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We investigate the attractor solution in the coupled Yang—Mills field dark energy models
with the general interaction term, and obtain the constraint equations for the interaction
if the attractor solution exists. The research also shows that, if the attractor solution
exists, the equation of state of dark energy must evolve from wy, > 0 to wy < —1, which
is slightly suggested by the observation. At the same time, the total equation of state in
the attractor solution is wtot = —1, the universe is a de Sitter expansion, and the cosmic
big rip is naturally avoided. These features are all independent of the interacting forms.
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1. Introduction

The dark energy problem has been one of the most active fields in model cosmology
since the discovery of accelerated expansion of the universe.! 13 In observational cos-
mology, the equation of state (EOS) of dark energy wpg = ppr/ppE plays a central
role; ppg and ppg are its pressure and energy density, respectively. To accelerate the
expansion, the EOS of dark energy must satisfy wpg < —1/3. The simplest can-
didate for dark energy is a tiny positive time-independent cosmological constant
A, whose EOS is —1. However, it is difficult to understand why the cosmological
constant is about 120 orders of magnitude smaller that its natural expectation, i.e.
the Planck energy scale density. This is the so-called fine-tuning problem. Another
puzzle of dark energy is the first cosmological coincidence problem.'* 16 Namely,
why has our universe bequn the accelerated expansion recently? Why are we living
i an epoch in which the dark energy density and the dust matter energy density are
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comparable? This problem becomes very serious especially for the cosmological con-
stant as the dark energy candidate. The cosmological constant remains unchanged
while the energy densities of dust matter and radiation decrease rapidly with the
expansion of our universe. Thus, it is necessary to do some fine-tuning. In order
to give a reasonable interpretation of the first cosmological coincidence problem,
many dynamical dark energy models have been proposed as alternatives to the cos-

mological constant, such as quintessence,!” 2 phantom,?' 2° k-essence,?6 2 and

quintom.30 39

Recently, by fitting the SNe Ia data, marginal evidence for wpg(z) < —1 at
redshift z < 0.2 has been found. In addition, many best fits of the present values of
wpg are less than —1 in various data fittings with different parametrizations. The
present observational data seem to slightly favor an evolving dark energy with wpg
crossing —1 from above to below in the near past.?0"*3 In has been found that the
EOS of dark energy wpg cannot cross the so-called phantom divide wpg = —1 for
quintessence, phantom or k-essence alone.** A number of works have discussed the
quintom models,?* 39 which are a combination of a quintessence and a phantom.
Although many of these models provide the possibility that wpg can cross —1, they
do not answer another question: Why has the crossing phantom divide occurred
recently? Since in many existing models whose EOS can cross the phantom divide,
wpg, undulated around —1 randomly, why are we living in an epoch wpg < —17
This is regarded as the second cosmological coincidence problem.*> 47

As is well known, the most frequently used approach to alleviating the first
cosmological coincidence problem is the tracker field dark energy scenario.*®4? The
dark energy can track the evolution of the background matter in the early stage,
and only recently, the dark energy has negative pressure, and becomes dominant.
Thus, the current condition of the dark energy is nearly independent of the initial
condition. If the possible interaction between the dark energy and background mat-
ter®® 58 is considered, the whole system (including the background matter and dark
energy) may eventually be attracted into the scaling attractor a balance achieved
thanks to the interaction. In the scaling attractor, the effective densities of dark
energy and background matter decrease in the same manner with the expansion
of our universe, and the ratio of dark energy and background matter becomes a
constant. So, it is not strange that we are living in an epoch when the densities of
dark energy and matter are comparable. In this sense, the first cosmological coinci-
dence problem is alleviated. On the other hand, if the scaling attractor also has the
property that its EOS of dark energy is smaller than —1, the second cosmological
coincidence problem, if it exists, is alleviated at the same time.** 47 However, this
is impossible in the interacting quintessence or phantom scenario.

Recently, a number of authors have discussed another class of models, which are
based on the conjecture that a vector field can be the origin of the dark energy,?® %
and have features different to those of a scalar field. In Refs. 66-72, it is suggested
that the Yang—Mills (YM) field can be a kind of candidate for such a vector field.
Compared with the scalar field, the YM field is the indispensable cornerstone of
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particle physics and the gauge bosons have been observed. There is no room for
adjusting the form of the effective YM Lagrangian, as it is predicted by quantum
corrections according to field theory. In the previous works,%? ™ we have investi-
gated the one-loop YM field case and found attractive features: the YM field dark
energy models can naturally realize the EOS of w, > —1 and w, < —1, and the
current state of the YM dark energy is independent of the choice of the initial
condition. The cosmic big rip is also avoided in the models.

In the recent works,”* 7% the two-loop and three-loop YM field dark energy are
also considered. Although these cases are much more complicated than the one-loop
case, they have not brought new features for the evolution of the universe. So, in
this work, we shall focus only on the YM field with the one-loop case.

In this work, the cosmological evolution of the YM dark energy interacting with
background perfect fluid is investigated. In fact, gauge fields play a very impor-
tant role in, and are the indispensable cornerstone of, particle physics. All known
fundamental interactions between particles are mediated through gauge bosons.
Generally speaking, as a gauge field, the YM field under consideration may have
interactions with other species of particles in the universe. However, unlike those
well-known interactions in QED, QCD, and the electron-weak unification, here at
the moment we do not yet have a model for the details of microscopic interac-
tions between the YM field and other particles. In this work, instead of considering
some specific assumed interactions between the YM field and matter and radiation,
which have been adopted in Refs. 73-76, we shall consider the YM dark energy
model with a general interacting term, and investigate the general feature of the
attractor solution.

This paper is organized as follows. In Sec. 2, we give equations of the dynamical
system of the interacting YM field dark energy models, and discuss the general
features of the interacting models. In Sec. 3, we consider three special cases of the
interaction terms and the holographic YM dark energy models, and investigate the
constraints of these interaction terms. Finally, we present a brief conclusion and
discussion in Sec. 4.

2. Dynamical System of Interacting Yang—Mills Dark Energy
The effective YM field cosmic model has been discussed in Refs. 66—72. The effective

Lagrangian up to one-loop order is” 8!
b F
ﬁe =—-F1 — 1, 1
=3 . er? (1)

where b = 11N/2472 for the generic gauge group SU(N) is the Callan—Symanzik
coefficient 8% F' = —(1/2)Ff, F*" plays the role of the order parameter of the
YM field. x is the renormalization scale with the dimension of squared mass, the
only model parameter. The attractive features of this effective YM Lagrangian
include the gauge invariance, the Lorentz invariance, the correct trace anomaly, and
the asymptotic freedom.”™ With the logarithmic dependence on the field strength,
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Leg has a form similar to the Coleman-Weinberg scalar effective potential®* and
the Parker-Raval effective gravity Lagrangian.®® The effective YM field was first
put into the expanding Robertson-Walker (R-W) space-time to study inflationary
expansion®:57 and dark energy.%® We work in a spatially flat R-W space-time with

a metric
ds? = a*(7)(dr?* — 6;;dz'da?), (2)

where 7 = [(ag/a)dt is the conformal time. For simplicity we study the SU(2)
group and consider the electric case with B2 = 0. The energy density and pressure
of the YM field are given by

2 2

py=E7(6+b)7 pyZ%(§—5)7 (3)

where the dielectric constant is given by

€ = bln ? s (4)
and the EOS is
Dy y—3
w, = — = , 5
Y py 3y+3 (5)
where y = ¢/b = In|F/k?|. At the critical point with the order parameter F' = x2,
one has y = 0 and w, = —1, and the universe is in exact de Sitter expansion.5¢:67

Around this critical point, F' < £? gives y < 0 and w, < —1, and F > £? gives
y > 0 and w, > —1. So, in the YM field model, the EOS of w, > —1 and w, < —1
can all be naturally realized. When y > 1, the YM field has a state of w, = 1/3,
becoming a radiation component. The effective YM equations are

8ﬂ(a4eF‘”‘”) + fabcAZ(a4ch“”) =0, (6)

the v = 0 component of which is an identity, and the v = 1, 2, 3 spatial components
of which reduce to

0, (a*eE) = 0. (7)

In this work we will generalize the original YM dark energy model to include
the interaction between the YM dark energy and dust matter. We assume that the
YM dark energy and background matter interact through an interaction term @,
according to

py +3H (py +py) = —Q, (8)

which preserves the total energy conservation equation piot + 3H (prot + Prot) = 0.
It is worth noting that the equation of motion (7) should be changed when @ # 0.
We introduce the dimensionless variables

2pm
IR

x (10)
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where f is the function of  and y. With the help of the definition of y, the evolution
equations (8) and (9) can be rewritten as a dynamical system, i.e.

’_ 4y f(z,y)
y__2+y_(2+y)ey’ (11)
¥ = 30+ f(ay), (12)

where a prime denotes the derivative with respect to the so-called e-folding time
N = Ina. The fractional energy densities of dark energy and background matter
are given by

(L+ye :

= — szi, ].
Tyt (L+y)ey +a )

We can obtain the critical point (y., z.) of the autonomous system by imposing
the conditions y, = x/ = 0. From Egs. (11) and (12), we find that the critical state
satisfies the simple relations

3z, = f(%,yc), (14)
3z, = —4dy.e’s, (15)
and so we can get the critical state (y.,z.) by solving these two equations. In
order to study the stability of the critical point, we substitude linear perturbations

y — Yy + 0y and x — x. + dx about the critical point into the dynamical system
equations (11) and (12) and linearize them, and obtain two independent evolutive

equations, i.e.
5y’ . oy  [(Gy+ Ry Ry oy
ox') dx) Iy fx—3) \bz)’

0

Jy

where

Ry

: (16)

(y=Ye, z=2c)

and the definitions of Ry, fy, fx and Gy are similar. The functions G and R are
defined by

R = R(z,y) = _M7

(2+yev
which are used for the simplification of the notation. The two eigenvalues of the
coefficient matrix M determine the stability of the corresponding critical point.
The critical point is an attractor solution, which is stable only if both of these two
eigenvalues are negative (stable node), or real parts of these two eigenvalues are
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negative and the determinant of the matrix M is negative (stable spiral), which
requires that the critical point should satisfy the inequalities

Gy + Ry + fx—3 <0, (17)
[Rufy = (fx = 3)(Gy + R [(Gy + Ry — fx +3)* — 4R fy] <0, (18)
or that it should satisfy
Gy + Ry + fx—3 <0, (19)
(Gy + Ry — f« +3)> — 4R, fy, = 0. (20)

These generate a constraint of the interaction term @, which will be shown in the
following section.

Here we discuss some general features of the attractor solutions, regardless of
the special form of the interaction term @. From the expression (15), we find that
x. = —(4y./3)eYe. Substituting this into the formula (13), we obtain

(ye +1)e¥ 3+ 3y

YT (et Deve tx, 3 ye )
Since 0 < Q, < 1, this formula follows a constraint of the critical point:
~1<y. <0. (22)
From the formulae (5) and (21), we obtain
Quw, = —1. (23)

This relation is kept for all attractor solutions, independent of the special form of
the interaction. Since the value of €2, is not larger than 1 in the attractor solution,
we find that

w, < —1, (24)

and the EOS of the YM dark energy must not be larger than —1, phantom-like
or A-like. Since in the early universe the value of the order parameter of the YM
field F is much larger than that of x2, ie. y > 1, the YM field is a kind of
radiation component.”™ 72 However, in the late attractor solution, the dark energy
is phantom-like or A-like. So the phantom divide must be crossed in the former case,
which is different from the interacting quintessence, phantom or k-essence models.

In order to the investigate the final fate of the universe, we should investigate
the total EOS in the universe, which is defined by

__ Dtot o Py +pm

Wiot = = Q,w,y, (25)

tot ptot Py + pm vy
where p,,, = 0 is used. From the relation (23), we find that, in the attractor solution,
Wtot = —1. (26)

This result is also independent of the special form of the interaction. So the universe
is an exact de Sitter expansion, and the cosmic big rip is naturally avoided, although
the YM field dark energy is phantom-like.
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3. Several Interaction Models

In the previous section, we found that the critical point of the dynamical system of
interacting YM dark energy models satisfies not only Egs. (14) and (15), but also
the constraint in (22). It is obvious that the expression (14) depends on the special
form of the interacting term. If the critical point is an attractor, it also satisfies
the constraint in (17) and (18), or in (19) and (20). These relations can give some
constraints of the interaction term. In this section, we consider several cases with
different interaction forms between the YM dark energy and background matter,
which are taken as the most familiar interaction terms extensively considered in

the literature.59-58

Case a. Q x Hp,, which is equivalent to the form f(x,y) = a(y + 1)e¥, where «
is a dimensionless constant. From Eqgs. (14) and (15), we obtain the critical point

yc:_4ia’ xcz—%eyc. (27)
The constraint in (22) requires that
a >0, (28)
and the attractor conditions in (17)—(20) require that
o> —8. (29)

So we obtain the constraint of the interaction form; if the attractor solution exists,
the parameter « satisfies

a >0, (30)

and the EOS and the fractional energy density of the YM field in the attractor
solution are

1
U)y:—g(Oé—Fg), Qy: ) (31)

respectively. It is obvious that w, < —1.

Case b. Q « H(py+ pm), which is equivalent to the form f(z,y) = B[(y+1)e¥ +z],
where 3 is a dimensionless constant. From Egs. (14) and (15), we obtain the critical

point
30 4ye
¢ = 7o Te= — e 32
emBo1 T 3" (32)
The constraint in (22) requires that
0<B<3, (33)
and the attractor conditions in (17)-(20) require that
120
B < (34)

31°
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So the parameter 3 satisfies

0<p<3, (35)
if the critical state is an attractor solution. The EOS and the fractional energy
density of the YM field in the attractor are

3 3-0

=—, Q,=— 36
respectively, and it follows that w, < —1, and the YM field dark energy is phantom-
like or A-like.

Wy

Case c. Q x Hp,,, which is equivalent to the form f(z,y) = &, where v is a
dimensionless constant. From Eqgs. (14) and (15), we easily find that they have no
solution except that the value of 7y is exactly zero, i.e. the case with no interaction.

Case d. Recently, a number of authors have discussed holographic dark energy,
where the holographic principle has been put forward to explain the dark energy.
According to the holographic principle, the number of degrees of freedom of a
physical system scales with the area of its boundary. In this context, Cohen et al.%6
suggested that in quantum field theory a short distance cutoff is related to a long
distance cutoff due to the limit set by formation of a black hole, which results in
an upper bound on zero-point energy density. In line with this suggestion, Hsu and
Li®"88 argued that this energy density could be viewed as the holographic dark
energy satisfying

ppE = 3d*MAEL™? | (37)

where d > 0 is a numerical constant, Mp = 1/v/87G is the reduced Planck mass
and L is the size of the current universe. Li®® proposed that the IR cutoff L should
be taken as the size of the future event horizon:
> dt > da
o =a [ =af (38)
In this paper, we consider the holographic YM field dark energy. From the
relation (37), we obtain

A/
py = poE = 6MpQ, H? (Ty — 1) : (39)
and it follows that the interaction form is
Vi Yy
Q=—-2p,H T_l —3Hpy,(1+ wy), (40)

where the expression (8) has been used. This formula is equivalent to the form

343y

o, 3-y
y+1 d

—1 || w+1)ev. (41)
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From Egs. (14) and (15), we obtain the critical point

3(d2 — 1) 4y, y
c= T T o5 o c= ———€’". 42
Y 3+a " 3 ° (42)
The attractor conditions in (17)-(20) require that
d <0, (43)

which conflicts with the previous assumption, d > 0. So we get the following con-
clusion: the holographic YM dark energy model has no attractor solution.

4. Conclusion and Discussion

In summary, the cosmological evolution of the Yang—Mills field dark energy inter-
acting with background matter is investigated in this paper. We find the features
of the interacting YM dark energy models:

(a) The interaction term between the YM dark energy model and the matter has
a fairly tight constraint, if we require that the attractor solution of the model
should exist.

(b) If the attractor solution exists, the EOS of the YM field must evolve from
wy >0 to w, < —1 or wy, = —1.

(¢) The holographic YM dark energy model has no attractor solution, which is
different from other holographic models.89 92

(d) In the attractor solution, the total EOS is wiot = —1, which is independent
of the interacting forms. So the universe is in a de Sitter expansion, and the
cosmic big rip does not exist in the models.

In the interacting YM dark energy models, we should notice the “fine-tuning”
problem, which is reflected by the value of k, the energy scale of the YM field dark
energy models. In the interacting models, the total energy density in the universe is

m o bK?
por = g = 51+ p)e? + ] (44)
In the attractor solution, we can obtain
br? 1
ot =— T4 1—-= c yc7 4
Ptot B) ( 33/ ) € (45)

where the expression (15) has been used. The value of pio should not be larger

than that of the present total energy density in the universe,””"® i.e.
Prot < 8.099h2 x 10~ eV, (46)
which leads to
1o\ Y2
k< 4.18h x 107%eV? (1 —~ §yc) e7ve/2, (47)

For a fixed interacting model, where y. can be obtained, one can exactly calculate
the value of k, which keeps the current energy density of YM dark energy being the
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current observed value. From (47), we find that this energy scale x, as well as the
case with free YM field models, is very low compared to the typical energy scales
in particle physics.
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