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The tests of parity symmetry in the gravitational interaction is an attractive issue in gravitational-wave
astronomy. In the general theories of gravity with parity violation, one of the fundamental results is that
primordial gravitational waves (PGWs) produced during slow-roll inflation is circularly polarized. In this
article, we investigate the polarization of PGWs in the recently proposed ghost-free parity-violating gravity,
which generalizes Chern-Simons gravity by including higher derivatives of the coupling scalar field. For
this purpose, we first construct the approximate analytical solution to the mode function of the PGWs
during slow-roll inflation by using the uniform asymptotic approximation. With the approximate solution,
we explicitly calculate the power spectrum and the corresponding circular polarization of the PGWs
analytically, and find that the contributions of the higher derivatives of the coupling scalar field to the
circular polarization are of the same order of magnitude as that of Chern-Simons gravity. The degree of
circular polarization of PGWs is suppressed by the energy scale of parity violation in gravity, which is
unlikely to be detected using only the two-point statistics of future cosmic microwave background data.

DOI: 10.1103/PhysRevD.101.043528

I. INTRODUCTION

Precise measurements of the cosmic microwave back-
ground (CMB), in particular by the WMAP and Planck
missions, provide invaluable information about the physics
of the very early Universe. Their angular power spectra
directly reflect statistical properties of primordial density
fluctuations and primordial gravitational waves (PGWs)
[1–4], which are in good agreement with the theoretical
predictions of the slow-roll inflation model with a single
scalar field [5–10]. For standard slow-roll inflation in the
framework of general relativity (GR), the PGWs have two
polarization modes which share exactly the same statistical
properties and their primordial power spectra take the same
form. Such PGWs produce the TT, EE, BB, and TE spectra
of CMB, but the TB and EB spectra vanish because of the
parity symmetry of GR [11–15]. Since nonzero TB and EB

spectra of CMB implies parity violation in the gravitational
sector, the precise measurement of TB and EB spectra
could be important evidence of parity violation of the
gravitational interaction [16–20].1
In fact, the gravitational terms with parity violation are

ubiquitous in numerous candidates of quantum gravity,
such as string theory, loop quantum gravity, and Hořava-
Lifshitz gravity. One well-studied example is the gravita-
tional Chern-Simons term, which arises from string theory
[16–20,25–28] and loop quantum gravity [29–33]. In
Hořava-Lifshitz gravity, the parity-violating third and fifth
spatial derivative terms are allowed in the gravitational
action of the theory [34–36]. In the literature, parity
violation can also arise from graviton self-couplings
[37,38], gaugeflation and chromonatural inflation [39–42],
Holst gravity [43], and in models that connect leptogenesis
to PGWs [27,44]. In all of these examples, a fundamental
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1Note that another effect that produces the TB and EB power
spectra of CMB is the so-called cosmological birefringence
effect, which can be caused by the possible coupling between
the electromagnetic field and the scalar field through the Chern-
Simons term [17,21–24].
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effect of parity violation is the circular polarization of
PGWs, i.e., the left-hand and right-hand polarization modes
ofGWspropagatewith different behaviors.Aswementioned
above, such asymmetry between two chiral modes of PGWs
can induce a significant parity-violating signature in the
CMB polarization (E/B) power spectra, which has motivated
a lot of works in this direction (see Refs. [20,34,45–54] and
references therein for examples).
Recently, based on Chern-Simons modified gravity, a

ghost-free parity-violating theory of gravity was explored
in Ref. [55] by including higher derivatives of the coupling
scalar field. The observational implications of this theory,
as well as its extensions of the gravitational waves
generated by the compact binaries, have been explored
in a series papers [56–59]. In comparison with Chern-
Simons gravity, one of the distinguishing features of higher
derivatives of the coupling scalar field is that they lead to
the velocity birefringence phenomenon, i.e., the velocities
of left-hand and right-hand circular polarizations of GWs
are different in ghost-free parity-violating gravities. Thus, it
is expected that such a velocity birefringence effect could
induce some distinguishable signatures in the power spectra
of PGWs. With these motivations, in this paper we study
circularly polarized PGWs in this theory of gravity with
parity violation, and the possibility of detecting the
chirality of PGWs in future potential CMB observations.
The rest of the paper is organized as follows. In Sec. II

we give a very brief review of ghost-free parity-violating
gravities, and in Sec. III we consider a flat Friedmann-
Robertson-Walker (FRW) universe and derive the equation
of motion for PGWs. In Sec. IV we first construct the
approximate analytical solution of PGWs by using the
uniform asymptotic approximation, and then explicitly
calculate the power spectrum and polarization of PGWs
during slow-roll inflation. The effects of parity violation in
the CMB spectra and their detectability are also briefly
discussed. We end in Sec. V, in which we summarize our
main conclusions and provide some outlooks.

II. PARITY-VIOLATING GRAVITIES

In this section we present a brief introduction to ghost-
free parity-violating gravity proposed in Ref. [55]. The
action of parity-violating gravity has the form

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ LPV þ LϕÞ; ð2:1Þ

where R is the Ricci scalar, LPV is a parity-violating
Lagrangian, and Lϕ is the Lagrangian for the scalar field,
which is coupled nonminimally to gravity. As a simplest
example, we consider the action of the scalar field as

Lϕ ¼ 1

2
gμν∂μϕ∂νϕþ VðϕÞ: ð2:2Þ

Here VðϕÞ denotes the potential of the scalar field.
The parity-violating Lagrangian of the theory can be
written in the form

LPV ¼ LCS þ LPV1 þ LPV2; ð2:3Þ

where the Chern-Simons term LCS is given by

LCS ¼
1

8
ϑðϕÞεμνρσRρσαβRαβ

μν; ð2:4Þ

where the Levi-Civita tensor ερσαβ is defined in terms of
the antisymmetric symbol ϵρσαβ as ερσαβ ¼ ϵρσαβ=

ffiffiffiffiffiffi−gp
.

LPV1 contains the first derivative of the scalar field and
is given by

LPV1 ¼
X4
A¼1

aAðϕ;ϕμϕμÞLA;

L1 ¼ εμναβRαβρσRμν
ρ
λϕ

σϕλ;

L2 ¼ εμναβRαβρσRμλ
ρσϕνϕ

λ;

L3 ¼ εμναβRαβρσRσ
νϕ

ρϕμ;

L4 ¼ εμνρσRρσαβRαβ
μνϕ

λϕλ; ð2:5Þ

with ϕμ ≡∇μϕ. It has been shown that in order to avoid
Ostrogradsky modes, it is required that 4a1 þ 2a2 þ
a3 þ 8a4 ¼ 0. The term LPV2, which contains the second
derivatives of the scalar field, is described by

LPV2 ¼
X7
A¼1

bAðϕ;ϕλϕλÞMA;

M1 ¼ εμναβRαβρσϕ
ρϕμϕ

σ
ν ;

M2 ¼ εμναβRαβρσϕ
ρ
μϕσ

ν ;

M3 ¼ εμναβRαβρσϕ
σϕρ

μϕλ
νϕλ;

M4 ¼ εμναβRαβρσϕνϕ
ρ
μϕσ

λϕ
λ;

M5 ¼ εμναβRαρσλϕ
ρϕβϕ

σ
μϕ

λ
ν;

M6 ¼ εμναβRβγϕαϕ
γ
μϕλ

νϕ
λ;

M7 ¼ ð∇2ϕÞL1; ð2:6Þ

with ϕσ
ν ≡∇σ∇νϕ. Similarly, in order to avoid

Ostrogradsky modes in the unitary gauge, the following
conditions should be imposed: b7 ¼ 0, b6 ¼ 2ðb4 þ b5Þ
and b2 ¼ −A2�ðb3 − b4Þ=2, where A� ≡ _ϕðtÞ=N and N is
the lapse function of the spacetime.
In the current paper we focus only on the terms coupled

with the first and second derivatives of the scalar field.
More general forms of the Lagrangian, which contain
higher-order derivatives of the scalar field, can be found
in Ref. [56].

QIAO, ZHU, ZHAO, and WANG PHYS. REV. D 101, 043528 (2020)

043528-2



III. GRAVITATIONAL WAVES IN PARITY-
VIOLATING GRAVITIES

In a flat FRW universe, the background metric is
given by

ds2 ¼ a2ðτÞð−dτ2 þ δijdxidxjÞ; ð3:1Þ

where aðτÞ denotes the scale factor of the universe and τ
represents the conformal time, which is related to the
cosmic time t via dt ¼ aðτÞdτ. In the parity-violating
gravities considered in this paper, we observe that all of
the parity-violating terms in the action (2.1) have no effect
on the background evolution. We further assume that the
universe is dominated by the scalar field ϕ which plays the
role of the inflaton field during slow-roll inflation. In this
case, the Friedmann equation, which governs the back-
ground evolution, takes exactly the same form as that in
GR, i.e.,

H2 ¼ 8πG
3

ρ; ð3:2Þ

where H denotes the Hubble parameter during the infla-
tionary stage, and the energy density of the scalar field is
ρ ¼ 1

2
_ϕ2 þ VðϕÞ. The evolution of the scalar field ϕ is also

the same as that in GR,

ϕ̈þ 3H _ϕþ dVðϕÞ
dϕ

¼ 0: ð3:3Þ

It is worth noting that in the standard slow-roll inflation, the
scalar field is assumed to satisfy the slow-roll conditions,

jϕ̈j ≪ j3H _ϕj; j _ϕ2j ≪ VðϕÞ: ð3:4Þ

With the above slow-roll conditions, it is convenient to
define the following Hubble slow-roll parameters:

ϵ1 ¼ −
_H
H2

; ϵ2 ¼
d ln ϵ1
d ln a

; ϵ3 ¼
d ln ϵ2
d ln a

: ð3:5Þ

Primordial gravitational waves are the tensor perturba-
tions of the homogeneous and isotropic background, and
we now turn to study their propagation. With the tensor
perturbations, the spatial metric is written as

gij ¼ a2ðτÞðδij þ hijðτ; xiÞÞ; ð3:6Þ

where hij represents the transverse and traceless metric
perturbations, i.e.,

∂ihij ¼ 0 ¼ hii: ð3:7Þ

In order to derive the equation of motion for the tensor
perturbations, we substitute the metric perturbation into the

action (2.1) and expand it to the second order in hij. After
tedious calculations, we find

Sð2Þ ¼ 1

16πG

Z
dτd3xa4ðτÞ½Lð2Þ

GR þ Lð2Þ
PV�; ð3:8Þ

where

Lð2Þ
GR ¼ 1

4a2
½ðh0ijÞ2 − ð∂khijÞ2�; ð3:9Þ

Lð2Þ
PV ¼ 1

4a2

�
c1ðτÞ
aMPV

ϵijkh0il∂jh0kl þ
c2ðτÞ
aMPV

ϵijk∂2hil∂jhkl

�
;

ð3:10Þ

where MPV denotes the characteristic energy scale of the
parity violation in the theory.
In the above expression, c1 and c2 are dimensionless

coefficients normalized by the characteristic energy scale
MPV and are given by [57]

c1ðτÞ
MPV

¼ _ϑ − 4 _a1 _ϕ
2 − 8a1 _ϕ ϕ̈þ8a1H _ϕ2 − 2 _a2 _ϕ

2 − 4a2 _ϕ ϕ̈

þ _a3 _ϕ
2 þ 2a3 _ϕ ϕ̈ − 4a3H _ϕ2 − 4 _a4 _ϕ

2 − 8a4 _ϕ ϕ̈

− 2b1 _ϕ
3 þ 4b2ð2H _ϕ2 − _ϕ ϕ̈Þ

þ 2b3ð _ϕ3ϕ̈ −H _ϕ4Þ þ 2b4ð _ϕ3ϕ̈ −H _ϕ4Þ
− 2b5H _ϕ4 þ 2b7 _ϕ

3ϕ̈; ð3:11Þ

c2ðτÞ
MPV

¼ _ϑ − 2 _a2 _ϕ
2 − 4a2 _ϕ ϕ̈ − _a3 _ϕ

2 − 2a3 _ϕ ϕ̈

− 4 _a4 _ϕ
2 − 8a4 _ϕ ϕ̈ : ð3:12Þ

Then, by varying the action with respect to hij we obtain
the field equation for hij [57],

h00ij þ 2Hh0ij − ∂2hij

þ ϵilk

aMPV
∂l½c1h00jk þ ðHc1 þ c01Þh0jk − c2∂2hjk� ¼ 0:

ð3:13Þ
IV. POLARIZATION OF PGWs

A. Equation of motion for GWs

In parity-violating gravities the propagation equations
for the two circular polarization modes of GWs are
decoupled. To study the evolution of hij we expand it
over spatial Fourier harmonics,

hijðτ; xiÞ ¼
X
A¼R;L

Z
d3k
ð2πÞ3 h̃Aðτ; k

iÞeikixieAijðkiÞ; ð4:1Þ
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where eAij denote the circular polarization tensors and
satisfy the relation

ϵilmkleAij ¼ ikρAeAmj; ð4:2Þ

with ρR ¼ 1 and ρL ¼ −1. Thus, the field equation in
Eq. (3.13) can be cast in the form [57]

h̃00A þ ð2þ νAÞHh̃0A þ ð1þ μAÞk2h̃A ¼ 0; ð4:3Þ

where a prime denotes a derivative with respect to the
conformal time τ. The deviations from that in GR are
quantified by the quantities νA and μA, which are given by

νA ¼ ρAkðc1H − c01Þ=ðaHMPVÞ
1 − ρAkc1=ðaMPVÞ

; ð4:4Þ

μA ¼ ρAkðc1 − c2Þ=ðaMPVÞ
1 − ρAkc1=ðaMPVÞ

: ð4:5Þ

The quantity νA describes the modification of the friction
term, and μA describes the modification of the dispersion
relation of GWs. In parity-violating gravities, the former
induces the amplitude birefringence effect of GWs, while
the latter induces the velocity birefringence of GWs. In the
specific case with c1=MPV ¼ c2=MPV ¼ _ϑ, this equation
reduces to that in Chern-Simons gravity, in which we have
μA ¼ 0, i.e., only the amplitudes of GWs are modified
during the propagation through the term νA. However, in
the general case of ghost-free parity-violating gravity, both
νA and μA are nonzero. In particular, μA ≠ 0 represents a
distinguishable feature of the higher derivatives of the
coupling scalar field in this theory, which leads to the
velocity birefringence phenomenon, i.e., the velocities of
left-hand and right-hand modes of GWs are different in
ghost-free parity-violating gravity.
As usual, we define the variable uA ≡ zhA and rewrite

Eq. (4.3) as

u00A þ ½ð1þ μAÞk2 − z00=z�uA ¼ 0; ð4:6Þ

where z ¼ að1 − c1kρA=ðaMPVÞÞ1=2. In this paper we
consider PGWs during the inflationary stage, and assume
that the background evolution during inflation is slowly
varying. In addition, we expect the deviations from GR
arising from parity violation to be small. With these
considerations, we can expand the effective time-dependent
mass term z00=z in Eq. (4.6) in terms of the slow-roll
parameters and corrections from the parity violation as

z00

z
¼ a00

a
þ 1

2

ða00a c1 − c001ÞkρA=aMPV

1 − c1kρA=aMPV

þ 1

4

�ðc1H − c01ÞkρA=aMPV

1 − c1kρA=aMPV

�
2

≃
v2t − 1

4

τ2
− ρA

k
τ
c1ϵ�; ð4:7Þ

where

vt ≃
3

2
þ 3ϵ1 þ 4ϵ21 þ 4ϵ1ϵ2 þOðϵ3Þ; ð4:8Þ

and ϵ� ≡H=MPV denotes the ratio between the energy
scale of inflation and the characteristic energy scale of the
parity violation, which determines the magnitude of the
corrections to GR. From the expressions for z00=z in
Eq. (4.7) and μA in Eq. (4.4), one observes that there is
a divergence if kphys=MPV ∼ 1 (with kphys ≡ k=a) and c1 ∼
Oð1Þ during slow-roll inflation. As pointed out in Ref. [50],
the amplitude of the modes at all scales blows up at the time
corresponding to this divergence. At this point, the linear
theory of cosmological perturbations that we used is no
longer valid. One way to avoid this problem is to assume
that all of the physical wave numbers kphys < MPV at the
beginning of inflation. On the other hand, we also require
that all of the relevant perturbation modes are well inside
the Hubble horizon, i.e., kphys > H at the beginning of
inflation, such that the quantum tensor perturbations origi-
nate from a Bunch-Davies vacuum state. With the above
two assumptions, it is obvious that ϵ� ≪ 1 during slow-roll
inflation.
Similarly, the parameter μA, which modifies the

dispersion relation of the tensor modes, can be expressed
in the form

μA ¼ ρAkðc1 − c2Þ=ðaMPVÞ
1 − ρAkc1=ðaMPVÞ

≃ −ρAkτðc1 − c2Þϵ�: ð4:9Þ

It is worth noting that, in order to obtain the above
expansions, we have used the relation

a ¼ −
1

τH
ð1þ ϵ1 þ ϵ21 þ ϵ1ϵ2Þ þOðϵ3Þ: ð4:10Þ

With the expressions for z00=z and μA, one observes that
the equation of motion in Eq. (4.6) can be cast in the form

u00A þ
�
½1 − ρAkτðc1 − c2Þϵ��k2 −

v2t − 1
4

τ2
þ ρA

k
τ
c1ϵ�

�
uA

¼ 0: ð4:11Þ

When c1 ¼ c2, this equation reduces to the same form as that
in Chern-Simons gravity, which admits an exact solution in
terms of confluent hypergeometric functions [46]. However,
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when c1 ≠ c2, this equation does not have exact solutions.
In order to obtain its solution, we have to consider some
approximations. In general, the most widely considered
approach is the WKB approximation, if the WKB condition
is satisfied during the whole process. However, in some
cases, theWKB condition may be violated or not be fulfilled
completely (see Ref. [60]). Recently, we have developed a
mathematical approximation (the uniform asymptotic
approximation) to better treat equations with turning points
and poles, an approximation that has been verified to be
powerful and robust in calculating primordial spectra for
various inflation models [60,60–76] and applications in
studying the reheating process [77] and quantum mechanics
[78]. In the following subsections, we apply this approxi-
mation to construct the approximate solution of Eq. (4.11)
and calculate the primordial tensor power spectrum in
general ghost-free parity-violating gravity.

B. Uniform asymptotic approximation

In this subsection, we will apply the uniform asymptotic
approximation method to construct approximate asymp-
totic solutions. To proceed, let us first rewrite the equation
of motion (4.11) in the following standard form [60,76]:

d2uAðyÞ
dy2

¼ ½gðyÞ þ qðyÞ�uAðyÞ; ð4:12Þ

where y≡ −kτ is a dimensionless variable and

gðyÞ þ qðyÞ≡ v2t − 1
4

y2
þ ρAc1ϵ�

y
− ρAyðc1 − c2Þϵ� − 1:

ð4:13Þ

In general, gðyÞ and qðyÞ have two poles (singularities): one
is at y ¼ 0þ and the other is at y ¼ þ∞. Now, in order to
construct the approximate solution in the uniform asymp-
totic approximation, one has to choose [60,75]

qðyÞ ¼ −
1

4y2
ð4:14Þ

to ensure the convergence of the errors of the approximate
solutions around the second-order pole at y ¼ 0þ. With this
choice, the function gðyÞ is given by

gðyÞ ¼ v2t
y2

− 1 − ρAyðc1 − c2Þϵ� þ
ρAc1ϵ�

y
: ð4:15Þ

Except for the two poles at y ¼ 0þ and y ¼ þ∞, gðyÞ may
also have a single zero in the range y ∈ ð0;þ∞Þ, which is
called a single turning point of gðyÞ. By solving the
equation gðyÞ ¼ 0, we obtain the turning point

yA0 ¼ −
1

3ρAðc1 − c2Þϵ�
½1 − 21=3ð1þ 3ρ2Aðc1 − c2Þc1ϵ2�Þ=Y

− 2−1=3Y�; ð4:16Þ

where

Y ¼ ðY1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4ð1þ 3ρ2Aðc1 − c2Þc1ϵ2�Þ3 þ Y2

1

q
Þ1=3;

Y1 ¼ −2þ 27v2TðρAc1 − ρAc2Þ2ϵ2� − 9ρ2Aðc1 − c2Þc1ϵ2�:

In the uniform asymptotic approximation, the approximate
solution depends on the type of turning point. Thus, in the
following discussion, we will discuss the solution around
this turning point in detail.
For the single turning point y0, the approximate solution

of the equation of motion around this turning point can be
expressed in terms of Airy-type functions as [60,75]

uA ¼ α0

�
ξ

gðyÞ
�

1=4
AiðξÞ þ β0

�
ξ

gðyÞ
�

1=4
BiðξÞ; ð4:17Þ

where AiðξÞ and BiðξÞ are the Airy functions, α0 and β0 are
two integration constants, and ξ is a function of y given by
[60,75]

ξðyÞ ¼
( ð− 3

2

R
y
y0

ffiffiffiffiffiffiffiffiffiffi
gðy0Þp

dy0Þ2=3; y ≤ y0;

−ð3
2

R
y
y0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðy0Þp

dy0Þ2=3; y ≥ y0:
ð4:18Þ

With this solution, we need to determine the coefficients α0
and β0 by matching it with the initial condition in the limit
y → þ∞. For this purpose, we assume that the universe
was initially in an adiabatic vacuum [60,75],

lim
y→þ∞

ukðyÞ ¼
1ffiffiffiffiffiffiffiffi
2ωk

p e−i
R

ωkdη

¼
ffiffiffiffiffi
1

2k

r �
1

−g

�
1=4

exp

�
−i

Z
y

yi

ffiffiffiffiffiffi
−g

p
dy

�
:

ð4:19Þ

When y → þ∞, we note that ξðyÞ is very large and
negative. In this limit, the asymptotic forms of the Airy
functions read

Aið−xÞ ¼ 1

π1=2x1=4
cos

�
2

3
x3=2 −

π

4

�
; ð4:20Þ

Bið−xÞ ¼ −
1

π1=2x1=4
sin

�
2

3
x3=2 −

π

4

�
: ð4:21Þ

Combining the initial condition and the approximate
analytical solution, we obtain
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α0 ¼
ffiffiffiffiffi
π

2k

r
ei

π
4; β0 ¼ i

ffiffiffiffiffi
π

2k

r
ei

π
4: ð4:22Þ

Having obtained the approximate solutions of the mode
functions uR;LðyÞ as given by Eq. (4.17) with the coef-
ficients α0 and β0 given above, let us compare them with
the numerical solutions. The results are presented in Fig. 1,
in which we present the uniform asymptotic approximate
solutions (solid blue, green, darker yellow curves) and
numerical solutions (red dotted curves) of mode functions
jk3=2uA=ðztHÞj2 in general relativity, Chern-Simons theory,
and ghost-free parity-violating gravities, respectively. The
left and right panels show the solutions of the left-hand and
right-hand modes, respectively. From this figure, one can
clearly see that our analytical solutions are extremely close
to the numerical ones; at times they are indistinguishable.
For the values of c1, c2, and ϵ� used in this figure, we see
that the right-hand and left-hand modes tend to be enhanced
and suppressed by the parity violation, respectively. This
feature is also consistent with the analytical results of the
power spectra calculated later in the next subsection.

C. Power spectra of PGWs

Once the approximate solutions of the PGWs have been
derived in the manner described above, the relevant power
spectra PL;R

T can be computed in the limit y → 0 via

PL
T ¼ 2k3

π2

				 uLk ðyÞz

				2; PR
T ¼ 2k3

π2

				 uRk ðyÞz

				2: ð4:23Þ

When y → 0þ, the argument of the Airy functions ξðyÞ
becomes very large and positive, allowing the use of the
following asymptotic forms:

AiðxÞ ¼ 1

2π1=2x1=4
exp

�
−
2

3
x3=2

�
; ð4:24Þ

BiðxÞ ¼ −
1

π1=2x1=4
exp

�
2

3
x3=2

�
: ð4:25Þ

From the Airy functions (4.24) we observe that, in this
limit, only the growing mode of uAk ðyÞ is relevant, so we
have

uAk ðyÞ ≈ β0

�
1

π2gðyÞ
�

1=4
exp

�Z
y0

y
dy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p �

¼ i
1ffiffiffiffiffi
2k

p
�

1

gðyÞ
�

1=4
exp

�Z
y0

y
dy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p �
: ð4:26Þ

The power spectra of PGWs are then given by

PA
T ¼ k2

π2
1

z2
y
vt
exp

�
2

Z
y0

y
dy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p �

≃ 18
H2

π2e3
e
πρAϵ�
16

ð9c2−c1Þ

≃ 18
H2

π2e3

�
1þ πρA

16
Mϵ� þ

π2

2 × 162
M2ϵ2� þOðϵ�Þ3

�
;

ð4:27Þ

where we define the dimensionless parameter M≡
9c2 − c1 and

FIG. 1. Uniform asymptotic approximate solutions of mode functions jk3=2uA=ðztHÞj2 (solid curves) and the corresponding numerical
solutions (dotted curves). The left and right panels show the solutions of the left-hand and right-hand modes, respectively. In each panel,
the solid blue, green, and darker yellow curves correspond to the solutions for general relativity, Chern-Simons theory, and ghost-free
parity-violating gravities, respectively. The numerical solution associated with each analytical solution is shown by the red dotted
curves.
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9c2 − c1
MPV

¼ 8_ϑþ 4 _a1 _ϕ
2 þ 8a1 _ϕ ϕ̈−8a1H _ϕ2 − 16 _a2 _ϕ

2

− 32a2 _ϕ ϕ̈−10 _a3 _ϕ
2 − 20a3 _ϕ ϕ̈þ4a3H _ϕ2

− 32 _a4 _ϕ
2 − 64a4 _ϕ ϕ̈þ2b1 _ϕ

3

− 4b2ð2H _ϕ2 − _ϕ ϕ̈Þ − 2b3ð _ϕ3ϕ̈ −H _ϕ4Þ
− 2b4ð _ϕ3ϕ̈ −H _ϕ4Þ þ 2b5H _ϕ4 − 2b7 _ϕ

3ϕ̈:

ð4:28Þ

Obviously, the power spectra can be modified due to the
presence of parity-violating terms in the action (2.1). As
expected, one can check that when Mϵ� ¼ 0 the standard
GR result is recovered. Therefore, we can rewrite the power
spectra in Eq. (4.27) as follows:

PA
T ¼ PGR

T

2

�
1þ πρA

16
Mϵ� þ

π2ρ2A
2 × 162

M2ϵ2� þOðϵ�Þ2
�
;

ð4:29Þ

where

PGR
T ¼ 2k3

π2

�				 uLk ðyÞz

				2 þ
				 uRk ðyÞz

				2
�

ð4:30Þ

denotes the standard nearly scale-invariant power-law
spectrum calculated using the uniform asymptotic approxi-
mation in the framework of GR [60]. For the two circular
polarization modes, i.e., A ¼ R and A ¼ L, the spectra PGR

T
have exactly the same form. The quantity M depends on
the coefficients ϑ, aA, and bA, as well as the evolution of
the scalar field. It is interesting to observe that for positive
value of M, the parity violation tends to enhance (sup-
press) the power spectra of the right- (left-)hand modes.
During slow-roll inflation the scalar field is slow rolling,
which satisfies the slow-roll conditions (3.4). With this
condition, the quantities c1 and c2 are assumed to be slowly
varying during the expansion of the universe and can be
approximately treated as constants during slow-roll infla-
tion. We observe that the expression for 9c2 − c1 contains
terms with ϑ, aA, bA and their derivatives with respect to ϕ.
Considering the scalar field ϕ with the slow-roll condition
(3.4), the leading contribution to 9c2 − c1 reads

9c2 − c1
MPV

≃ 8_ϑ − 8

�
a1 −

a3
2
þ b2

�
H _ϕ2: ð4:31Þ

Therefore, the leading contribution to the power spectra of
PGWs depends only on the coefficients _ϑ, a1, a3, and b2.

D. Circular polarization and detectability

Now we are in a position to calculate the degree of the
circular polarization of PGWs, which is defined by the

differences of the amplitudes between the two circular
polarization states of PGWs as

Π≡ PR
T − PL

T

PR
T þ PL

T
≃

π

16
ð9c2 − c1Þϵ� þOðϵ3�Þ

≃
π

2
_ϑMPVϵ� −

π

2

�
a1 −

a3
2
þ b2

�
H _ϕ2MPVϵ� þOðϵ3�Þ:

ð4:32Þ

As expected, when a1 ¼ a3 ¼ b2 ¼ 0 the above expres-
sion of the circular polarization Π exactly reduces to that
in Chern-Simons gravity [79,80]. Obviously, under the
conditions (3.4), we observe that the degree of the
circular polarization Π is very small due to the sup-
pressing parameter ϵ�.
As we mentioned in the Introduction, the parity-violat-

ing effect in PGWs—which is measured by the observable
Π—can produce the TB and EB spectra in the CMB data.
This provides the opportunity to directly detect the chiral
asymmetry of gravity in observational data, which has
been discussed in the literature (see Refs. [17,18,20] for
examples). However, as pointed out in Ref. [34], the
detectability of the circular polarization of PGWs is
sensitive to the values of the tensor-to-scalar ratio r and
Π. According to the combination of Planck 2018 data and
the BICEP2/Keck Array BK15 data [4], r has been tightly
constrained as r≲ 0.065. For this case, in order to detect
any signal of parity violation in forthcoming CMB
experiments, Π must be larger than Oð0.5Þ as discussed,
even in an ideal case with the cosmic variance limit. On
the other hand, since the condition ϵ� ≪ 1 is imposed for
the considerations made in constructing the theory, the
order of magnitude of Π is roughly ≲Oð0.5Þ. For these
reasons, we conclude that it would be difficult to detect or
efficiently constrain parity violation effects using only the
two-point statistics of future cosmic microwave back-
ground data.

V. CONCLUSIONS AND OUTLOOK

In this paper, we studied the circular polarization of
PGWs in the ghost-free parity-violating theory of gravity,
which generalizes Chern-Simons gravity by including
the first and second derivatives of the coupling scalar
field. Applying the uniform asymptotic approximation to
the equation of motion for the PGWs, we constructed
the approximate analytical solution to the PGWs during
slow-roll inflation. Using this approximate solution, we
explicitly calculated both the power spectra for the two
polarization modes and the corresponding degree of
circular polarization of PGWs. It was shown that in the
presence of parity violation the power spectra of PGWs
are slightly modified and the degree of circular polariza-
tion becomes nonzero. However, the circular polarization
generated in the ghost-free parity-violating theory of
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gravity is quite small, which is suppressed by the energy
scale of parity violation of the theory, and it would be
difficult to detect using only the power spectra of future
CMB data.
It should be noted that in all of the above discussions

the effect of parity violation on the non-Gaussianity of
PGWs was not considered. Although there is very little
hope of detecting parity-violation signatures in the two-
point correlation of CMB data, a calculation in Chern-
Simons gravity shows that parity-violation signatures in
the bispectrum could be large enough to be detectable
in future CMB data [46] (Note that a similar analysis
for Hořava-Lifshitz gravity with parity violation was
also carried out in Ref. [36]). According to the analysis
in Ref. [46], the tensor-tensor-scalar bispectra for each
polarization state can be peaked in the squeezed limit by
setting the level of parity violation during inflation.
Therefore, it would be interesting to further explore
whether the ghost-free parity-violating theory of
gravity could lead to any parity-violation signatures

in the non-Gaussianity of PGWs. We leave this topic
to future work.
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