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Abstract. This paper explores the evolutionary behavior of the Earth-satellite binary sys-
tem within the framework of the ghost-free parity-violating gravity and the corresponding
discussion on the parity-violating effect from the laser-ranged satellites. For this purpose, we
start our study with the Parameterized Post-Newtonian (PPN) metric of this gravity theory
to study the orbital evolution of the satellites in which the spatial-time sector of the space-
time is modified due to the parity violation. With this modified PPN metric, we calculate
the effects of the parity-violating sector of metrics on the time evolution of the orbital ele-
ments for an Earth-satellite binary system. We find that among the five orbital elements, the
parity violation has no effect on the semi-latus rectum, while the eccentricity and ascending
node are affected only in a periodic manner. These three orbital elements are the same as
the results of general relativity and are also consistent with the observations of the present
experiment. In particular, parity violation produces non-zero corrections to the eccentricity
and pericenter, which will accumulate with the evolution of time, indicating that the par-
ity violation of gravity produces observable secular effects. The observational constraint on
the parity-violating effect is derived by confronting the theoretical prediction with the ob-
servation by the LAGEOS II pericenter advance, giving a constraint on the parity-violating
parameter space from the satellite experiments.

Keywords: Equations of motion, and 2-body problem in GR and beyond, modified gravity
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1 Introduction

Einstein’s theory of general relativity (GR) was proposed over a century ago and has success-
fully passed a large number of experimental and observational tests, both in weak field limits
and strong field regimes. Observations on the laboratory and solar-system scale where grav-
ity is weak and approximately static [1–3], or the strong-field, static observations of binary
pulsar systems [4, 5], and even extreme-gravity observations of GWs [6] by the LIGO/Virgo
Collaboration and the image of black hole captured by the EHT [7, 8], are all ultimately
found to be in agreement remarkably with the predictions of GR. With such impressive ex-
perimental and observational support, GR has become a standard formalism for describing
the spacetime around gravitational objects.

On the other hand, symmetry is an essential characteristic of the fundamental theories
of modern physics and thus necessary to be tested experimentally and observationally. It
is well known early in the 1950s that one of the discrete symmetries, parity, is violated in
the weak interaction [9, 10]. This essentially implies that our nature is parity-violating.
One natural question now arises, that is, whether the parity symmetry can be violated
in the gravitational sector. Recently, there were lots of theoretical models of gravity with
parity violation were studied in the literature, including Chern-Simons gravity [11–17], ghost-
free scalar-tensor gravity [18], the symmetric teleparallel equivalence of GR theory [19], the
parity-violating scalar-nonmetricity [20], Hořava- Lifshitz gravity [21, 22], and the Nieh-Yan
modified teleparallel gravity [23, 24]. These models have been proposed mainly to account
for the nature of dark energy, dark matter, or quantizing gravity. It is also shown that the
parity violation in the gravitational sector is almost inevitable [16] in some quantized theories
of gravity, such as string theory and loop quantum gravity. These have already stimulated a
lot of experimental and observational tests of gravitational parity violation both in the weak
field and strong field regimes, for examples, see [12, 14, 15, 25–33] and references therein.
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When the parity is violated in the gravitational sector, it can lead to a unique cor-
rection to the spatial-time components of the spacetime metric. In the weak field limits,
this implies that it modifies the gravitomagnetic sector of spacetime in GR. For example, in
the (non-)dynamical Chern-Simons (CS) gravity, the effects of the parity violation normally
appear in the spatial-time components of a slowly rotating gravitational object [13, 34–38].
The parity-violating effects, although might be different in different theories, can introduce
new contributions to the frame-dragging effects induced by a rotating or a moving object.
Therefore, the measurement of the frame-dragging effect in solar system experiments, such as
LAGEOS and LARES satellites [39] and Gravity Probe B (GPB) missions [40], are expected
to constrain the parity-violating effects of specific theories. In the strong field regime, the
most direct tests of gravity are the signals of gravitational wave events, especially parity-
violating gravity, whose presence affects the propagation and production of gravitational
waves. The presence of the parity violation in gravity induces amplitude or/and velocity
birefringence in the propagation of GWs [14, 20, 41–46]. These parity-violating effects have
been examined using gravitational wave event data for various precision tests, like searching
for birefringence effects or constraints on the parameters of the theory [20, 25, 47–52]. In
addition, since frame-dragging effects in the periastron precession of the Double Pulsar PSR
J0737-3039A/B might be observed in the near future [53], the current and future observations
of the Double Pulsar can also be used to probe the parity violation.

Various parity-violating theories are currently constructed based on different objectives,
of which we mainly focus on the study related to the ghost-free parity-violating gravity [18].
We find that the presence of parity violation in this theory leads to both velocity and am-
plitude birefringence, where the effect of velocity birefringence is much greater than that of
amplitude birefringence for the gravitational wave signal [27, 28]. These effects are examined
in ref. [25] using gravitational wave data and the tightest constraint on the current theoret-
ical parameter is given. By considering the slow motion and weak field approximations of
the theory in the PPN framework, we obtain the new curl-type term similar to those in CS
theory due to the presence of parity violation [54]. This shows that parity violation does
modify the gravitomagnetic sector of spacetime, i.e., it affects the spacetime around moving
or rotating objects. Therefore, two excellent solar system experiments, LAGEOS and LARES
satellites [39] and GPB [40], are available for testing the parity symmetry of gravity. In this
paper, we mainly combine the LAGEOS and LARES satellites experiment to explore the
parity symmetry of gravity, while the analysis in combination with the GPB experiment has
been discussed in ref. [54].

This paper is organized as follows. In section 2, we briefly introduce the theory of ghost-
free parity-violating gravity. In section 3, we calculate the orbital elements. In section 4,
we constrain the parameter of this theory with the experimental data. The conclusions and
discussions are given in section 5. Throughout this paper, we have adopted geometric units
such that G = 1 = c, and the metric convention is chosen as (−, +, +, +), and Greek indices
(µ, ν, · · · ) run over 0, 1, 2, 3 and Latin indices (i, j, k, · · · ) run over 1, 2, 3.

2 Parity violating sector of metrics

The parity violation in gravitational interaction can arise from various beyond-GR theories,
for example the ghost-free parity-violating gravity. In this section, we present a brief intro-
duction to the ghost-free parity-violating gravity. The action of the ghost-free parity-violating
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gravity has the following form

S = 1
16πG

∫
d4x

√
−g [R + LPV + Lϑ + Lm] , (2.1)

where R is the Ricci scalar, LPV is the Lagrangian which contains parity-violating terms
coupled to a scalar field ϑ, Lϑ is the Lagrangian for the scalar field, which is non-minimally
coupled to gravity, and Lm denotes the Lagrangian density of the matter field. The parity-
violating Lagrangian LPV has different expressions for different theories. The Chern-Simons
Lagrangian can be written in the form [16]

LCS = 1
4ϑ ∗RR , (2.2)

where
∗RR = 1

2εµνρσRρσαβRαβ
µν (2.3)

is the Pontryagin density defined with ερσαβ being the Levi-Civitá tensor defined in terms of
the antisymmetric symbol ϵρσαβ as ερσαβ = ϵρσαβ/

√
−g and ϑ is a function of the scalar field

ϕ. However, this theory has a higher-derivative field equation, which induces the dangerous
Ostrogradsky ghosts. For this reason, CS modified gravity can only be treated as a low-energy
truncation of a fundamental theory. To cure this problem, the extension of CS gravity by
considering the terms that involve the derivatives of a scalar field is recently proposed in [18].
The action is generalized in this paper by including the first and second derivatives of the
scalar field: ϕµ = ∇µϕ and ϕµν = ∇µϕν .

LPV1 is the Lagrangian containing the first derivative of the scalar field, which is given by

LPV1 =
4∑

A=1
aA(ϕ, ϕµϕµ)LA, (2.4)

L1 = εµναβRαβρσRµν
ρ

λϕσϕλ,

L2 = εµναβRαβρσR ρσ
µλ ϕνϕλ,

L3 = εµναβRαβρσRσ
νϕρϕµ,

L4 = εµνρσRρσαβRαβ
µνϕλϕλ,

where aA are a priori arbitrary functions of ϕ and ϕµϕµ. In order to avoid the Ostrogradsky
modes in the unitary gauge (where the scalar field depends on time only), it is required that
4a1 + 2a2 + a3 + 8a4 = 0. With this condition, the Lagrangian in eq. (2.4) does not have any
higher-order time derivative of the metric, but only higher-order space derivatives.

One can also consider the terms which contain second derivatives of the scalar field.
Focusing on only these that are linear in Riemann tensor and linear/quadratically in the
second derivative of ϕ, the most general Lagrangian LPV2 is given by

LPV2 =
7∑

A=1
bA(ϕ, ϕλϕλ)MA, (2.5)

M1 = εµναβRαβρσϕρϕµϕσ
ν ,

M2 = εµναβRαβρσϕρ
µϕσ

ν ,

M3 = εµναβRαβρσϕσϕρ
µϕλ

νϕλ,

– 3 –



J
C
A
P
1
0
(
2
0
2
3
)
0
6
6

M4 = εµναβRαβρσϕνϕρ
µϕσ

λϕλ,

M5 = εµναβRαρσλϕρϕβϕσ
µϕλ

ν ,

M6 = εµναβRβγϕαϕγ
µϕλ

νϕλ,

M7 = (∇2ϕ)M1,

with ϕσ
ν ≡ ∇σ∇νϕ. Similarly, in order to avoid the Ostrogradsky modes in the unitary gauge,

the following conditions should be imposed: b7 = 0, b6 = 2(b4 + b5) and b2 = −A2
∗(b3 − b4)/2,

where A∗ ≡ ϕ̇(t)/N and N is the lapse function. In this paper, we consider a general scalar-
tensor theory with parity violation, which contains all the terms mentioned above. So, the
parity-violating term in eq. (2.1) is given by

LPV = LCS + LPV1 + LPV2. (2.6)

Therefore, the CS modified gravity in [16], and the ghost-free parity-violating gravities dis-
cussed in [18] are all the specific cases of this Lagrangian. The coefficients ϑ, aA and bA
depend on the scalar field ϕ and its evolution.

The modified field equation can be obtained by variation of the action with respect to
the metric gab, which yield

Rab − 1
2gabR + 1√

−g

δ(
√

−gLPV)
δgµν

= − 2√
−g

δ(
√

−gLm +
√

−gLϕ)
δgµν

. (2.7)

In ref. [54], we have obtained the specific form of this modified field equation and derived
the PPN metrics of the perturbative field equation in the PPN framework. The full PPN
metrics of this theory are given by

g00 = −1 + 2U − 2U2 + Ψ + O(6),

g0i = −7
2Vi − 1

2Wi + 2f ′(∇ × V )i + O(5),

gij = (1 + 2U)δij + O(4), (2.8)

where f = ϑ + (−2a2 + a3 − 8a4)ϕ′2, Ψ = 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4, the PPN potentials
U, Φ1, Φ2, Φ3, Φ4, Vi, Wi are given by eqs. (A.1)–(A.7) in appendix A. Note that the
parity-violating terms in the gravity only contribute to the g0i sector of the metric. Therefore,
for this metric with parity-violating corrections, it can be tested in conjunction with solar
system experiments, such as GPB, LAGEOS, LAGEOS II, and LARES satellites. In this
paper, we will consider the effect of parity violation on the evolution of particle orbits in such
a binary system of the Earth and its satellite with a revolution velocity around the Sun.

3 Procession rate of the orbital elements

Now we consider a particle moving in the above metric (2.8). The trajectory of the particle
follows time-like geodesic, which is governed by

d2xµ

dτ2 = −Γµ
νλ

dxν

dτ

dxλ

dτ
, (3.1)

where xµ = (t, x, y, z) is the coordinates of the test particle, τ is the proper time, and Γµ
νλ

is the Christoffel connection of the spacetime. We are interested in the acceleration of the
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particle, and we find

d2xi

dt2 = −Γi
00 − 2Γi

0jvj − Γi
jkvjvk + Γ0

00vi + 2Γ0
0jvivj + Γ0

jkvivjvk, (3.2)

where vi ≡ dxi/dt ≪ 1. Eq. (2.8) has given the metric form, in order to simplify the later
calculation we define a new vector g0i = ζi. In the weak field limit, it is a good approximation
to consider vi ≪ 1 and we can retain the leading order and ignore the higher-order terms.
Then the acceleration of the particle takes the form as

d2r

dt2 = ∇U − 2U∇U + v × (∇ × ζ) − 3(∇U · v)v + ∇Uv2 + O(5). (3.3)

We also neglected the contribution of Ψ in the above equation, which is not corrected in this
theory. Note that the velocity of the satellite in the Earth-satellite binary system contains
two contributions: v = vs +v⊕, where vs indicates the orbital velocity of the satellite around
the Earth and v⊕ indicates the velocity of the motion of the binary system around the Sun.

For an orbiting, rotating, almost spherical gravitational object, such as the Earth, the
PPN potential can be written as [55]

U = M⊕
r

,

V = M⊕
r

v⊕ + 1
2

(
J⊕
r3 × x

)
,

W = M⊕
r

(n · v⊕)n + 1
2

(
J⊕
r3 × x

)
, (3.4)

where n ≡ r/r, M⊕ and J⊕ denote the mass and angular momentum of the Earth, respec-
tively. We now treat all the contributions to the acceleration except the Newtonian two-body
acceleration as perturbations, i.e.,

d2r

dt2 = −M⊕
r2

r

r
+ F 1 + F 2 + F 3, (3.5)

where F 1, F 2, F 3 denote the perturbed force to the binary system which are given by

F 1 = 4
M2

⊕
r3 n + 3M⊕

r2 (n · vs)vs − M⊕
n

r2 v2
s − 6

r3 (vs × n)(n · J⊕) + 2
r3 vs × J⊕,

F 2 = −M⊕
r2 [(n · vs)v⊕ − 3(n · v⊕)vs + (n · v⊕)v⊕]

+M⊕
n

r2 (2v⊕ · vs − 3v2
⊕)− 6

r3 (v⊕ × n)(n · J⊕) + 2
r3 (v⊕ × J⊕),

F 3 = −2f ′ M⊕
r3 vs × v⊕ + 6f ′ M⊕

r3 (vs × n)(n · v⊕) + 6f ′ M⊕
r3 (v⊕ × n)(n · v⊕). (3.6)

Here F 1 depends on the mass and spin of the Earth, which denotes the perturbative force
of the Earth’s gravity and spin on the satellite orbit. F 2 depends not only on the mass
and spin of the Earth, but also on the translational velocity of the Earth, which denotes
that the perturbative force contains the contribution of the Sun’s gravity. It is important
to note that F 1 and F 2 are both derived from the orbital force generated in GR theory,
only distinguishing the different states of motion of the binary system. However, F 3 also
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depends on an additional parameter f ′, which indicates the perturbative force generated by
the parity-violating terms. We then consider the effects of each of these three perturbative
forces on the orbital motion.

In this way, one can define the osculating elliptical orbit of the binary motion as

r ≡ p

1 + e cos f
n̂, vs ≡ ṙn̂ + h

r
λ̂, h ≡

√
GM⊕p, (3.7)

where p is the semi-latus rectum of the elliptical motion, e is the orbitial eccentricity, and f
is the true anomaly. The unit vectors n̂ and λ̂ denote the radial and transverse directions
respectively. With n̂ and λ̂ we can introduce the unit normal vector ĥ = n̂ × λ̂. The unit
vectors n̂, λ̂, and ĥ can be related to the fixed reference directions ex, ey, and ez of the
coordinate system (x, y, z) via the following transformation,

n̂ = cos fex + sin fey, λ̂ = − sin fex + cos fey, ĥ = ez, (3.8)

where (Ω, ι, ω) are the longitude of the ascending node, the inclination angle, and the
argument of pericentre respectively. We need to note that both coordinate frames (ex, ey, ez)
and (n̂, λ̂, ĥ) are established in the satellite orbital plane. These three quantities are the Euler
angles which characterize the rotation between the frame (ex, ey, ez) and (n̂, λ̂, ĥ).

In addition, we introduce a fundamental frame with base vectors (eX , eY , eZ) and de-
scribe the motion of the system in this new frame. We adopt the Z-axis as the reference
direction parallel to the spin vector J⊕ of the Earth and the X − Y plane as the reference
plane of the new frame. The fundamental (X, Y, Z) frame can be obtained from the orbital
(x, y, z) frame by the following transformation,

eX = [cos Ω cos ω − cos ι sin Ω sin ω]ex − [cos Ω sin ω + cos ι sin Ω cos ω]ey + sin ι sin Ωez,

eY = [sin Ω cos ω + cos ι cos Ω sin ω]ex − [sin Ω sin ω − cos ι cos Ω cos ω]ey − sin ι cos Ωez,

eZ = sin ι sin ωex + sin ι cos ωey + cos ιez. (3.9)

In these two coordinate frames, the vectors v⊕ and J⊕ can be conveniently given

v⊕ = v⊕(sin θ cos γeX + sin θ sin γeY + cos θeZ)
= vxex + vyey + vzez,

J⊕ = J⊕eZ

= Jxex + Jyey + Jzez, (3.10)

where

vx = v⊕[sin θ cos γ(cos Ω cos ω − cos ι sin Ω sin ω) + sin θ sin γ(sin Ω cos ω + cos ι cos Ω sin ω)
+ cos θ(sin ι sin ω)],

vy = v⊕[− sin θ cos γ(cos Ω sin ω + cos ι sin Ω cos ω) − sin θ sin γ(sin Ω sin ω − cos ι cos Ω cos ω)
+ cos θ(sin ι cos ω)],

vz = v⊕[sin θ cos γ sin ι sin Ω − sin θ sin γ sin ι cos Ω + cos θ cos ι],
Jx = J⊕ sin ι sin ω, Jy = J⊕ sin ι cos ω, Jz = J⊕ cos ι. (3.11)

It should be noted here that two new parameters γ and θ are introduced in the above equation,
where the parameter γ denotes the angle between the projection of the velocity v⊕ in the
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X − Y plane and the position of the right ascending node and the parameter θ is between
the spin J⊕ and velocity vectors v⊕ of the Earth. The parameters γ and θ are the periodic
parameters that vary with time over a period of one year. With the previous discussion, one
can decompose the perturbed force F i(i = 1, 2, 3) along the n̂, λ̂, and ĥ as

F i = Rn̂ + Sλ̂ + Wĥ. (3.12)

3.1 Orbital effects from the perturbation force F1

In previous calculations, we already know that F 1 is a perturbation produced by the Earth’s
gravity and spin on the satellite’s orbital motion. We can decompose this perturbation F 1
into the coordinate system [R, S, W], and then bring it into the expression for the orbital
elements (B.7)–(B.11), and finally we can calculate the rate of change for each orbital element.
The results of this part of GR have been investigated in detail in many works of literature.
Therefore, we do not repeat the calculation, and the final results are given directly below [57]

Ω̇1 = 2J⊕
a3(1 − e2)3/2 ,

ω̇1 =
3M

3/2
⊕

a5/2(1 − e2)
− 4J⊕ cos ι

a3(1 − e2)3/2 . (3.13)

The results of the theoretical predictions of the general relativity of the secular frame-dragging
precession rate Ω̇ on the right-ascension of the ascending node of the LAGEOS, LAGEOS II,
and LARES satellites have been given in table 2.

3.2 Orbital effects from the perturbation force F2

Compared with the perturbative force F 1, F 2 also depends on the Earth’s translational
velocity in eq. (3.6), that is, the Sun’s gravity is involved in the generation of this perturbative
force. Decomposing F 2 into the coordinate system [R, S, W] yields

R = M⊕
r2

[
4he

p
sin f(vx cos f + vy sin f) − (vx cos f + vy sin f)2

]
+M⊕

r2

[
2h

r
(vy cos f − vx sin f) − 3v2

⊕

]
+ 2

r3 [(vyJz − vzJy) cos f + (vzJx − vxJz) sin f)], (3.14)

S = −M⊕
r2

[
he

p
sin f(vy cos f − vx sin f) − 3h

r
(vx cos f + vy sin f)

]
−M⊕

r2 [(vx cos f + vy sin f)(vy cos f − vx sin f)]

− 6
r3 vz(Jx cos f + Jy sin f)+2 1

r3 [(vzJy − vyJz) sin f + (vzJx − vxJz) cos f)], (3.15)

W = −M⊕
r2

[
he

p
sin fvz + (vx cos f + vy sin f)vz

]
− 6

r3 (vx sin f − vy cos f)(Jx cos f + Jy sin f)+ 2
r3 (vxJy − vyJx). (3.16)

We insert the above expressions into eq. (B.7)–(B.11) and integrate them over a complete
orbital period to calculate the secular variation of the orbital elements p, e, ι, ω, and Ω.
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Through tedious calculations, we obtain

dp

df
= −2 eh

1 + e cos f
sin f(vy cos f − vx sin f) + 6h(vx cos f + vy sin f)

−2 p

(1 + e cos f)(vx cos f + vy sin f)(vy cos f − vx sin f)

− 8
M⊕

vz(Jx cos f + Jy sin f)− 4
M⊕

vyJz sin f − 4
M⊕

vxJz cos f,

de

df
= 4e

h

p
sin2 f(vx cos f + vy sin f) − sin f(vx cos f + vy sin f)2

+2h

p
sin f(1 + e cos f)(vy cos f − vx sin f)−3 sin fv2

⊕

+21 + e cos f

M⊕p
sin f [(vyJz − vzJy) cos f + (vzJx − vxJz) sin f)]

−eh

p

2 cos f + e(1 + cos2 f)
(1 + e cos f) sin f(vy cos f − vx sin f)

+3h

p
[2 cos f + e(1 + cos2 f)](vx cos f + vy sin f)

−2 cos f + e(1 + cos2 f)
(1 + e cos f) (vx cos f + vy sin f)(vy cos f − vx sin f)

−22 cos f + e(1 + cos2 f)
pM⊕

(2vzJx cos f + 2vzJy sin f + vyJz sin f + vxJz cos f),

dι

df
= −eh

p

sin(ω + f)
(1 + e cos f) sin fvz − sin(ω + f)

(1 + e cos f)(vx cos f + vy sin f)vz

−6 sin(ω + f)
pM⊕

(vx sin f − vy cos f)(Jx cos f + Jy sin f)+2sin(ω + f)
pM⊕

(vxJy − vyJx),

sin ι
dΩ
df

= he

p

sin(ω + f)
(1 + e cos f) sin fvz − sin(ω + f)

(1 + e cos f)(vx cos f + vy sin f)vz

−6 sin(ω + f)
pM

(vx sin f − vy cos f)(J1 cos f + J2 sin f) + 2sin(ω+f)
pM

(vxJ2 − vyJ1),

dω

df
= −2h

p

cos f

(1 + e cos f) sin f(vx cos f + vy sin f) + 1
e

cos f

(1 + e cos f)(vx cos f + vy sin f)2

−2h

p

cos f sin f

(1 + e cos f)(vx cos f + vy sin f) − 2h

ep
cos f(vy cos f − vx sin f)

+31
e

cos f

(1 + e cos f)v2
⊕−2 1

epM⊕
cos f [(vyJz − vzJy) cos f + (vzJx − vxJz) sin f)]

−h

p

2 + e cos f

(1 + e cos f) sin2 f(vy cos f − vx sin f)

+3eh

p
(2 + e cos f) sin f(vx cos f + vy sin f)]

−1
e

2 + e cos f

(1 + e cos f) sin f [(vx cos f + vy sin f)(vy cos f − vx sin f)]

– 8 –



J
C
A
P
1
0
(
2
0
2
3
)
0
6
6

− 6
epM⊕

(2 + e cos f) sin fvz(Jx cos f + Jy sin f)

+2 1
epM⊕

(2 + e cos f) sin f [−(vyJz − vzJy) sin f + (vzJx − vxJz) cos f)]

+eh

p
cot ι

sin(ω + f)
(1 + e cos f) sin fvz + cot ι

sin(ω + f)
(1 + e cos f)(vx cos f + vy sin f)vz

+ cot ι
6 sin(ω + f)

pM⊕
(vx sin f − vy cos f)(Jx cos f + Jy sin f)

−2 cot ι
sin(ω + f)

pM⊕
(vxJy − vyJx) . (3.17)

The above calculations show that the contribution of the perturbation force F 2 to the orbital
elements is not zero. This part of the equation for the orbital elements has some expressions
that depend on the combination of eccentricity e and trigonometric functions, making it
difficult to give a concise form of the integral. To compare with the effects produced by the
perturbative force F 1, we choose only the orbital element Ω̇ for the magnitude comparison.
The relevant parameters have been given in table 1 and substituted into the orbital element
Ω̇ to obtain

Ω̇2 ∼ 10−4mas/yr ≪ Ω̇1 ∼ 102mas/yr. (3.18)

This result indicates that the contribution of the perturbation force F 2 to the orbital elements
is negligible compared to the perturbation force F 1.

3.3 Orbital effects from the perturbation force F3

Compared to the perturbative forces F 1 and F 2, each of F 3 depends on the parameter f ′.
Thus F 3 is the perturbative force of which we are concerned for the orbital motion produced
by the parity-violating correction. Similarly, we decompose F 3 into the coordinate system
[R, S, W] to obtain

R = −2f ′ M⊕h

r4 vz,

S = 2f ′ M⊕
r3

he

p
vz sin f + 6f ′ M

r3 vz(vx cos f + vy sin f),

W = −2f ′ M⊕
r3

he

p
(vy cos f − vx sin f) sin f + 8f ′ M⊕h

r4 (vx cos f + vy sin f)

+6f ′ M⊕
r3 (vx sin f − vy cos f)(vx cos f + vy sin f), (3.19)

where the forms for vx, vy and vz have been given in eq. (3.11). We are then at a position to
calculate the secular variation of the orbital elements p, e, ι, ω, and Ω by inserting the above
expressions into (B.7)–(B.11), and integrating over a complete satellite orbital cycle. Note
that the integration process here is chosen over a satellite orbital period, during which the
variation of the parameters γ and θ of the velocity component vx,y,z is very small compared
to their period of one year. Therefore, in this process we can treat these two parameters as
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Orbital elements Unit Symbol LAGEOS LAGEOS II LARES
semi-major axis [km] a 12270.00 12162.07 7820.31

eccentricity e 0.00451 0.01375 0.00074
inclination [deg] ι 109.83 52.68 69.49

argument of perigee [deg] ω 347.67 77.43 19.01
right ascension of ascending node [deg] Ω 249.38 26.14 294.48

Table 1. Orbital elements of the LAGEOS, LAGEOS II, and LARES satellites.

constants. It is straightforward to obtain,

ṗ3 = 0,

ė3 = 6f ′

√
GM⊕

a3
1
p

vxvz,

ι̇3 = 4f ′

√
GM⊕

a3
h

p2 (vx cos ω − vy sin ω), (3.20)

Ω̇3 = 4f ′

√
GM⊕

a3
h

p2 (vx sin ω + vy cos ω),

ω̇3 = 3f ′

√
GM⊕

a3
h

p2 vz − 4f ′

√
GM⊕

a3
h

p2 cot ι(vx sin ω + vy cos ω)+6f ′

√
GM⊕

a3
1
ep

vyvz.

From the expression above we can see that the last four of the orbital elements are non-
zero, which indicates that the parity-violating terms all produce corrections to these orbital
elements. These results are very similar to those in the Lense-Thirring effect, which is due
to the rotation of the object and the creation of pseudo-vectors in the perturbative force
F 1, that is, the last two terms in expression (3.6). These terms also lead to corrections
in the orbital elements for eccentricity, inclination, ascending node and pericenter, of which
only the ascending node and pericenter are true secular effects [58], which are the terms
associated with the spin J⊕ in expression (3.13). We can see from expression (3.6) that the
perturbative force F 3 is a pseudo-vector, and all three of its components [R, S, W ] (3.19) in
the coordinate system are pseudo-scalars. Ultimately the corrections to the orbital elements
by this perturbation force F 3 also produce non-zero inclination, eccentricity, ascending node,
and pericenter, as well as all four orbital elements are pseudoscalars. However, whether
all these corrected orbital elements have real secular effects will be further discussed in the
next section.

In some applications or solar system experiments, it is not easy to separate the variation
of Ω and ω, especially when the inclination angle ι is very small. In these cases, one in
general measures the procession rate of the periastron along the orbit plane, which is typically
represented as

ϖ̇ ≡ ω̇3 + Ω̇3 cos ι. (3.21)

For these metrics, it is easy to show that

ϖ̇ = 3f ′

√
GM⊕

a3
h

p2 vz+6f ′

√
GM⊕

a3
1
ep

vyvz. (3.22)
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Orbital elements LAGEOS LAGEOS II LARES

Ω̇LT 30.68 31.50 118.50
ω̇GR 3278.77+31.23 3352.58−57.31 10110.112−334.68

Table 2. Theoretical predictions of the secular precession rate on the right-ascension of the ascending
node and pericenter of LAGEOS, LAGEOS II, and LARES satellites in general relativity. The unite
of the rate is milliseconds of arc per year (mas/yr).

From the above calculations, we can clearly see that in such a binary system, the parity-
violating terms produce non-zero contributions to the satellite’s orbital elements. Therefore,
these effects can be verified by relevant experiments. In the following, we will discuss these
corrections arising under this theory in the context of specific experiments.

4 Constraints with experimental results from laser-ranged satellites

The LAGEOS, LAGEOS II, and LARES satellites are three man-made laser ranged satellites
of ASI, the Italian Space Agency. These satellites are designed to measure the frame-dragging
effects of the earth’s rotation on the orbits of the satellites. Recently, such frame-dragging
effects have been measured to about a few present accuracies by using 7 years of the laser
ranged data of LARES and 26 years of the laser-ranged data of LAGEOS and LAGEOS
II [56]. Such a measurement also used the static part and temporal variations of the Earth’s
gravity field obtained by the space geodesy mission GRACE (NASA) and in particular the
static Earth’s gravity field model GGM05S augmented by a model for the 7-day temporal
variations of the lowest degree Earth spherical harmonics [56]. By introducing a dimensionless
coefficient µ to represent the frame-dragging effect parameter with µ = 1 being the value in
GR, the authors in [56] consider a measurement of the combination

µΩ̇I + µk1Ω̇II + µk2Ω̇III

≃ µ(30.68 + k131.50 + k2118.50) mas/yr + errors, (4.1)

where k1 = 0.3448, k2 = 0.07291, and Ω̇I , Ω̇II , and Ω̇III which are given in table 2, denote
the precession rate on the right-ascension of the ascending node of LAGEOS, LAGEOS II,
and LARES satellites, respectively. The latest measurement of the above combination leads
to [56]

µmeas − 1 = (1.5 ± 7.4) × 10−3 ± 16 × 10−3 (4.2)

where the first terms within parentheses represent the measurement and its formal error
(0.74%, at a 95% confidence level), while the last term represents estimate for the error bud-
get, 1.6%. As pointed out in ref. [56], this error budget derives from a root-sum-square (RSS)
of the main systematic effects that are related to the gravitational and non-gravitational per-
turbations that act on the orbits of the satellites. It accounts for the errors related to the
static field, to ocean tides, to other periodic effects and to the error related to the knowledge
of the de Sitter precession.

Here if we directly adopt the results of eq. (3.20), using the above measurements can
formally go to constrain the parity-violationg effect. However, again we need to note that
eq. (4.1) and eq. (4.2) are cumulative observations over a long period of time (more than seven
years), while eq. (3.20) is the result obtained over one satellite orbital period. If the evolution
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time we consider is a long-term process (more than one year), then the parameters γ and θ
cannot be considered as constants and will vary periodically. The period of the parameter γ
is [0, 360◦] and the parameter θ cycles from a minimum value of 66.5◦ (autumnal equinox) to
a maximum value of 113.5◦ (vernal equinox), and their periods all correspond to one year.
This suggests that the rate of change of the orbital elements in eq. (3.20) will have some
periodically transformed oscillatory terms that can be neglected after averaging. With these
considerations, the rates of change of the orbital elements are reduced to

ṗ3 = 0,

ė3 = −3
2

f ′

p

√
GM⊕

a3 v2
⊕ sin ι cos ι sin ω,

ι̇3 = 0,

sin ιΩ̇3 = 0,

ω̇3 = 3
2

f ′

ep

√
GM⊕

a3 v2
⊕sin ι cos ι cos ω. (4.3)

From the above expressions, we can clearly see that only the two orbital elements, eccentricity
and pericentre, are truly non-zero. This indicates that the parity-violating effect does have an
effect on the motion process of the satellite, which will gradually accumulate as the evolution
time increases. Meanwhile, we observe that the results for the semi-latus rectum, inclination
and ascending node of this theory agree with those in GR. It is shown that the parity-violating
terms did not change the semi-latus rectum, while the eccentricity and ascending node of the
orbital elements are affected only in a periodic manner, remaining unchanged after averaged
over time. The only secular effects appeared in the eccentricity and pericentre of the orbital
elements. Here we would not be able to use the observation of the ascending node in eq. (4.2)
to constrain the parity-violating effect of the theory. It is worth noting that there is a clear
difference between our computed ascending node advance and that in ref. [33], although both
the CS gravity and the ghost-free parity-violating gravity have similar PPN parameters. The
difference is that in ref. [33] the parity-violating effect produces a correction for the ascending
node while our result has no effect. This is due to the presence of some oscillatory terms in
the solution of the vector eq. (23) in ref. [33], which ensures the continuity of the solution
at the sphere. These oscillatory terms are higher-order terms of the parameter f ′ that are
neglected when solving for the vector eq. (4.15) in ref. [54].

We then turn to consider the measured pericentr advance of LAGEOS satellites around
the Earth. Ref. [59] analyzed 13 years of tracking data from the LAGEOS satellites, providing
a measurement of the pericentre advance of the LAGEOS satellite II as

ω̇ = ϵ ω̇GR, (4.4)

where ϵ = 1+(0.28±2.14)×10−3 and the result of the LAGEOS satellite II for ω̇GR has been
given in table 2. This allows us to apply this observation to constrain the correction of the
parity violation for the pericentr advance. It is easy to derive a corresponding constraint as

|ω̇3| ≲ |(ϵ − 1)ω̇GR|, (4.5)

that can be translated into a constraint on the parameter f ′ as

f ′ ≲ 104 m. (4.6)
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The corresponding energy scale of the parity-violating in this gravity is MPV := 1/f ′ ≳
10−20 GeV, which is consistent with the constraint obtained from GPB [54]. In non-dynamical
CS gravity, the result of the measurement using the ascending node gives the parity-violating
energy scale of MCS ≳ 10−22 GeV, at which case the measurement precision considered is
10% [33]. Considering that the current measurement precision is already below 1%, the en-
ergy scale constraint obtained in non-dynamical CS gravity will be improved, whose result is
compatible with ours. In addition, a tighter constraint on the parity-violating energy scale in
non-dynamical CS gravity based on measurements of the periastron precession rate of binary
pulsar system is MCS ≳ 10−18 GeV, which is two orders of magnitude higher than the results
given in the solar system [31]. Thus the contribution of the parity-violating effects will proba-
bly be more significant in binary pulsar systems, which will be considered in our future work.

5 Conclusions and discussions

In this paper we extend the previous work by investigating the evolution of the motion of
a binary system of Earth and its satellites in ghost-free parity-violating gravity. In this
binary system, we consider both the influence of the Earth’s spin and the translational
motion on the evolution of the satellite orbital motion process. We applied the PPN metric
of the ghost-free parity-violating gravity to calculated each orbital element of the satellite
motion. Comparing the results with those of GR, we find that the parity violation terms
correct for both eccentricity and pericenter in the all orbital elements, while the rest of the
orbital elements are consistent with GR and conform to current experimental observations.
These two corrections are secular effects that gradually accumulate over time. This suggests
that these effects will eventually be tested experimentally, if observations are performed
experimentally for the enough period of time. By using the observation of the pericenter
advance of LAGEOS Satellite II, we give specific constraints on this theoretical parameter:
f ′ ≲ 104 m. We also give constraints on the theoretical parameters f ′ ≲ 104 m in the Gravity
Probe B experiment, with comparisons obtained in the LAGEOS Satellite II experiment
found to be orders of magnitude the same.

It is expected that the LARRES−2 satellite has been launched on June 13, 2022, which
joins the experiment and may enhance the detection capability of the experiment. As the
experimental observations continue and cumulative data analysis improves, we expect obser-
vations of other orbital elements to be given, especially eccentricity. Once multiple orbital
elements are available, we can use them to impose joint constraints on the parity-violating
effects, which in turn give tighter constraints on the parameters. In addition, we are more
interested in testing the gravity with parity violation in binary pulsar systems in the future,
which is another important testbed in the field of strong fields. Since the parity violation of
gravity induces some effects on binary star systems that may be more significant, including
modifications to the rate of periastron precession, the modification on the Schiff procession
and/or the frame-dragging procession, as well as the modification on Lense-Thirring proces-
sion. Increasingly precise experimental observations of binary pulsar systems make this even
more interesting.
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A PPN potentials

In this appendix, we present the explicit expressions for the PPN potentials used to param-
eterize the metric in eqs. (2.8). These potentials are given as follows [55]:

U ≡
∫

ρ (x′, t)
|x − x′|

d3x′, (A.1)

Φ1 ≡
∫

ρ′v′2

|x − x′|
d3x′, (A.2)

Φ2 ≡
∫

ρ′U ′

|x − x′|
d3x′, (A.3)

Φ3 ≡
∫

ρ′Π′

|x − x′|
d3x′, (A.4)

Φ4 ≡
∫

p′

|x − x′|
d3x′ (A.5)

Vj ≡
∫ ρ (x′, t) v′

j

|x − x′|
d3x′, (A.6)

Wj ≡
∫ ρ (x′, t) v′ · (x − x′) (x − x′)j

|x − x′|3
d3x′. (A.7)

B Osculating equations of Kepler problem with perturbations

The effects of the Lense-Thirring terms and the parity-violating effects in the PPN metric
on the binary motion can be treated as perturbations to the Kepler problem in Newtonian
mechanics. Under the perturbations, the equations of the osculating orbital elements are
given by

da

dt
= 2

√
a3

Gm
(1−e2)−1/2 ×

[
e sin f R + (1 + e cos f)S

]
, (B.1)

de

dt
=

√
a

Gm(1−e2) ×
[
sin fR + 2 cos f + e(1 + cos2 f)

1 + e cos f
S

]
, (B.2)

dι

dt
=

√
a

Gm(1−e2)
cos(ω + f)
1 + e cos f

W, (B.3)

sin ι
dΩ
dt

=
√

a

Gm(1−e2)
sin(ω + f)
1 + e cos f

W, (B.4)

dω

dt
= 1

e

√
a

Gm(1−e2)

[
− cos fR + 2 + e cos f

1 + e cos f
sin fS − e cot ι

sin(ω + f)
1 + e cos f

W
]

, (B.5)

df

dt
=

√
Gm(1−e2)3

a3 (1+e cos f)2+ 1
e

√
a

Gm(1−e2) ×
[
cos fR − 2+e cos f

1+e cos f
sin fS

]
. (B.6)
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In order to investigate the secular change of the orbital elements, we transform the
derivatives with respect to t in the above expressions to the ones with respect to the true
anomaly f ,

da

df
≃ 2 p3

Gm

1
(1 + e cos f)3 S, (B.7)

de

df
≃ p2

Gm

[
sin f

(1 + e cos f)2 R + 2 cos f + e
(
1 + cos2 f

)
(1 + e cos f)3 S

]
, (B.8)

dι

df
≃ p2

Gm

cos(ω + f)
(1 + e cos f)3 W, (B.9)

sin ι
dΩ
df

≃ p2

Gm

sin(ω + f)
(1 + e cos f)3 W, (B.10)

dω

df
≃ 1

e

p2

Gm

[
− cos f

(1 + e cos f)2 R + 2 + e cos f

(1 + e cos f)3 sin fS − e cot ι
sin(ω + f)

(1 + e cos f)3 W
]

.

(B.11)
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