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We study gravitational waves emitted by a binary system of nonspinning bodies in a quasicircular
inspiral within the framework of Einstein-aether theory. In particular, we compute explicitly and
analytically the expressions for the time-domain and frequency-domain waveforms, gravitational wave
polarizations, and response functions for both ground- and space-based detectors in the post-Newtonian
approximation. We find that, when going beyond the leading order in the post-Newtonian approximation,
the non-Einsteinian polarization modes contain terms that depend on both the first and the second
harmonics of the orbital phase. We also calculate analytically the corresponding parametrized post-
Einsteinian parameters, generalizing the existing framework to allow for different propagation speeds
among the scalar, vector, and tensor modes, without assumptions about the magnitude of its coupling
parameters, and meanwhile, allowing the binary system to have relative motions with respect to the aether
field. Such results allow for the easy construction of Einstein-aether templates that could be used in
Bayesian tests of general relativity in the future.
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I. INTRODUCTION

The detection of the first gravitational wave (GW) from
the coalescence of two massive black holes (BHs) by
advanced LIGO marked the beginning of the GW era [1].
Following this observation, a few tens of GW candidates
were identified by the LIGO/Virgo scientific Collaboration
[2].1 The LIGO and Virgo detectors are sensitive to GWs
with frequencies between 20 and 2000 Hz [4], since at
frequencies lower than 20 Hz they are limited by the
Newtonian ground noise. As a consequence, LIGO and
Virgo are only able to observe GWs produced in the late
inspiral and merger of low-mass compact binaries, such as

binary black holes (BBHs), BH-NSs, and binary neutron
stars (BNSs).
One of the many remarkable observational results

obtained so far is the discovery that the BBHs can be
composed of objects with individual masses much larger
than what was previously expected, both theoretically and
observationally [5–7], leading to the proposal and refine-
ment of various formation scenarios [8,9]. A consequence
of this discovery is that the early inspiral phase may also be
detectable by space-based observatories, such as LISA,
TianQin, Taiji, and DECIGO, for several years prior to their
coalescence [10,11]. The analysis of the BBHs’ population
observed by LIGO and Virgo has shown that such space-
based detectors may be able to see many such systems, with
a variety of profound scientific consequences.
In particular, multiple observations with different detec-

tors at different frequencies of signals from the same source
can provide excellent opportunities to study the evolution
of the binary in detail. Since different detectors observe at
disjoint frequency bands, together they cover different
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1Recently, various GWs have been detected after LIGO/Virgo
resumed operations on April 1, 2019, possibly including the
coalescence of a neutron-star (NS)/BH binary. The details of
these detections have not yet been released [3].
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evolutionary stages of the same binary system. Each stage
of the evolution carries information about different physical
aspects of the source. Technically, it also provides early
warnings for an upcoming coalescence, so that ground-
based detectors could know the sky localization of the
source and its time to coalescence well in advance.
Combining high- and low-frequency GW detections of

the same source can also help identify the astrophysical
channel responsible of BBH formations. Different scenar-
ios in fact result in different masses, mass ratios, spins, and
eccentricity distributions of the detected sources [12–17].
Because of the GW circularization, BBHs may have small
eccentricity in the LIGO/Virgo band, regardless of their
formation channels. However, space-based detectors will
be able to observe GW signals from BBHs that did not have
enough time to fully circularize, allowing for measurements
of eccentricities in excess of 10−3 [13]. In addition, stellar-
mass BBHs observed in the space-based detector bands
provide a very promising class of standard sirens (see, e.g.,
[18]). In the absence of a distinctive electromagnetic
counterpart, it was estimated [19] that LISA might measure
the Hubble constant within a few percent error, thus helping
in the resolution of the discrepancy between the local
measurement of this quantity [20] and that obtained from
the cosmic microwave background (CMB) [21] (Note that
using ground-based detectors, e.g., aLIGO, the Hubble
constant could also be measured with good precisions even
if we do not identify electromagnetic counterparts [22,23]).
In addition, multiband GW detections will enhance the

potential to test gravitational theories in the strong, dynami-
cal field regime of merging compact objects [24–29].
Massive systems will be observed by ground-based detec-
tors with high signal-to-noise ratios, after being tracked for
years by space-based detectors in their inspiral phase. The
two portions of signals can be combined to make precise
tests for different theories of gravity. In particular, joint
observations of BBHs with a total mass larger than about 60
solar masses by LIGO/Virgo and space-based detectors can
potentially improve current bounds on dipole emission from
BBHs by more than 6 orders of magnitude [24], which will
impose severe constraints onvarious theories of gravity [30].
All the above work, however, depends crucially on the

accurate description of GWs in order to track the signal
during the early inspiral phase all the way to the merger
phase. During the inspiral phase, GWs can be modeled
using the post-Newtonian (PN) formalism [31]. Within
general relativity (GR), waveforms at low PN orders (i.e., at
or below the 2PN order) are sufficiently accurate for an
unbiased recovery of the source parameters [32]. As the
signal-to-noise ratio increases, however, our ability to test
GR will be systematically limited by the accuracy of our
waveform models.
In recent work, some of the present authors generalized

the PN formalism to certain modified theories of gravity
and applied it to the quasicircular inspiral of compact

binaries. In particular, we calculated in detail the wave-
forms, gravitational wave polarizations, response functions,
and energy losses due to gravitational radiation in Brans-
Dicke (BD) theory [33] and screened modified gravity
(SMG) [34–36] to the leading PN order, with which we
then considered projected constraints from the third-
generation detectors. Such studies have been further
generalized to triple systems in Einstein-aether theory
[37,38]. When applying such formulas to the first relativ-
istic triple system discovered in 2014 [39], we studied the
radiation power and found that the quadrupole emission has
almost the same amplitude as that in GR, but the dipole
emission can be as big as the quadrupole emission. This can
provide a promising window to place severe constraints on
the Einstein-aether theory with multiband gravitational
wave observations [24,27].
In this paper, we study the gravitational waves emitted by

a compact binary during its quasicircular inspiral within
Einstein-aether theory. This is, of course, not the first time
that gravitational waves have been studied in this theory.
The first studies were carried out by Foster in the mid 2000s
[40,41], who computed the gravitational waves and the
radiative losses of a generic binary through a multipolar
decomposition. Using these results, Yagi, et al. [42,43]
calculated the effects of such waves on the rate of change of
the orbital period of binary pulsars, placing stringent
constraints on a sector of the theory. Following this work,
Hansen, et al. [44] calculated the GW polarizations and
response function in the time and frequency domain for a
compact binary during its quasicircular inspiral, but again
in a restricted sector of the theory. More recently, more
severe constraints were placed on the Einstein-aether theory
[45,46], using the recent binary NS observation by LIGO,
which constrained the speed of gravity to better than one
part in 1015 [44].
We here revisit some of these calculations without

imposing any restrictions on the parameter space. First,
we compute, once more, the gravitational waves emitted by
a binary system and its associated radiative energy loss for a
generic binary system in the PN approximation without
assumptions about the magnitude of its coupling param-
eters. We then specialize this calculation to a compact
binary in a quasicircular inspiral and compute the time-
domain response function both for ground- and space-
based detectors. In doing so, we discover that previous
expressions for the GW polarizations that compose the
time-domain response function [47] are not applicable to
Einstein-aether theory due to the different speeds of
propagation of its scalar and vector modes. This implies
that the results of [44] are corrected by terms that depend on
these different speeds; in particular, this generates terms in
the non-Einsteinian polarizations that depend explicitly
on the speed of the center of mass of the binary with respect
to the aether field. With these waveforms computed, we
then calculate their Fourier transform in the stationary
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phase approximation (SPA) [47–49] and map the results to
the parametrized post-Einsteinian (ppE) framework [48]
that was extended to allow for different propagation speeds
among different polarization modes [47]. Our results,
therefore, allow for the straightforward construction of
waveform templates with which to carry out tests of
Einstein-aether theory using Bayesian theory and matched
filtering in the future.
The remainder of this paper presents the results summa-

rized above. In particular, in Sec. II, we give a brief
introduction to Einstein-aether theory (æ theory for short),
and in Sec. III,we calculate theGWpolarizations and energy
loss rate and correct some typos in the literature. In Sec. IV,
we study the GW polarizations and response function for an
inspiraling binary. In Sec. V, we calculate the response
function and its Fourier transform for both ground- and
space-based detectors using the SPA [47–49]. In Sec. VI, we
map the results of the last section to the parametrized post-
Einsteinian (ppE) framework [47–49], while in Sec. VII,
we summarize our main results and present discussions
and concluding remarks. The paper also include four
Appendixes, and in the Appendix A, we present a brief
review on the SPA, while in Appendixes B, C, and D, we
provide some additional mathematical formulas. We follow
here the conventions of Misner, Thorne, and Wheeler [50]
and use units in which c ¼ 1.

II. EINSTEIN-AETHER THEORY

In æ theory, the fundamental variables of the gravita-
tional sector are [51]

ðgμν; uμ; λÞ; ð2:1Þ

where gμν denotes the four-dimensional metric of spacetime
with a signature ð−;þ;þ;þÞ [40,52], uμ the aether field,
and λ a Lagrangian multiplier that guarantees that the aether
field is always timelike and at unity,

uλuλ ¼ −1: ð2:2Þ

In this paper, we adopt the following conventions: all
repeated Latin letters represent spatial indices that are to be
summed over from 1 to 3, while repeated Greek letters
represent spacetime indices to be summed over from 0 to 3,
regardless of whether they are superindices or subindices.
The general action of the theory is given by [53],

S ¼ Sæ þ Sm; ð2:3Þ

where Sm denotes the matter action, and Sæ is the
gravitational action of æ theory, given, respectively, by

Sm ¼
Z ffiffiffiffiffiffi

−g
p

d4x½Lmðgμν; uα;ψmÞ�;

Sæ ¼ 1

16πGæ

Z ffiffiffiffiffiffi
−g

p
d4x½RðgμνÞ þ Læðgμν; uα; λÞ�: ð2:4Þ

Here, ψm collectively denotes the matter fields, R and g are,
respectively, the Ricci scalar and the determinant of gμν,
and

Læ ≡ −Mαβ
μνðDαuμÞðDβuνÞ þ λðgαβuαuβ þ 1Þ; ð2:5Þ

where Dμ denotes the covariant derivative with respect to
gμν. The tensor Mαβ

μν is defined as

Mαβ
μν ≡ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ − c4uαuβgμν: ð2:6Þ

Note that here we assume that the matter fields couple
not only to gμν but also to the aether field uμ, in order to
model effectively the radiation of a compact object [37,41],
such as a neutron star [54]. The current theoretical and
observational constraints on the four dimensionless cou-
pling constants ci’s were given explicitly in [45]. It was
found that

0 ≤ c14 ≤ 2.5 × 10−5; jc13j ≤ 10−15; ð2:7Þ

where cij ≡ ci þ cj. The constraints on other parameters
depend on the values of c14. In particular, for 0≲ c14 ≤
2 × 10−7 and 2 × 10−6 ≲ c14 ≲ 2.5 × 10−5, they read,
respectively, as [45] (see also [55]),

ðiÞ 0≲ c14 ≤ 2 × 10−7; c14 ≲ c2 ≲ 0.095;

ðiiÞ 2 × 10−6 ≲ c14 ≲ 2.5 × 10−5;

0≲ c2 − c14 ≲ 2 × 10−7: ð2:8Þ

In the intermediate regime of c14 (2×10−7<c14≲2×10−6),
the results are obtained only numerically and shown
explicitly in Fig. 1 of [45].
The coupling constant Gæ is related to the Newtonian

gravitational constant GN via the relation [56],

GN ¼ Gæ

1 − 1
2
c14

: ð2:9Þ

Strong field effects can be important in the vicinity of a
compact body, such as a neutron star or a black hole, and
need to be taken into account. Following Eardley [54],
these effects can be included by considering the test-
particle action [41],
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SA ¼ −
Z

dτAm̃A½γA�

¼ −m̃A

Z
dτA

�
1þ σAð1 − γAÞ

þ 1

2
ðσA þ σ2A þ σ̄AÞð1 − γAÞ2 þ…

�
; ð2:10Þ

where γA ≡ −uμvAμ , and vAμ is the 4-velocity of the body,
defined as viA ≡ dxiA=dτA. The index A labels the body, and
τA is its proper time. We also note that m̃A in (2.10) has the
dimension of mass; σA and σ̄A are defined as

σA ≡ −
d ln m̃A½γA�
d ln γA

����
γA¼1

;

σ̄A ≡ d2 ln m̃A½γA�
dðln γAÞ2

����
γA¼1

; ð2:11Þ

which can be determined by considering asymptotic proper-
ties of perturbations of static stellar configurations [43].
The variations of the total action with respect to gμν and

uμ yield, respectively, the field equations [37],

Rμν −
1

2
gμνR − Sμν ¼ 8πGæTμν; ð2:12Þ

Æμ ¼ 8πGæTμ; ð2:13Þ

with the constraint of Eq. (2.2). Here, we have [41]

Sαβ ≡Dμ½JμðαuβÞ þ JðαβÞuμ − uðβJαÞμ�
þ c1½ðDαuμÞðDβuμÞ − ðDμuαÞðDμuβÞ�

þ c4aαaβ þ λuαuβ −
1

2
gαβJδσDδuσ;

Æμ ≡DαJαμ þ c4aαDμuα þ λuμ;

Tμν ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δgμν

¼
X
A

m̃Aδ̃A½A1
Av

μ
Av

ν
A þ 2A2

Au
ðμvνÞA �;

Tμ ≡ −
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δuμ

¼
X
A

m̃Aδ̃AA2
Av

A
μ ; ð2:14Þ

with parentheses in index pairs denoting index symmetri-
zation and

Jαμ ≡Mαβ
μνDβuν; aμ ≡ uαDαuμ; ð2:15Þ

and

A1
A ≡ 1þ σA þ ðσA þ σ2A þ σ̄AÞ

2
½ðuμvμAÞ2 − 1�;

A2
A ≡ −σA − ðσA þ σ2A þ σ̄AÞðuμvμA þ 1Þ;

δ̃A ≡ δ3ðx⃗ − x⃗AÞ
v0A

ffiffiffiffiffijgjp : ð2:16Þ

From Eq. (2.13) and the normalization condition, we also
find that

λ ¼ uβDαJαβ þ c4a2 − 8πGæTαuα; ð2:17Þ

where a2 ≡ aλaλ.

III. GRAVITATIONAL WAVE POLARIZATIONS
AND ENERGY LOSS OF BINARY SYSTEMS

IN EINSTEIN-AETHER THEORY

The linear perturbations of Einstein-aether theory over a
Minkowski background were studied by several authors
[38,40,43,51]. For the sake of convenience, in this section,
we first give a brief review of the relevant materials,
following mostly [37]. For more details on the PN
approximations for many bodies in Einstein-aether theory,
we refer the reader to [37,40,43,51]. Readers familiar with
Einstein-aether theory may skip the first two subsections
and go directly to the third section if they wish, in which we
apply previous results to binary system.
Let us first note that

gμν ¼ ημν; uμ ¼ δμt ; ð3:1Þ

satisfies the Einstein-aether field equations in Eqs. (2.12)
and (2.13) in the coordinates xμ ¼ ðt; x; y; zÞ, where ημν ¼
diagð−1; 1; 1; 1Þ is the Minkowski metric [57]. Clearly,
Eq. (3.1) shows that the aether field uμ is at rest in this
Minkowski background,2 so any motion with respect to this
coordinate system also represents motion with respect to
the aether field. In addition, as far as the aether field is
concerned, the timelike vector uμ is invariant under the
general spatial diffeomorphism x0j¼x0jðxiÞ;ði;j¼1;2;3Þ.
Later, without loss of generality, we will use this gauge
freedom to choose the plane of the binary system to
coincide with the (x, y) plane.
Now, we consider the linear perturbations,

hμν ¼ gμν − ημν; w0 ¼ u0 − 1; wi ¼ ui; ð3:2Þ

2In cosmology, the aether field is often chosen to be comoving
with the CMB [53]. Thus, it is consistent here to choose the
aether to be comoving with the Minkowski coordinate system
xμ ¼ ðt; x; y; zÞ.
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where hμν, w0 and wi are decomposed into the forms [40],

h0i ¼ γi þ γ;i; wi ¼ νi þ ν;i;

hij ¼ ϕ;ij þ
1

2
Pij½f� þ 2ϕði;jÞ þ ϕij; ð3:3Þ

with Pij ≡ δijΔ − ∂i∂j, whereΔ≡ δij∂i∂j. In addition, the
vector and tensor fields satisfy the conditions,

∂iγi ¼ ∂iνi ¼ ∂iϕi ¼ 0;

∂jϕij ¼ 0; ϕi
i ¼ 0: ð3:4Þ

To the linear order in perturbation theory, it is convenient to
define a nonsymmetric tensor,

τμν ≡ Tμν − Tμδν0; ðτμν ≠ τνμÞ; ð3:5Þ

which satisfies the conservation law,

∂ντμν ¼ 0: ð3:6Þ

Defining the center-of-mass (COM) coordinate and its
velocity as

Xi ≡
P

AmAxiAP
AmA

; ð3:7Þ

Vi ≡ dXi

dt
; ð3:8Þ

we find that conservation of momentum requires

dVi

dt
¼ 0; ⇒ Vi ¼ Constant: ð3:9Þ

A. Linearized Einstein-aether field equations

Substituting the above expressions into the linearized
Einstein-aether field equations, we find that the tensor,
vector and scalar parts can be written as follows [37]. For
the tensor part, we have

1

c2T
ϕ̈ij − Δϕij ¼ 16πGæτ

TT
ij ; ð3:10Þ

with

c2T ≡ 1

1 − cþ
; ð3:11Þ

where cþ ¼ c13 ≡ c1 þ c3, and “TT” stands for the trans-
verse-traceless operator acting on the tensor.

For the vector part, we have3

1

c2V
ðν̈i þ ̈γiÞ − Δðνi þ γiÞ

¼ 16πGæ

2c1 − c13c−
½c13τi0 − ð1 − c13ÞTi�T; ð3:12Þ

Δðc13νi þ γiÞ ¼ −16πGæτ
T
i0; ð3:13Þ

where

c2V ≡ 2c1 − c13c−
2ð1 − c13Þc14

; ð3:14Þ

with c− ≡ c1 − c3, and the Tabove stands for the transverse
operator acting on the vector.
For the scalar part, we have

1

c2S
F̈ − ΔF ¼ 16πGæc14

2 − c14

�
τkk þ

2

c14
τ00

−
2þ 3c2 þ c13

c123
τLkk

�
; ð3:15Þ

ΔðF − c14h00Þ ¼ −16πGæτ00; ð3:16Þ

½ð1þ c2Þ _F þ c123Δ _ϕ�;i ¼ −16πGæτ
L
i0; ð3:17Þ

where F≡ Δf, and

c2S ≡ ð2 − c14Þc123
ð2þ 3c2 þ c13Þð1 − c13Þc14

; ð3:18Þ

with cijk ≡ ci þ cj þ ck, and the L above stands for the
longitudinal operator acting on the vector. In addition, the
constraint in Eq. (2.2) gives

h00 ¼ 2w0: ð3:19Þ

From these equations, we can easily infer that the tensor,
vector, and scalar modes propagate with speeds cT , cV , and
cS, respectively.

B. Gravitational wave polarizations and energy loss

To consider the polarizations of gravitational waves in
Einstein-aether theory, let us consider the timelike geodesic
deviation equation. In the spacetime described by the
metric, gμν ¼ ημν þ hμν, the spatial deviation vector, ζi,
satisfies

ζ̈i ¼ −R0i0jζ
j ≡ 1

2
P̈ijζ

j; ð3:20Þ

3Notice that the last term of Eq. (3.12) corrects a sign error in
Eq. (44) of [40].
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where ζμ describes the four-dimensional deviation vector
between two nearby trajectories of test particles, and

R0i0j ≃
1

2
ðh0j;0i þ h0i;0j − hij;00 − h00;ijÞ

¼ −
1

2
ϕ̈ij þ _ΨII

ði;jÞ þΦIV
;ij −

1

2
δijΦ̈II; ð3:21Þ

where ΨII
i , ΦIV, and ΦII are the gauge-invariant quantities

defined in [37]. In particular, we have ΦII ≡ F=2.
In the wave zone, jx⃗j ≫ d, where d denotes the size of

the source and x⃗ is the vector pointing to the observer from
the COM, we have

ΦIV ¼ c14 − 2c13
2c14ðc13 − 1ÞΦ

II;

ΨII
i ¼ −

c13
1 − c13

ΨI
i; ð3:22Þ

and

ΨI
i;j ¼ −

1

cV
_ΨI
iNj;

ΦII
;i ¼ −

1

cS
_ΦIINi; ð3:23Þ

where Nk denotes the unit vector along the direction
between the source (the COM) and the observer, and ΨI

i
is another gauge-invariant quantity defined in [37] via the
relation,

ΨI
i ≡ γi þ νi: ð3:24Þ

Then, inserting the above expressions into (3.20) and
(3.21), we obtain

Pij ¼ ϕij −
2c13

ð1 − c13ÞcV
ΨI

ðiNjÞ

−
c14 − 2c13

c14ðc13 − 1Þc2S
ΦIINiNj þ δijΦII: ð3:25Þ

Assuming that (eX, eY , eZ) are three unit vectors that
form a set of orthogonal basis with eZ ≡ N, so that (eX, eY)
lay on the plane orthogonal to the propagation direction N
of the gravitational wave, we find that, in the coordinates
xμ ¼ ðt; xiÞ, these three vectors can be specified by two
angles, ϑ and φ, via the relations [58],

eX ¼ ðcosϑ cosφ; cosϑ sinφ;− sin ϑÞ;
eY ¼ ð− sinφ; cosφ; 0Þ;
eZ ¼ ðsinϑ cosφ; sin ϑ sinφ; cosϑÞ: ð3:26Þ

Then, we can define the six GW polarizations hN’s by

hþ ≡ 1

2
ðPXX − PYYÞ; h× ≡ 1

2
ðPXY þ PYXÞ;

hb ≡ 1

2
ðPXX þ PYYÞ; hL ≡ PZZ;

hX ≡ 1

2
ðPXZ þ PZXÞ; hY ≡ 1

2
ðPYZ þ PZYÞ; ð3:27Þ

where PAB ≡ PijeiAe
j
B, with A;B ¼ fX; Y; Zg. However,

in Einstein-aether theory, only five GW polarizations are
independent. With the help of Eq. (3.21) and some related
equations, we find that the above expressions can be written
explicitly in the form,

hþ ¼ 1

2
ϕije

ij
þ; h× ¼ 1

2
ϕije

ij
× ;

hb ¼
1

2
F; hL ¼ ð1þ 2β2Þhb;

hX ¼ 1

2
β1ν

ieiX; hY ¼ 1

2
β1ν

ieiY; ð3:28Þ

where eklþ ≡ ekXe
l
X − ekYe

l
Y and ekl× ≡ ekXe

l
Y þ ekYe

l
X, and

β1 ≡ −
2cþ
cV

; β2 ≡ −
c14 − 2cþ

2c14ð1 − cþÞc2S
: ð3:29Þ

Observe that these equations for the GW polarizations
are quite similar to those found for generic modified gravity
theories in Chatziioannou, et al. [47] [see e.g., Eq. (8)
in [47]]. The main difference here is that Chatziioannou,
et al., following Poisson and Will [58], made the implicit
assumption that all GWmodes travel at the same speed, and
this speed is equal to the speed of light. As we saw in the
previous subsection, this is not the case in Einstein-aether
theory, with some speeds already stringently constrained
but others essentially unconstrained: −3 × 10−15 < cT −
1 < 7 × 10−16 due to GW170817 [45], which leads to
jc13j ¼ jcþj≲ 10−15, but cV ∼ ðc1=c14Þ1=2 > 1 and cS ∼
ðc2=c14Þ1=2 > 1 and are essentially unconstrained. There-
fore, the results of Chatziioannou, et al. [47] cannot be
straightforwardly applied to the Einstein-aether theory, but
rather they would have to be extended to allow for modes
with different and arbitrary speeds.
In order to calculate the waveforms, let us first assume

that the observers (or detectors) are located in a region far
away from the source,R≡ jx⃗j ≫ d. Notice thatR used here
is not the Ricci scalar used in the previous section, but
rather the distance to the source. In this region, we have a
useful mathematical method to solve the wave equations.
That is, for equations in the form,

1

v2s
ψ̈ − Δψ ¼ 16πτ; ð3:30Þ
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where ψ , vs, and τ denote the field that we are going to
solve for, the speed for the corresponding field, and a
source term, respectively, we have the following asymptotic
solution [59]:

ψðt; x⃗Þ ¼ 4

R

�X∞
n¼0

1

n!vns

∂n

∂tn
Z

τðt − R=vs; jx⃗0jÞ

×

�
x0i ·

xi

R

�
n

d3x0
�
þOðR−2Þ: ð3:31Þ

Then, in the gauge [40],

ϕi ¼ 0; ν ¼ γ ¼ 0; ð3:32Þ

we find that the wave equations given in the last subsection
have the solutions,

ϕij ¼
2Gæ

R
ðQ̈ijÞTT;

νi ¼ −
2Gæ

ð2c1 − c13c−ÞR
�
1

cV

�
c13

1 − c13
Q̈ij

−Q̈ij − Vij

�
Nj þ 2Σi

�
T
; ð3:33Þ

γi ¼ −c13νi;

F ¼ Gæ

R
c14

2 − c14

�
6ðZ − 1ÞQ̈ijNiNj þ 2Z ̈I

−
4

c14c2S
Ï ijNiNj −

8

c14cS
ΣiNi

�
; ð3:34Þ

h00 ¼ 2w0 ¼ 1

c14
F; ϕ ¼ −

1þ c2
c123

f; ð3:35Þ

where

Iij ≡
X
A

mAxiAx
j
A; I ≡ Ikk; Qij ≡ Iij −

1

3
δijI;

I ij ≡
X
A

σAm̃xiAx
j
A; I ≡ I ii; Qij ≡ I ij −

1

3
δijI ;

Σi ≡ −
X
A

σAm̃AviA; Vij ≡ 2
X
A

σAm̃A _v
½i
Ax

j�
A; ð3:36Þ

and

Z≡ ðα1 − 2α2Þð1 − cþÞ
3ð2cþ − c14Þ

; ð3:37Þ

α1 ≡ −
8ðc1c14 − c−c13Þ
2c1 − c−c13

;

α2 ≡ 1

2
α1 þ

ðc14 − 2c13Þð3c2 þ c13 þ c14Þ
c123ð2 − c14Þ

: ð3:38Þ

Finally, we note that for any symmetric tensor Sij, we have
STTij ¼ Λij;klSkl and STi ¼ PijSj, where Λij;kl and Pij are the
projection operators defined, respectively, by Eqs. (1.35) and
(1.39) in [60].
Inserting Eqs. (3.33)—(3.35) into (3.28) and using the

above equations, we find that

hþ ¼ Gæ

R
Q̈kleklþ; h× ¼ Gæ

R
Q̈klekl× ;

hb ¼
c14Gæ

Rð2 − c14Þ
�
3ðZ − 1ÞQ̈ijeiZe

j
Z þ Z ̈I

−
4

c14cS
ΣieiZ−

2

c14c2S
Ï ijNiNj

�
;

hL ¼
�
1 −

c14 − 2c13
c14ðc13 − 1Þc2S

�
hb;

hX ¼ 2c13Gæ

ð2c1 − c13c−ÞcVR

×

�
eiZ
cV

�
c13

1 − c13
Q̈ij − Q̈ij − Vij

�
− 2Σj

�
ejX;

hY ¼ 2c13Gæ

ð2c1 − c13c−ÞcVR

×

�
eiZ
cV

�
c13

1 − c13
Q̈ij − Q̈ij − Vij

�
− 2Σj

�
ejY: ð3:39Þ

The above expressions differ from the work of
Hansen, et al. [44] because the latter built on the work
of Chatziioannou, et al. [47], which as already explained,
cannot be applied to Einstein-aether theory. Note, however,
that although some of the dependence of the modes on the
coupling constants ci are different, the general structure of
the solution found by Hansen, et al. [44] remains correct.
For example, as found in that paper, and shown again by the
above equations, the scalar longitudinal mode hL is propor-
tional to the scalar mode hb, which then means that out of
the six possible GW polarizations, only five are indepen-
dent. Moreover, as shown again in Hansen, et al. [44] and
also in the equations above, the breathing and longitudinal
modes are suppressed by a factor c14 ≲Oð10−5Þ [45] with
respect to the transverse-traceless modes hþ and h×,

4 while
the vectorial modes hX and hY are suppressed by a factor
c13 ≲Oð10−15Þ [45].
With the GW polarizations at hand, we can now move to

the calculation of the energy flux. Using the Noether
current method described in [41,61], we find that the
energy loss rate is given by

4The overall c14 cancels with 1=c14 in the last two terms inside
the square brackets of hb in Eq. (3.39). However, Σi and Ï ij in
these terms are proportional to σ ∼ s. The sensitivity s scales with
α1 and α2 [see Eq. (3.47)], which scale with c14 when c13 ≃ 0.
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_Eb ¼ −
1

16πGæ

�Z
dΩR2

�
1

2cT
_ϕij

_ϕij

þð2c1 − c13c−Þð1 − c13Þ
cV

_νi _νi

þ 2 − c14
4cSc14

_F _F

�	
þ _O; ð3:40Þ

where an overhead dot stands for a time derivative, Ω is the
solid angle, and the angle brackets stand for an average over
one period, defined by

hHðtÞi≡ 1

Pb

Z
Pb

0

HðtÞdt; ð3:41Þ

with Pb the orbital period [62]. The last term _O will be
omitted from now on, since its purpose is just to cancel
secular terms that arise from the other terms in this
equation, as discussed in detail in [41,43]. Using the
mathematical tricks presented in [60], we find that
Eq. (3.40) becomes

_Eb ¼−Gæ

�
A1

5
⃛Qij

⃛Qijþ
A2

5
⃛Qij

⃛Qijþ
A3

5
⃛Qij

⃛Qij

þB1
⃛I ⃛IþB2

⃛I ⃛IþB3
⃛I ⃛IþC _Σi _ΣiþD _Vij

_Vij

	
; ð3:42Þ

where

A1 ≡ 1

cT
þ 2c14c213
ð2c1 − c13c−Þ2cV

þ 3c14ðZ − 1Þ2
2ð2 − c14ÞcS

;

A2 ≡ −
2c13

ð2c1 − c13c−Þc3V
−

2ðZ − 1Þ
ð2 − c14Þc3S

;

A3 ≡ 1

2c14c5V
þ 2

3c14ð2 − c14Þc5S
;

B1 ≡ c14Z2

4ð2 − c14ÞcS
; B2 ≡ −

Z
3ð2 − c14Þc3S

;

B3 ≡ 1

9c14ð2 − c14Þc5S
;

C≡ 4

3c14c3V
þ 4

3c14ð2 − c14Þc3S
; D≡ 1

6c14c5V
: ð3:43Þ

Note that in the above expressions, we corrected a simple
typo (minus signs in A2) in previous work [43], which
originates from the sign error in [41], and which has been
corrected in Eq. (3.12) as already mentioned.

C. Binary systems

In this subsection, we apply the general formula devel-
oped in the last two subsections to a binary system. Before
doing so, let us first note that such a problem has already
been considered in Hansen, et al. [44], as discussed earlier.

The work in this subsection differs from that of Hansen,
et al. in that (i) we include in the calculation of the GW
polarization modes the fact that the different fields of
Einstein-aether theory travel at different velocities, and
(ii) we allow for the COM to not be comoving with the
aether, i.e., we allow Vi ≠ 0. The latter condition is more
general than that adopted previously in the literature,
thus allowing for the possibility that the aether flow may
be in a different direction as compared to the motion of
the COM.
With the above in mind, we first assume that the binary

components are in a quasicircular orbit. By “quasicircular”
we mean that the two celestial bodies are rotating in a fixed
plane and the orbit for its one-body effective model is
almost a circle within one period [63]. In addition, we also
assume that _ωs ≪ ω2

s , where ωs ¼ 2π=Pb denotes the
orbital angular frequency of the orbit [60]. Then, to leading
(Newtonian) order in the PN theory, we have

_vi ≡ ̈ri ≃ −
Gm
r2

r̂i
�
1þO

�
Gm
r

��
; ð3:44Þ

v2 ≡ vivi ≃
Gm
r

�
1þO

�
Gm
r

��
; ð3:45Þ

where r ¼ jxi1 − xi2j is the distance between the two bodies
and r̂i ≡ ri=r≡ ðxi1 − xi2Þ=r and m is the total mass. Here,
the relation between G and GN is given by

G≡GNð1 − s1Þð1 − s2Þ; ð3:46Þ

where sA is related to σA via the relation, sA ≡ σA=ð1þ σAÞ.
In [43], the sensitivities for neutron stars were calculated
numerically for various choices of the coupling constants
ci’s. Unfortunately, all of those choices are out of the
currently physically viable region defined in Eq. (2.8). In
[41], an analytical expression in the weak-field approxima-
tions was given,

sA ¼
�
α1 −

2

3
α2

�
ΩA

mA
þO

�
GNm
d

�
2

; ð3:47Þ

where ΩA is the binding energy of the Ath body5 and we
recall d represents the characteristic size of the system.
This expression is only valid for weakly gravitating bodies,
and thus, strictly speaking, it does not apply to neutron
stars or to black holes when considering strong-field effects;
for neutron stars, the sensitivities are about an order of
magnitude larger and they depend on the equation of state,

5Note that there is an extra factor c14 appearing in Eq. (70) of
[41] in the published version, which has been corrected in the
arXiv version.
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while for black holes, they may be identically zero, as is the
case in khronometric gravity within a parameter space that is
of physical interest [32].
Since the choice of coordinates xμ comoving with the

aether [cf. Eq. (3.1)] is fixed only up to the spatial
diffeomorphism x0i ¼ x0iðxkÞ, as mentioned earlier, we
can use this remaining gauge freedom to choose the spatial
coordinates so that the binary system is always on the (x, y)
plane. This then implies that r̂ can be parametrized via

r̂ ¼ cosΦîþ sinΦĵ; ð3:48Þ

where ΦðtÞ≡ R
t wsðt0Þdt0 is the orbital phase of the binary

system, and î, ĵ, k̂ are unit vectors along the x, y, and z
directions, respectively, with k̂ ¼ î × ĵ.
Substituting the above expressions into Eq. (3.39) and

only keeping terms up to relative Oðv2Þ, where Vi is
assumed to be of OðvÞ, we find

hþ ¼ −
2Gæ

R
MU2ð1þ cos2ϑÞ cosð2ΘÞ þ 2Gæ

R
mVkVleklþ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}; ð3:49Þ

h× ¼ 4Gæ

R
MU2 cos ϑ sinð2ΘÞ þ 2Gæ

R
mVkVlekl×|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}; ð3:50Þ

hb ¼
2Gæ

R
c14

2 − c14

�
2Δs
c14cS

η1=5MU sinϑ sinΘ

þ 2S − 3c14ðZ − 1Þc2S
c14c2S

MU2sin2ϑ cosð2ΘÞ − 4Δs
c14c2S

η1=5MUðViNiÞ sinϑ sinΘ

þ3c14c2SðZ − 1Þ − 2S0

c14c2S
mViVjNiNj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ 2S0

c14cS
mViNi þmViVi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�
; ð3:51Þ

hL ¼
�
1þ c14 − 2c13

c14ð1 − c13Þc2S

�
hb; ð3:52Þ

hX ¼ −
β1Gæ

R
1

2c1 − c13c−

�
−2Δsη1=5MU cos ϑ sinΘ

þ 1

cV

�
S −

c13
1 − c13

�
MU2 sinð2ϑÞ cosð2ΘÞ − 2Δs

cV
η1=5MUðsin ϑeiX þ cosϑNiÞVi sinΘ

−
2m
cV

�
S0 −

cþ
1 − cþ

�
ViVjeiXN

j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} − 2S0meiXV
i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�
; ð3:53Þ

hY ¼ −
β1Gæ

R
1

2c1 − c13c−

�
−2Δsη1=5MU cosΘ

−
2

cV

�
S −

c13
1 − c13

�
MU2 sinðϑÞ sinð2ΘÞ − 2Δs

cV
η1=5MUðsinϑ sinΘeiY þ cosΘNiÞVi

−
2m
cV

�
S0 −

cþ
1 − cþ

�
ViVjeiYN

j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} − 2S0meiYV
i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�
; ð3:54Þ

GRAVITATIONAL WAVES FROM THE QUASICIRCULAR … PHYS. REV. D 101, 044002 (2020)

044002-9



where

m≡m1 þm2; μA ≡mA

m
; μ≡ μ1μ2m;

η≡ μ

m
; M≡mη3=5; U ≡ ðGMωsÞ1=3; ð3:55Þ

and

Δs≡ s1 − s2; S ≡ s1μ2 þ s2μ1;

Θ≡ φ −Φ; S0 ≡ s1μ1 þ s2μ2: ð3:56Þ

Now several comments are in order. First, the above
expressions for the plus and cross polarization modes
[Eqs. (3.49) and (3.50)] reduce to those of GR6 [44,47],
when ci’s and si’s are set to be zero. The quantity φ
determines the coalescence phase, whose value can be
chosen arbitrarily. References [44,47] use the convention
φ ¼ 0, which will be adopted in this paper. Second, these
expressions are also similar to those found in Hansen, et al.
[44] to the leading order in the PN expansion. However,
since Hansen, et al. [44] used a formalism that implicitly
assumed the speed of all modes is the speed of light, which
is not the case in Einstein-aether theory, there are factors of

ðcT; cV; cSÞ missing in that work, which we correct here.
Third, the underbraced terms have not appeared in the
literature previously. However, they will be safely
neglected for our current studies, since they are time
independent and lead to no contributions to the geodesic
deviation equation [Eq. (3.20)], as can be seen from
Eqs. (3.20)–(3.25). Fourth, the above expressions contain
terms that are subleading in the PN approximation [i.e.,
they are of OðvÞ smaller than the leading-order modifica-
tions], and these have also never appeared in the literature.
This is not just because they are subleading in the PN
approximation, but also because they depend on the COM
velocity Vi, which is typically assumed to be of the order
10−3 with respect to the CMB rest frame [41] and thus is
much smaller than the relative velocity of binary constitu-
ents before coalescences. These terms, however, cannot be
neglected as they are time dependent and proportional to
cosΘ; sinΘ. Fifth, strictly speaking, Eqs. (3.49)–(3.54)
should be evaluated at the retarded time tr, where
tr ≡ t − R=cN , with cN being any of ðcT; cV; cSÞ, depend-
ing on the mode under consideration.
With the above in mind, substituting (3.44), (3.45),

(3.36), and (3.48) into Eq. (3.42), we find that

_Eb ¼ −
GæG2μ2m2

r4
×

�
8

15
ðA1 þ SA2 þ S2A3Þð12v2 − 11 _r2Þ þ 4ðB1 þ SB2 þ S2B3Þ _r2

þ 1

5
Δs½8ðA2 þ 2SA3Þð3 _rj − 2 _rir̂ir̂jÞ þ 60ðB2 þ 2SB3Þ _rir̂ir̂j�Vj

þ Δs2
��

6

5
A3 þ 36B3 − 2D

�
ðr̂iViÞ2 þ

�
18

5
A3 þ 2D

�
ViVi þ C

�	
: ð3:57Þ

It is interesting to note that this result reduces identically
to that found by Yagi, et al. [43], since in that work, no
assumption was made on the speed of the propagat-
ing modes.
Equation (3.57) includes Einstein-æ ther corrections

both at −1 PN ð _Eb ∝ v8Þ and 0 PN ð _Eb ∝ v10Þ orders.
When deriving this equation, we only considered the
Newtonian contribution in the conservative sector in
Eqs. (3.44) and (3.45). Formerly, the 1 PN correction to
the conservative dynamics can affect _Eb at 0 PN order. This
is because such 1 PN effect can couple to the −1 PN dipole
radiation in Eq. (3.42) to give rise to a 0PN effect in
Eq. (3.57). We do not include such corrections in this paper
since they can never become a dominant correction (as they
are 1PN correction to the −1 PN effect). On the other hand,
the 0PN effect included in Eq. (3.57) can dominate the

−1 PN effect when, e.g., s1 ∼ s2 and the dipole radiation is
suppressed.

IV. EVOLUTION OF THE ORBITAL
ANGULAR FREQUENCY

The emission of gravitational waves causes the
separation of the two bodies in a binary system to shrink,
which thus leads the orbital frequency to grow, until
coalescence. In this section, we find the evolution of the
orbital angular frequency ωs through the use of the energy
loss rate. Note that there is a different, yet equivalent, way
to get the same result through the virial theorem (see,
e.g., [60,64]).
The evaluation of the time-domain waveform requires

that one solves the equations of motion in Einstein-aether
theory. As explained in the previous section, these equa-
tions take on a Newtonian-like form, and their solution can
be described effectively by Eq. (3.48). All one needs to
prescribe now is the evolution of the orbital angular
frequency, which we study here to the leading PN order.

6There is a simple transcription typo in [44], which acciden-
tally dropped a factor of η1=5 in these modes.
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This equation can be obtained through the Einstein-aether
version of Kepler’s law [60],

ω2
s ≃

Gm
r3

; ð4:1Þ

which yields

_ωs

ωs
¼ 3

2

_Eb

Eb
; ð4:2Þ

where Eb in the denominator is the binding energy [43],
namely

Eb ¼ −
Gμm
2r

: ð4:3Þ

Substitution of Eqs. (4.3), (3.57), (4.1), and (3.48) into
Eq. (4.2) leads to

ðGmÞ2 _ωs ¼ ðGmÞ2 dωs

dt
¼ κ1ðGmωsÞ11=3½1þ ϵxðGmωsÞ−2=3�; ð4:4Þ

where

κ1 ≡ 48ηð2 − c14Þ
5ð1 − s1Þð1 − s2Þ

ðA1 þ SA2 þ S2A3Þ; ð4:5Þ

ϵx ≡ Δs2

32ðA1 þ SA2 þ S2A3Þ
× ½ð21A3 þ 90B3 þ 5DÞViVi

−ð3A3 þ 90B3 − 5DÞðV3Þ2 þ 5C�: ð4:6Þ

We also note that we have used the quasicircular condition.
Solving Eq. (4.4) exactly is not possible, but a good

approximation to the solution can be obtained when ϵx is
small enough, i.e., when ϵx ≪ 1. SinceA1 isOð1Þ and S, as
well asS2, are suppressedby the sensitivities according to the
definition in Eq. (3.56), the contribution of the denominator
of Eq. (4.6) is Oð1Þ. Moreover, by using Eq. (3.43), we see
that the coefficients of the Vi-related terms are all of
Oðc−114 c−5V;SÞ, while C is of Oðc−114 c−3V þ c−114 c

−3
S Þ. Now recall

that for jc13j≲ 10−15 we have cS ≃Oðc2=c14Þ1=2 and
cV ≃Oðc1=c14Þ1=2, as one can see from Eqs. (3.14) and
(3.18). Thus, becauseVi is assumed to be ofOðvÞ or smaller
(see [41]), the contribution from the numerator is of
OðΔs2CÞ. Putting everything together and using the expres-
sions for C, we first find that

ϵx ≤
5

24
Δs2c1=214 ðc−3=21 þ c−3=22 Þ: ð4:7Þ

Observe that if Δs2 ≪ 1, either because s1 ¼ 0 ¼ s2 (as
may be the case in black hole binaries) or because s1 ¼ s2

(equal-mass neutron star binaries), then ϵx is always
small and the approximation is automatically well justified.
Moreover, ifwe insert theweak-field limit for the sensitivities
in Eq. (3.47), the above expression could be furtherwritten as

ϵx≤
605

216
c5=214

�
Ω1

m1

−
Ω2

m2

�
2

ðc−3=21 þc−3=22 Þ≤7×10−5; ð4:8Þ

where we have used that c14 ≲ 2.5 × 10−5 and c1;2 ≳ c14
from Eq. (2.8), and that ΩA ≤ mA. Clearly then, the above
analysis justifies the search for a perturbative solution to
Eq. (4.4) in ϵx ≪ 1.
Even though the requirement that ϵx ≪ 1 is satisfied

when one saturates current constraints on the theory, a
perturbative solution to Eq. (4.4) actually requires

ϵx ≪ ðGmωsÞ2=3; ð4:9Þ

which may be more severe when the binary’s orbital
velocity is small enough. Notice, however, that this implies
that v≳ 0.05, which is true in the regime of interest of the
second-generation ground-based gravitational wave detec-
tors. In such a region, we can perturbatively expand the
solution to find

ωsðtÞ ≃ κ−3=82 ðGmÞ−5=8ðtc − tÞ−3=8

×

�
1 −

3

10
ϵxκ

1=4
2

�
tc − t
Gm

�
1=4

�
; ð4:10Þ

where

κ2 ≡ 128ηð2 − c14Þ
5ð1 − s1Þð1 − s2Þ

ðA1 þ SA2 þ S2A3Þ; ð4:11Þ

and tc is the time of coalescence. Clearly, the above results
reduce to the well-known expression [60],

ωGR
s ðtÞ ¼ 1

8

�
η

5

�
−3=8

ðGNmÞ−5=8ðtGRc − tÞ−3=8; ð4:12Þ

in the GR limit.
Figure 1 shows the difference between the GR and

æ-theory evolution of the orbital angular frequency7 for
the inner binary in the hierarchy triple system PSR J0337þ
1715 (denoted J0337 henceforth) [39,66]. Specifically, we
setm1 ¼ 1.4378 M⊙,m2 ¼ 0.19751 M⊙, and ωsðt ¼ 0Þ≈
0.0000446 Hz, where t ¼ 0 stands for the time that J0337
was first observed. Moreover, we choose the coupling

7In plotting Fig. 1, we just used the time coordinate t, instead
of the retarded time, tAr ≡ t − R=cA [65]. Since ωs is a function of
ðtc − tÞ, there is no difference, as tc − t ¼ ðtc − R=cAÞ − ðt −
R=cAÞ ¼ tAr;c − tAr (the subscript “A” here is to distinguish the
different kinds of propagation modes: scalar, vector, and tensor).
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constants to be c1¼4×10−5, c2¼9×10−5, c4¼−2×10−5

and c3 ¼ −c1 as in [37], which satisfies all constraints [45].
For the COM velocity, we choose V⃗ ¼ ð0.002; 0.01; 0.03Þ,
which satisfies the constraints given in [41]. The sensitiv-
ities of neutron stars are not known in this region of
parameter space, so for illustrative purposes only, we use
there the weak-field expression of Eq. (3.47), with
ΩA=mA¼GNmA=RA and ðR1;R2Þ¼ð12.7;6.33×104Þkm.
These parameter choices satisfy the perturbative condition
ϵxðGmωsÞ−2=3 ≪ 1 for about 1=1000 of its life time, i.e.,
the duration from the date J0337 was first observed in 2012

to its future merger. Because the time to merger is so long,
the parameter choices satisfy the perturbative condition
ϵxðGmωsÞ−2=3 ≪ 1 during a time much longer than the
designed observing window of LISA-like detectors.
Once ωs is known, one can insert it into Eqs. (3.49)–

(3.54) to find the GW polarizations. Given the large number
of cycles present in these time-domain waveforms, how-
ever, it is impractical to plot them straight as functions of
time. A better alternative is to decompose the signals into
an amplitude and a phase, via

hþ ≡ Aþ cosð2ΘÞ;
h× ≡ A× sinð2ΘÞ;
hb ≡ Ab2 cosð2ΘÞ þ Ab1 sinðΘÞ;
hL ≡ AL2 cosð2ΘÞ þ AL1 sinðΘÞ: ð4:13Þ

Recall that the phase Θ here is defined from the orbital
phaseΦ through Eq. (3.56). Figures 2 and 3 show the time-
domain amplitudes and orbital phase for a binary with the
same parameters as those chosen in Fig. 1. In addition, we
have here chosen ϑ ¼ 39.254°, according to [39], and φ ¼
70° as an illustrative example. To more clearly see the
difference between the GR and the æ-theory evolution, we
also plot the amplitudes in the GR limit [see also Eq. (4.29)
of [60].].
These figures deserve several comments. First, notice

that with the choice of parameters, we have made to make
these figures (specifically, with c13 ¼ 0), the hX;Y modes
vanish identically. Even if we had saturated current con-
straints by setting c13 ¼ 10−15, the amplitudes of these
vector modes would be suppressed by at least 15 orders of
magnitude relative to the plus and cross modes. The
implication then is clear: GW interferometers will never
be able to detect these modes directly. Second, observe that

FIG. 2. Temporal evolution of the amplitudes of the GW polarizations for the inner binary in the hierarchy triple system J0337 [39].
The left panel shows theþ and × modes in GR and in æ theory. The right panel shows the breathing and longitudinal modes in æ theory,
where the subscript 1 and 2 correspond to the harmonic number. Observe that the second harmonic is rescaled by a factor of 103 relative
to the first harmonic, which implies the latter is much larger. Observe also that the amplitudes in æ theory diverge faster than in GR
because the binary inspirals more rapidly.

FIG. 1. Evolution of the orbital angular frequency ωsðtÞ of the
inner binary in the hierarchy triple system J0337 starting at 01-
04-2012 to the binary’s final stage [39], as given by Eqs. (4.10)
and (4.12) for æ theory and GR, respectively. It is clear that the
orbital angular frequency grows and becomes unbounded at the
coalescence time. Note, however, that the coalescence time for
the two theories is different (tc ∼ 9 × 1018 and tGRc ∼ 2 × 1019 s),
because the additional polarization modes of Einstein-aether
theory cause the binary to lose binding energy faster than in
GR, thus forcing the binary to merge earlier.
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the scalar modes hb;L are suppressed relative to the tensor
modes hþ;× by a factor of 103. This then implies that it will
be extremely difficult for GW detectors to measure these
modes directly. However, we observe from the figures that
the amplitude and the phase of the tensor mode is clearly
modified, and this is a feature that could be constrained
with GW instruments. This is true especially for BNSs
since the approximation in Eq. (3.47) is better in that case,
as discussed previously. Therefore, in the case of Einstein-
aether theory, it is clear that constraints on the temporal (or
frequency) evolution of the tensor modes are much more
constraining than any polarization test that proves that GW
signals only contain þ and × modes.

V. RESPONSE FUNCTION

Gravitational waves emitted by massive binary systems
have attracted a lot of attention recently, as they could be
ideal sources for both ground- and space-based detectors,
such as LIGO, Virgo, KAGRA, LISA, TianQin, Taiji, and
DECIGO [10]. Therefore, in this section, we consider the
response function for both kinds of detectors.

A. Ground-based L-shape detectors

With the expressions for the GW polarization modes in
the coordinate space in hand, we are ready to calculate the
response function hðtÞ and its Fourier transform h̃ðfÞ.
In this subsection, we shall focus on L-shape detectors,
such as LIGO, Virgo, and KAGRA [67]. From [47,58],
we find

hðtÞ ¼
X
N

FNðθ;ϕ;ψÞhNðtÞ; ð5:1Þ

where

Fþ ≡ 1

2
ð1þ cos2 θÞ cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ ;

F× ≡ 1

2
ð1þ cos2 θÞ cos 2ϕ sin 2ψ þ cos θ sin 2ϕ cos 2ψ ;

Fb ≡ −
1

2
sin2 θ cos 2ϕ; FL ≡ 1

2
sin2 θ cos 2ϕ;

FX ≡ − sin θðcos θ cos 2ϕ cosψ − sin 2ϕ sinψÞ;
FY ≡ − sin θðcos θ cos 2ϕ sinψ þ sin 2ϕ cosψÞ: ð5:2Þ

Here, fθ;ϕ;ψg are the three angles (polar, azimuthal, and
polarization angles) that specify the relative orientations of
the detector with respect to the source [note that the angle ϕ
here is not the same as the metric perturbation ϕ used in
Eq. (3.3)]. Their definitions can be found in [58] (see, e.g.,
Fig. 11.5 in that reference). To calculate the Fourier
transform (FT) of the response function hðtÞ, we shall
adopt the SPA [34,47,49]. In Appendix A, we present a
brief summary of this method. For more details, we refer
readers to [34,47,49] and references therein.
Let us first write Eq. (5.1) in the form,

hðtÞ≡X
N

HNðtÞ; ð5:3Þ

where HNðtÞ≡ FNhNðtÞ, and N ranges over all the
polarization modes, i.e., N ∈ ðþ;×; b; L; X; YÞ. We can
then define the Fourier transform h̃ðfÞ as

h̃ðfÞ≡
Z

hðtÞei2πftdt ¼
X
N

H̃NðfÞ; ð5:4Þ

where H̃NðfÞ is the Fourier transform of HNðtÞ. Note that
the above definition is slightly different from the one used
in [37,38]. For computational convenience, let us also
rewrite HNðtÞ as

HNðtÞ ¼ ½qNð1Þ cosð2ΦÞ þ qNð2Þ sinð2ΦÞ�ω2=3
s

þ ½qNð3Þ cosΦþ qNð4Þ sinΦ�ω1=3
s ; ð5:5Þ

where ωs andΦ are all functions of time, and qNðnÞ are time
independent8 and given explicitly in Appendix B.
To apply the SPA to our problem, we need to find t and

_ωs as functions of ωs. Inverting Eq. (4.10) perturbatively in
ϵx ≪ 1, we find

FIG. 3. Temporal evolution of the phases of the GW polar-
izations for the inner binary in the hierarchy triple system J0337
[39] in GR and in æ theory. Note that the phases here are different
from the orbital phases in Eq. (3.56), although the differences are
trivial.

8For detectors, such as LIGO, Virgo, and KAGRA, one can
treat qNðlÞ as time independent, since their observation windows
are very short [68]. However, for detectors like LISA, this
approximation needs to be relaxed, as we will discuss in the
next subsection.
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t − tc ¼ −
3

8

1

κ1ωs
ðGmωsÞ−5=3

×

�
1 −

4

5
ϵxðGmωsÞ−2=3 þO½ðGmωsÞ2=3; ϵx�

�
:

ð5:6Þ

But note very importantly that the time-domain waveform is
to be evaluated at retarded time, thus t → t − R=cN when

evaluating the orbital phase in the integrand of the Fourier
integral. Typically, the factor of R=cN is re-absorbed in the
time of coalescence tc because it is a constant, but inæ theory,
this constant will be different for each of themodes present in
the response function, and thus, more care must be taken.
With the results given in Eqs. (4.4) and (5.6), we are now

able to apply the SPA to Eq. (5.5) by following the
procedure outlined in Appendix A. After simple but tedious
calculations, we find

h̃ðfÞ ¼
X
N

� ffiffiffi
π

p
2

ðGmÞ1=3κ−1=21 ðqNð1Þ þ iqNð2ÞÞðGπmfÞ−7=6
�
1 −

1

2
ðGπmfÞ−2=3ϵx

�
e−i2πfRð1−c−1N ÞeiΨð2Þ ;

þ
ffiffiffi
π

p
4

ðGmÞ2=3κ−1=21 ðqNð3Þ þ iqNð4ÞÞðGπmfÞ−3=2
�
1 −

1

2
ð2GπmfÞ−2=3ϵx

�
e−i2πfRð1−c−1N ÞeiΨð1Þ

�
; ð5:7Þ

where N∈ðþ;×;b;L;X;YÞ and cþ¼c×¼cT , cb¼cL¼cS,
cX ¼ cY ¼ cV .

9 The e−i2πfRð1−c−1N Þ term exists because of
the retarded time argument discussed above (see also
Appendix A for a more detailed discussion). The Fourier
phases Ψð1Þ and Ψð2Þ, corresponding to the first and second
harmonics of the orbital period, respectively, are given by

Ψð2Þ ≡ 9

20
κ−11 ðGπmfÞ−5=3

�
1 −

4

7
ðGπmfÞ−2=3ϵx

�

þ 2πft̄c − 2ΦðtcÞ −
π

4
;

Ψð1Þ ≡ 9

40
κ−11 ð2GπmfÞ−5=3

�
1 −

4

7
ð2GπmfÞ−2=3ϵx

�

þ 2πft̄c −ΦðtcÞ −
π

4
; ð5:8Þ

where we have redefined the coalescence time via
t̄c ≡ tc þ R.
Note that the above expressions are different from the

ones given in Eqs. (66)–(74) in [44] because here we do not
assume the different polarization modes travel all at the
speed of light. Moreover, in our calculation of the Fourier
amplitudes, we have included Einstein-aether corrections
of OðvÞ relative to the leading-order correction. Therefore,
while in [44] the nontensor modes are all proportional to
the first harmonic, here we also have contributions that are
proportional to the second harmonic, i.e., qb;L;X;Yð1Þ ≠ 0 ≠
qb;L;X;Yð2Þ. Finally, Eq. (5.7) contains a term proportional to
exp½−2πifRð1 − 1=cNÞ�, which was absent from previous
studies because all modes were assumed to travel at the
speed of light.
We would also like to note that in the present case since

now the breathing and longitudinal modes are degenerate

[cf. Eq. (3.28)], the qbðiÞ and qLðiÞ terms in Eq. (5.7) can be
combined together to simplify the results,

qSðiÞ ≡ qbðiÞ þ qLðiÞ ¼ qbðiÞð1 − abLÞ; ð5:9Þ

where Eqs. (B1), (B3), and (5.2) had been used and abL is
given by (B5).

B. Space-based equilateral-shape detectors

In this subsection, we calculate the response function for
a space-based equilateral-shape detector, such as LISA,
TianQin, Taiji, and DECIGO [69–72]. Because all such
detectors share many similarities in their construction, we
will mainly focus on calculations for LISA; similar work
applicable to TianQin can be found in [70,73] for GR.
Following [74], we can cast the response function of

LISA in the following form, which is similar to Eq. (5.3):

h0ðtÞ ¼
ffiffiffi
3

p

2

X
N

H0
NðtÞ; ð5:10Þ

where N ∈ ðþ;×; b; L; X; YÞ, and where H0
NðtÞ is given by

H0
NðtÞ ¼ ½q0Nð1Þ cosð2ΦþΦDNð2ÞÞ

þ q0Nð2Þ sinð2ΦþΦDNð2ÞÞ�ω2=3
s

þ ½q0Nð3Þ cosðΦþΦDNð1ÞÞ
þ q0Nð4Þ sinðΦþΦDNð1ÞÞ�ω1=3

s ; ð5:11Þ

and the q0NðlÞ expressions are explicitly given in Appendix C.
Note that the latter are now functions of time, unlike for
ground-based L-shape detectors, as mentioned previously.
This is due to the fact that the observationalwindowsofLISA
is relatively long and sometimes comparable to the orbital
period of the detector.

9Note that the cþ here is the speed of plus mode instead of the
constant c13 as in (3.11).
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The quantities ΦDNð2Þ and ΦDNð1Þ are the corresponding
Doppler phases due to the motion of the detector around the
Sun; gravitational waves reach LISA and the Solar System
barycenter at different times [74]. Using the geometry of
LISA, we can show that to the first order of rso=λN , where
λN is the wavelength of the Nth mode [74] and rso is the
radius of the center of mass of LISA, which is equal to
1 AU, we have10

ΦDNð2Þ ¼
2ωs

cN
rso sin θ̄ cos½Φ̄ðtÞ − ϕ̄�;

ΦDNð1Þ ¼
ωs

cN
rso sin θ̄ cos½Φ̄ðtÞ − ϕ̄�: ð5:12Þ

The quantities θ̄ and ϕ̄ are generated in the same way as
in Fig. 11.5 of [58] (see also [74]). The quantity Φ̄ðtÞ is the
orbital phase of the center of mass of LISA in its orbit
around the Sun, which is given by

Φ̄ðtÞ ¼ Φ̄0 þ
2πt
T0

; ð5:13Þ

where Φ̄0 is a constant and T0 is the period of LISA around
the Sun, which is equal to the sidereal period of Earth [75].
Since detector-related quantities should be evaluated at

the current time t and source-related quantities should be

evaluated at the retarded time, one finds that Eq. (5.11)
needs to be modified to

H0
NðtÞ ¼ QNð1Þjt · ½ω2=3

s cosð2ΦÞ�jtrN
þQNð2Þjt · ½ω2=3

s sinð2ΦÞ�jtrN
þQNð3Þjt · ½ω1=3

s cosΦ�jtrN
þQNð4Þjt · ½ω1=3

s sinΦ�jtrN ; ð5:14Þ

where

QNð1Þ ≡ ½q0Nð1Þ cosΦDNð2Þ þ q0Nð2Þ sinΦDNð2Þ�;
QNð2Þ ≡ −½q0Nð1Þ sinΦDNð2Þ − q0Nð2Þ cosΦDNð2Þ�;
QNð3Þ ≡ ½q0Nð3Þ cosΦDNð1Þ þ q0Nð4Þ sinΦDNð1Þ�;
QNð4Þ ≡ −½q0Nð3Þ sinΦDNð1Þ − q0Nð4Þ cosΦDNð1Þ�; ð5:15Þ

with trN ≡ t − R=cN .
With the above expressions, we are now in the position to

calculate the Fourier transform of LISA’s response function
using Eq. (5.4) and the SPA technique introduced in
Appendix A. The final result is

h̃0ðfÞ¼
ffiffiffi
3

p

2

X
N

� ffiffiffi
π

p
2
ðGmÞ1=3κ−1=21 ½QNð1Þjta2þR=cN þiQNð2Þjta2þR=cN �ðGπmfÞ−7=6

�
1−

1

2
ðGπmfÞ−2=3ϵx

�
e−i2πfRð1−c−1N ÞeiΨð2Þ

þ
ffiffiffi
π

p
4
ðGmÞ2=3κ−1=21 ½QNð3Þjta1þR=cN þiQNð4Þjta1þR=cN �ðGπmfÞ−3=2

�
1−

1

2
ð2GπmfÞ−2=3ϵx

�
e−i2πfRð1−c−1N ÞeiΨð1Þ

�
; ð5:16Þ

where again N ∈ ðþ;×; b; L; X; YÞ, the ΨðiÞ are given by
Eq. (5.8), and ta1 and ta2 are the stationary points
[cf. Appendix A]. From Eqs. (5.6) and (4.4), we find

ta1;2 − tc ¼ −
3

8

1

κ1ωsðta1;2Þ
ðGmωsðta1;2ÞÞ−5=3

×

�
1 −

4

5
ϵxðGmωsðta1;2ÞÞ−2=3

�
; ð5:17Þ

where ωsðta2Þ ¼ πf and ωsðta1Þ ¼ 2πf.
Just like inEq. (5.7), theQbðiÞ andQLðiÞ terms inEq. (5.16)

could be combined together, too, since the breathing and
longitudinal modes are degenerate [cf. Eq. (3.28)],

QSðiÞ ≡QbðiÞ þQLðiÞ ¼ QbðiÞð1 − abLÞ; ð5:18Þ

where Eqs. (C1), (B3), and (5.2) have been used and abL is
given by (B5).

VI. PARAMETRIZED POST-EINSTEINIAN
PARAMETERS

By using the results given in the previous section, we are
ready to calculate the ppE parameters of æ theory
[44,47,48]. Since the calculations for LISA-like detectors
are too complicated, we will just focus here on the ground-
based response functions. What is more, since the LIGO
constraint on the speed of tensor modes cT is so stringent,
in this section, we will set cT ¼ c.

A. Generalized ppE scheme

One of the generalizations of the simplest ppE wave-
forms to theories with multiple polarizations can be written
in the form [47],11

10For the basic construction of LISA, readers are referred to
Figs. 1 and 2 of [74].

11This is different from its original form of [47], in order to
accommodate different propagation speeds, as mentioned above.
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h̃ðfÞ ¼ h̃GRðfÞð1þ cppEβppEU
bppEþ5

2 Þei2βppEUbppE
2

þM2

R
U−7=2
2 eiΨ

ð2Þ
GRei2βppEU

bppE
2 ð1 − κ1=23 cppEβppEU

bppEþ5

2 Þ½αþFþð1þ cos2 ϑÞ þ α×F× cos ϑ�

þM2

R
U−7=2
2 eiΨ

ð2Þ
GRei2βppEU

bppE
2 ð1þ κ3cppEβppEU

bppEþ5

2 Þ
× fei2πfRð1−c−1S Þ½αbFb sin2 ϑþ αLFL sin2 ϑ� þ ei2πfRð1−c−1V Þ½αXFX sinð2ϑÞ þ αYFY sinϑ�g

þ η1=5
M2

R
U−9=2
1 eiΨ

ð1Þ
GReiβppEU

bppE
1 ð1þ κ3cppEβppEU

bppEþ5

1 Þ
× fei2πfRð1−c−1S Þ½γbFb sinϑþ γLFL sinϑ�
þ ei2πfRð1−c−1V Þ½γX1FX cos ϑþ γX2FX sin ϑþ γY1FY þ γY2FY sin ϑ�g; ð6:1Þ

where [47]

h̃GRðfÞ ¼ −
ffiffiffiffiffiffi
5π

96

r
G2

N ½Fþð1þ cos2ϑÞ þ 2iF× cosϑ�

×
M2

R
U−7=2
2 eiΨ

ð2Þ
GR ; ð6:2Þ

and

Ψð2Þ
GR ¼ 3

128
ðGNπMfÞ−5=3 þ 2πft̄c − 2ΦðtcÞ −

π

4
;

Ψð1Þ
GR ¼ 3

256
ð2GNπMfÞ−5=3 þ 2πft̄c −ΦðtcÞ −

π

4
; ð6:3Þ

with U l ≡ ð2πGNMf=lÞ1=3. Note that φ in (6.2) has been
set to zero to agree with those in [44,47].
Comparing Eq. (5.7) with Eq. (6.1), we see immediately

that there is a mismatch. This is because the gravitational
constants in æ theory that control binary motion are G and
Gæ, and thus, these constants appear in Eq. (5.7), while the
ppE formalism is parametrized in terms of the gravitational
constant observed on Earth,GN , which is why this constant
appears in Ul in Eq. (6.1). The relation between G and GN
is given explicitly in Eq. (3.46), where we see that
G ¼ GN þOðs1; s2Þ. Similarly, from Eq. (2.9), we see that
Gæ ¼ GN þOðc14Þ. The ppE formalism, however, is
defined only in the limit of small deformations away from
GR, and since s1;2 → 0 and c14 → 0 in the GR limit, one
should really insert Eqs. (3.46) and (2.9) into Eq. (5.7), then
reexpand in small deformations, and then compare to
Eq. (6.1), keeping only terms of the leading order in the
coupling parameters and to the leading order in the PN
approximation. To be specific, in the procedure of finding
ppE parameters, we are going to apply the following
approximations so that we can match Eqs. (5.7) and (6.1):

ð1 − c14Þn1 ½ð1 − s1Þð1 − s2Þ�n2
¼ ½1þOðs1; s2Þ�½1þOðc14Þ�⋍1; ð6:4Þ

where n1 and n2 are arbitrary real numbers and the
neglected contribution of Oðs1; s2Þ and Oðc14Þ enters at
higher order in terms of the small coupling constants in the
waveform.
The resulting Fourier transform of the response function

in æ theory is still different from that in [47] because the
former contains the factors of exp½−2πifRð1 − 1=cNÞ�
discussed earlier. Therefore, in theories which contain
additional polarization modes with different propaga-
tion speeds, we must generalize the results of [47] by
replacing every appearance of FN in Eq. (6.1) with
FN exp½−2πifRð1 − 1=cNÞ�.
If we can recast Eq. (5.4) into the form of Eq. (6.1), then

we can read off the set of ppE parameters fcppE;bppE;
βppE;αþ;α×;αb;αL;αX;αY; γb; γL; γX1; γX2; γY1; γY2g. First,
we observe that

Ψð2Þ ¼ Ψð2Þ
GR þ U−7

2 ϕ1;

Ψð1Þ ¼ Ψð1Þ
GR þ 1

2
U−7
1 ϕ1; ð6:5Þ

where

ϕ1 ≡ −
3

224
η2=5κ−13 ϵx; ð6:6Þ

with

κ3 ≡A1 þ SA2 þ S2A3: ð6:7Þ

Note that Eq. (6.4) has been used above and the
f-dependent terms in ϕ1 are omitted to keep only the
leading PN correction. With Eqs. (6.4) and (6.5) at hand,
we could write Eq. (5.4) as the desired form, i.e., Eq. (6.1).
Here, we will omit the devilishly tedious expression for
h̃ðfÞ. Instead, we will first find the full expression of h̃ðfÞ
and then read off the ppE parameters. The results are
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cppE ¼ 224

3
;

bppE ¼ −7;

βppE ¼ 1

2
ϕ1 ¼ −

3

448
κ−13 η2=5ϵx;

αþ ¼
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
6

p G2
Ne

i2φðκ−1=23 − 1Þgþ;

α× ¼ −i
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
6

p G2
Ne

i2φðκ−1=23 − 1Þg×;

αb ¼
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
6

p κ−1=23 G2
Ne

i2φgb1;

αL ¼
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
6

p κ−1=23 G2
Ne

i2φgL1;

αX ¼
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
6

p κ−1=23 G2
Ne

i2φgX1;

αY ¼ −i
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
6

p κ−1=23 G2
Ne

i2φgY1;

γb ¼ −i
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
3

p κ−1=23 η−1=5G2
Ne

iφðgb2 þ gb4Þ;

γL ¼ −i
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
3

p κ−1=23 η−1=5G2
Ne

iφðgL2 þ gL4Þ;

γX1 ¼ −i
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
3

p κ−1=23 η−1=5G2
Ne

iφðgX2 þ gX4Þ;

γX2 ¼ −i
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
3

p κ−1=23 η−1=5G2
Ne

iφgX3;

γY1 ¼
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
3

p κ−1=23 η−1=5G2
Ne

iφðgY2 þ gY4Þ;

γY2 ¼ −i
ffiffiffiffiffiffi
5π

p

8
ffiffiffi
3

p κ−1=23 η−1=5G2
Ne

iφgY3; ð6:8Þ

where fgþ; g×; gb1;2;4; gL1;2;4; gX1;2;3;4; gY1;2;3;4g are func-
tions given in Appendix D. Note that gb2;4, gL2;4, gX2;3;4
and gY2;3;4 ∝ η1=5. In other words, the η terms in αN and γN
actually have the same power, namely, 0. Also note
that cppE, which corresponds to the ratio between the
amplitude and phase ppE corrections, agrees with that
given in [47,76].
Additionally, since the degenerate breathing and longi-

tudinal modes, in Eq. (6.1) we can put these terms together
by introducing the quantities,

αS ≡ αbð1 − abLÞ; ð6:9Þ

where Eqs. (D2), (6.8), and (5.2) had been used and abL is
given by (B5).

B. Fully restricted ppE approximation

Now, we move to the regime of the fully restricted ppE
approximation by mainly following [44]. We generalize
[44,47] to allow for different propagation speeds of scalar,
vector, and tensor modes. This time, Eq. (5.4) is written in
the form of

h̃ðfÞ ¼
X

N¼S;V;T

X∞
l¼1

Aðl;NÞ
ppE ðfÞeiΨ

ðl;NÞ
ppE ðfÞ; ð6:10Þ

where

Aðl;NÞ
ppE ðfÞ ¼ AðlÞ

GRðfÞ
�
1þ U

āðlÞppE
l

X∞
k¼0

ᾱðl;NÞ
ppE;kðU lÞk

�
; ð6:11Þ

Ψðl;NÞ
ppE ðfÞ ¼ ΨðlÞ

GRðfÞ þ U
b̄ðlÞppE
l

X∞
k¼0

β̄ðlÞppE;kðU lÞk

− 2πfRð1 − c−1N Þ: ð6:12Þ

Here, l stands for the lth harmonics and quantities with a
GR subscript referring to expressions in the GR limits as in

the last subsection. We also note that ᾱðl;NÞ
ppE;0 ≠ 0 and

β̄ðlÞppE;0 ≠ 0, which means that the terms proportional to

U
āðlÞppE
l and U

b̄ðlÞppE
l correspond to the term that enters at leading

(lowest) PN order. We can choose cT ¼ 1 since this effect
has been absorbed by the redefinition of the coalescence
time. Notice that when cS ¼ cV ¼ cT ¼ 1, the phase is
common to all of the scalar, vector, and tensor modes, and
the above formulation agrees with that in [47].
The restricted ppE waveform consists of amplitude

corrections truncated to the leading PN order (which
corresponds to −1 PN in our case) while phase corrections
are kept to higher PN orders. In this paper, we consider the
fully restricted ppE waveform, in which we only consider
the dominant l ¼ 2 harmonic mode. Then, the above
expressions can be reduced to

h̃ðfÞ ≃
X

N¼S;V;T

Að2;NÞ
ppE ðfÞeiΨð2;NÞ

ppE ðfÞ; ð6:13Þ

with

Að2;NÞ
ppE ðfÞ ¼ Að2Þ

GRðfÞ½1þ U
āð2ÞppE

2 ᾱð2;NÞ
ppE;0�; ð6:14Þ

Ψð2;NÞ
ppE ðfÞ ¼ Ψð2Þ

GRðfÞ þ U
b̄ð2ÞppE

2

X∞
k¼0

β̄ð2ÞppE;kðU2Þk;

− 2πfRð1 − c−1N Þ: ð6:15Þ

Here, Ψð2Þ
GR is given by Eq. (6.3) while Að2Þ

GR is given by
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Að2Þ
GR ¼ −

ffiffiffiffiffiffi
5π

96

r
M2

R
ðGNπMfÞ−7=6G2

N

× ½Fþð1þ cos2 ϑÞ þ i2F× cosϑ�: ð6:16Þ

Let us now determine the ppE parameters in Einstein-
aether theory. Rewriting the waveform in Eq. (5.7) for the
l ¼ 2 terms in a form given by Eq. (6.13), the ppE phase
parameters can be extracted as

b̄ð2ÞppE¼−7;

β̄ð2ÞppE;0¼ϕ1¼−
3

224
κ−13 η2=5ϵx;

β̄ð2ÞppE;1¼ 0;

β̄ð2ÞppE;2¼−
3

128

�
−
2

3
ðs1þ s2Þ−

1

2
c14þðκ3−1Þ

�
: ð6:17Þ

Notice that β̄ð2ÞppE;0 is different from βð2ÞppE in Eq. (6.8) by a

factor of 2 due to a prefactor 2 in front of βð2ÞppE in Eq. (6.1).

When deriving β̄ð2ÞppE;2, we kept Oðs1; s2; c14Þ contribution
in Eq. (6.4) for consistency. Next, the ppE amplitude
parameters are extracted as

āð2ÞppE ¼ −2;

ᾱð2;TÞppE;0 ¼ −
1

2
κ−1=23 η2=5ϵx;

ᾱð2;SÞppE;0 ¼ ᾱð2;TÞppE;0
gb1Fbsin2ϑþ gL1FLsin2ϑ

gþFþð1þ cos2ϑÞ − ig×F× cosϑ

¼ ᾱð2;TÞppE;0
gb1Fbsin2ϑð1 − abLÞ

gþFþð1þ cos2ϑÞ − ig×F× cos ϑ
;

ᾱð2;VÞppE;0 ¼ ᾱð2;TÞppE;0
gX1FX sinð2ϑÞ − igY1FY sin ϑ

gþFþð1þ cos2ϑÞ − ig×F× cosϑ
: ð6:18Þ

The above FN and ϑ dependence on the ppE amplitude
parameters for the scalar and vector modes seem to be a
generic feature, as predicted in [47]. We note that even if the

denominator gþFþð1þ cos2 ϑÞ − ig×F× cos ϑ in ᾱð2;SÞppE;0

and ᾱð2;VÞppE;0 becomes 0, the scalar and vector mode correc-
tions to thewaveformamplitude do not diverge since the ppE

parameters are multiplied by Að2Þ
GR, which contains the same

factor that cancels the denominator of ᾱð2;SÞppE;0 and ᾱð2;VÞppE;0.
Let us now compare the results presented here against

those in [44,76]. First, b̄ð2ÞppE agrees with that in [44,76],

while āð2ÞppE agrees with that in [76], which corrected [44].
Second, in [44], the aether field is assumed to be aligned
with the CMB frame and V ∼ 10−3, which is much slower
than the relative velocity of the binary constituents before
coalescence. In this case, the dominant contribution in ϵx in

Eq. (4.6) arises from the term proportional to C. Moreover,
the denominator A1 þ SA2 þ S2A3 originates from fac-
toring out the 0PN contribution in _ωs in Eq. (4.4). If we
neglect the Einstein-aether correction at 0PN order, this
factor can be simply set to the GR value of 1 (and one can
take the similar limit in κ3). Then, the leading ppE phase

β̄ð2ÞppE;0 in Eq. (6.17) agrees with that in [44,76] within the

approximation in Eq. (6.4). Similarly, ᾱð2ÞppE;0 reduces to the
leading ppE amplitude correction in [76] under the small

coupling approximation. On the other hand, β̄ð2ÞppE;2 in
Eq. (6.17) corrects that in [44].

VII. CONCLUSIONS

In this paper, we have studied the waveforms and
polarizations of GWs emitted by a binary system in
Einstein-aether theory, which contains four dimensionless
coupling parameters ci’s. We focused on the inspiral phase,
adopted the PN approximations and assumed that the
Einstein-aether coupling constants are small. In æ theory,
all the six polarization modes of GWs, referred to as
hNðN ¼ þ;×; b; L; X; YÞ, are present, although only five
of them are independent, as the breathing and longitudinal
modes (hb and hL) are proportional to each other. In the GR
limit of ci → 0 (i ¼ 1, 2, 3, 4), only the “þ” and “×”modes
remain, and they reduce to those of GR as expected.
Gravitational waveforms and GW polarizations emitted

by a binary system in the inspiral phase in æ theory were
already studied in [44]. In the current paper, we have first
rederived these formulas and corrected some typos, by
keeping all the terms to Oðv2Þ. In particular, we have
shown explicitly that the nonrelativistic GW modes hb;L;X;Y
contain not only the first harmonic terms of the orbital
phase, as shown in [44], but also the second harmonic ones
when one includes higher PN order terms.
Note also that in deriving the expressions of the GW

polarization modes hN’s [cf. (3.49)–(3.54)], we have not
assumed that COM of the binary system is always
comoving with the aether field. In fact, in cosmology
the aether field is normally assumed to be comoving with
CMB [53]. As a result, individual compact objects in the
Universe, such as galaxies and massive stars, are in general
expected to have peculiar velocities with respect to the
CMB. A typical velocity of compact objects in our own
galaxy in this frame is about V2 ≃ 10−6, for which Foster
had shown that the PN approximations adopted here are
valid [41].
Using the SPA method [34,47,49], we have also calcu-

lated the response function and its Fourier transform for
both ground- and space-based GW detectors. We then
generalized the ppE framework to allow for different
propagation speeds among scalar, vector, and tensor modes.
The ppE parameters within this new framework is given by
Eqs. (6.8), (6.17), and (6.18), which depend on all six
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polarization modes. The leading ppE phase correction at
−1 PN order agrees with that in [44,76] under the small
coupling approximation and within the CMB frame.
Similarly, the leading ppE amplitude correction agrees
with that in [76] under the same approximation. On the
other hand, the next-to-leading ppE correction in the
phase at 0PN order corrects the corresponding expression
in [44].
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APPENDIX A: THE STATIONARY
PHASE APPROXIMATION

SPA is a useful method for dealing with the Fourier
transform (FT) of the response functions. The details of this
method can be found in [34,47,49]. Here, we will provide a
brief introduction to this technique.
For real g0ðtÞ, ψ0ðtÞ, a0, b0, and y0, we have the

following approximation to g0ðtÞ’s Fourier integral [77,78]:

lim
y0→∞

I0ðy0Þ≡ lim
y0→∞

Z
b0

a0

g0ðtÞeiy0ψ0ðtÞdt

≈ lim
y0→∞

g0ðtaÞeiy0ψ0ðtaÞ�iπ
2l

×

�
l!

y0jψ ðlÞ
0 ðtaÞj

�
1=l Γð1=lÞ

l
; ðA1Þ

where ψ ðlÞ
0 ðtÞ denotes the lth derivative with respect to t.

ΓðxÞ denotes the gamma function [79]. ta refers to the
stationary point that is determined by the conditions,

ψ ð1Þ
0 ðtaÞ ¼ ψ ð2Þ

0 ðtaÞ ¼ … ¼ ψ ðl−1Þ
0 ðtaÞ ¼ 0;

ψ ðlÞ
0 ðtaÞ ≠ 0; ðA2Þ

and we will choose “þ” for (A1) when ψ ðlÞ
0 ðtaÞ > 0, and

“−” for (A1) when ψ ðlÞ
0 ðtaÞ < 0. Besides, the validity of this

approximation requires

����
Z

b0

a0

g0ðtÞdt
���� < ∞; ðA3Þ

and ψ0ðtÞ is not a constant on any intervalU0 ∈ ½a0; b0�. As
an example, we will use SPA to calculate the FT for the
response function,

HnðtÞ ¼ qnω
2=3
s ðtrÞ cosð2ΦðtrÞÞ; ðA4Þ

where tr ¼ t − R=vs is the retarded time with vs denoting
the speed of the wave.
To make sure that the approximation (A1) is valid for

the calculation of the FT of (A4), we need to assume that
d½lnðqnω2=3

s Þ�=dt ≪ dΦ=dt and d2Φ=dt2 ≪ ðdΦ=dtÞ2.
Then, using (5.4) and Euler’s formula, we find

H̃nðfÞ ¼
1

2
qnei2πfR=vs

×
Z

ω2=3
s ½eið−2Φþ2πftÞ þ eið2Φþ2πftÞ�dt: ðA5Þ

Since dð2Φþ 2πftÞ=dt ¼ 0, we find _ΦðtaÞ ¼ −πf, which
leads to a nonphysical frequency f and thus can be
discarded. Conversely, from the first term in (A5), we find
_ΦðtaÞ ¼ πf by dð−2Φþ 2πftÞ=dtjta ¼ 0. Thus, we obtain

ωsðtaÞ ¼ _ΦðtaÞ ¼ πf and l ¼ 2 for (A1). Now we write
H̃nðfÞ as

H̃nðfÞ ¼
1

2
qnei2πfR=vsInðfÞ; ðA6Þ

where

InðfÞ≡
Z

ω2=3
s ½eið−2Φþ2πftÞ�dt: ðA7Þ

Note that there is no summation in (A6) with
respect to n. At the same time, from (4.4), we find
that d2ð−2Φ þ 2πftÞ=dt2jta ¼ −2Φ̈ðtaÞ ¼ −2 _ωðtaÞ∼
−ω11=3ðtaÞ < 0, which helps us to determine the sign in
(A1). With all of these in hand, we can apply the
approximation (A1) to (A7) and find that

GRAVITATIONAL WAVES FROM THE QUASICIRCULAR … PHYS. REV. D 101, 044002 (2020)

044002-19



InðfÞ ≃
1

2
ω2=3
s ðtaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

_ωsðtaÞ
r

× 2eifψn−iπ
4 ; ðA8Þ

where

ψnðtÞ≡ −
2ΦðtÞ
f

þ 2πt: ðA9Þ

Note that in the above expression there is an additional
factor of 2, which originates from the analysis of [49].
Substituting (A8) into (A6), we find

H̃nðfÞ ¼
ffiffiffi
π

p
2

qn½ω2=3
s ðtaÞ _ω−1=2

s ðtaÞ�eiΨn ; ðA10Þ

where

Ψn ≡ −2ΦðtaÞ þ 2πfta þ 2πf
R
vs

−
π

4
: ðA11Þ

Next, using the relation,

½−2ΦðtÞ þ 2πft�jtatc ¼
Z

ta

tc

d½−2ΦðtÞ þ 2πft�
dt

dt; ðA12Þ

and the fact that ωsðtcÞ → ∞, we can carry out the integral
on the right-hand side of (A12) approximately and finally
obtain

Ψn ¼
9

20
κ−11 ðGπmfÞ−5=3

�
1 −

4

7
ðGπmfÞ−2=3ϵx

�

þ 2πf

�
tc þ

R
vs

�
− 2ΦðtcÞ −

π

4
; ðA13Þ

where the asymptotical form of the _ωs and ω̈s had
been used.
Similarly, using the relation,

½ω2=3
s ðtÞ _ω−1=2

s ðtÞ�jtatc ¼
Z

ta

tc

d½ω2=3
s ðtÞ _ω−1=2

s ðtÞ�
dt

dt; ðA14Þ

and ωsðtcÞ → ∞, we can also carry out the integral on the
right-hand side of (A14). Finally, we find

H̃nðfÞ ¼
ffiffiffi
π

p
2

ðGmÞ1=3qnκ−1=21 ðGπmfÞ−7=6

×

�
1 −

1

2
ðGπmfÞ−2=3ϵx

�
eiΨn ; ðA15Þ

where Ψn is given by (A13). The calculations for (5.5) can
be obtained by following the same steps12.

APPENDIX B: THE EXPRESSIONS OF qNðlÞ
In (5.5) we introduced qNðlÞ, which are given explicitly by

qþð1Þ ≡ dþ cosð2φÞFþ;

qþð2Þ ≡ dþ sinð2φÞFþ;

qþð3Þ ¼ qþð4Þ ¼ 0;

q×ð1Þ ≡ d× sinð2φÞF×;

q×ð2Þ ≡ −d× cosð2φÞF×;

q×ð3Þ ¼ q×ð4Þ ¼ 0;

qbð1Þ ≡ db1 cosð2φÞFb;

qbð2Þ ≡ db1 sinð2φÞFb;

qbð3Þ ≡ ðdb2 þ db4Þ sinφFb;

qbð4Þ ≡ −ðdb2 þ db4Þ cosφFb;

qLð1Þ ≡ dL1 cosð2φÞFL;

qLð2Þ ≡ dL1 sinð2φÞFL;

qLð3Þ ≡ ðdL2 þ dL4Þ sinφFL;

qLð4Þ ≡ −ðdL2 þ dL4Þ cosφFL;

qXð1Þ ≡ dX1 cosð2φÞFX;

qXð2Þ ≡ dX1 sinð2φÞFX;

qXð3Þ ≡ ðdX2 þ dX4Þ sinφFX;

qXð4Þ ≡ −ðdX2 þ dX4Þ cosφFX;

qYð1Þ ≡ dY1 sinð2φÞFY;

qYð2Þ ≡ −dY1 cosð2φÞFY;

qYð3Þ ≡ ½ðdY2 þ dY4Þ cosφþ dY5 sinφ�FY;

qYð4Þ ≡ ½ðdY2 þ dY4Þ sinφ − dY5 cosφ�FY; ðB1Þ

where

dþ ≡ −
2Gæ

R
G2=3M5=3ð1þ cos2 ϑÞ;

d× ≡ 4Gæ

R
G2=3M5=3 cos ϑ; ðB2Þ

12Of course, there is a difference between the demonstration
here and the calculations in Sec. V. That is, in Sec. V, the phase
(A13) is fixed for the first and second harmonic terms. At the
same time, the term that related to vs is absorbed into the
amplitude part. Logically, this seems to be a big change.
Nevertheless, mathematically, this modification is actually trivial.
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db1 ≡ 2Gæ

R
c14

2 − c14

−3c14ðZ − 1Þc2S þ 2S
c14c2S

× G2=3M5=3 sin2 ϑ;

db2 ≡ 2Gæ

R
c14

2 − c14

2Δs
c14cS

η1=5G1=3M4=3 sin ϑ;

db4 ≡ −
2Gæ

R
c14

2 − c14

4Δs
c14c2S

η1=5G1=3M4=3 sin ϑNiVi;

dL1 ≡ abLdb1; dL2 ≡ abLdb2; dL4 ≡ abLdb4; ðB3Þ

dX1 ≡ −
β1Gæ

R
1

2c1 − c13c−

1

cV

×

�
S −

c13
1 − c13

�
G2=3M5=3 sinð2ϑÞ;

dX2 ≡ 2
β1Gæ

R
1

2c1 − c13c−
Δsη1=5G1=3M4=3 cosϑ;

dX4 ≡ β1Gæ

R
1

2c1 − c13c−

2Δs
cV

η1=5G1=3M4=3

× ðsin ϑeiX þ cosϑNiÞVi;

dY1 ≡ β1Gæ

R
1

2c1 − c13c−

2

cV

×

�
S −

c13
1 − c13

�
G2=3M5=3 sin ϑ;

dY2 ≡ 2
β1Gæ

R
1

2c1 − c13c−
Δsη1=5G1=3M4=3;

dY4 ≡ β1Gæ

R
1

2c1 − c13c−

2Δs
cV

η1=5G1=3M4=3NiVi;

dY5 ≡ β1Gæ

R
1

2c1 − c13c−

2Δs
cV

η1=5G1=3M4=3

× sinϑeiYV
i; ðB4Þ

and

abL ≡ 1þ 2β2: ðB5Þ

Note that the all dX’s and dY’s are proportional to β1 and
therefore, proportional to c13.

APPENDIX C: THE EXPRESSIONS OF q0NðlÞ
In (5.11), we introduced q0NðlÞ’s, which are given by

q0þð1Þ ≡ dþ cosð2φÞF0þðtÞ;
q0þð2Þ ≡ dþ sinð2φÞF0þðtÞ;
q0þð3Þ ¼ q0þð4Þ ¼ 0;

q0×ð1Þ ≡ d× sinð2φÞF0
×ðtÞ;

q0×ð2Þ ≡ −d× cosð2φÞF0
×ðtÞ;

q0×ð3Þ ¼ q0×ð4Þ ¼ 0;

q0bð1Þ ≡ db1 cosð2φÞF0
bðtÞ;

q0bð2Þ ≡ db1 sinð2φÞF0
bðtÞ;

q0bð3Þ ≡ ðdb2 þ db4Þ sinφF0
bðtÞ;

q0bð4Þ ≡ −ðdb2 þ db4Þ cosφF0
bðtÞ;

q0Lð1Þ ≡ dL1 cosð2φÞF0
LðtÞ;

q0Lð2Þ ≡ dL1 sinð2φÞF0
LðtÞ;

q0Lð3Þ ≡ ðdL2 þ dL4Þ sinφF0
LðtÞ;

q0Lð4Þ ≡ −ðdL2 þ dL4Þ cosφF0
LðtÞ;

q0Xð1Þ ≡ dX1 cosð2φÞF0
XðtÞ;

q0Xð2Þ ≡ dX1 sinð2φÞF0
XðtÞ;

q0Xð3Þ ≡ ðdX2 þ dX4Þ sinφF0
XðtÞ;

q0Xð4Þ ≡ −ðdX2 þ dX4Þ cosφF0
XðtÞ;

q0Yð1Þ ≡ dY1 sinð2φÞF0
YðtÞ;

q0Yð2Þ ≡ −dY1 cosð2φÞF0
YðtÞ;

q0Yð3Þ ≡ ½ðdY2 þ dY4Þ cosφþ dY5 sinφ�F0
YðtÞ;

q0Yð4Þ ≡ ½ðdY2 þ dY4Þ sinφ − dY5 cosφ�F0
YðtÞ; ðC1Þ

where dNl are given by (B2)–(B4) and,

F0þðtÞ≡ 1

2
½1þ cos2 θðtÞ� sin½2ϕðtÞ� cos½2ψðtÞ� þ cos½θðtÞ� cos½2ϕðtÞ� sin½2ψðtÞ�;

F0
×ðtÞ≡ 1

2
½1þ cos2 θðtÞ� sin½2ϕðtÞ� sin½2ψðtÞ� − cos½θðtÞ� cos½2ϕðtÞ� cos½2ψðtÞ�;

F0
bðtÞ≡ −

1

2
sin2½θðtÞ� sin½2ϕðtÞ�; F0

LðtÞ≡ 1

2
sin2½θðtÞ� sin½2ϕðtÞ�;

F0
XðtÞ≡ − sin½θðtÞ�fcos½θðtÞ� sin½2ϕðtÞ� cos½ψðtÞ� þ cos½2ϕðtÞ� sin½ψðtÞg;

F0
YðtÞ≡ sin½θðtÞ�f− cos½θðtÞ� sin½2ϕðtÞ� sin½ψðtÞ� þ cos½2ϕðtÞ� cos½ψðtÞ�g: ðC2Þ

The angles θðtÞ, ϕðtÞ and ψðtÞ are given by
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θðtÞ ¼ cos−1
�
1

2
½cos θ̄ −

ffiffiffi
3

p
cosðϕ̄ − Φ̄Þ sin θ̄�

�
;

ϕðtÞ ¼ −tan−1
�
1

2
csc θ̄ cscðϕ̄ − Φ̄Þ½

ffiffiffi
3

p
cos θ̄ þ cosðϕ̄ − Φ̄Þ sin θ̄�

�
þ Λ;

ψðtÞ ¼ −tan−1f½
ffiffiffi
3

p
cos ϕ̄ðcos ψ̄ sin Φ̄ − cos θ sin ψ̄ cos Φ̄Þ

− sin ψ̄ðsin θ̄ þ
ffiffiffi
3

p
cos θ̄ sin ϕ̄ sin Φ̄Þ −

ffiffiffi
3

p
sin ϕ̄ cos ψ̄ cos Φ̄�

× ½
ffiffiffi
3

p
ðcos θ̄ cos ϕ̄ cos ψ̄ − sin ϕ̄ sin ψ̄Þ cos Φ̄

þ cos ψ̄ðsin θ̄ þ
ffiffiffi
3

p
cos θ̄ sin ϕ̄ sin Φ̄Þ þ

ffiffiffi
3

p
cos ϕ̄ sin ψ̄ sin Φ̄�−1g; ðC3Þ

where [74]

Λ ¼ Λ0 þ
2πt
T0

; ðC4Þ

which is the phase for the rotation of the three satellites
around the COM of LISAwith Λ0 being a constant, and Φ̄
is provided in (5.13). Just like in (5.13), T0 here is equal to
the sidereal period of the Earth. Here, θ̄, ϕ̄, and ψ̄ are the
three angles related to the center of the binary with respect
to the Sun (note that their definitions are different from the
general Euler angles [80]), defined explicitly in [74] and
Sec. 11.5 of [58], and can be treated as constants. Note that
once the detector is specified, e.g., LISA, φ and ϑ in q0NðlÞ
will be determined by fθ̄; ϕ̄; ψ̄g, i.e., fθ̄; ϕ̄; ψ̄ ; ϑ;φg are not
independent.

APPENDIX D: THE EXPRESSIONS OF gN

In (6.8), we use the factors gN (gN ∈ fgþ; g×; gb1;2;4;
gL1;2;4; gX1;2;3;4; gY1;2;3;4g), which are given as follows:

gþ ≡ −2; g× ≡ 4; ðD1Þ

gb1 ≡ 2c14
2 − c14

−3c14ðZ − 1Þc2S þ 2S
c14c2S

;

gb2 ≡ 2c14
2 − c14

2Δs
c14cS

η1=5; gb4 ≡ −
2c14

2 − c14

4Δs
c14c2S

η1=5NiVi;

gL1 ≡ abLgb1; gL2 ≡ abLgb2; gL4 ≡ abLgb4; ðD2Þ

gX1 ≡ −
β1

2c1 − c13c−

1

cV

�
S −

c13
1 − c13

�
;

gX2 ≡ 2β1
2c1 − c13c−

Δsη1=5;

gX3 ≡ β1
2c1 − c13c−

2Δs
cV

η1=5eiXV
i;

gX4 ≡ β1
2c1 − c13c−

2Δs
cV

η1=5NiVi;

gY1 ≡ β1
2c1 − c13c−

2

cV

�
S −

c13
1 − c13

�
;

gY2 ≡ 2β1
2c1 − c13c−

Δsη1=5;

gY3 ≡ β1
2c1 − c13c−

2Δs
cV

η1=5eiYV
i;

gY4 ≡ β1
2c1 − c13c−

2Δs
cV

η1=5NiVi: ðD3Þ
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