then the posterior samples of each component of kð3ÞðVÞjm
can be calculated from the marginal posterior distributions
of Aμ, right ascension (ra), declination (dec), and redshift z
of the analyzed GWevents, via Eq. (5.5). Figure 3 presents

the marginalized posterior distributions of kð3ÞðVÞ00, k
ð3Þ
ðVÞ10,

Rekð3ÞðVÞ11, and Im kð3ÞðVÞ11 from selected GW events in the

GWTC-3. The lower and upper limits of each coefficient

kð3ÞðVÞ00, k
ð3Þ
ðVÞ10, Rek

ð3Þ
ðVÞ11, and Im kð3ÞðVÞ11. k

ð6Þ
ðIÞjm are represented

by the vertical dash line in each figure of Fig. 3. For most
GW events we analyze in each test, we do not find any
significant signatures of Lorentz and diffeomorphism

violation due to the coefficient kð3ÞðVÞij. In addition, for each

FIG. 1. The posterior distributions for kð2ÞðIÞ00 from selected GW
events in the LIGO-Virgo-KAGRA catalog GWTC-3. The legend
indicates the events that give the six tightest constraints. The

vertical dash line denotes the 90% interval for kð2ÞðIÞ00 from

combined results. Note that we have excluded a few events in
our analysis (as shown in the list presented in Table II).

FIG. 2. The posterior distributions for kð2ÞðIÞ00 from 9 excluded
GW events (the excluded events are listed in Table II).

TABLE II. The list of the excluded events in the analysis for

d ¼ 2 case and their constraints on kð2ÞðIÞ00 at 90% confidence

interval. It is obvious that these constraints favor nonzero values

of the non-GR coefficient kð2ÞðIÞ00.

Coefficient Events Constraint (10−62 Gev2)

kð2ÞðIÞ00
GW190408_181802 (15.2, 20.9)
GW190503_185404 (3.5, 12.6)
GW190519_153544 (1.5, 3.3)
GW190630_185205 (5.9, 8.3)
GW190701_203306 (11.5, 19.1)
GW200112_155838 (8.2, 12.9)
GW200216_220804 (2.7, 4.9)
GW200225_060421 (4.2, 23.5)
GW200311_115853 (8.1, 11.6)
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coefficient of kð3ÞðVÞ00, k
ð3Þ
ðVÞ10, Rek

ð3Þ
ðVÞ11, and Im kð3ÞðVÞ11, we

consider each of them as a universal parameter for all GW
events, and then we obtain their combined constraints
separately by multiplying the posterior distributions of the
individual events together. Table. III summarizes the

90% confidence interval of each coefficients kð3ÞðVÞ00,

kð3ÞðVÞ10, Rek
ð3Þ
ðVÞ11, and Im kð3ÞðVÞ11. From both the Fig. 3 and

Table III, it is obvious that the posterior samples and the

90% confidence interval of each coefficient kð3ÞðVÞij are all

consistent with zero, which indicates there are no signa-
tures of the Lorentz and diffeomorphism violations arising
in the linearized gravity of SME has been found in the GW
signals.

VI. CONCLUSION

The detection of GW signals by the LIGO-Virgo-
KAGRA Collaboration marked the beginning of a new
era in testing gravity in the strong-field regime. In this
study, we investigate the effects of Lorentz- and diffeo-
morphism-violating effects in the linearized gravity on GW
propagation within the framework of SME. Using an
approach similar to that in the photon sector of the SME
[71], we derive a modified dispersion relation for GWs with
the Lorentz- and -violating effects, which lead to
anisotropy, birefringence, and dispersion effects in the
propagation of gravitational waves. With these modified
dispersion relations, we then calculate the dephasing effects

TABLE III. 90% confidence interval of each component of the
Lorentz- and diffeomorphism-violating coefficients kð3ÞðVÞjm from
90 GW events in the GWTC-3 catalog.

j m Coefficient Constraint (10−41 Gev−1)

0 0 kð3ÞðVÞ00
ð−0.65; 1.13Þ

1 0 kð3ÞðVÞ10
ð−0.3; 0.9Þ

1 Re kð3ÞðVÞ11 ð−4.2; 3.2Þ
Im kð3ÞðVÞ11 ð−1.2; 4.2Þ

FIG. 3. The posterior distributions for kð3ÞðVÞ00, k
ð3Þ
ðVÞ10, Rek

ð3Þ
ðVÞ11, and Im kð3ÞðVÞ11 from selected GW events in the LIGO-Virgo-KAGRA

catalog GWTC-3. The legend indicates the events that give the six tightest constraints. The vertical dash lines denote the 90% intervals

for the coefficients kð3ÞðVÞ00, k
ð3Þ
ðVÞ10, Rek

ð3Þ
ðVÞ11 from combined results.
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due to the Lorentz and diffeomorphism violations in the
waveforms of gravitational waves produced by the coa-
lescence of compact binaries.
With the distorted waveforms, one can test the Lorentz

and diffeomorphism invariance of gravity by comparing the
modified waveform with the GW strain data from the GW
detectors. Several previous works have been carried out for
testing Lorentz symmetry in Lorentz-violating linearized
gravity for mass dimension d ≥ 4 cases. This study explores
the effects of diffeomorphism violations induced by
Lorentz-violating terms with mass dimensions d ¼ 2 and
d ¼ 3 respectively. Using the SME framework for Lorentz-
violating linearized gravity, we perform Bayesian inference
with modified waveforms incorporating diffeomorphism-
violating effects on GW events from the GWTC-3 catalog.
We find no significant evidence of diffeomorphism viola-
tions inmostGWdata and provide 90%confidence intervals
for each diffeomorphism-violating coefficients.
Our results, illustrated in Fig. 1 for d ¼ 2 case, and Fig. 3

and Table III for d ¼ 3 case, show no evidence of Lorentz
and diffeomorphism violations. Accordingly, we report

constraints on the coefficients kð2ÞðIÞ00 describing anisotropic

nonbirefringent effects for d ¼ 2 and coeffcients kð3ÞðVÞ00,

kð3ÞðVÞ10, Rekð3ÞðVÞ11, and Im kð3ÞðVÞ11 describing birefringent
anisotropic effects for d ¼ 3. Nevertheless, the medians
of all components remain near zero and thus are consistent
with the results of GR prediction. Looking to the future, the
next generation of GW detectors, with enhanced sensitivity
and the ability to observe lighter and more distant binary
black hole (BBH) and binary neutron star (BNS) systems,
is anticipated to tighten further constraints on Lorentz and
diffeomorphism violations induced dispersions in GW
propagation.
The data analyses and results visualization in this work

made use of BILBY [87,88], DYNESTY [94], LALSuite [95],
Numpy [96,97], Scipy [98], and MATPLOTLIB [99]. This
research has made use of data or software obtained from
the Gravitational Wave Open Science Center [100].
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Hees, Sébastien Bouquillon, Gérard Francou, and Marie-
Christine Angonin, Lorentz symmetry violations from
matter-gravity couplings with lunar laser ranging, Phys.
Rev. Lett. 119, 201102 (2017).

[19] Holger Muller, Sheng-wey Chiow, Sven Herrmann, Steven
Chu, and Keng-Yeow Chung, Atom interferometry tests of
the isotropy of post-Newtonian gravity, Phys. Rev. Lett.
100, 031101 (2008).

[20] V. Alan Kostelecký and Jay D. Tasson, Constraints on
Lorentz violation from gravitational Čerenkov radiation,
Phys. Lett. B 749, 551 (2015).

[21] Lijing Shao, Tests of local Lorentz invariance violation of
gravity in the Standard Model extension with pulsars,
Phys. Rev. Lett. 112, 111103 (2014).

[22] Lijing Shao, New pulsar limit on local Lorentz invariance
violation of gravity in the Standard-Model extension, Phys.
Rev. D 90, 122009 (2014).

[23] Ross J. Jennings, Jay D. Tasson, and Shun Yang, Matter-
sector Lorentz violation in binary pulsars, Phys. Rev. D 92,
125028 (2015).

[24] Lijing Shao and Quentin G. Bailey, Testing velocity-
dependent CPT-violating gravitational forces with radio
pulsars, Phys. Rev. D 98, 084049 (2018).

[25] Lijing Shao and Quentin G. Bailey, Testing the gravita-
tional weak equivalence principle in the Standard-Model
extension with binary pulsars, Phys. Rev. D 99, 084017
(2019).

[26] Lijing Shao, Lorentz-violating matter-gravity couplings in
small-eccentricity binary pulsars, Symmetry 11, 1098
(2019).
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