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Abstract. We investigate the slow-motion and weak-field approximation of the general
ghost-free parity-violating (PV) theory of gravity in the parametrized post-Newtonian (PPN)
framework and derive the perturbative field equations, which are modified by the PV terms
of this theory. The complete PPN parameters are obtained by solving the perturbative field
equations. We find that all the PPN parameters are exactly the same as those in general
relativity, except for an extra parameter k, which is caused by the new curl-type term in
the gravitomagnetic sector of the metric in this theory. We calculate the precession effects
of gyroscopes in this theory and constrain the model parameters by the observations of the
Gravity Probe B experiment.
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1 Introduction

Tests of gravity have been widely concerned since Einstein first formulated general relativity
(GR) [1-4]. At present, the results of almost all gravity testing experiments show that GR
is the most successful theory of gravity among many gravitational theories. Nevertheless,
there are other theories of gravity which also satisfy the various high precision experimental
constraints and remain candidates for the alternative theory of gravity [5]. Moreover, GR still
faces difficulties in both theoretically (e.g. singularity, quantization, etc) and observationally
(e.g. dark matter, dark energy, etc.). Modified gravity is considered to be one of the effective
ways to solve these anomalies [6-9]. Therefore, the tests of the modified gravities are essential
to confirm the final theory of gravity.

In this article, we focus on the parity-violating (PV) gravities, which are a class of
alternative theories of gravity that the gravitational action is modified by including the
PV terms. Parity symmetry implies that a directional flipping to the left and right does
not change the laws of physics. It is well known that nature is parity-violating since the
first discovery of parity violation in weak interactions [10]. Although in GR, the parity
symmetry is conserved, many PV gravities with different action forms have been proposed
for different motivations [11-21]. PV theories of gravity have been studied in the cosmology,
as well as in gravitational waves [12, 14, 21-35]. Gravitational parity violation can produce
the birefringence effect of (primordial) gravitational waves, where the modified dispersion
relation can lead to velocity birefringence [17] and the altered friction can cause amplitude
birefringence of gravitational waves [11, 36]. The imprints of these birefringence effects can
be detected by the laser interference gravitational wave detectors [27, 37-41] and/or by the
polarization of cosmic microwave background radiations [22, 36, 42, 43].



In addition, the external environment of compact bodies such as binary pulsars or solar
system objects [44-48], also provides the most accessible testbed to test the PV theories of
gravity. The parameterized post-Newtonian (PPN) approximation [49, 50] is successful and
extensively used to test the slow-motion and weak-field limit of the gravity theories [51-56],
including PV theories of gravity. For a specific Chern-Simons (CS) gravity, refs. [56, 57] have
calculated the PPN parameters and shown that the vectorial sector of the metric is modified
by a new curl-type term, leading to a correction to the Lense-Thirring effect. Other PV
theories of gravity, for example, Hotava-Lifshitz gravity [53], teleparallel gravity [55], etc,
also have been examined in the slow-motion and weak-field limit of the system by using the
PPN approximation.

Recently, based on the specific parity-violating CS modified gravity, a ghost-free parity-
violating theory of gravity has been explored in ref. [58] by including higher derivatives
of the coupling scalar field. In this theory of gravity, we have studied the propagation of
gravitational waves and found that both amplitude and velocity birefringence exist [59, 60].
We also investigated circular polarization of the primordial gravitational waves in this gravity
and obtained a nonzero degree of circular polarization [43].

As an extension of these works, in this paper, we will calculate PPN parameters of
the ghost-free PV theory of gravity to test whether it is compatible with the solar system
experiments. We use the PPN approximation to expand the modified field equations. By
solving the perturbative field equations, we get the full PPN metric and the PPN parameters
of this theory. We find that this metric contains an extra curl-type term, which is similar to
in CS theory [56, 57] except for the coupling parameter. In order to constrain this theory, we
calculate the modification to the rate of angular precession in a specific experiment frame and
find that the modification contributes in two directions of the geodetic effect of gyroscopes
in a complete circular satellite orbital motion period. However, in the period of a complete
Farth orbital period, the contributions in these two directions include the oscillation terms
produced by the Earth’s orbital motion. We ignore these oscillation terms in a complete
Earth’s orbital cycle, the modification to the rate of angular precession only contributes in
one direction, which exactly corresponds to the changes of GR’s frame-dragging precession.
This allows us to apply the observation of Gravity Probe B (GPB) experiment to constrain
the model parameters.

This paper is organized as follows. In section 2, we briefly introduce the theory of
ghost-free PV gravity and the modified field equations. In section 3, we describe the basics
of the PPN framework and expand the modified field equations to the required order in the
metric perturbation. In section 4, we solve the equations in the PN approximation to obtain
the PPN parameters. In section 5, we constrain this theory with the frame-dragging effect.
Summary and discussions are given in section 6.

Throughout this paper, the metric convention is chosen as (—, +, +, +), and greek indices
(t, v, -+ +) run over 0,1, 2,3 and the latin indices (i, j, k,- - -) run over 1,2,3. We set the units
toc=h=1.

2  Ghost-free parity-violating gravities

The action of general PV gravity can be written in the following form

1

S = 167G

/ A /=g(R + Lpv) + / d*27/~G(Ls + Lother), (2.1)



where R is the Ricci scalar, Lpy is a parity-violating Lagrangian, L4 is the Lagrangian for a
scalar field, which may be coupled non-minimally to gravity, and Lqiher denotes other matter
fields. As one of the simplest examples, we consider the action of the scalar field

1
£¢ = Eguyaud)auﬁb + V(¢) (2-2)

Here V(¢) denotes the potential of the scalar field. The parity-violating Lagrangian Lpy has
different expressions for different theories. CS modified gravity with Pontryagin term coupled
with a scalar field is a widely studied PV gravity in the previous works. The Lagrangian of
CS reads [61]

Les = 19(6) *RR, (23)

where

1

"RR = 56" Rpoap R, (2.4)

is the Pontryagin density with e?7%% the Levi-Civita tensor defined in terms of the antisym-
metric symbol €?7%? as P78 = ¢roeB /. /=g and the CS coupling coefficient 9¥(¢) being an
arbitrary function of ¢. CS modified gravity is an effective extension of GR that captures
leading-order, gravitational parity-violating term. The similar versions of this theory were
suggested in the context of string theory [62, 63], and three-dimensional topological massive
gravity [64]. However, this theory has higher-derivative field equation, which induces the
dangerous Ostrogradsky ghosts. For this reason, CS modified gravity can only be treated as
a low-energy truncation of a fundamental theory. To cure this problem, the extension of CS
gravity by considering the terms which involve the derivatives of a scalar field is recently pro-
posed in [58]. The action is generalised in this paper by including first and second derivatives
of the scalar field: ¢, = 0,¢ and ¢, = V¢,

Lpy1 is the Lagrangian containing the first derivative of the scalar field, which is given by

4

Lpyi = Z (¢, ") La, (2.5)

where

Ly = EuyaﬁRaﬁpo ,uup)\qsggi))\
Ly = "’ Ragpo R, {7 608",

Ly = e PR, R, Oy,
Ly = EuypaRpaaﬁRaﬁﬂy¢A¢)n

with ¢# = VF¢, and ap are a priori arbitrary functions of ¢ and ¢#¢,,. In order to avoid the
Ostrogradsky modes in the unitary gauge (where the scalar field depends on time only), it
is required that 4ay + 2a9 + ag + 8a4 = 0. With this condition, the Lagrangian in eq. (2.5)
does not have any higher order time derivative of the metric, but only higher order space
derivatives.



One can also consider the terms which contain second derivatives of the scalar field.
Focusing on only these that are linear in Riemann tensor and linear/quadratically in the
second derivative of ¢, the most general Lagrangian Lpys is given by [58]

7
Lpva = Y ba(d, ¢ ¢x) Ma, (2.6)
A=1
where
M, = EuyaﬁRaBpa¢p¢u¢ga

My = e Ragn 07,

Mz = "% Roped” 6502,
My = "P Rop oo 068567,
Ms = e" P Ropord” $38507,
Mg = "Ry ¢l d) 0,
My = (V?¢) M,

with ¢7 = VoV, ¢. Similarly, in order to avoid the Ostrogradsky modes in the unitary gauge,
the following conditions should be imposed: by = 0, bg = 2(by + bs) and by = — A2 (b3 — by) /2,
where A, = ¢(t)/N and N is the lapse function. In this paper, we consider a general scalar-
tensor theory with parity violation, which contains all the terms mentioned above. So, the
parity-violating term in eq. (2.1) is given by

Lpy = Lcs + Levi + Lpve. (2.7)

Therefore, the CS modified gravity in [61], and the ghost-free parity-violating gravities dis-
cussed in [58] are all the specific cases of this Lagrangian. The coefficients ), ax and ba
depend on the scalar field ¢ and its evolution.

In principle, we can also continue to construct the higher-order scalar field derivatives
coupled with the curvatures, such as Lpvs, Lpvs, etc. However, the contributions of these
higher-order coupling terms are expected to be at the higher-order in the perturbative expan-
sions of the PPN approximation. From the calculations for Lpy1 and Lpys, it can be observed
that Lpye does not contribute to any PPN parameters at the leading order. Therefore, it is
sufficient here that we only consider the action with the first and the second derivative terms
of the scalar field as in [58].

Variation of the action with respect to the metric tensor g,,, one obtains the field
equation of the theory, which is,

1
Ryy = 59w R+ Cpy + A + By = 87G(Ty, + T3, (2.8)
where
_ 1 5( _gﬁcs) * «a «a
Ch = = Végw = *RP VoVl + (Vad)ed 'V Ry, (2.9)
1 o(/— 1 o(/—
Ay = (vV—9Lpv1) B = (vV—9Lpv2) (2.10)

V=g g 0 THT =g g

W Vg ag V=g g




The expressions of A,,, B, T;f’l, are given in appendix A. The equation of the scalar field
can be obtained by varying the action (2.1) with respect to the scalar field ¢, which gives

—167GV?¢ + 167GV 4(¢) + 9 4 *“RR+ F = 0, (2.12)

where F 4 is given in the appendix A.
For the field equation (2.8), it is convenient to write it into a more suitable form. Taking
the trace of (2.8) one obtains

R=C+ A+ B—-8G(T™+1T9), (2.13)

where C' = g"'C, A= g" Ay, B = g" By, T = g"'T),,, and T = g“”T/‘fl,. Replacing
eq. (2.13) back in eq. (2.8), the latter becomes,

R,u,u + C,u,z/ + A/.u/ + B,u,u
= 87G(C + A+ B)gu, — AnG(T™ + T%) gy, + 87G(Tj + T5,), (2.14)

where the trace of these tensor C' = ¢"C,,,, A = g"”A,, and B = gV B, vanishes identi-
cally. The field equation reduces to

1 1
R,uz/ + C;u/ + A,uz/ + B,uy = 871G |:T,T/ - ig;me + (T;fy - 29uuT¢>:|
= 87G (S, + S5,) » (2.15)

where S, = T}, — % 9w/ T'. In order to validate these field equations, in appendix B, we expand
them in the weak gravitational fields, and derive the propagation field of gravitational wave in
this theory, which is consistent with the corresponding results in the previous works [43, 59].

3 Parametrized post-Newtonian expansion

In this section, we start to consider the PPN formalism of the ghost-free PV gravities. One
of important assumption of the PPN formalism is that the matter which acts as the source of
the gravitational field is given by a perfect fluid. The velocity of the matter in a particular,
fixed frame of reference is small, measured in units of the speed of light, and that all physical
quantities relevant for the solution of the gravitational field equations can be expanded in
orders of this velocity. In this section, we discuss how this expansion in velocity orders
proceeds for the quantities we need in our calculation in the following sections, in particular
for parity-violating terms.

The energy-momentum tensor of the matter field thus can be expressed in the perfect
fluid form, which is

Th = (p + pII + p)uru” 4 pg"”, (3.1)

where p, I, p, and u* are the rest energy density, specific internal energy, pressure, and the
four velocity of the matter field respectively. The four velocity satisfies the normalization
condition u#u, = —1. In the PPN formalism [49], we focus on slow motion. So, the last three
components of the velocity v’ = da®/dt = u’/u’ are essentially small. To compare the size of
the different matter variables appearing in the PPN formalism, we say that the velocity v is
O(1) and in general v" is O(n).



In the PPN approximation [49], the metric can be perturbatively expanded around
Minkowski spacetime, i.e.

Guv = Nuv + hum (32)

where 7,,, = diag(—1, 1, 1, 1). In the standard PPN formalism, the metric is required to
the PN orders as [49]

hoo ~ O(2) + O(4), (3.3)

hoi ~ O(3), (3.4)

hij ~ O(2). (3.5)

Following the standard PPN formalism, the metric can be related to a series super-potentials,
hoolO(2)] : U, (3.6)

hoolO(4)] : U?, @y, 1, Dy, B3, Py, A, B, (3.7)

hoi[O(3)] = Vi, Wi, (3.8)

where the super-potentials U, &y, Py, &9, $3, Py, A, B, V;, W;, and x are given by
egs. (C.1)—(C.12) in appendix C.

Similar to the previous works [43, 58, 59|, we consider the unity gauge ¢ = ¢(t), i.e.,
the scalar field ¢ is time varying but spatially homogeneous. This scalar field can be either
a quintessence field or some other field, which should be determined by the cosmological
solution. One of the remarkable features of this scalar field is that it provides a preferred time
direction associated with cosmic expansion. This implies this theory is a Lorentz-breaking
theory with a parity-violating sector. In this sense, the ghost-free PV gravity does not admit
the full diffeomorphism invariance of the four-dimensional spacetime. In other words, the
theory only contains the time reparametrization symmetry and the three-dimensional spatial
diffeomorphism,

t—t=t—f(t), (3.10)
e R U (X A) (3.11)
Under this gauge transformation, we find that the metric transforms as
his = hoo — 2X2(U? + Oy — ®2) + 21, (3.12)
hgj = hoj — Aax.0j, (3.13)
hij = hij — 2XaX.ij, (3.14)

where in writing the above expressions, we had chosen &; = Aax; [49] with Ay being an
arbitrary constant. Clearly, by properly choosing Ao we can eliminate the anisotropic term
X,ij as it was done in the standard post-Newtonian gauge [49]. However, since now f(t) is
a function of ¢ only, we cannot eliminate the % term in hgg. Therefore, the general metric
coefficients up to O(4) order in the ghost-free PV theory are given by,

goo = —1+2U —2BU?% — 260y + 2+ 2y + a3 + (1 —26) @1 +2(1 + 3y — 28+ (o + &) Dy
+2 (1 +C3) @3 +2 (37 + 3¢ — 26) P4 — (1 — 2§) A + (BB,
—%(34-47—!—041—O<2+C1—25)‘/%—%(1+C¥2—C1+2£)VV@'+HXi,

(1 +29U)és, (3.15)

9oi

Gij



where (8,7, &, (1, (2, (3, (4, a1, a2, a3) are 10 PPN parameters in the standard PPN formalism.
Besides these 10 PPN parameters, we also introduce additional contributions to the post-
Newtoanian metric, (g and k. These are different from the standard PPN formalism in
which full diffeomorphism in 4-dimensional spacetime is used to fix the gauge and the parity
symmetry is conserved. The introduction of (g is due to the breaking of the Lorentz symmetry
of the theory. This is very similar to the case in the Horava-Lifshitz gravity, in which the
theory is only spatial covariant and a preferred time direction is chosen [53]. The term &
represents the contributions from the parity violation of the theory, whose explicit form will
be determined later in this paper.

Now, we would like to perform a PN expansion of the field equations and obtain a
solution in the form of a PN series. From this solution, we are able to read off the PPN
parameters by comparing them to the standard PPN super-metric. Before doing so, let us
first consider expanding the Ricci, Cotton, A, and B tensors to second order. Based on the
second-order expansion of these tensors, each component of them can be obtained and the
field equation can be solved. Meanwhile, in order to simplify calculation, we impose the
following gauge conditions

1
hip® — i O(4),
|
hOk’ — §h,0 = O<5) (3.16)

In the PPN gauge, combined with the above gauge conditions, the components of Ricci tensor
and Cotton tensor read [56]

1 1 o1
Ry = *§V2h00 — —hoo,ihoo”* + ih”hoo,i,j + O(6),

2
1 1
Ro; = —§V2h0i - Zhoo,o,i + O(5),
1
Rij = —ivzhij +O(4); (3.17)
000 = O(G)a
1
Coi = —Zﬂ’eOkliVQhoz,k +0(5),
1
Ci = =5V e V2 + O4); o
while the A, tensor and B, tensor reduce to
A(]O - 0(6)7
1
Ao = 2920, 4 0(5),
1
Ay = _59’60’“’( V2hjyr + O(4);
Bgo = O(6),
BOz = (5)7
By = O(4): (3.19)

where V? = 5% 0;0; is the Laplacian of flat space, and

O = (—2ay + a3 — 8ay) P (3.20)



In appendix A, we have presented the expressions of tensor A,,, By, in the form of Afﬁ,) (n=

1,2,3,4) and B&T)(m =1,2,...,7), where A,(ﬁ) and B,(];Z) correspond to the components in
Lagrangian Lpy; and Lpya, respectively. From eq. (3.19) and eq. (3.20) we observe that
the first term ALIV) of A,, and B, tensor have no contributions to the PN expansions or
their contributions are higher than the required order. This implies that the perturbative
field equations are modified by the Cotton tensor and the rest terms of A,, tensor. The
more intuitive explanation for this is because we use the unitary gauge, when the indicators
of the scalar field and the Riemann tensor are contracted, a time derivative must appear in
the Riemann tensor. It can be seen from eq. (2.5) that the two scalars in the first formula
are mutually contracted with the two Riemann tensors, that is, there are two-order time
derivatives, and only one scalar and Riemann tensor are contracted to each other in the
last three formulas, which is naturally lower order than the previous formula. A similar
analysis is carried out for eq. (2.6), taking M; as an example, where the first derivative of
the scalars are contracted with the Riemann tensor and the Levi-Civita tensor respectively,
so that one of the two tensor indicators must be zero. At the same time, the Riemann tensor
and the Levi-Civita tensor are contracted with the second derivative of scalar ¢¢, which will
cause a connection I'Y, to appear or the Levi-Civitd tensor to zero. This combination of
connection I'7; and Riemann tensor is consistent with the lowest order of the first formula
in eq. (2.5). When the Levi-Civita tensor is zero, it is necessary to consider the higher-order
approximation in the PPN approximation, such as Mg, the Levi-Civita tensor is contracted
with two the first derivative of the scalars so that the Levi-Civita tensor is zero. In this way,
we infer that the lowest order of each term in eq. (2.6) is at least the same as or higher than
that of the first formula in eq. (2.5). This also intuitively explains that their final contribution
to the perturbative field equations in the standard first-order PPN approximation does not
exist. Therefore, the contribution of the perturbative field equations only comes from tensor
Cuv, A,(LQZ,), A,(f;, and Afﬁ,).
The stress-energy tensor T}, of matter field is given by

Tos = p (14 T+ 0> — hoo) + O(6),

TZT = pU;v; +p5¢j + 0(6). (3.21)

What we need for the subsequent calculations of the metric equation is the expansion of the
trace-reversed energy-momentum tensor, which is expressed as

1 1 3 1

1 1 1 1
S5 = 5p0ij + pvivs + 5 plldij + S phis — 5 pdij + O(6). (3.22)

We also know the tensor Tl‘fy of the scalar field by eq. (A.5), which is expanded in the form

Ty = 567 (1= 2h00) + (~1+hoo)V(6) + O(6),

1
Ty = —§¢/2h0i+v(¢)h0i+0(5),
1
T;? = 5(_51']‘_hij+h005ij+h00hz‘j+h00h005ij)¢/2+V(¢)5ij"‘V(d))hij +0(6), (3.23)



S0 we can obtain
Sio = V(¢) — hooV (¢) + O(6),
Sgi = —haiV () + O(5),
SE = —5,;V () — hijV(d) + O(4). (3.24)

Now, we have the expanded components of all tensors contained in the metric field equa-
tion (2.15). By substituting these expansions into the metric field equations, we can present
a similar expansion of the metric field equations, and decompose them into different velocity
orders. In the following section, we shall study these equations in detail in different orders.

4 Parametrized post-Newtonian solution

4.1 Zeroth order metric and scalar equations

To the zeroth-order, from metric field equation (2.15) we obtain

NV (¢) = 0,= V(¢) = 0. (4.1)

Combining the eq. (3.24), this solution indicates that each expanded component of the tensor
Sffl, does not contribute to the metric equation.

4.2  hgo and h;; to O(2)
At the second velocity order, we obtain the 00-metric equation
1o
—§V hoo = 47Gp, (4.2)
this is a Possion equation whose solution is
hoo = 2U + O(4). (4.3)
The ij-equations to same order is given by
—%v%ij — % FE N2 hyy e = AnGpdij, (4.4)
where
f=09+0 =19+ (-2az + a3 — 8as)¢” (4.5)

is only time-dependent. Note that, as mentioned above, the second tensor contribution on
the left hand comes from the tensor C,,, A,(f,,), Aff’y) and A,(fy). It is clear that eq. (4.5) just
contains the coupling parameters ¥, a9, as and a4, corresponding to the contributions of the
tensor C,,,, AEE,,), A,(E,,) and Affl,,), respectively. In order to solve the above equation, we can
do similar processing according to ref. [56]. We introduce a effective metric H;; to rewrite

eq. (4.4) as
V>*H;; = —81Gpdij, (4.6)
where H;; = h;; + f’eOkl(ihj)l,k. We can easily get the solution

Hij = 2U5ij + 0(4). (4.7)



With the form of effective metric, then we need to obtain the actual metric. Combining the
eq. (4.6) with eq. (4.7), we have the following differential equation

hij + flﬁOkl(ihj)l,k = 2U0;;. (4.8)

Obviously, the above equation has a solution whose zeroth-order term is that predicted by
GR and the PV term is a perturbative correction. So we make the ansatz

hij = 2U0i; + f'Gij, (4.9)
where we assume that ¢ ~ O(f")°. Substituting this ansatz to eq. (4.8) we get
Gij + f/GOkl(iCj)l,k = 0. (4.10)

Note that, the second term on the left-hand side generates a second-order correction. Ignoring
the second-order term, one can find that (;; vanishes to this order. Thus, the special metric
perturbation to O(2) is directly given by the GR prediction without any parity violation
correction, namely

hij = 2U6;; + O(4). (4.11)
4.3 hg; to O(3)
The 0Oi-equation to O(3) is given by

1 1 1
—§V2h0i - Zhoo,o,i 1 "MV hoy e = —87Gpu;. (4.12)

Using the above solution of hgy to O(2) and the effective metric we have
V23 Hoi + Uy, = 167G pv;, (4.13)

where the form of this effective metric is Ho; = ho; + % f! eomihOl,k. Comparing this equation
with standard GR field equation to O(3), the solution is given by

7 1
Hoi = —§VZ — §WZ (4.14)
Inserting this solution into the form of the effective metric, we have
1 7 1
hoi + = [/ ihor e = =5V — SW;. (4.15)
2 ’ 2 2
Likewise, the solution is consist of the GR prediction and perturbative correction, namely
7 1 ,
hoi = —5Vi— Wi+ G, (4.16)

where we assume that ¢ is of O(f")?. Eq. (4.15) reduces to
1, 17 1

where (V x (); = ekl,;gk. Note that, we may neglect the second term on the left-hand side,
which is also a second-order correction. Meanwhile, since the curl of the V; potential is equal
to the curl of the W; potential, we can obtain the actual perturbative metric

1
hoi = —;Vi Wit 2 (V x V)i +0O(5). (4.18)
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4.4 ho() to 0(4)
The fourth-order metric field equation reads
1 1 N 1 3 1
—§V2h00 — ihOO,ihOO’l + ih”hoo’i’j = &1 (2pH + p?)2 + 5]) — 2ph00> , (4.19)

where the 00-component of the field equation to O(4) is only GR prediction without any
other correction. The solution of this modified gravity is same to GR, which is given by

hoo = —2U2 4+ 4®| + 4Dy + 283 + 604 + O(6). (4.20)

Having obtain all the necessary perturbative solutions of the metric field equations as
given by eq. (4.3), eq. (4.11), eq. (4.18) and eq. (4.20), let us write the full metric of this
modified gravity:

goo = —1+2U — 2U% 4 491 + 4P, + 2&5 + 6&4 + O(6),
7 1
goi = —§W - §Wz +2f(V xV); + O(5),

where f =19 + (—2az + a3 — Say)¢.
We can read off the PPN parameters of this model by comparing eq. (3.15) to eq. (4.21),
the values of the PPN parameters are given as following

y=p8=1,
=== =0=0=0G=0u=_ =0,
k= 2f. (4.22)

It can be observed that all the 11 PPN parameters have the same values as GR. However,
eq. (4.21) contains an extra term £ X; = 2f'(V x V); that cannot be modeled by the standard
PPN metric of eq. (3.15), namely a curl-type term contribute to go;. Therefore, the parity-
violating terms of this ghost-free PV gravity only contribute to 0i-components of the PPN
metric in the PPN approximation. As expected, when a; = 0, this curl-type term reduces to
the same form as that in Chern-Simons gravity [56, 57].

5 Precession of orbiting gyroscopes

In previous discussions, we find that in comparison with GR, the modification of the ghost-free
PV gravity only affects the gravitomagnetic sector of the metric in the PPN approximation.
In GR, the gravitomagnetic sector of the spacetime arises from the rotation of the gravita-
tional object and results in a frame-dragging effect on the objects orbiting it. For example, for
gyroscope orbiting the Earth, the frame-dragging effects due to the rotation of the Earth can
produce an extra procession of the gyroscope spin axis. Obviously, the relevant experiment
of the frame-dragging effect by using gyroscopes in the near-earth artificial satellites can be
used to test or constrain the gravitomagnetic effects due to the parity violation in this kind of
gravitational theory. One of the important experiments for testing the frame-dragging effect
is performed by the GPB experiment [66]. The experiment designed four gyroscopes to be
mounted on the GPB satellite, which was in a polar orbit 640 km from the Earth’s surface
and had an orbital time period of 97.65 min. As the satellite orbits, the spin direction of the
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gyroscopes changes due to the geodesic and frame-dragging effect. Both effects have been
detected by measuring changes in the direction of the gyroscope’s spin axis, which are in
agreement with the predictions of GR. To achieve the constraint of the new correction from
parity violation with the measurement of frame-dragging effect by GPB, we investigate the
spin precession of a gyroscope loaded on the satellite which orbits a weakly-graviting and
slowly-rotating object.

Considering an orbiting, rotating, nearly spherical gravitational object in the standard
PPN point-particle approximation, and here we take the Earth as an example, the PPN
vector potentials can be written as [50]

. Mg, 1 /(Jg ¢
T _ W - _ v
Vi = . v@+2 <r3 ><$> , (5.1)

where Mg, vg, Jé are the mass, the orbital velocity, the spin-angular momentum of the
Earth respectively, ' and |2°| = r denote the satellite-Earth vector and distance. Using the
vector potential V;, we can calculate the specific expression of the metric correction term. In
order to facilitate understanding and distinction, we redefine the correction of the metric to
GR as 6g0; = goi — 95% = kX, and g§iF is the standard GR metric. Substituting the above
vector potential V; to the correction dgg;, we can obtain

| M, i
T@(U@Xn) -

JEZB § (JGB i TL) ni (5‘2)

0goi = 2 A6
Joi 2r2 2 2 ’

-
where n! = x'/r is a unit vector, the - and x operators are the flat-space inner and cross
products.

For a free gyroscope with a spin three-vector S in the presence of the gravitational field,
the precession of a spin three-vector S is expressed as

ds

— =Qx8, 5.3

g (5-3)
where Q = —%V X g is the precession rate and g = go;. Therefore, the precession rate caused

by the term of go; is given by © = QR 4+ Q. where QC® and §Q denote the contributions
in GR and the modification respectively. The expressions of two terms are given by

Q% = Ly - g, (5.4)

3
/
N = —%Vxég:fi\g@ [vg — 3 (vg - M) N, (5.5)

where dg = dgo;. Note that, this is a significant difference between GR and the ghost-free PV
gravity. GR’s prediction is associated with spin Jg of the Earth, which means that the term
goi; in GR contributes only the frame-dragging precession. While in the ghost-free PV gravity,
the term go; contributes both the frame-dragging precession and the geodetic precession. The
former is exactly same with that in GR, since the effects of spin Jg to the modification of
precession rate cancel each other out in eq. (5.5). The latter is the modification caused by PV
term in this theory, which is related to the mass Mg and orbital velocity vg of the Earth.
In the classical GR’s prediction [65], in order to maximize the geodesic precession, it is
necessary to select the spin S on the orbital plane. Meanwhile, in order to distinguish the
spin-spin precession and the spin-orbit precession, the optimal satellite orbit choice is a polar
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orbit (that is, the tilt angle of the satellite orbit is ¢« = mw/2), which is adopted in the GPB
experiment. Similar to previous work [65], we use a Cartesian coordinate system (e,, €4, €)
to describe the gyroscope’s orbital plane, where e, is the unit normal direction of the plane,
e, unit vector lies in the plane and points toward the ascending node, and e, unit vector
is in the same direction as the spin Jg of the Earth and orthogonal to the first two. The
direction of correction is determined by the spin three-vector S of gyroscope and the orbital
velocity vector vg of the Earth, so we need to define a parameter , which denotes the angle
between the polar orbital plane of the satellite and the direction of the Earth’s translational
(or orbital) speed vg. Meanwhile, since the Earth’s axial has an angle of inclination on the
ecliptic surface, there is an angle § = 66.5° between the spin Jg(e,) and velocity vectors vg
of the Earth. In this satellite orbital coordinate system, there are expressions for correction:
n = cosFe, + sinFey; vey = vg(sinf cosye, + cosfe, + sinfsinvye;), in which F = 2nt/P
is the satellite orbital phase, P = 2777“3/2(GM@)_1/2 is the orbital period. Substituting the
foregoing relations into the modification precession rate (5.5), we obtain

"M, 1
00 = figav@ — 5(sin«9 cosy + 3cos2F sin @ siny + sin 2F cos f)e,,
r
1 . s s
7§(COS 6 + 3sin 2F sin @ siny — 3 cos 2F cos f)e, + sin 0 sin vezl . (5.6)

Since this precession is very small, the initial value Sy of the gyroscope spin can be used
instead of S. We only focus on the cumulative effect, which is the non-oscillating terms in the
formula (5.6). Taking the average of the precession equation for a complete circular orbital
motion period, we can get

(59 L Movs

1 1
o 3 ——sin§ cosye, — 5 cos feq, + sinfsinye, | x So. (5.7)

2

Since the spin of the gyroscope lies in the orbital plane, we have
So = cos e, + sinpey, (5.8)

where 1) is the angle between S and the line of node. Combining the formulas (5.7) and (5.8),
we have

(p4) — Lo

1
—sin@sinysiniye,+sinfsin-ycos @Z}eq+§ (cosBcostp —sinfcosysiny)e,

dt r3
(), (2,
where
<5CZ§'>NS = f’]\ﬁ?v@ (—sin @ sinysin e, + sin §siny cos Ye,) , (5.10)
<6CZj>WE = ijg%(cosﬂcoszb —sinf cosysiny)e,. (5.11)

Eq. (5.10) and eq. (5.11) represent the corrections in the same direction as the geodetic effect
and the Lense-Thirring effect respectively, which are also known as the North-South(NS)
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and West-East (WE) direction in GPB experiment. Thus, we can obtain the rate of the
correction angular precession in two directions are given by

_ [ Mgvg

d
‘<5df> . - | sin 0 sin v/, (5.12)
ds "M,
’<5dt> = fQ%%]cochosw—sianinzﬁcos*y\. (5.13)
WE

From the above two results, we can see that except for the parameter vy which is not de-
termined, the other parameters are all known constants. In order to analyze a more specif-
ically, we decompose the vector vg into vector vy = vg sinf(cosye, + sinye,) and vector
vg = vg cosfe,. The vector vg is a constant vector with a fixed direction. The magnitude
and direction of vector vy change with the movement of the Earth, resulting in a cyclical
change in the angle v that the period is the period of the Earth’s orbit. We define §v as the
change of the angle v with the movement of the Earth, that is, v = 79 + 07, 0y = 2nt/T
and T =1 yr. We have v = 2nP/T ~ 0.068° in a complete circular satellite orbital motion
period of the GPB experiment, which is a negligible variation in eq. (5.12) and eq. (5.13).
However, the GPB experimental results are given in terms of mas/yr. We need to integrate
eq. (5.12) and eq. (5.13) over a year and then average. This time interval is exactly the change
period of the parameter v, and the items including siny and cos~y are both zero. Therefore,
in the case of complete Earth’s orbital cycle, the terms containing  are oscillating terms,
whose contributions can be ignored in eq. (5.12) and eq. (5.13). Thus, within a complete
Earth’s orbital cycle, the rate of the correction angular precession in only one direction is
given by

dS f/M@U@
— =— . 14
’<5 g >‘WE 5,3 cos ) cos ¢ (5.14)

GPB experiment has successfully tested the rate of the angular precession of GR’s
prediction and the GPB team announced the observation results that the geodetic drift rate
is —6601.8 £+ 18.3 mas/yr and the frame-dragging drift rate is —37.2 & 7.2 mas/yr [66]. The
GPB gyroscope is at a radius of  ~ 7000 km, 1) = 16.8° [50]. Therefore, combined with the
experimental parameters and results, we can estimate the bound of parameter in orders of
magnitude. The corresponding constraint is given as

d
‘<5S>’ <72mas/yr = f <101 m, (5.15)
dt / |we

and its associated energy scale of parity violation in gravity is Mpy := 1/f" > 107 1eV.
Note that, by GPB observations, the constraint on non-dynamical CS modified gravity is
Mcs = 1/9" > 10713eV [44, 56, 57], which differs by two order of magnitude than our
result. This difference is caused by the different accuracy' and the inappropriate rough
approximation? in calculations [56, 57]. However, in ref. [44], this is because the authors only
consider stationary, spinning source, that is, do not consider the Earth’s translational (or
orbital) velocity. The exact solution of the field equation is given precisely, and it is shown
that the boundary terms of the spin-related oscillation will also modify the precession. These

LAt that time, the results of the GPB have yet been announced.
2The authors assumed the Newtonian limit O(Jg) ~ O(Mguvger) in previous works. However, the fact is
O(M@'U@T‘/J@) ~ 102
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boundary terms correspond to the higher-order terms of the parameter f’, which shows that
they are consistent with the assumption we used when solving the field equation eq. (4.15). A
more detailed description of this difference is discussed in next section. Taking into account
these factors, we find the constraint of the ghost-free PV gravity we obtain is consistent with
those in previous works.

6 Conclusions and discussions

In these discussions, we are mainly to explain that the final precession effect has nothing to
do with spin in the ghost-free parity-violating gravity we studied, but in ref. [44] the main
correction is spin-related. There are two main reasons for the difference. On the one hand,
it is only considering the static and rotating source, ignoring the influence of the source’s
translation (or orbital motion). There are no translational velocity-related terms in the
solution of the corresponding equation. On the other hand, it is considered that the vector
potential is continuous inside and outside the source, so the boundary terms are necessary for
these two solutions as eq. (B12) in ref. [44]. Even though these reasons have been explained
in this reference, we repeat them here to analyze the problem of parameter constraint range.

In ref. [44], the gravito-electro-magnetic analogy is used to study the problem of the
static rotation source. In the Lorenz gauge, the usual gravitomagnetic vector potential is
defined, which is related to the metric. At this time, the modified field equation is equiv-
alent to Ampere’s law for Chern-Simons gravity. The gravitomagnetic vector potential is
given as eq. (B12) in ref. [44]. Compared with refs. [56, 57], this gravitomagnetic vector
potential does not contain the terms of translational velocity, but it contains some oscillating
boundary terms.

The modified field equation of the ghost-free PV gravity is consistent with CS gravity,
so the difference stems from the solution of eq. (4.15). We have solved the equation according
to the method of refs. [56, 57], assuming that the high-order terms related to the parameter
f' of the solution are ignored. At the same time, we consider a source of rotation with
translational (orbital) velocity. Through analysis, we find that the boundary terms of the
gravitomagnetic vector potential in ref. [44] are higher-order terms about the parameters f’,
which shows that the assumption we used is self-consistent.

However, we can get a new gravitomagnetic vector potential by combining the terms
of translational velocity with the gravitomagnetic vector potential, and find that the new
gravitomagnetic vector potential is still a solution of the equation. Although this solution is
still not a complete solution, we can roughly analyze the influence of the oscillating boundary
terms and the motion velocity terms on the precession effect at the same time.

According to the method of ref. [44], relative to the general relativity result, we find

bpy/Dar =5/"ve cos8/ (AR we) +15(r% /R j2(2R/ [) [y1(2r/ ')+ (2r/ [)yo(2r/ )] (6.1)

where R represents the precession rate predicted by GR, and ®py represents the modified
precession rate generated by the PV terms. In figure 1, we plot eq. (6.1) for a GPB detection
of the gravitomagnetic precession to within 19% of its value in general relativity. From this
figure, we can get a constraint: f’ < 10*m, which shows that it is in the same order of
magnitude as the result that we do not consider the boundary terms.

In this paper, we investigate the slow-motion and weak-field approximation of the gen-
eral ghost-free PV theory of gravity in the PPN framework. We derive the perturbative
field equations, which use the PPN approximation to expand all tensors in the modified field
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Figure 1. The oscillating blue solid line represents the change of the ratio ®py /CbGR with the
parameter f’. A 19% verification of general relativity (the red dotted line) leads to a limit on the
parameter f’ < 10* m in GPB.

equations to the second order. By solving the perturbative field equations, we obtain the
complete PPN metric and PPN parameters of this theory. Similar to the CS modified grav-
ity, we find that the ghost-free PV theory of gravity produces a new curl-type term to the
gravitomagnetic sector of the metric. This extra term is the same as in CS gravity except for
the coupling parameters. We calculate the modification of the frame-dragging effect, which
is caused by the extra term, to the precession of gyroscopes. We find that this modification
contributes in only one direction of the geodetic precession within a complete Earth’s orbital
cycle, which exactly corresponds to the changes of GR’s frame-dragging precession. Using
the precision of precession effects from the GPB experiment, we obtain the constraints of the
coupling parameters.

At the end of this paper, we should mention that in addition to the modification on
precession effects of gyroscopes, the PV terms in this theory also lead to the modification
on the orbital procession of the point particle orbiting a rotating gravitational field [67].
Therefore, the measurement of LAGEOS satellites can also follow a constraint on the model
parameters. Since this potential constraint is much weaker than that derived from GPB
experiment [44], we do not consider this effect in this article. Another interesting testbed
for this theory is the binary pulsar systems, the PV terms might induce several effects,
including the modification on the rate of periastron precession, the modification on the
Schiff procession and/or the frame-dragging procession, as well as the modification on Lense-
Thirring procession. We leave the detailed study on this topic as future work.

A The expressions of A,,, B, and F,

In this appendix, we list the explicit expression of A, By, and F 4 in egs. (2.8) and (2.12).
The expression of A, in eq. (2.8) contains four terms,

Ay =Y AW (A1)

where
Af}u) = 557&5RaﬂpawapAd)ng)\al,Xﬁb(yﬁbu) - aleAryaﬁﬁbaﬁb(,uRopaﬁRpu))q
+2677%(,V, Vo (016,00 ) Rog™ + 2677,V (016,02 ) VR
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+2e79% YV Vo (a16236°) R 1yop + 25050‘( o (a1636°) VR )0,
AQ) = =B ay x ¢ (100 Sr Ok R pap R oir g™ — e3P de(,a2 R pap R 0
+267P% MV Vo (050xa2R? 1)) + €7V oV o (0rB (02 R7 yas)
—2(." 79" Vo VA(dpPrasR yyap);
AD) = a3 x" ™ Ragpo R +0° b5 By
+a367 P §,00 R’ (uas Ry — €7,V o V4 (ag%)(ppfa”ﬁ)
R GAVAA (a3¢(y¢aRu)p) +e7P,V Y, (a3¢p¢0R#) B)

1 1
—§€A(yaﬁvovu) (a30,02R"7 o5) — 2 e PV\V(, (a3¢p¢a )ap )

1 (&% TAQ ol
+*5U( ﬂv/\v)\ (a3¢p¢aRpH)ag> + 56 A EVUV,\ (aggbquTRp agg(,j“)) s

A;(;lu) = a4, X" Rpoap R 5: 0™ pr0 (vPp) + A10(uP0)E 0 Rpnas B ax
H4e%7 (,V oV 5 (1920 ) RP 1) oy — 87,V o (asrd™) V , Ry, (A-2)

The expression of By, in eq. (2.8) contains seven terms,

where

BY) = e™Pby x ¢, Rappe®” dr 63 + €701 R (apdpdad
—e9% (Vo Va (b1 6,85) + €77,V Va (018700 0,8) — €77 V5V a (D160 G0 br)p)

—% [ (Vo (01 R a5 0281 bt €7 VA (b1 B (g b)) o= T VA (D1 R ) apbpds )]
Bl(fy) = 5"’\a’8b2,x¢(y¢#)Ra5W¢ﬁ¢§ —|—€‘7m’6b2R”(m5¢pg¢#)K

_25/)5@(11v Va (b2¢u)p¢g) _Eamﬁvﬂv (b2¢ voPu) )

+2P (V) (2R apbordny) + 7PV, (2R (apbordn)) + 7 . Vr (b2R% ) apdopd’)
BE) = "%y x ¢ (b1 Rappo®” 90030 + €7 Pbs R (L0 pdu) Spedrox + P b3 R 05050y d(rb0)

—£P7%(, Vo Va (0367 00330 —€77 "V 5V (0304 00)0 0y 83 )77,V p Vo (b3 S5 9B bA)
D3R 0500 Prn® b)) + 7PV, (D3R (% apdodrnd’ b1))]

o
[ " a,@’v)\ (b3Rp aﬂ¢a¢pﬁ¢ QJ)/J ) + EAHQBVN (bBRpoaﬁ¢o¢pA¢(u¢u))]
(

+5 (e, PV . (03R0)7 apBodrp®*d™) + €, Vi (3R apdodprdyd™)]
B = m%X¢<,L¢u)Ragpgw”¢>A¢>A+sm5b4RP<mgasmpm,t)m%w’fw 2 BPADpy Do (D)

7[epﬁo‘yvc,va(b4¢5¢u>p¢A¢A)+€” VN o (048pdwodur®”) ="V, Va (b4¢/3¢§¢ﬂ)*¢A)}

1
_5 [5(Hﬁa5vp (b4Rpgaﬁ¢ﬁ¢a)\¢)\¢u)) + gpmxﬁvp (b4R(MUa5¢H¢U)\¢)\¢V)):|

1
—3 [0V, (D4R pdrdped(vBpy) + €7 PV (b4R? (apPrdpod  du)) ]

1
+§ [E(Hpaﬂvm (b4Ru)0a,8¢p¢0/\¢)\¢K) + EUAQ,BVH (b4Rp(uaﬂ¢/\¢pa¢u)¢ﬁ)] )
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B = "7Pbs x ¢(u 1) Rapord” 950703 — 26705 R o (,a0p 030, 05
+e V0V (bsdudady dua) + 7" VaVo (bsd) 030507)
e PV Vo (050 d5d%bun) + £ PV o (b5 R0 P pdpdrnty))
+e7 IV (b5 R 0 GpBp0an ) = a7 Vs (057 au) 05020 8")
BE) = & Pbs xb(udi) Ry Ga®id dx + €77 b6 Ry(udabr) Dy dr + P bs Ry $adlbotu b

1 1 o
_§€Tvaﬁv[3v(;¢ (bﬁg)\pgﬁ(xqsu)‘rqsp'y(bk) - iéﬁ‘ra(uv'yvl/) (bﬁg’y gAp¢a¢a/3¢pr¢>\)

1 KT 1 TK (oa

+§€’B’m(uvan (b69/\p¢a¢u)ﬁ¢pv¢>\g ) + 55 anBV’Y (bﬁg’y gAp¢a¢ar¢pm¢)\g(uu))
1 1

+§eﬂm<,‘vy>vv (56977 9™ Padosdprdr) — igam Vi) Ve (66977 9™ badopdpndr)

1 1 o -
*fﬁmﬁvg (b6 R3(0 a9 bopdrdy)) — 55(;»5 OV o (b6 Ry 00 g g™ bepdrdr))
1 T 1 (6% g
+§€(Hmﬁvg (b6R£V)¢agAp¢ap¢A¢Tg 5) - §€£p va (bGR,B'y(éocg’Y ¢§U¢(u¢,u))

1 « g 1 « a T
~55 0™V (06R5+009" 9 beodrd1) + 57" Ve (b6 Ro1 00y Bpo by 6r7)

B;(Z/) = ET’YQBb?,X¢(#¢u)Rpaaﬁ¢ﬂ¢r¢nvgaﬂgké¢)\5 - Eéﬁa(VvUvO‘ (b7¢“)¢§¢nﬂgoﬁg>\6¢)\6)
—e7 0V Vo (b Godpeg™ $rs) +77%( VeVa (brdpdoduysg™ basg™)
+€Jnaﬂb7RP(Naﬁqqusaqsu)ng)\sqsx\ﬁ + EATaﬁb7RP00¢/3¢P¢>\¢N7gGK¢(MV)

1 1 éa
_igg(uaﬁvn (b7Rpaa6¢p¢£gUmg)\5¢A5¢/L)) - 55 ¢ ng (b7Rp(/LaB¢p¢ng/\6¢)\5¢u))
1 1 « oK
+58" 0™ Ve (7R 1)apdpdng™ 0r50297¢) = 56V (b1 R asdpdednsg”™ 8p)

1 K
igkéaﬁvﬁ (b7RPUQB¢p¢/\¢H6gU g(uu)¢v97£) . (A4)

The energy-momentum tensor of scalar field ¢ in eq. (2.8) is given by

1
—iekfaﬂv(” (07 R 50pPpdrdreg”" duy)+

1
Ty = 598" 0,605 + gV (6) — 0u6 0y (A.5)

The expression of F 4 in eq. (2.12) is given by

4 4
Fo=Y Fu,+ > Fy, (A.6)
A=1 B=1
where F,, and Fy, are

Fay = 166" Rog” Ry 66 — 267V, (a1, x Ragp” Ra 06620

—0 (a1 Ragy” R 62 ) = PV (a1 Ragp” Ry 61 )
Fe, = a2,¢gﬂyaﬁRaﬂpaRuApU¢a¢)\ - 2€pyaﬁv’y (a2,XRa6poRuApU¢V¢A¢’Y)

_Elwaﬁvu <a2Ro¢,3paR,u)\pU¢/\) - e;waﬂv/\ <a2Ro¢,3paR,u)\pU¢u) )

Fa3 = a3,¢fuyaﬁRa,ﬁpo‘Rau¢P¢M - 2€uvo¢,8vw (a3,XRa5pURUV¢p¢”¢’y)
_5/waﬂVp (G3Ra,3pchay¢,u) - Euuaﬁvu (a3Ra,3p0RUV¢P) )

Fa4 = a4,¢>€lwaﬂRpoaﬁRaﬁuu¢)\¢)\ - 2€yyaﬁv’y (a4,XRpUaBRaBuV¢)\¢)\¢’Y)
_25“Vaﬁv)\ (Q4RpaaBRaﬁ/u/¢)\) >
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Fb1 = bl,(bguyaﬁRaﬁpoqsp(buﬁbau - ijaﬁv)\ <2b1,XRa6pU¢/\¢p¢u¢au>

_EMVanp (blRaﬁpU¢u¢au) - 5MVOCBVH, (blRaﬁp0¢p¢UU)
+e"PV, Vo (b1 Rap™ Gpbp)

Ry, = b27¢€m/aﬂRa5/"’¢W¢au - e“mﬁvy (2b2, x Rag™ &7 ¢ puov)
+6pyaﬂvuvp (bQRaﬂpo¢ay) + 5'“‘VO‘BVVVU (b2Raﬁpo¢pu) ,

Fyy = b398 R poGo bppdrn®” — 267V, (b3a¢Ra5W¢7¢“¢f’“¢A”¢A)
—ehvaby (b3Ra5PU¢PM¢)\V¢)\> — el (b3 Rappo boPoudav)
+evoby v, (b3Raﬁpa¢O’¢)\¢)\l/) +eMIV, V) (b3RaﬁPU¢“¢A¢P"> ’
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B The propagation equation of gravitational wave in ghost-free
parity-violating gravities

In section 2, we obtain the metric field equation of motion and the scalar field equation of
motion from the variation of action with respect to the metric field and the scalar field.
In order to cross-check of these results, in this appendix, we expand the field equation in
weak fields and derive the propagation equation of gravitational waves in the Friedmann-
Robertson-Walker universe. Note that, in the previous works [43, 59], we first carried out
the cosmological perturbation expansion of the action about the spatial metric, and then
obtained the propagation equation of gravitational wave by the variation of the action to the
spatial perturbation metric h;;. The comparison of these two results is helpful to validate
the metric field equation of motion derived in this article.

Let us consider the spatial metric in the flat Friedmann-Robertson-Walker universe,
which is written as

9ij = a*(3ij + hij), (B.1)
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where a is the scale factor of the universe. We substitute this expansion of metric into all
tensors in appendix A, and obtain
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Substituting these expressions into field equation in eq. (2.15), we can obtain the field equa-
tion for h;; as [59)],

ilk
hi; + 2Hhi; — hi; + a;\fpva {Cﬂljk + (Her + )by — c20 hjk} = 0. (B-3)

We find this equation is exactly same with eq. (3.9) in [59] and eq. (3.13) in [43], which
indicates that the field equation in eq. (2.15) derived in this article is consistent with the
previous works.

C PPN potentials

In this appendix, we present the explicit expressions for the PPN potentials used to param-
eterize the metric in eqs. (3.6)—(3.9). These potentials are given as follows [50]:

!/
U= / PO o (C.1)
|x — x|
X' t)(x—2) (xr—2'),

B, = p(x',1)( )i ( )]d%’, (C.2)

! Ix —x/|*
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|x — x|
X = —/p(x’,t) x —x'| . (C.12)
These potentials satisfy the following relations [50],
O*U = —4nGp, (C.13)
Vi = —2U, (C.14)
X, 05 = V] — Wj, (C15)
9*V; = —4nGpv;, (C.16)
Vig = ~Us (€17)
0?0 = —4nGpv?, (C.18)
0?0y = —AnGpU = Ud*U (C.19)
0?03 = —4nGpll, (C.20)
0*®, = —4nGp, (C.21)
2x,4iUs5 = 0 (Dw +2U% = 30,) (C.22)
X,00 = A+ B — Py. <023)
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