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As an extension of our previous work [J. Qiao et al., arXiv:1909.03815.], in this article, we calculate the
effects of parity violation on gravitational-wave (GW) waveforms during their propagation in the most
general parity-violating gravities, including Chern-Simons modified gravity, ghost-free scalar-tensor
gravity, the symmetric teleparallel equivalence of General Relativity theory, Hořava-Lifshitz gravity, and
so on. For this purpose, we consider the GWs generated by the coalescence of compact binaries and
concentrate on the imprints of the parity violation in the propagation of GWs. With a unified description of
GW in the theories of parity-violating gravity, we study the effects of velocity and amplitude birefringence
on the GW waveforms. Decomposing the GWs into the circular polarization modes, the two birefringence
effects exactly correspond to the modifications in phase and amplitude of GWwaveforms, respectively. We
find that, for each circular polarization mode, the amplitude, phase, and velocity of GW can be modified by
both the parity-violating terms and parity-conserving terms in gravity. Therefore, in order to test the parity
symmetry in gravity, we should compare the difference between two circular polarization modes, rather
than measure an individual mode. Combining two circular modes, we obtain the GW waveforms in the
Fourier domain and obtain the deviations from those in General Relativity. The GW waveforms derived in
this paper are also applicable to the theories of parity-conserving gravity, which have the modified
dispersion relations (e.g., massive gravity, double special relativity theory, extra-dimensional theories, etc.)
or/and have the modified friction terms (e.g., nonlocal gravity, gravitational theory with time-dependent
Planck mass, etc.).

DOI: 10.1103/PhysRevD.101.024002

I. INTRODUCTION

Gravitational waves (GWs) are always produced in the
circumstances with extreme conditions (e.g., the strongest
gravitational field, the densest celestial bodies, the earliest
stage of the Universe, the highest energy scale physics,
etc.) and have the weak interactions with other matters
during the propagation [1–3]. Therefore, the GWs encode
the cleanest information for these extreme conditions and
provide the excellent opportunity to study the physics in
these extreme circumstances. As an example of the appli-
cations, GWs can be used to test the theory of gravity [4,5],
which has become an important topic in the era of GW
astronomy [6–13]. Although Einstein’s General Relativity
(GR) has been considered to be the most successful theory

of gravity since it was proposed, it faces the difficulties in
both theoretically (e.g., singularity, quantization, etc.) and
observationally (e.g., dark matter, dark energy, etc.).
Therefore, testing GR in various circumstances has been
an important topic since its birth [14–19].
As is well known, symmetry permeates nature and is

fundamental to all laws of physics. Thus, one important
method for the gravity examination is to test the symmetries
in gravity. In our series of works, we focus on the testing of
parity symmetry in gravity. Parity symmetry implies that a
directional flipping to the left and right does not change the
laws of physics. It is well known that nature is parity
violating. Since the first discovery of parity violation in
weak interactions [20], the experimental tests have become
more necessary in the other interactions, including gravity.
Although the parity symmetry is maintained in GR, the
gravitational terms with parity violation are always moti-
vated by anomaly cancelation in particle physics and string
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theory [21,22], and various parity-violating (PV) theories
of gravity have been proposed in the literature, including
the Chern-Simons modified gravity [23–27], ghost-free
scalar-tensor gravity [28–30], the symmetric teleparallel
equivalence of GR theory [31], Hořava-Lifshitz gravity
[32–38], and so on. As an extension of our previous work
[39], in this article, we will calculate the waveform of GWs,
produced by the coalescence of compact binaries, in the
general framework of PV gravities.
The effect of parity violation on GW is the birefringence

phenomenon during its propagation; i.e., the symmetry
between the left-hand and right-hand circular polarization
modes is broken [21,29,39,40]. For instance, the primordial
GWs generated in the PV gravities are circularly polarized,
which leaves the significant imprints in the temperature and
polarization anisotropies of cosmic microwave background
radiation [33,36,37,41–43]. However, it seems there is no
hope of detecting these imprints in the near future [44], due to
the small amplitude of primordial GWs. As one in our series
of works, in this article, we will study the imprints of parity
violation in gravity on the waveforms of GW, produced by
the coalescence of compact binaries. Decomposing the GWs
into the circular polarization modes, we find their propaga-
tion equations are decoupled, and the deviations from those
in GR, caused by the PV terms, are quantified by two
parametrized terms νA and μA, which exactly correspond to
the effects of velocity and amplitude birefringence, respec-
tively. As an application of these results, we focus on four
specific theories of PV gravity (Chern-Simons gravity,
ghost-free scalar-tensor gravity, the symmetric teleparallel
equivalence of GR theory, and Hořava-Lifshitz gravity) and
obtain the explicit expressions of these two terms for each
theory. Converting the circular polarization modes to the
general plus and cross modes, for the general theories of PV
gravity, we obtain the GWwaveforms in the Fourier domain.
Because of the mixture of plus and cross modes during their
propagation, we find both velocity and amplitude birefrin-
gence effects can contribute the modifications in GW phase
and amplitude, and the deviations of GW waveforms from
those in GR are also derived.
This paper is organized as follows. In Sec. II, in the

effective field theory of gravity, we study the field equation
of GW in the general theories of PV gravity. In Sec. III, we
focus on the specific models of PV gravity and obtain the
expression of corresponding quantities, which violate the
parity symmetry. In Sec. IV, we discuss the amplitude
and velocity birefringence effects of GWs. In Sec. V, we
calculate the waveform of GWs produced by the coales-
cence of compact binary systems and particularly focus on
the deviations from those in GR. The summary of this work
is given in Sec. VI.
Throughout this paper, the metric convention is chosen

as ð−;þ;þ;þÞ, and greek indices ðμ; ν;…Þ run over 0, 1,
2, 3 and latin indices ði; j; kÞ run over 1, 2, 3. We set the
units to c ¼ ℏ ¼ 1.

II. GRAVITATIONAL WAVES IN THE GENERAL
PARITY-VIOLATING GRAVITIES

We consider the general theories of gravity with parity
violation, the action of which can be written as

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½LGR þ LPV þ Lother�; ð2:1Þ

where LGR is the Einstein-Hilbert term R or its equivalent
quantity in the non-Riemannian formulation of gravity
[31]. LPV represents the PV Lagrangian density, which
always consists of a number of terms in the specific models.
Lother is the Lagrangian density for the other matters, the
scalar field, and the modification terms of gravity, which
are not relevant to parity violation.
In the flat Friedmann-Robertson-Walker (FRW) uni-

verse, a GW is the tensor perturbation of the metric, i.e.,

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ hijÞdxidxj�; ð2:2Þ

where aðτÞ is the conformal scale factor, and we set its
present value as a0 ¼ 1 in this paper. τ is the conformal
time, which relates to the cosmic time by dt ¼ adτ. xi is the
comoving coordinates. The quantity hij stands for the GW
perturbation, which we take to be transverse and traceless
gauge, δijhij ¼ 0 and ∂ihij ¼ 0.
The equation of motion of GW is determined by the

tensor quadratic action, which reads [45–47]

Sð2Þ ¼ 1

16πG

Z
dtd3xa3½Lð2Þ

GR þ Lð2Þ
PV þ Lð2Þ

other�; ð2:3Þ

where

Lð2Þ
GR ¼ 1

4
½ _h2ij − a−2ð∂khijÞ2� ð2:4Þ

is the standard Lagrangian obtained from the Einstein-
Hilbert term R. In this article, a dot denotes the derivative
with respect to the cosmic time t. In the viewpoint of
effective fields [48], the operators _h2ij and ð∂khijÞ2 are the
only quadratic operators with two derivatives. Note that, in
principle, this Lagrangian can be generalized by adding a
time-dependent coefficient in each term, which might be
caused by the Horndeski or Galileon scalar field, through
the perturbation of extrinsic curvature of the spatial slices
[49]. Similar terms also appear in the nonlocal gravity [50],
Hořava-Lifsthitz gravity [36], and so on. Therefore, in this
paper, we consider the extended version of the above
Lagrangian, which takes the form

Lð2Þ
eGR ¼ 1

4
½b1ðtÞ _h2ij − b2ðtÞa−2ð∂khijÞ2�; ð2:5Þ
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where b1 and b2 are the arbitrary functions of time.
To avoid ghost instability, one has to require b1ðtÞ > 0.
The propagation effects of GWs, due to these modifica-
tions, have been analyzed explicitly in the previous
works [51,52].
The first possible corrections to the tensor mode men-

tioned above come from terms with three derivatives. There
are only two possible terms [48],

ϵijk _hil∂j
_hkl; ϵijk∂2hil∂jhkl; ð2:6Þ

where ϵijk is the antisymmetric symbol. So, the standard
quadratic action is modified by the addition of [48]

Lð2Þ
PV ¼ 1

4

�
c1

aMPV
ϵijk _hil∂j

_hkl þ
c2

a3MPV
ϵijk∂2hil∂jhkl

�
;

ð2:7Þ

where a dot denotes the derivative with respect to the
cosmic time t, c1 and c2 are dimensionless coefficients, and
MPV is the scale that suppresses these higher-dimension
operators. Normally, MPV can be constrained by the solar
system experiments and various astrophysical observations.
Since most of the experimental and astrophysical con-
straints are considered in the Chern-Simons (CS) modified
gravity, here we consider constraints in this theory as
examples to discuss the possible order of the magnitude of
MPV. In the solar system experiment, the frame-dragging
measurement with LAGEOS places the bound M−1

PV ≲
2000 km [53]. For astrophysical test, the binary pulsar
observations yield M−1

PV ≲ 0.4 km [54]. The possible
bounds on MPV have also been explored with the detection
of the GWs, and as pointed out in Refs. [27,40], the
observation of the GWs from the compact binaries is
expected to provide a stronger bound on MPV. In this
paper, we assume the homogeneous and isotropic back-
ground of the Universe and take c1 and c2 to be functions
of time.
The equation of motion for GWs can be derived by

varying the quadratic action with respect to hij. We
consider the GWs propagating in the vacuum, and the
field equation for hij is given by

b1h00ij þ ð2Hb1 þ b01Þh0ij − b2∂2hij

þ ϵilk

aMPV
∂l½c1h00jk þ ðHc1 þ c01Þh0jk − c2∂2hjk� ¼ 0;

ð2:8Þ

where a prime denotes the derivative with respect to the
conformal time τ and H≡ a0=a. When b1 ¼ 1 ¼ b2, the
above equation reduces to the same form as Eq. (3.9) in
Ref. [39] in the ghost-free parity-violating gravities. This is
easy to understand because the GR is only modified by the

parity-violating terms in the action of the ghost-free parity-
violating gravities, and c1 and c2 represent their effects on
the propagation equation of GWs [39]. However, in the
general case, as one can see from (2.1), the action of the
theory can also contain other matter terms or modifications
of gravity, which are labeled by Lother in (2.1) and are not
relevant to parity violation. Lother can also modify the
propagation equation of GWs, and their effects are directly
characterized by the parameters b1 and b2 in (2.8).
In the PV gravities, it is convenient to decompose the

GWs into the circular polarization modes. To study the
evolution of hij, we expand it over spatial Fourier har-
monics,

hijðτ; xiÞ ¼
X
A¼R;L

Z
d3k
ð2πÞ3 hAðτ; k

iÞeikixieAijðkiÞ; ð2:9Þ

where eAij denotes the circular polarization tensors and
satisfies the relation ϵijknjeAkl ¼ iρAeiAl , with ρR ¼ 1 and
ρL ¼ −1. So, the equation of motion in Eq. (2.8) can be
written as [29,39,40]

h00A þ
�
2þ b01=Hþ ρAðk=aMPVÞðc1 − c01=HÞ

b1 − ρAðk=aMPVÞc1

�
Hh0A

þ
�
1þ b2 − b1 þ ρAðk=aMPVÞðc1 − c2Þ

b1 − ρAðk=aMPVÞc1

�
k2hA ¼ 0:

ð2:10Þ

We expect the deviations from GR are small such that the
terms with Oðb01Þ, Oðc1Þ, Oðc01Þ, Oðc2Þ, Oðb2 − b1Þ ≪ 1.
With this consideration, the above equation can be further
simplified into the form

h00Aþð2þ ν̄þνAÞHh0Aþð1þ μ̄þμAÞk2hA¼0; ð2:11Þ

where A ¼ R or L, standing for the right-hand or left-hand
polarization mode, respectively, and

Hν̄ ¼ ðln b1Þ0; μ̄ ¼ b2=b1 − 1;

HνA ¼ −½ρAðk=aMPVÞðc1=b1Þ�0;
μA ¼ ρAðk=aMPVÞðc1 − c2Þ=b1: ð2:12Þ

The new effects arising from the generic PV gravities are
fully characterized by four parameters: ν̄, μ̄, νA, and μA.
While the parameters νA and μA label the effects of the
parity violation, the parameters ν̄ and μ̄ arise from the other
possible modifications which are not relevant to parity
violation. In these four parameters, μ̄ and μA determine the
speed of the gravitational waves, and ν̄ and νA provide an
amplitude modulation to the gravitational waveform.
Specific to parity violation, the parameter μA leads to
different velocities of left-hand and right-hand circular
polarizations of GWs; therefore, the arrival times of the two
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circular polarization modes could be different. For param-
eter νA, it is easy to see that it has the same value but
opposite signs for the left-hand and right-hand GWs. As a
result, the amplitude of left-hand circular polarization of
gravitational waves will increase (or decrease) during the
propagation, while the amplitude for the right-hand modes
will decrease (or increase).
As an extension of the above theory, we can generalize

the expressions of ν̄, μ̄, νA, and μA as the parametrized
forms

Hν̄¼ ½αν̄ðτÞðk=aMPVÞβν̄ �0; μ̄¼ αμ̄ðτÞðk=aMPVÞβμ̄ ;
HνA ¼ ½ρAανðτÞðk=aMPVÞβν �0; μA ¼ ρAαμðτÞðk=aMPVÞβμ ;

ð2:13Þ

where βν̄ and βμ̄ are the arbitrary numbers and βν and βμ are
the arbitrary odd numbers. αν̄, αμ̄, αν, and αμ are the
arbitrary functions of time. The formula in Eq. (2.11) with
coefficients in Eq. (2.13) is the unifying description for
the low-energy effective description of generic PV GWs.
To our knowledge, all the known theories of PV gravity in
the literature, even if including higher order derivative
terms, can be casted into this form, which will be presented
explicitly in Sec. III. Here, we should stress that, even for
the theories of gravity with parity symmetry, the equation
of motion of GWs is also described by this formula in
(2.11). For instance, in the specific case with the only
nonzero quantity μ̄ and βμ̄ ¼ −2, this formula becomes the
motion of equation of GW in the massive gravity [55].

III. SPECIFIC MODELS OF ALTERNATIVE
GRAVITIES

A. Chern-Simons modified gravity

We first consider the CS modified gravity, which has
been widely studied in the previous works [23–27].
CS modified gravity is an effective extension of GR that
captures leading-order, gravitational PV term. The similar
versions of this theory were suggested in the context of

string theory [22] and three-dimensional topological mas-
sive gravity [56]. In this theory, the action in gravity is
given by Eq. (2.1), and the PV term is

LPV ¼ 1

8
ϑðϕÞεμνρσRρσαβR

αβ
μν ; ð3:1Þ

with ερσαβ being the Levi-Civita tensor defined in terms of
the antisymmetric symbol ϵρσαβ as ερσαβ ¼ ϵρσαβ=

ffiffiffiffiffiffi−gp
. The

quantity ϑ is the so-called CS coupling field. If ϑ ¼ const.,
CS modified gravity reduces to identically to GR, since the
Pontryagin term in Eq. (3.1) can be expressed as the
divergence of the CS topological current [21]. Therefore,
in the dynamical CS gravity, ϑ is an arbitrary function of the
scalar field ϕ, which is a function of spacetime. Similar to
the previous works [24–27], in the FRW universe, we
assume that the scalar field ϕ is a function of conformal
time τ only to ensure that the background symmetry is
preserved. The equation of motion of GW is determined by
the tensor quadratic action, which in the CS modified
gravity is given by Eq. (2.7) in which the coefficients are
c1 ¼ c2 ¼ _ϑMPV. Therefore, the propagation equation of
GW becomes that in (2.11) with

Hν̄ ¼ 0; μ̄ ¼ 0; HνA ¼ −½ρAc1ðk=aMPVÞ�0; μA ¼ 0:

ð3:2Þ

The corresponding values of the parameters (αν̄, βν̄, αμ̄, βμ̄,
αν, βν, αμ, βμ) defined in Eq. (2.13) are listed in Table I.
Note that CS modified theory has higher-derivative field
equations, which induces the dangerous Ostrogradsky
ghosts [21]. For this reason, this theory can only be treated
as a low-energy truncation of a fundamental theory.

B. Ghost-free scalar-tensor gravities

To avoid the Ostrogradsky ghost in the framework of
scalar-tensor gravity with parity violation, in Ref. [28], the
authors proposed an extension of CS modified gravity by
considering the terms which involve the derivatives of the

TABLE I. The values of parameter set (αν̄, βν̄, αμ̄, βμ̄, αν, βν, αμ, βμ) defined in Eq. (2.13) in various modified gravities.

Theory of gravity αν̄ βν̄ αμ̄ βμ̄ αν βν αμ βμ

Chern-Simons gravity Zero � � � Zero � � � Nonzero 1 Zero � � �
Ghost-free scalar-tensor gravities Zero � � � Zero � � � Nonzero 1 Nonzero 1
Symmetric teleparallel equivalence of GR theory Zero � � � Zero � � � Nonzero 1 Nonzero 1
Hořava-Lifshitz gravity Zero � � � Nonzero 0 or 2 or 4 Zero � � � Nonzero 1 or 3
Massive gravity Zero � � � Nonzero −2 Zero � � � Zero � � �
Double special relativity theory Zero � � � Nonzero −2 or 1 Zero � � � Zero � � �
Extra-dimensional theories Zero � � � Nonzero −2 or 2 Zero � � � Zero � � �
Noncommutative gravity Zero � � � Nonzero −2 or 0 or 2 Zero � � � Zero � � �
Nonlocal gravity Nonzero 0 Zero � � � Zero � � � Zero � � �
Time-dependent Planck mass gravity Nonzero 0 Zero � � � Zero � � � Zero � � �
fðTÞ gravity Nonzero 0 Zero � � � Zero � � � Zero � � �
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scalar field. If considering only the scalar field and its first
derivatives in PV terms, the Lagrangian density LPV is
given by

LPV ¼
X4
A¼1

aAðϕ;ϕμϕμÞLA; ð3:3Þ

where ϕμ ≡∇μϕ, and aA are a priori arbitrary functions of
ϕ and ϕμϕμ. The terms LA are [28,30]

L1 ¼ εμναβRαβρσR
ρ
μνλϕ

σϕλ; L2 ¼ εμναβRαβρσR
ρσ
μλϕνϕ

λ;

L3 ¼ εμναβRαβρσRσ
νϕ

ρϕμ; L4 ¼ εμνρσRρσαβR
αβ
μνϕλϕλ:

To avoid the Ostrogradsky modes in the unitary gauge
(where the scalar field depends on time only), it is required
that 4a1 þ 2a2 þ a3 þ 8a4 ¼ 0. With this condition, the
Lagrangian in Eq. (3.3) does not have any higher-order
time derivative of the metric but has only higher-order
space derivatives. In this theory, the tensor quadratic action
is that in Eq. (2.7) with the coefficients c1 and c2 as [39]

c1=MPV ¼ −4 _a1 _ϕ
2 − 8a1 _ϕ ϕ̈ þ 8a1H _ϕ2 − 2 _a2 _ϕ

2

− 4a2 _ϕ ϕ̈ þ _a3 _ϕ
2 þ 2a3 _ϕ ϕ̈ − 4a3H _ϕ2

− 4 _a4 _ϕ
2 − 8a4 _ϕ ϕ̈ ð3:4Þ

c2=MPV ¼ −2 _a2 _ϕ
2 − 4a2 _ϕ ϕ̈ − _a3 _ϕ

2 − 2a3 _ϕ ϕ̈

− 4 _a4 _ϕ
2 − 8a4 _ϕ ϕ̈; ð3:5Þ

where H ¼ _a=a is the Hubble parameter. Therefore,
the propagation equation of GW becomes that in (2.11)
with [39]

Hν̄ ¼ 0; μ̄ ¼ 0; HνA ¼ −½ρAc1ðk=aMPVÞ�0;
μA ¼ ρAðk=aMPVÞðc1 − c2Þ: ð3:6Þ

One can also consider the terms which contain a
second derivative of the scalar field. Focusing on only
the terms that are linear in the Riemann tensor and linear/
quadratically in the second derivative of ϕ, the most general
Lagrangian LPV with parity violation is given by [28,30]

LPV ¼
X7
A¼1

bAðϕ;ϕλϕλÞMA; ð3:7Þ

M1 ¼ εμναβRαβρσϕ
ρϕμϕ

σ
ν ; M2 ¼ εμναβRαβρσϕ

ρ
μϕσ

ν ;

M3 ¼ εμναβRαβρσϕ
σϕρ

μϕλ
νϕλ; M4 ¼ εμναβRαβρσϕνϕ

ρ
μϕσ

λϕ
λ;

M5 ¼ εμναβRαρσλϕ
ρϕβϕ

σ
μϕ

λ
ν; M6 ¼ εμναβRβγϕαϕ

γ
μϕλ

νϕ
λ;

M7 ¼ ð∇2ϕÞL1;

with ϕσ
ν ≡∇σ∇νϕ. Similarly, to avoid the Ostrogradsky

modes in the unitary gauge, the following conditions
should be imposed: b7 ¼ 0, b6 ¼ 2ðb4 þ b5Þ and b2 ¼
−A2�ðb3 − b4Þ=2, where A� ≡ _ϕðtÞ=N and N is the lapse
function. After tedious calculations, we find that in this
theory the tensor quadratic action is also given by Eq. (2.7),
where c2 ¼ 0 and c1 is [39]

c1=MPV ¼ −2b1 _ϕ3 þ 4b2ð2H _ϕ2 − _ϕ ϕ̈Þ
þ 2b3ð _ϕ3ϕ̈ −H _ϕ4Þ þ 2b4ð _ϕ3ϕ̈ −H _ϕ4Þ
− 2b5H _ϕ4 þ 2b7 _ϕ

3ϕ̈: ð3:8Þ

The propagation equation of GW is derived by varying the
quadratic action with respect to hij, which is that in
Eq. (2.11) with [39]

Hν̄ ¼ 0; μ̄ ¼ 0; HνA ¼ −½ρAc1ðk=aMPVÞ�0;
μA ¼ ρAðk=aMPVÞc1: ð3:9Þ

C. Symmetric teleparallel equivalence of GR theory

The parity-violating extension of the symmetric tele-
parallel equivalent of GR theory is a non-Riemannian
formulation of gravity, which allows for a wider variety
of consistent extensions than the metric formulation of
gravity theory and has been studied explicitly in Ref. [31].
As is known, the Einstein-Hilbert action hides second
derivatives, and its generalizations are severely restricted.
However, combining the Riemannian formulation with the
metric teleparallel [57] and the symmetric teleparallel [58]
equivalents of GR provide a more flexible framework for
generalizations, since their action principles can feature
only first derivatives. For this reason, the analysis in the
subsection is beyond the framework in Sec. II.
The nonmetricity tensor and its contractions are defined

by Qαμν ≡ ∇̃αgμν, where the covariant derivative ∇̃ is with
respect to a generic connection Γ, which is considered to be
devoid of both curvature and torsion. This allows us to
choose the coincident gauge [59] wherein we can simply
write partial derivatives in place of the covariant operators
above. The action of the nonmetricity equivalent of GR
SQGR is given in Eq. (2.15) in Ref. [31], which is related to
the Einstein-Hilbert action by a total derivative. In this
article, we investigate the PV gravity that is quadratic in
nonmetricity in the symmetric teleparallel geometry and
consider only the models that feature (at most) second
time derivatives. Let us concentrate on the first class of
Lagrangians, which are quadratic in nonmetricity, coupled
quadratically to a scalar field and second-order in deriv-
atives. The unique and nonvanishing Lagrangian for GW is
given by [31]

LPV ¼ ffiffiffiffiffiffi
−g

p
α̃ϵμνθδϕθϕ

γQμναQγδ
α; ð3:10Þ
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where α̃ is an arbitrary function of field ϕ and its kinetic
term. For the propagation of GW, we only need to consider
the tensor quadratic action, which is

Lð2Þ ¼ Lð2Þ
QGR þ Lð2Þ

PV; ð3:11Þ

where

Lð2Þ
QGR ¼ 1

4
½ _h2ij − a−2ð∂khijÞ2�; Lð2Þ

PV ¼ H
a
α̃ϵijkhkl∂ihjl:

ð3:12Þ

From this action, the propagation equation of the GW is
derived, that in Eq. (2.11) with [31]

Hν̄¼0; μ̄¼0; HνA¼0; μA¼4α̃ρAH=k: ð3:13Þ

In a similar fashion, we can discuss the PV Lagrangians
in the symmetric teleparallel geometry with third-order
derivatives. Let us focus on the action, which is quadratic
in nonmetricity, and includes (at most) the second-order
time derivatives. The most general Lagrangian density is
given by [31]

Lð2Þ ¼ Lð2Þ
QGR þ β1ðtÞ

a3MPV
Lð2Þ
PV1 þ

β2ðtÞ
aMPV

Lð2Þ
PV2 þ

β3ðtÞ
aMPV

Lð2Þ
PV3;

ð3:14Þ

where βiðtÞ is a dimensionless function of time, MPV is an
energy scale, and

Lð2Þ
PV1 ≡ ϵijk∂2hjl∂ihkl; Lð2Þ

PV2 ≡ 2Hϵijk _hj
l∂ihkl;

Lð2Þ
PV3 ≡ ϵijk _hj

l∂i
_hkl: ð3:15Þ

Note that, in the symmetric teleparallel equivalence of GR

theory, the extra term Lð2Þ
PV2 can exist. Similarly, the

propagation equation of GW is derived from the action,
that in Eq. (2.11) with [31]

Hν̄ ¼ 0; μ̄ ¼ 0; HνA ¼ ½4ρAðk=aMPVÞβ3�0;
μA ¼ 4ρAðk=aMPVÞðβ1 − β3 þ ðaHβ2Þ0=ak2Þ: ð3:16Þ

Note that, to avoid fine-tuning, β1, β2, and β3 are expected
to be of the same order. Thus, the last term in μA becomes
ignorable.

D. Hořava-Lifshitz gravity

The Hořava-Lifshitz (HL) gravity is based on the
perspective that the Lorentz symmetry appears only as
an emergent symmetry at low energies but can be funda-
mentally absent at high energies [32,38]. This opens a
completely new window to build a theory of quantum
gravity without the Lorentz symmetry in the UV, using the

high-dimensional spatial derivative operators, while still
keeping the time derivative operators to the second order,
whereby the unitarity of the theory is reserved. Besides
the original version of the theory by Hořava [32], there
are several modifications, which are absent several incon-
sistent problems that appear in the original version. In this
paper, we are going to focus on an extension of the HL
gravity by abandoning the projectability condition but
imposing an extra local U(1) symmetry that was proposed
[35,60], in which the gravitational sector has the same
degree of freedom as that in GR, i.e., only spin-2 massless
gravitons exist.
By abandoning the Lorentz symmetry, the HL theory

also provides a natural way to incorporate the parity-
violation terms in the theory. For our current purpose,
we consider the third- and/or fifth-order spatial derivative
operators to the potential term L of the total action in
Refs. [35–37,60],

LPV ¼ 1

MPV
3
ðα0KijRij þ α2ε

ijkRilΔjRl
kÞ

þ α1ω3ðΓÞ
MPV

þ “…”: ð3:17Þ

Here, MPV is the energy scale above which the high-order
derivative operators become important. The coupling con-
stants α0, α1, and α2 are dimensionless and arbitrary, and
ω3ðΓÞ the three-dimensional gravitational CS term. “� � �”
denotes the rest of the fifth-order operators given in
Eq. (2.6) of Ref. [60]. Since they have no contributions
to tensor perturbations, in this paper, we shall not write
them out explicitly.
The general formulas of the linearized tensor perturba-

tions were given in Ref. [37], so in the rest of this section,
we give a very brief summary of the main results obtained
there. Consider a flat FRW universe and assuming that
matter fields have no contributions to tensor perturbations,
the quadratic part of the total action can be cast in the form

Sð2Þg ¼ ζ2
Z

dηd3x

�
a2

4
ðh0ijÞ2 −

1

4
a2ð∂khijÞ2

−
γ̂3

4MPV
2
ð∂2hijÞ2 −

γ̂5
4MPV

4a2
ð∂2∂khijÞ2

−
α1aϵijk

2MPV
ð∂lhmi ∂m∂jhlk − ∂lhim∂l∂jhmk Þ

−
α2ϵ

ijk

4MPV
3a

∂2hilð∂2hlkÞ;j −
3α0H
8MPVa

ð∂khijÞ2
�
;

ð3:18Þ

where γ̂3 ≡ ð2MPV=MPlÞ2γ3 and γ̂5 ≡ ð2MPV=MPlÞ4γ5, and
γ3 and γ5 are the dimensionless coupling constants of the
theory. To avoid fine-tuning, αn and γ̂n are expected to be of
the same order. Then, the field equations for hij read
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h00ij þ 2Hh0ij − α2∂2hij þ
γ̂3

a2MPV
2
∂4hij −

γ̂5
a4MPV

4
∂6hij

þ eilk
�

2α1
aMPV

þ α2
a3MPV

3
∂2

�
ð∂2hjkÞ;l ¼ 0; ð3:19Þ

where α2 ≡ 1þ 3α0H=ð2MPVaÞ. In the late Universe,
a ∼ 1, and H ≪ MPV, so we find α2 → 1. To study the
evolution of hij, we expand it over spatial Fourier har-
monics. For each circular polarization mode, the equation
of motion of GW is given by

h00A þ 2Hh0A þ ω2
AhA ¼ 0; ð3:20Þ

with

ω2
Aðk; ηÞ≡ α2k2½1þ δ1ρAðαk=MPVaÞ þ δ2ðαk=MPVaÞ2

− δ3ρAðαk=MPVaÞ3 þ δ4ðαk=MPVaÞ4�;
ð3:21Þ

where δ1 ≡ 2α1=α3, δ2 ≡ γ̂3=α4, δ3 ≡ α2=α5, and δ4≡
γ̂5=α6. In comparison with the formula in Eq. (2.11), we
find the coefficients in HL gravity as

Hν̄ ¼ 0;

μ̄ ¼ δ2ðk=aMPVÞ2 þ δ4ðk=aMPVÞ4 þ 3α0H=ð2MPVaÞ;
HνA ¼ 0;

μA ¼ δ1ρAðk=aMPVÞ − δ3ρAðk=aMPVÞ3; ð3:22Þ

where we have considered the relation α2 → 1. In the
expression of μ̄, the second term is always negligible, and
the relative magnitude of the first and third terms depends
on the values of k and MPV. In the theory, which includes
both the third- and fifth-order operators [36,37], the first
term in μA is dominant. While for the theory, which
includes only the fifth-order operator [33], only the second
term in μA exists.

E. Various theories of gravity without
parity violation

It is important to mention that, although in this paper we
focus on GWs in the parity-violating gravities, the equation
of motion of GW in Eq. (2.11) can also include various
cases in the parity-conserving gravities. In the most general
scalar-tensor gravities, i.e., the Horndeski and beyond
Horndeski gravities and degenerate higher-order scalar-
tensor theories, the propagation equations of GW corre-
spond to Eq. (2.11) with nonzero ν̄ and μ̄ [12,30,49,61].
Another case is the theories of gravity with modified

dispersion relations; the propagation equation of GW is
Eq. (2.11), where the parameters ν̄, νA, and μA are zero, but
μ̄ is nonzero. A few examples of such modified dispersion
relations include the following [55]:

(i) Massive gravity has the dispersion relation E2 ¼
p2 þm2

g with mg the graviton’s rest mass [55,56],
which follows the equation of motion of GW in
Eq. (2.11) with nonzero μ̄ ¼ ðmg=kÞ2.

(ii) The double special relativity theory has the relation
E2 ¼ p2 þm2

g þ ηdsrtE3 þ · · · with ηdsrt a parameter
of the order of Planck length [62], which follows
Eq. (2.11) with nonzero μ̄ ¼ ðmg=kÞ2 þ ηdsrtkþ · · ·.

(iii) Extra-dimensional theories have the relation E2 ¼
p2 þm2

g − αedtE4 with αedt a constant related to the
square of the Planck length [63], which follows
Eq. (2.11) with nonzero μ̄ ¼ ðmg=kÞ2 − αedtk2.

(iv) Noncommutative gravity1 has the relation E2g21ðEÞ¼
m2

gþp2 with g1¼ð1− ffiffiffiffiffiffiffiffiffiffiffi
αncgπ

p =2Þexpð−αncgE2=E2
pÞ

with αncg a constant [64], which follows
Eq. (2.11) with nonzero μ̄ ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffi

αncgπ
p =2Þð1þ

ðmg=kÞ2 þ αncgðk=EpÞ2 þ ðmg=EpÞ2Þ.

In some theories of parity-conserving gravity, the propa-
gation of GW is described by Eq. (2.11) with nonzero ν̄,
but the other parameters μ̄, μA, and νA are all zero. One
example is the nonlocal gravity [50], in which the action of
gravity is given by

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

6
m2

1

□
R

�
;

wherem is a mass parameter that replaces the cosmological
constant. The motion of equation of GW in this theory is
given by Eq. (2.11) with Hν̄ ¼ −½3V̄=ð2–6γV̄Þ�0, where
γ ¼ m2=9H2

0 and V̄ is the background evolution of an
auxiliary field in the theory [50,65]. In these theories, due
to the modified friction term in the perturbation equation of
cosmological GWs, the damping of GW amplitude with
the expansion of the Universe is different from that in GR.
As a result, the effective luminosity distance of GW is
different from that of electromagnetic wave [50]. Similarly,
in the theory of gravity with the time-dependent effective
Planck mass, the motion of equation of the GW is also
given by Eq. (2.11) with Hν̄ ¼ ½lnM2��0 with M� the time-
dependent Planck mass [66]. Recently, the propagation
of GW in the fðTÞ gravitational theory was also studied
explicitly in Ref. [67], and the equation of motion was
found to have the same form as Hν̄ ¼ ½ln fT �0, where T is
the torsion scalar defined in the theory, fðTÞ is the arbitrary
function of T, and fT ≡ dfðTÞ=dT.

1In noncommutative gravity, the spacetime coordinates are
promoted to operators, which satisfy the nontrivial commutation
relations ½x̂μ; x̂ν� ¼ iΘμν with Θμν being a real constant antisym-
metric tensor.
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IV. AMPLITUDE AND VELOCITY
BIREFRINGENCES

In this section, in the general theories of PV gravity, we
study the velocity and amplitude birefringence effects
during the propagation of GWs. As discussed in Sec. II,
the equation of motion of GWs is Eq. (2.11), and the
parameters are given by Eq. (2.13). For each circular
polarization mode hA, the velocity and amplitude birefrin-
gence effects induce the phase and amplitude corrections to
the waveform of GWs. Similar to the previous work [39], to
investigate these two effect separately, we decompose hA as

hA ¼ h̄Ae−iθðτÞ; h̄A ¼ AAe−iΦðτÞ; ð4:1Þ
where h̄A satisfies

h̄00A þ 2Hh̄0A þ ð1þ μ̄þ μAÞk2h̄A ¼ 0: ð4:2Þ
Here, AA and ΦðτÞ are the amplitude and phase of h̄A,
respectively. With this decomposition, θðτÞ encodes the
correction arising from ν̄ and νA, while the corrections
due to μ̄ and μA are included in h̄A. In the ghost-free PV
gravities, since ν̄ ¼ 0 ¼ μ̄, the phase θðτÞ only contains
corrections from the parity violation, which is directly
encoded by νA, while the amplitude correction from μA is
included in h̄A, as one can see from Eq. (4.5) in Ref. [39]. In
the generic case, the phase θðτÞ and the amplitude h̄A can
receive corrections arising from the modifications of
gravity which are not relevant to the parity violation. As
we mentioned, their effects are encoded by the parameters
μ̄ and ν̄.

A. Phase modifications

We first concentrate on the corrections arising from the
parameters μ and μA, which modify the dispersion relations
of GWs. To proceed, we define ūAðτÞ ¼ 1

2
aðτÞMPlh̄AðτÞ,

and then Eq. (4.2) can be written as

d2ūA
dτ2

þ
�
ω2
A −

a00

a

�
ūA ¼ 0; ð4:3Þ

where

ω2
A ¼ k2ð1þ μ̄þ μAÞ
¼ k2ð1þ αμ̄ðτÞðk=aMPVÞβμ̄ þ ρAαμðτÞðk=aMPVÞβμÞ

ð4:4Þ

is the modified dispersion relation. With this relation, the
speed of the graviton reads v2A=c

2 ≃ 1 − μ̄ − μA, which
leads to

vA=c ≃ 1 − ð1=2Þαμ̄ðτÞðk=aMPVÞβμ̄
− ð1=2ÞρAαμðτÞðk=aMPVÞβμ : ð4:5Þ

We find that the parameter μ̄ influences both circular
modes in a same way, which has been tightly constrained
by comparing the arrival times of GW170817 and
GRB170817a [11]. However, for the parameter μA, since
ρA have the opposite signs for left-hand and right-hand
polarization modes, its effects on two modes are opposite,
which induces the velocity birefringence effect of GWs. For
this reason, in order to test the parity-violating effect by the
velocity of GWs, we should measure the velocity difference
of two circular polarization modes, instead of just meas-
uring the speed of an individual mode [40].
Consider gravitons with the same ρA emitted at two

different times te and t0e, with wave numbers k and k0, and
received at corresponding arrival times (re is the same for
both). Assuming Δte ≡ te − t0e ≪ a= _a, the difference of
arrival times of these two waves is given by [39,40,55]

Δt0 ¼ ð1þ zÞΔte þ
ρA
2

��
k

MPV

�
βμ
−
�

k0

MPV

�
βμ
�

×
Z

t0

te

αμ
aβμþ1

dtþ 1

2

��
k

MPV

�
βμ̄
−
�

k0

MPV

�
βμ̄
�

×
Z

t0

te

αμ̄
aβμ̄þ1

dt; ð4:6Þ

where z≡ 1=aðteÞ − 1 is the cosmological redshift. Let us
focus on the GW signal generated by the nonspinning,
quasicircular inspiral in the post-Newtonian approximation.
Relative to the GW in GR, the terms μ̄ and μA modify the
phase of GW ΦðτÞ. The Fourier transform of h̄A can be
obtained analytically in the stationary phase approxima-
tion, where we assume that the phase is changing much
more rapidly than the amplitude, which is given by [2]

˜̄hAðfÞ ¼
AAðfÞffiffiffiffiffiffiffiffiffiffiffiffi
df=dt

p eiΨðfÞ; ð4:7Þ

where f is the GW frequency at the detector and Ψ is
the phase of GWs. In Ref. [55], it was proved that the
difference of arrival times in Eq. (4.6) induces the modi-
fication of GW phases Ψ as follows:

ΨAðfÞ ¼ ΨGR
A ðfÞ þ ρAδΨ1ðfÞ þ δΨ2ðfÞ: ð4:8Þ

When βμ ≠ −1,

δΨ1ðfÞ ¼
ð2=MPVÞβμ
βμ þ 1

uβμþ1

Mβμþ1

Z
t0

te

αμ
aβμþ1

dt; ð4:9Þ

and when βμ ¼ −1,

δΨ1ðfÞ ¼
MPV

2
ln u

Z
t0

te

αμdt: ð4:10Þ

Similarly, since βμ̄ is an even number, we have
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δΨ2ðfÞ ¼
ð2=MPVÞβμ̄
βμ̄ þ 1

uβμ̄þ1

Mβμ̄þ1

Z
t0

te

αμ̄
aβμ̄þ1

dt: ð4:11Þ

Here, we have defined u ¼ πMf. The quantity M ¼
ð1þ zÞMc is the measured chirp mass, and Mc ≡
ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass of the binary
system with component masses m1 and m2. Note that the
phase modification in Eqs. (4.9)–(4.11) is a simple propa-
gation effect, which is independent of the generation effect
of GWs. Although this formula is obtained in the stationary
phase approximation [55], we expect this result is also
applicable for the GWs in the more general cases in the
presence of spin, precession, eccentricity of compact
binaries, and/or for the GWs produced during the merger
and ringdown of compact binaries. This extension has been
adopted by LIGO and Virgo collaborations in Refs. [6,11].

B. Amplitude modifications

Now, let us turn to study the effects caused by ν̄ and νA.
Plugging the second equation of the decomposition (4.1)
into (4.2), one finds the equation for ΦðtÞ,

iΦ00 þΦ02 þ 2iHΦ0 − ð1þ μ̄þ μAÞk2 ¼ 0: ð4:12Þ

Similarly, plugging the first equation of the decomposition
(4.1) into (2.11), one obtains

iðθ00 þΦ00Þ þ ðΦ0 þ θ0Þ2 þ ið2þ ν̄þ νAÞHðθ0 þΦ0Þ
− ð1þ μ̄þ μAÞk2 ¼ 0: ð4:13Þ

Using the equation of motion (4.12) for Φ, the above
equation reduces to

iθ00 þ 2θ0Φ0 þ θ02 þ ið2þ ν̄þ νAÞHθ0

þ iðν̄þ νAÞHΦ0 ¼ 0: ð4:14Þ

The phase Φ is expected to be close to that in GR ΦGR,
and Φ0

GR ∼ k, where the wave number relates to the GW
frequency by k ¼ 2πf=a0. Since the amplitude modifica-
tion function θ is caused by the expansion of the Universe,
we have θ0 ∼H and θ00 ∼H2. Note that the conformal
Hubble parameter H ∼ 10−18 Hz, which is much smaller
than the GW frequency (approximately 102 Hz) of compact
binaries. Considering that θ00 ≪ Φ0θ0 ∼ kθ0, k ≫ H, and
keeping only the leading-order terms, the above equation
can be simplified into the form 2θ0 þ iHðν̄þ νAÞ ¼ 0,
which has the solution

θ ¼ −
i
2

Z
τ0

τe

Hðν̄þ νAÞdτ: ð4:15Þ

We observe that the contributions of ν̄ and νA in the phase
are purely imaginary. This indicates that these parameters
lead to modification of the amplitude of the GWs during the

propagation. As a result, relative to the corresponding mode
in GR, the amplitude of left-hand circular polarization of
GWs will increase (or decrease) during the propagation,
while the amplitude for the right-hand mode will decrease
(or increase).
More specifically, for the parameters ν̄ and νA given in

Eq. (2.13), one can write the waveform of GWs with parity-
violation effects in the form

hA ¼ hGRA ð1þ ρAδh1 þ δh2Þe−iδΦA ; ð4:16Þ

where

δh1 ¼ −
1

2

�
aν

�
k

aMPV

�
βν
�				

a0

ae

;

δh2 ¼ −
1

2

�
aν̄

�
k

aMPV

�
βν̄
�				

a0

ae

: ð4:17Þ

Using the notations u and M, one can rewrite δh1 and δh2
in the forms

δh1 ¼ −
1

2

�
2u

MPVM

�
βν ½aνðτ0Þ − aνðτeÞð1þ zÞβν �;

δh2 ¼ −
1

2

�
2u

MPVM

�
βν̄ ½aν̄ðτ0Þ − aν̄ðτeÞð1þ zÞβν̄ �: ð4:18Þ

C. GW waveforms of the circular polarization modes

For each circular polarization mode, we summarize the
modification of GW waveforms in this subsection. Similar
to the above discussion, we consider the GWs produced
during the inspiraling stage of the compact binaries. In this
scheme, in the stationary phase approximation, the Fourier
transform of hA can be calculated directly, which is given
by (similar to the parametrized post-Einsteinian formulas in
Ref. [68])

h̃AðfÞ ¼ h̃GRA ðfÞð1þ ρAδh1 þ δh2ÞeiðρAδΨ1þδΨ2Þ; ð4:19Þ

where h̃GRA ðfÞ is the corresponding waveform in GR, and
the explicit formula can be found in the previous works
[1,2]. Here, we focus on the correction terms on both the
amplitude and phase of GWs. The former ones are caused
by the parameters ν̄ and νA in Eq. (2.11), while the latter
ones are caused by the parameters μ̄ and μA. Since in the
theories of PV gravity the GW propagation equations of
left-hand and right-hand polarization modes are decoupled,
the parameters νL and μL (νR and μR) can only affect the
amplitude and phase of the left-hand (right-hand) polari-
zation mode. Because of the opposite signs of νL and νR
(as well as μL and μR), they induce the birefringence effects
of GWs. However, the parameters ν̄ and μ̄ influence the
amplitudes and phases of two modes in the same manner.
Therefore, as expected, they are not relevant to parity
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violation in gravity and cannot cause the GW birefrin-
gence effects.

V. MODIFICATIONS TO THE GW WAVEFORM

To make contact with observations, it is convenient to
analyze the GWs in the Fourier domain, and the responses
of detectors for the GW signals h̃ðfÞ can be written in terms
of waveforms of h̃þ and h̃× as

h̃ðfÞ ¼ ½Fþh̃þðfÞ þ F×h̃×ðfÞ�e−2πifΔt; ð5:1Þ

where Fþ and F× are the beam pattern functions of GW
detectors, depending on the source location and polariza-
tion angle [69].Δt is the arrival time difference between the
detector and the geocenter. In GR, the waveforms of the
two polarizations h̃þðfÞ and h̃×ðfÞ are given, respectively,
by [1,2,70]

h̃GRþ ¼ ð1þ χ2ÞAeiΨ; h̃GR× ¼ 2χAeiðΨþπ=2Þ; ð5:2Þ

where A and Ψ denote the amplitude and phase of the
waveforms hGRþ× and χ ¼ cos ι with ι being the inclination
angle of the binary system. In GR, the explicit forms of
A and Ψ have been calculated in the high-order PN appro-
ximation (see, for instance, Ref. [1] and references therein).
Now, wewould like to derive how the parity violation in the
modified gravities can affect both the amplitude and the
phase of the above waveforms. The circular polarization
modes h̃R and h̃L relate to the modes h̃þ and h̃× via

h̃þ ¼ h̃L þ h̃Rffiffiffi
2

p ; h̃× ¼ h̃L − h̃Rffiffiffi
2

p
i

: ð5:3Þ

Similar to the previous work [27,39], throughout this paper,
we ignore the parity-violating generation effect, which is
caused by a modified energy loss, inspiral rate, and
chirping rate of the binaries. Since the generation effect
occurs on a radiation-reaction timescale, which is much
smaller than the GW time of flight, its impact on the
evolution of the GW phase is negligible [26]. In addition,
the extra polarization modes of GW can also been produced
in the modified gravities. For instance, in the scalar-tensor
gravities, the breathing mode and/or longitude mode can be
generated [71,72] by the coalescence of compact binaries.
However, the amplitudes of these extra modes are always
much smaller than the tensorial modes hþ and h×, or hR
and hL, if considering the model constraints from the
observations in solar systems, or binary pulsars, and in
cosmology [71,73]. For these reasons, in this paper, we do
not consider this effect. Thus, the circular polarization
modes hA are given in (4.19), and the waveforms for the
plus and cross modes become

h̃þ ¼ h̃GRþ ð1þ δh2 þ iδΨ2Þ − h̃GR× ðiδh1 − δΨ1Þ ð5:4Þ

h̃× ¼ h̃GR× ð1þ δh2 þ iδΨ2Þ þ h̃GRþ ðiδh1 − δΨ1Þ: ð5:5Þ

Therefore, the Fourier waveform h̃ðfÞ becomes

h̃ðfÞ ¼ AδAeiðΨþδΨÞ; ð5:6Þ

where

δA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ χ2Þ2F2þ þ 4χ2F2

×

q

×

�
1þ δh2 þ

2χð1þ χ2ÞðF2þ þ F2
×Þ

ð1þ χ2Þ2F2þ þ 4χ2F2
×
δh1

−
ð1 − χ2Þ2FþF×

ð1þ χ2Þ2F2þ þ 4χ2F2
×
δΨ1

�
;

δΨ ¼ tan−1
�

2χF×

ð1þ χ2ÞFþ

�
þ δΨ2

þ ð1 − χ2Þ2FþF×

ð1þ χ2Þ2F2þ þ 4χ2F2
×
δh1

þ 2χð1þ χ2ÞðF2þ þ F2
×Þ

ð1þ χ2Þ2F2þ þ 4χ2F2
×
δΨ1; ð5:7Þ

where δh1 and δh2 are given by Eq. (4.18), while δΨ1 and
δΨ2 are given by Eqs. (4.9)–(4.11).
From these expressions, we find that relative to the

waveforms in GR the modifications of GWs are quantified
by the terms δhi and δΨi (i ¼ 1, 2). In the specific case with
δhi ¼ δΨi ¼ 0, the formula in (5.6) returns to that in GR.
We observe that when δh1 ¼ δΨ1 ¼ 0 it returns to the
theory without parity violation. The correction term δh2,
caused by the parameter ν̄ in Eq. (2.11), influences only on
the amplitude of h̃ðfÞ. In particular, if δh2 is frequency
independent, i.e., βν̄ ¼ 0, the effect of GW amplitude
modification is equivalent to modifying the effective
luminosity distance of GW sources [50]. On the other
hand, the correction term δΨ2, caused by the parameter μ̄ in
Eq. (2.11), influences only the phase of h̃ðfÞ. These are
consistent with the results in the previous works [51,52,55],
in which the specific theories in this case are discussed.
The modifications of GW waveforms, due to the PV

terms in the theories of gravity, are represented by the terms
δh1 and δΨ1. As mentioned in Sec. IV, δh1 is the result of
the amplitude birefringence effect between left-hand and
right-hand polarization modes, which is caused by the
parameter νA in Eq. (2.11), and δΨ1 is result of the
amplitude birefringence effect between two circular polari-
zation modes, caused by the parameter νA in Eq. (2.11).
Since in the parity-violating gravities the evolution of
polarization modes hþ and h× are not independent, the
mixture of two modes is inevitable. For this reason, we find
that both terms δh1 and δΨ1 appear in the phase and
amplitude modifications of h̃ðfÞ. As the extension of our
previous work [39], we find that when βν ¼ βμ ¼ 1 the

ZHAO, ZHU, QIAO, and WANG PHYS. REV. D 101, 024002 (2020)

024002-10



above results automatically return to those in Ref. [39]. In
particular, in the CS gravity, only δΨ1 is nonzero, and the
formulas in Eq. (5.7) return to the corresponding quantities
in Ref. [27]. However, in general, both δh1 and δΨ1 are
nonzero in the theories of PV gravity. In the leading order,
the modification δA (or δΨ) linearly depends on them, and
it is important to estimate their relative magnitudes. Let us
assume the GW is emitted at the redshift z ∼Oð1Þ and
approximately treat αν and αμ as constants during the
propagation of GW. In addition, we assume βν ¼ βμ, which
is retained in most cases. Therefore, we find the ratio of two
correction terms is δΨ1=δh1 ∼ t0f, where f is the GW
frequency and t0 ¼ 13.8 billion years is the cosmic age
[74]. As is known, f ∼ 100 Hz for the ground-based GW
detectors, and f ∼ 0.01 Hz for the space-borne detectors.
For both cases, we find δΨ1 is more than 10 orders of
magnitude larger than δh1. So, we arrive at the conclusion:
in the PV gravities with both velocity and amplitude
birefringence effects, both the amplitude and phase cor-
rections of the GW waveform h̃ðfÞ mainly come from the
contribution of velocity birefringence rather than that of
amplitude birefringence.

VI. CONCLUSIONS

With the discovery of GW sources by the aLIGO and
aVirgo collaborations, the testing of gravity in the strong
gravitational fields becomes possible. Therefore, the stud-
ies on GWs in the alternative theories of gravity are
important. In the series of our works, we focus on how
to test the parity symmetry in gravity. In the theories of PV
gravity, the symmetry between left-hand and right-hand
circular polarization modes of GWs is broken. So, the
effects of birefringence between these two modes occur
during their propagation in the Universe. In this article, we
investigate the waveforms of GWs in the general PV
gravity, and the existing models in the literature, including
Chern-Simons modified gravity, ghost-free scalar-tensor
gravity, the symmetric teleparallel equivalence of GR
theory, and Hořava-Lifshitz gravity, are all the specific
cases of this general theory. We find that, in general, both
amplitude and velocity birefringence effects exist in these
gravities, which exactly correspond to the amplitude and
phase modifications of waveforms for each mode. For an
individual circular polarization mode, the amplitude and/or
phase of GW waveform as well as the velocity of GW are
modified by two parameters: one describes the parity
violation in gravity, and the other describes the

modification of GR but keeps the parity symmetry. For
this reason, in order to model-independently test the parity
symmetry of gravity, we should investigate the difference
between two circular polarizations, rather than focus on an
individual mode. Combining these two modes, we obtain
the GW waveforms produced by the compact binary
coalescence and derive the correction terms relative to that
in GR. We find that if the parity symmetry is not broken,
the correction term in the amplitude (phase) of h̃ðfÞ only
comes from δh2 (δΨ2), which is the amplitude (phase)
modification in each circular polarization mode. However,
if the parity symmetry is violated in the theory, in addition
to these terms, the corrections in the amplitude (phase) of
h̃ðfÞ also comes from both δh1 and δΨ1 terms, where δh1
encodes the effect of amplitude birefringence and δΨ1

represents the effect of velocity birefringence. The mixture
of them in the waveform of h̃ðfÞ is caused by the fact that in
the PV gravities the general plus and cross polarization
modes are not independent in their propagations.
Comparing the contributions of δh1 and δΨ1 in the
modification of GW waveforms, we find the latter one is
completely dominant, unless the velocity birefringence
does not exist in the theory. All these conclusions are
consistent with those derived from the previous work [39].
We should mention that, considering the current and
potential observations of ground-based and space-borne
GW detectors, the explicit waveforms of GWs derived in
this article can be used as the template to constrain the these
gravities with parity violation. The comprehensive analysis
on this topic will be carried on in a separate paper of this
series of works.
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