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The physical interpretation of perturbations of homogeneous, isotropic cosmological models in the early Universe,
when the perturbation is larger than the particle horizon, is clarified by defining a complete set of gauge-invariant
variables. The linearized perturbation equations written in these variables are simpler than the usual versions, and
easily accommodate an arbitrary background equation of state, entropy perturbations, and anisotropic pressure
perturbations. Particular attention is paid to how a scalar (density) perturbation might be generated by stress
perturbations at very early times, when the non-gauge-invariant perturbation in the density itself is ill-defined. The
amplitude of the fractional energy density perturbation at the particle horizon cannot be larger, in order of
magnitude, than the maximum ratio of the stress perturbation to the background energy density at any earlier time,
unless the perturbation is inherent in the initial singularity.

I. INTRODUCTION

The mathematical theory of perturbations in in-
homogeneous, isotropic cosmological models has
been worked over many times in the literature.
References 1-7 are a selection of the more im-
portant comprehensive treatments., Nevertheless,
troubling questions still remain about the physical
interpretation of density perturbations at early
times when the perturbation is larger than the
particle horizon, which will here mean when the
time for light to travel a characteristic wavelength
of the perturbation is larger than the instantaneous
expansion (Hubble) time. These questions are par-
ticularly relevant to attempts to explain the origin
of perturbations which eventually give rise to gal-
axies through processes occurring at times when
temperatures exceed a few hundred MeV and/or
densities exceed nuclear densities, times when
there is considerable latitude to speculate about
the microscopic physics.?®

The problem has to do with the freedom of mak-
ing gauge transformations. In discussing pertur-
bations one is dealing with two spacetimes—the
physical, perturbed spacetime and a fictitious
background spacetime, here described by a Rob-
ertson-Walker metric. Points in the background
are labeled by coordinates x* (Latin indices will
range from 0 to 3, Greek indices from 1 to 3).

A one-to-one correspondence between points in
the background and points in the physical space-
time carries these coordinates over into the phys-
ical spacetime and defines a choice of gauge. A
change in the corvespondence, keeping the back-
ground coordinates fixed, is called a gauge trans-
formation, to be distinguished from a coordinate
transformation which changes the labeling of
points in the background and physical spacetime
together,

The perturbation in some quantity is the differ-
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ence between the value it has at a point in the phys-
ical spacetime and the value at the corresponding
point in the background spacetime. A gauge trans-
formation induces a coordinate transformation in
the physical spacetime, but it also changes the
point in the background spacetime corresponding
to a given point in the physical spacetime. Thus,
even if a quantity is a scalar under coordinate
transformations, the value of the perturbation in
the quantity will no¢ be invariant under gauge
transformations if the quantity is nonzero and pos-
ition dependent in the background.

The prime example is the perturbation in den-
sity (energy density or baryon density). Because
the density is time dependent in the cosmological
background, the value of the density perturbation
is altered by any gauge transformation which
changes the correspondence between hypersurfaces
of simultaneity in the physical spacetime and the
background spacetime. When the perturbation is
well within the particle horizon, hypersurfaces of
simultaneity are physically unambiguous (clocks
can ke synchronized by exchanging light signals)
and the change in density perturbation between
“reasonable” gauge choices is negligible. How-
ever, at early times there is no compelling phys-
ical reason to choose between gauges which give
very different results for the time dependence of
density perturbations, and several different values
for the exponent in the power-law time dependence
of what is physically the same mode of density
perturbation can be found in the literature, each
mathematically correct. Furthermore, if the
gauge condition imposed to simplify the form of
the metric leaves a residual gauge freedom, the
perturbation equations will have spurious “gauge
mode” solutions which can be completely annulled
by a gauge transformation and have no physical
reality 2:10-12

One interesting attempt to avoid these problems
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was made by Hawking,® who formulated the per-
turbation equations in a completely covariant
form, without any mention of metric tensor per-
turbations as such. This did not totally circum-
vent the problem of gauge ambiguity, since a
choice of time slicing in the perturbed spacetime
must still be made to define a density pertur-
bation. The paper is flawed by a failure to re-
cognize that hypersurfaces of constant proper
time along the fluid-element world lines cannot
be orthogonal to these world lines when pres-
sure perturbations as well as density perturba-
tions are present.

The Hawking line of analysis was completed
successfully by Olson'® for the special case of an
isentropic perfect fluid and a background with
zero spatial curvature. An equation was derived
for a gauge-invariant variable, proportional to
the intrinsic spatial curvature of hypersurfaces
orthogonal to the fluid four-velocity everywhere.
The density perturbation as such was defined rela-
tive to hypersurfaces of constant fluid-element
proper time, and thus was subject to an ambiguity
associated with the freedom of adjusting the origin
of proper time differently for different fluid ele-
ments. The Hawking-Olson approach can perhaps
be extended to allow for nonzero background cur-
vature, entropy perturbations, and anisotropic
pressure, but only with great difficulty.

This paper presents a complete gauge-invari-
ant framework for studying the time development
of physically general perturbations at early times,
when the wavelength of the perturbation is larger
than the particle horizon. The geometrical quan-
tities are defined from the metric perturbations
alone, without reference to the matter perturba-
tions. A gauge-invariant formalism in some re-
spects mathematically equivalent to this one has
been developed by Gerlach and Sengupta,'* but
they did not consider any cosmological applica-
tions.

There are two independent gauge-invariant gravi-
tational “potentials” for scalar (density) pertur-
bations and one for vector (vorticity) perturba-
tions. The appropriate combinations of Einstein
equations give all these potentials directly from
the matter perturbations through purely algebraic
equations once the perturbations have been separ-
ated into spatial harmonics.

The gauge-invariant variables which give the
mathematically simplest description of the matter
dynamics are, for scalar perturbations, (1) the
velocity amplitude which, when divided by the re-
duced wavelength of the perturbation, gives the
time dependence of the rate of shear of the matter
velocity field; (2) the perturbation in the “en- °
tropy” of the matter, specifically the excess of the

actual fractional pressure perturbation over the
adiabatic one; (3) the amplitude of the anisotropic
stress associated with the perturbation, if any,
and (4) the fractional energy density perturbation
on the hypersurfaces orthogonal to the world lines
of the matter. When written completely in terms
of these gauge-invariant amplitudes, the equations
of motion for the matter simplify to a form rather
closely analogous to the corresponding Newtonian
equations for perturbations in an expanding back-
ground, even when the wavelength of the pertur-
bation is much larger than the particle horizon.
The shear velocity and the comoving energy den-
sity perturbation formally respond to input from
the entropy perturbation and the anisotropic
stress, in the spirit of recent work by Press and
Vishniae.’? Analytic solution of these equations
is straightforward when the background spatial
curvature is negligible and the ratio of pressure
to energy density in the background is independent
of time.

The gauge invariance in itself does not re-
solve the physical ambiguity of what one means
by an energy density perturbation or a spatial
curvature perturbation when the perturbation
wavelength is larger than the particle horizon.
The physical perturbations relative to any
well-defined set of hypersurfaces of simulta-
neity can be represented by appropriate com-
binations of the above gauge-invariant amplitudes.
I will consider three such families of hypersur-
faces. The comoving hypersuvfaces, orthogonal
to the world lines of the matter, have already
been mentioned. The mathematically simplest
gauge-invariant gravitational potentials represent
directly the perturbations in the spatial curvature
and the lapse function relative to zevo-shear hy-
persurfaces, hypersurfaces for which the congru-
ence of normal timelike world lines has zero
shear; i.e., the traceless part of the extrinsic
curvature tensor vanishes. A spatially uniform
rate of expansion of the normal world lines char-
acterizes uniform-Hubble-constant hypersuvrfaces.
Only the last hypersurface condition carries over
without modification to general perturbations, in-
volving divergenceless vector fields and trans-
verse traceless tensors. As long as the pertur-
bations are linear the scalar perturbations can be
treated separately.

Requiring the hypersurfaces of simultaneity to
satisfy specific physical or geometric criteria is
contrary to the usual approach to cosmological
perturbations through a synchronous gauge.?'"+'%
In a synchronous gauge the physical properties
of only one of the hypersurfaces, at one particular
time, can be specified in advance; all the other
hypersurfaces depend on the global solution to the
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perturbation equations. As a result the density
perturbation in a synchronous gauge cannot be
characterized by gauge-invariant amplitudes,
and its value is in principle unrelated to the cur-
rent physical state of the perturbations.

An important question is whether the pertur-
bations that eventually give rise to galaxies need
to be present in the singularity at =0 or can
somehow be produced at a later time in an initially
homogeneous and isotropic universe. New phys-
ical mechanisms for generating inhomogeneities
through gauge-theory symmetry breaking have
been proposed in recent years,®:°:16:17 The dif-
ficulty is that, with a conventional background
equation of state, the comoving volume which
produces a galaxy is far larger than the particle
horizon at the times the symmetry breaking (or
any other exotic process) is likely to occur. No
causal process can then produce coherence on a
galactic scale. There have been suggestions'®?
that initially small statistical fluctuations on a
galactic scale associated with large amplitude
perturbations within the particle horizon at some
early time would grow to a significant amplitude
by the time the galactic scale comes inside the
particle horizon. The conventional mythology is
that the fractional energy density perturbation in-
creases as the proper time ¢ in a radiation-dom-
inated background as long as the perturbation
wavelength is larger than the particle horizon.

Local conservation of energy and momentum re-
quires that any energy density perturbation arise
as the result of a stress perturbation. Press and
Vishniac'? point out that for an isotropic stress
(entropy) perturbation the fractional energy density
perturbation at the particle hovizon can be no
larger than the maximum value of the ratio of
stress perturbation to background energy density
at earlier times. In this paper I generalize the
result to allow for anisotropic stress perturbations
and nonlinear excitation of density perturbations.
The conclusion still holds that a given amplitude
fractional energy density perturbation at the par-
ticle horizon can only arise from a stress per-
turbation with a comparable amplitude relative
to the background energy density unless the per-
turbation is inherent in the initial singularity or
unless the background equation state abolishes
particle horizons at early times. While an aniso-
tropic stress perturbation can produce an energy
density perturbation of comparable amplitude (on
a comoving hypersurface) at some early time, the
fractional energy density perturbation belongs
predominantly to the “decaying mode” and is no
larger at the particle horizon.

The plan of the paper is as follows. The notation
and description of the background and perturbed

metric tensor and energy-momentum tensor in
conventional terms, without any gauge restric-
tions, is established in Sec. II. In Sec. III I show
how these quantities are affected by arbitrary
gauge transformations and identify the gauge-in-
variant amplitudes describing the perturbation.
The equations for the gauge-invariant amplitudes
are derived in Sec. IV without any restrictions
on the physical nature of the matter other than
local conservation of energy and momentum, which
is required in any case as an integrability con-
dition on the Einstein equations., In Sec. V gen-
eral analytic solutions in a background with con-
stant ratio of pressure to energy density and ef-
fectively zero spatial curvature are used to dis-
cuss the generation of energy density perturba-
tions from stress perturbations from the point
of view of each of the hypersurface conditions
mentioned-above. Contact with the nonperturba-
tive evolution of the geometry and the matter is
made in Sec. VI, in order to understand the limits
of validity of the linear perturbation analysis and
nonlinear effects on the energy density perturba-
tion. The results are summarized in Sec. VII.

The focus in this paper is on the physics.
Mathematical questions regarding the existence
of linear perturbations and the expansion of the
perturbations in spatial harmonics have been
largely answered by D’Eath.?°

II. STANDARD FORMALISM

The background spacetime is described by some
version of the Robertson-Walker metric

ds? =S*(1)(=d1* +°g , pdxdx") . (2.1)

The tensor %, is the metric tensor for a three-
space of uniform spatial curvature K, with Rie-
mann tensor

SRaﬂro:K(sgarsng" *Sas8ar) 5 (2.2)

where K is.independent of time. The choice of
coordinates in the background three-space is left
arbitrary. Let a slash denote the covariant de-
rivative of a three-tensor with respect to 3¢, and
a semicolon the covariant derivative in the phys-
ical spacetime. The scale factor S(7) describes
the expansion of the background as a function of
the conformal time 7. ’

The unperturbed energy-momentum tensor must
be formally that of a perfect fluid at rest relative
to the above coordinates. The only nonzero com-
ponents are

T3==E,, T§=Podj, (2.3)

where E (1) is the background energy density and
P,(7) is the background pressure. Let
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w=Py/E,, c¢2=dP,/dE,. (2.4)

A nonzero cosmological constant can be considered
part of this background energy-momentum tensor,
contributing +A to E, and —-A to P,.

The time evolution of the background is governed
by the equations'®

(8/8)" == L(E,+3P,)S?, (2.5a)
(8/s)=31ES*-kK, (2.5b)
E/(E,+P,)==35/S, (2.6)

where S =dS/d, the derivative with respect to the
conformal time, and units have been chosen so
c=81G =1,

Perturbations in various quantities can be clas-
sified, according to how they transform under
spatial coordinate transformations in the back-
ground spacetime, as spatial scalars, vectors,
and tensors. Furthermore, the homogeneity and
isotropy of the background allows a separation of
the time dependence and the spatial dependence,
with the spatial dependence related to solutions of
a generalized Helmholtz equation.? The represen-
tation in spatial harmonics is not always unique.?°

Scalar harmonics are solutions of the scalar
Helmholtz equation

Q(O)Ia|a+k2Q(0)=o- (2.7)

The wave number %k sets the spatial scale of the
perturbation relative to the comoving background
coordinates, For zero background curvature the
@’ can be taken as plane waves; solutions for
nonzero spatial curvature are described by Har-
rison.* Scalar perturbations have a spatial de-
pendence derived from one of the @ ©’, A vector
or tensor quantity, such as the three-velocity of
the matter or the perturbation in the spatial met-
ric tensor, which is associated with a scalar per-
turbation must be constructed from covariant de-
rivatives of Q' and the metric tensor. The con-
struction is unique, within a normalization, for
any traceless, symmetric tensor. Define the vec-
tor

QI =-(1/E)Q?,,, (2.8)

and the traceless, symmetric, second-rank ten-
sor

Q=K %y}, @.9)

Higher-rank tensors can be useful in representing
moments of the specific intensity of, say, the mi-
crowave background radiation field, but are not
needed in this paper. All equations governing
scalar perturbations are reducible to scalar equa-
tions by taking divergences, e.g.,

Q(O)ala=kQ(0), Q(O)"xn[aﬂ=%(k2_3K)Qm) . (2.10)

The divergenceless part of a vector field cannot
be related to scalar harmonics, but instead must "
be proportional to a vector harmonic Q*’%, a div-
ergenceless vector field which is a solution of the
vector Helmholtz equation

QUWaIB 4 p2QWe=0, (2.11)

The corresponding second-rank symmetric ten-
sor, necessarily traceless but not divergenceless,
is

Q(Ua5=_}z_k—l(Q(l)alB+Q(1)Bla). (2.12)

A second-rank antisymmetric tensor can also be
constructed from @ ’, in contrast to Q’, since
& is not the gradient of a scalar,
Gravitational waves are described by a trace-
less, divergenceless tensor @ 2) which is a solu-

tion of

Q(2)(!8|7I7+k2Q(2)a5=0, (2.13)

and in linear perturbation theory are completely
decoupled from the scalar and vector perturba-
tions.

A completely general perturbation of the gravi-
tational field can be written as a linear combin-
ation of perturbations associated with individual
spatial harmonics as defined above, with no coup-
ling between different harmonics. The gravita-
tional wave tensor perturbations only couple to the
anisotropic part of the stress tensor, the vector
perturbations couple, in addition, to the diver-
genceless, vortical part of the velocity field of
the matter, and scalar perturbations couple to
perturbations in the density and isotropic pres-
sure as well as perturbations in the irrotational
part of the velocity field and the anisotropic
stress.

From now on we assume the separation into
individual harmonics has been made. Then a given
quantity can be written as a linear combination of
all the independent appropriate rank spatial ten-
sors constructable from the fundamental harmon-
ic, with the coefficients functions of time. The
Einstein equations and matter evolution equations
become ordinary differential equations in time
for these coefficients.

Specific representations of the perturbations
in the metric tensor and the energy-momentum
tensor will now be defined separately for scalar,
vector, and tensor perturbations,

A. Scalar perturbations

The conformal factor S? is removed from the
metric tensor components before defining the
perturbations. Let

Zoo==SA(N[1+24(1)QVx*)], (2.142)
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g0a=—SzB m’(T)Q;O’(x“) , (2.14b)
8up=SP{[1+2H (T)Q ' (x*) Fg o sx*)
+2HP (MR )]} (2.14c)

The representation of the energy-momentum
tensor will also be completely general in the con-
text of first-order perturbations. Define the rest
frame for the matter to be the frame in which the
energy flux vanishes. Let u® be the four-velocity
of this frame relative to the coordinate frame,
The three-velocity associated with «#° is represen-
ted by

u®/ul =0 (1)Q O (x*) . (2.15)
To first order the normalization » u®=~1 gives
u®=S"1-AQ]. (2.16)

In the rest frame of the matter the energy den-
sity is
==T3=Eq(1)[1+56(1)Q ” (x*)]. (2.17)

In transforming back to the coordinate frame the
mixed components 7§ are unchanged to first order
except for 7% and T'¢. The stress tensor TY is
represented by an isotropic pressure

=3 Te=Py(1)+Po(T)7 (1)@ (x *) (2.18)
and a traceless anisotropic stress, with
TS=PR[1+71,Q 65+ P, (1), (2.19)

The remaining components are
T?z= (E0+P0)(v(°’-B‘°’)Q;°’ , ’
Tg = _(EO+PO),U(O)Q (0o .

(2.20)

The perturbed isotropic pressure need not be
related to the energy density in the same way as
the background, The difference between the frac-
tional pressure perturbation and that expected
from the background pressure-energy density re-
lation will be called the entropy perturbation,

E, dP,
n(T)Q(O) =(Tf _=290% o 5> (0)
L PO dEO Q

3!»—-

(wr,~c20)Q - (2.21)
even though it may bear no relation to the true
physical entropy, when this is a meaningful con-
cept.

Perturbations in auxiliary quantities associated
with the matter, such as a rest-mass density or
specific intensity of radiation, can be defined in
a similar fashion, and may be required to treat
the internal dynamics of the matter, e.g., the
interaction of matter in the narrow sense with
electromagnetic or neutrino radiation and the

propagation of this radiation.*? However, in this

. paper we will only consider the overall dynamics

of the matter as reflected in the equations 72,,=0.
B. Vector perturbations

Now all quantities which are scalars under spat-
ial coordinate transformations in the background
must be unperturbed, e.g., g,,, 79, and «°. The
description of vector and tensor quantities is sim-
ilar to the scalar case, but the spatial dependence
is generated from a fundamental vector harmonic

4 In the metric tensor,

Zoa==SHT)BYUTIQW (x*), (2.22a)

as=S? g0 st 2HF (TIQ 1) (™) ] (2.22b)
In the energy-momentum tensor,

T%=([E,+Py)* =BV)QY, (2.23a)

T3=Pybg+Pyn’ (1)@, (2.23b)
where

u®/u’=0"(1)Q V¥ (x*) . (2.24)

C. Tensor perturbations

The intrinsically tensor perturbations affect only
the traceless part of the spatial metric and the
traceless part of the stress tensor. For a par-

ticular tensor harmonic @ 2},

2as=S['8ag ¥ 2H7 (MR ], (2.25)
Tg=P,d5+Pyn (1)Q%. (2.26)

III. GAUGE TRANSFORMATIONS AND
GAUGE-INVARIANT VARIABLES

As explained in Sec. I, a gauge transformation
corresponds to a change of coordinates in the phys-
ical spacetime while the background coordinates
are held fixed. Consistent with the perturbation
analysis, only first-order effects of the coordin-
ate transformation need be considered, and the
spatial dependence of the transformation should
correspond to the same harmonic that gener-
ates perturbations in the metric tensor and energy-
momentum tensor.

A. Scalar perturbations

The most general possible gauge transformation
associated with a scalar perturbation is the result
of the coordinate transformation

7['=T+T(T)Q(0y(xu) , (3.1a)
P =xa+L(07(T)Q(O)a(xu) (3.1b)

with Tand L arbitrary functions of 7.
The changes in the metric tensor are computed
from
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9x* ox' . ..
8= 57 55 BulE™). (3.2)

In g, and g, the scale factors are related by
S(7) ~S(M)[1+(S/S)TQ'] (3.3)
and

3g.o“3 (.7—6") ~ "g,,s(x“)+L(°’Q [T _5)% 3gaB_ (3.4)
The metric derivatives in Eq. (3.4) combine with
the coordinate derivative of @ ©® in 8%%/8x8 to
give covariant derivatives of Q‘©’*, The final re-
sult for the changes in the amplitudes of the met-
ric perturbations defined by Eqs. (2.14) is

A=A-T-@/S)T, (3.52)
§‘°’=B(°’+i(°)+kT, (3.5b)
Hy=H,~ ®/3)LC - (5/9)T, (3.5¢)
HY=HP+RL® . (3.50)

Now consider the matter perturbations. The new
matter three-velocity is, by definition,

70Q = a5 /dF ~dx®/dT+LQ,
S0
5O =y @4 @ ) (3.6)
The energy density E is a coordinate scalar, but
E(7)=E(7)[1+3Q]
= E (D[1+(5+ TE/E)Q®].

Thus the energy density perturbation does change
by

5=06+3(1+w)(S/S)T. 3.7

Equation (2.6) is used to eliminate 1:30. Similarly,
- d c? §
Fo=m,=TPy/Py=m,+3(1+w) = 5T. (3

The amplitude of the traceless part of the stress
tensor n;?’ is gauge invariant.

The usual way of dealing with this gauge freedom
is to impose conditions on the form of the metric
tensor and/or matter perturbations. Examples
are the synchronous gauge A =B =0 2715 the
longitudinal gauge H®’ =B =0,* the comoving
proper time gauge A =9 ‘> =0, and the comoving
time-orthogonal gauge B =9©’=0.22 Such a con-
dition may or may not specify the gauge uniquely.
For instance, the transformation from some other
gauge to the synchronous gauge contains two free
constants of integration in T and L’. Any am-
biguity in the gauge condition implies the existence
of extra, unphysical gauge modes when the Ein-
stein equations are solved.?'*

The general covariance of Einstein’s theory of

gravity guarantees complete freedom in the choice
of gauge as long as one can demonstrate the exis-
tence of a gauge transformation to that gauge from
arbitrary metric tensor components and/or matter
variables. The corollary of this principle is that
only gauge-invariant quantities have any inhevent
physical meaning. Gauge-dependent quantities,

.such as the energy density perturbation, have

physical meaning only to the extent that, in a par-
ticular gauge, they can be identified with a gauge-
independent quantity either exactly or approxi-
mately.

To have genuine physical significance, gauge-
independent quantities should be constructed from
the variables naturally present in the problem,
here the perturbations in the metric tensor and
energy-momentum tensor, without reliance on
artificially introduced variables, such as the
four-velocity of an ad hoc congruence of “obser-
vers.,”

First consider the amplitudes of the metric
tensor perturbations. Only two independent gauge-
independent quantities can be constructed from
the metric tensor amplitudes alone, since there
are two gauge functions and four metric tensor
amplitudes. By inspection of Eqs. (3.5), these
are conveniently taken as

1 158 1 fsee S
q)AEA +EB(°) +E §B(O) —k_“z (H;-O)+§H1(-°)) (3.9)
and
18 18 -
@HEHL*'%HI(‘O)'*'E_S_B(O)_E?E— 1(-0). (3.10)

The physical interpretation of these gauge-invar-
iant potentials will be postponed until after we
have considered the matter perturbations.

The simplest gauge-invariant matter “velocity”
amplitude is obviously, from Egs. (3.6) and
(3.5d),

o020 L LHD . (3.11)
This has a direct physical interpretation in terms

of the shear of the matter velocity field. The
shear tensor is'®

_Lipk 1 L B
O =2Phu;, +u,,,)P) - 3Pub,,

with P, =g, +uu,. This vanishes in the back-
ground and to first order the only nonzero com-
ponents are

Ous=S(H — kv ®)QLY.

The magnitude of the shear is then

o= (%o.klokz)uz: (%Q(o)aBQ&?)llz . (3'12)

k
_S_v(sm
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The velocity amplitude o{” is the velocity which,
when divided by the proper reduced wavelength
S/k, gives the time dependence of the rate of
shear associated with the perturbation.

The energy density perturbation amplitude 0
must be combined with other quantities to pro-
duce a gauge-invariant measure of the density per-
turbation, and one obvious criterion is that the
gauge-invariant quantity reduce to 0 as soon as
the perturbation comes inside the particle hori-
zon, %18/S <1. There are two obvious possibili-
ties. First, consider

18

€,=0+3(1 +w);s—(v‘°>-B‘°’), (3.13)
which is gauge invariant by Eqs. (3.7), (3.6), and
(3.5b). The amplitude ¢, is equal to d in any
gauge in which v'® = B® but this is just the condi-
tion that the matter world lines be orthogonal to
the 7 = constant spacelike hypersurface. Thus,
€,, iS the natuval choice of gauge-invariant energy
densily peviurbation amplitude from the point of
view of the matter. It is the density perturbation
relative to the spacelike hypersurface which
represents everywhere the matter local rest
frame.

This is not the same as the density perturbation
defined by Olson,'® which compares energy densi-
ties at the same proper time calculated as an in-
tegral along each matter world line from the ini-
tial singularity. The Olson density perturbation
definition has direct operational meaning for in-
dividual comoving observers only after the per-
turbation comes within the particle horizon. It
has no gauge-invariant meaning which is local in
time and can give a nonzero value for the density
perturbation at times when the Universe is ac-
tually exactly homogeneous and isotropic, if a
real perturbation was present temporarily at an
earlier time.?®

An alternative gauge-invariant density pertur-
bation amplitude is

18 1.
€=6-3(+0)} 3(BO - 1A). (3.14)

From the discussion of shear following Eq. (3.11)
and the fact that B is the three-velocity ampli- .
tude of world lines normal to the 7=constant
hypersurface, one sees that €, measures the
energy density perturbation relative to the hyper-
surface whose normal unit vectors have zero
shear. This geometrically selected hypersurface
is as close as possible to a “Newtonian” time
slicing.

Of course,- any linear combination of ¢, and ¢,
is gauge invariant, and the physical significance
of one such linear combination will be discussed

in Sec. V [see Eq. (5.26)]. Here I focus on ¢, be-
cause first, it acts in the Einstein equations as
the source for the gauge-invariant potential &
[see Eq. (4.3)], and second, the equations govern-
ing the dynamics of the matter are more trans-
parent physically when written in terms of €.
The difference

€, —€=3(1 +w)%§v;°) (3.15)
is small once the perturbation is well inside the
particle horizon, but is large at early times.
Typically, €, < (k7)% and ¢, is constant at k7 <1
for perturbations regular as S— 0.

The zero-shear hypersurface can be invoked to
give physical (geometrical) meaning to the gauge-
invariant potentials &, and ®,. In a gauge where
each constant-7 hypersurface has normals with
zero shear, i.e.,

1.
B(O) "EHI('O)=O?

Eqgs. (3.9) and (3.10) greatly simplify to give
b,=A, b,=H, +3H .

But then &, is the amplitude for the spatial de-
pendence of the proper time intervals along the
normals between two neighboring such zero-
shear hypersurfaces (the lapse function), while
the intrinsic scalar curvature of a zero-shear
hypersurface is [see Eq. (A6)], to first order in
the perturbation, )

® = [6K +4(k% - 3K)8,Q])/S%.  (3.16)

zero shear

In this sense, &, physically represents a “curva-
ture perturbation.” Sufficient conditions for the
global perturbations of the spacetime geometry to
be small are &,Q ©’«<1, ®,9° «1, but these are
not necessary conditions since other hypersur-
faces may be less strongly warped by the pertur-
bation (see Sec. V).

To complete the gauge-invariant description of
the matter perturbations, note that the fractional
isotropic pressure perturbation can be expressed
in terms of the energy density perturbation and
the entropy perturbation nQ ©’ through Eq. (2.21).
But from Eqgs. (2.21), (3.7), and (3.8) 7 is gauge
invariant.

Certain gauges greatly simplify the represen-
tation of the gauge-invariant variables. For in-
stance, in the longitudinal gauge H®’=B=0,
Eqgs. (3.9)-(3.11) and Eq. (3.14) become &,=A4,
®,=H,, v=v, ¢,=6. A gauge in which ¢, =5
and the other amplitudes are relatively simple is
v©®@-B®=0, HY'=0. Both these gauge conditions
uniquely specify the gauge.
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B. Vector perturbations

The gauge-transformation properties of vector
perturbations are much simpler than for scalar
perturbations, since now there is no gauge am-
biguity about the time coordinate. The most gen-
eral gauge transformation is

Fe=x 2+ LO(T)Q Wy *), (3.17)
SO

é‘“=B‘”+I:‘”, (3.18a)

I;Y,(.”=H(T”+kL(”, (3.18b)
and the matter velocity transforms as ]

S W=y W f (3.19)

The only gauge-invariant combination of metric
tensor amplitudes is

,I,EB(I)_%I'{T('I). (3.20)

This, times %/S, is the amplitude of the shear of
the normals to the constant-7 hypersurface. What
was naturally constrained to vanish in dealing with
scalar perturbations is now gauge invariant and
necessarily nonvanishing if vector perturbations
are present,

As for the energy density perturbations in the
scalar case, there are two alternative choices for
gauge-invariant forms of the matter velocity per-
turbation. The one related to the shear by the
vector perturbation analog of Eq. (3.12) is

vs(”zv(”-%il}”. (3.21)

The other is related to the vorticity tensor
Wep = 3 Pylutn;, = ;)P
the only nonzero components of which are
W,=Sw =B )W,
=S(0*'= BY)Q $s- Q41 -

The magnitude, the intrinsic angular velocity of
an individual fluid element

w= [%waswds]uz

= '1;_ (,U(l)_B(l))

(5w, wes]/2 (3.22)
aB

is, like the shear, directly measurable from the
local behavior of the matter. Let

v,=0 P =BW=p P ¥, (3.23)

c

It is v,, the velocity relative to the normal to the
constant-7 hypersurface, that is the source for ¥
in the Einstein equations, rather than »*’

s

C. Tensor perturbations

Since no three-vector or scalar can be formed

_from a tensor harmonic Q 2’, the amplitudes H 2’

and 72’ as defined in Eqgs. (2.25) and (2.26) are
automatically gauge invariant.

IV. PERTURBATION EQUATIONS IN
GAUGE-INVARIANT VARIABLES

The usual approach to the derivation of the
equations governing linearized perturbations in
cosmology has been to impose at the beginning
a gauge condition to simplify the form of the me-
tric and/or matter perturbations and then work
directly with the metric tensor components and
matter variables. However, a complete set of
equations can be obtained directly in terms of
the gauge-invariant variables defined in Sec. IIlL
These equations are mathematically simpler and
physically more transparent than the usual ones,
particularly in comparison with the commonly
used synchronous gauge. Spurious gauge modes
are automatically excluded.

In the Appendix we give the perturbations in the
Ricci tensor components in a general gauge. The
perturbation in the Einstein tensor is

5G =0R} - éGgGR .
A. Scalar perturbations

For scalar perturbations, one gauge-invariant
combination is

3S k2 - 3K
5Gg-k—2§(écg)'“=-2———-—-—(_ 57 )<I>”Q‘°,), (4.1)
the other '
o 1 N &2 (o)
8Gg - 3050GL = -7 (B, +3 )Q80% (4.2)

Upon equating 8G$ with 6T} through the Einstein

equations one finds from Egs. (4.1), (2.17), (2.20),

and (3.13)

(k2 - 3K)
S 2

and from Egs. (4.2) and (2.19)

2 ®,=Eg, (4.3)

kZ
-7 @,+8) =P, . (4.4)

Thus, both gauge-invariant amplitudes for the
metric tensor perturbation are related algebraical-
ly in a very simple way to gauge-invariant am-
plitudes of the matter perturbations. Equation
(4.3), in spite of appearances, really derives

from the energy initial-value equation on the
zero-shear hypersurface (see Sec. VI). For a
perfect fluid, Eq. (4.4) gives & ,=-& .
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All of the dynamics for scalar (and also vector)
perturbations resides in the equations of motion
of the matter, T%,=0and T%,,=0. These are also
written out in the Appendix for a general gauge.
Straightforward manipulation of the momentum
equation, with the help of Egs. (3.9), (3.11), (3.13),
and (2.21), gives the explicitly gauge-invariant
form

L +§ 0 =k® , +k(1 +w)(c3€,, +wn)

-3k =3K/k?)(1 +w) wr'® . (4.5)

The second term on the right-hand side of Eq.
(4.5) is S times the acceleration in the rest frame
of the matter due to the pressure gradient force,
and the third term is S times the acceleration due
to the divergence of the anisotropic part of the
stress tensor. The inertial mass per unit volume
is E (1 +w), and the proper wave number is &/S.
However, the first term is not S times the gra-
vitational acceleration in the matter rest frame.
If it were, the left-hand side of Eq. (4.5) would be
zero. Rather, it is the gravitational acceleration
in the “shear-free frame” associated with the
geometry perturbations, as discussed in Sec. IIL
Equation (4.5) has exactly the same form [except
for the factor (1 — 3K/k?) in the third term on the
right-hand side] as the corresponding Newtonian
equation in an expanding background, with v{*’ the
analog of the Newtonian peculiar velocity and & ,
the analog of the Newtonian gravitational poten-
tial.

The energy equation is less transparent be-
cause it is sensitive to first-order changes in the

frame of reference in ways the momentum equa-
tion is not. Begin by considering Eq. (A4a) in a
particular gauge, the comoving, time-orthogonal

gauge v‘” =B =0. n this gauge ¢, =0, v{°

=~ (1/R)H', and from Eq. (3.10)
H, =, +3k0!® - %(—SS 0;0’) . (4.6)

The obvious substitutions and elimination of z')i")

through Eq. (4.5) give a gauge-invariant equation
for ¢ ,, but a rather messy one. Now use Egs.
(4.3) and (4.4) to eliminate €,, and ®, in favor of
&, and simplify with the help of the background
Egs. (2.5) and (2.6). After elimination of a com-
mon factor 2[k? - 3K +3(E, +P,)S?]/E,S?,

(Eo +Pg)S? (o) _ PoS* S (o)
k s P ST

(4.7)

Alternatively, write Eq. (4.7) in a more familiar
form

. § 1
@H+§¢H=—§'

[ES%,,]" = = (1 - 3K/K?)(E, +P,)S%kv\"
—2(1 = 3K/k)PS?S7 L, (4.8)

This has some resemblance to a special relati-
vistic energy equation, in that (k/S)(E, +P,)v* is
the divergence of the energy flux. However, €,
is not the energy density perturbation in the ap-
propriate frame, and the special relativistic equa-
tion would have 37, in place of 2m' .

Equations (4.3)~(4.5) and Eq. (4.8) combine into
a single second-order equation for ¢,

(E,S%,)" +(1+3¢ ) S§ (ES%,)" +[(#? - 3K)c 2 — (E, +P)S*IES%,)
= (1 = 3K/R2){=k2(P,S°n) +2[k2 +3(1 +3¢ D)KI(PS*1) +2(w — ¢ 2)(E,S?) (P S*nY)- 28 (PS21 '}, (4.9)

or a corresponding equation for ®,. A spatially
homogeneous perturbation or the lowest inhomo-
geneous mode %2 =3K in a closed universe require

special treatment in that Q{°’ and/or Q% vanish

identically, ®,, ¢,, and vi"’ are no longer gauge-
invariant, and some of the above equations, in-
cluding Eq. (4.9), are not applicable. See the
discussion around Eq. (6.27). A homogeneous
scalar perturbation is really no perturbation at
all, but an inappropriate choice of background.
Formally, the entropy perturbation amplitude
and the anisotropic stress amplitude are free
functions of time which act as “sources” for the
comoving energy density perturbation in Eq. (4.9).

However, if the anisotropic stress is from a
shear viscosity, ﬂ(To) should be proportional to
v{”. In a simple kinetic-theory model the coef-
ficient of viscosity is a density times a mean free
path times a velocity. An upper limit to the den-
sity is E,, a characteristic velocity is w!/?, and a
maximum effective mean free path is the lesser
of the reduced wavelength of the perturbation S/%
and the distance a particle can travel in a Hubble
time, w'’2/($/S?). At the upper limit the simple
kinetic-theory picture breaks down and the re-
lation between shear and anisotropic stress be-
comes nonlocal in time and space. Nevertheless,
a reasonable estimate is
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S S 1/2 ’f 0)
where « is a dimensionless fudge factor unlikely
to be larger than one. At early times, k7<1,

0 S];—svi"). (4.11)

Tr

With this restriction, the shear-stress terms in
Eqs. (4.8) and (4.9) can never dominate the early
evolution.

An anisotropic stress as well as an entropy
perturbation might also arise ab initio out of some
speculative nonkinetic origin, perhaps inhomo-
geneous gauge-theory phase transitions of the
vacuum.®%!&17 This possibility will be discussed
further in connection with specific solutions of
Eq. (4.9) in Seec. V.

B. Vector perturbations

The equations for vector perturbations (see
the Appendix) can be put in gauge-invariant form
by inspection. The initial-value equation 8G?,
=8T? for the “frame-dragging potential” ¥ is
[see Eq. (A2D0)]

1 (k2 - 2K)

- ES v =(, +P Q. (@.12)
The equation of motion for the matter is
bc=-§(3c3 R (4.13)

C. Tensor perturbations

There is just one equation for tensor perturba-
tions, i.e., :
1 $

s—z( HP +2 S HP +(2 +2K)H‘,?’) =pm2.

(4.14)

V. SOLUTIONS OF THE PERTURBATION EQUATIONS
A. Scalar perturbations

Explicit solutions of the gauge -dependent equa-
tions governing scalar perturbations have been
obtained in the past'' for the case of a perfect
fluid (1r(,‘.” =0), usually only for adiabatic pertur-
bations (n=0), when the background equation of
state satisfies w =c 2 =const and the background
spatial curvature K=0. The assumption K =0 is
well justified for perturbations on the scale of
clusters of galaxies or smaller, since then
k?>> K and at least prior to recombination ($/S)?
> K for any K in the range allowed by observation.
The assumption w =c? =const is made largely for
mathematical convenience, though in the radiation-

dominated phase of the universe following elec-
tron-position recombination and neutrino de-
coupling w =%tisa good approximation. Here the
solutions will be extended to allow entropy and
anisotropic pressure perturbations with arbi-
trary time dependence, and the physical signifi-
cance of the solutions will be analyzed through
their expression in gauge-invariant variables.

With w =c 2 =const and K =0 the background
equations (2.5) and (2.6) have the well-known
solution

Scctf, B=2/(3w+1) (5.1)
and
ES?=3(S/S)? =387 "2, (5.2)

The parameter 3 ranges from 2 (for w =0) to 1
(for w=1%) to 5 (for w=1).
Define a new independent variable

x=RT ' (5.3)
and in Eq. (4.9) a new independent variable
fEx5'2€m=§B'zx5<I>H. (5.4)
Let a prime denote d/dx. Then Eq. (4.9) becomes
fre2tif 4o ~p@+1)x?]f
= = x8-2[wn - Zwnl® +2Bx(x ~2wr?)’]. (5.5)

Given a solution for f, Eq. (4.8) determines v,
as

B
B+1

2
xrop =3 Lo (s.6)

First consider the homogeneous version of Eq.
(5.5), with wn=wn®’ =0. The solutions are ob-
viously spherical Bessel functions, either j, or

the spherical Neumann function 7, and

f=ajg(cyx) +bng(cyx). (5.7)

(o)
S

-_3
T2

The simple form of the homogeneous solution,
with nothing in it to mark the particle horizon at
x~1 as distant from the sound horizon at cx~1,
confirms the choice of €, ®,, and vg") as mathe-
matically, and in some sense physically, natural
gauge-invariant amplitudes to describe the pertur-
bation.

Now take the limit ¢ x <1, but not necessarily
x<«<1. The oscillatory behavior at ¢ x>1 be-
comes power-law behavior. Renormalize the
coefficients so

fcex® +dx=t"t, (5.8)
with
8 8
c Ve d=— E._I;(@_tl_/_z_)b_ (5.9)

= i
PTE+3/2)" Ve

s
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The standard gauge-invariantamplitudes at ¢ x <1
are

€, cxt+dx B o~ 3p%(c +dx®1),

8 (5.10)
v~ 38 (- c Eﬁx +dx" 2") .
The two independent modes may, at ¢ x <1, be
characterized as a “growing mode” and a “de-
caying” mode by looking at the amplitude of the
fractional energy density perturbation on co-
moving hypersurfaces. The amplitude &, mea-
sures the distortion of the zero-shear hyper-
surfaces by the perturbation. The spatial cur-
vature ~ (¥?/S?)®,, is coherent over the reduced
wavelength ~S/k. For the growing mode this
distortion is nonzero at x =0 and remains con-
stant until the sound wave begins to oscillate. We
shall see that this behavior is also characteristic
of the distortion of the comoving hypersurfaces
and uniform-Hubble -constant hypersurfaces, so
geometrically the growing mode is a “constant”
mode at x<<1. However, the apparent relative
amplitude of the energy density perturbation is
strongly hypersurface dependent at x <<1. Con-
sider the amplitude €¢,, which measures the frac-
tional energy density perturbation on zero-shear
hypersurfaces. From Eq. (3.15),

€,~c(x2+38%) +dx~®-1[x* - 38(8+1)],  (5.11)

still assuming (cx)? < 1. For both modes ¢, is of
order x~ times ¢, at x <1, though ¢, and €, co-
incide for all x> 1 even if ¢, < 1.

About the only measure of the relative amplitude
of the perturbation which is strictly hypersurface
independent is the ratio of the rate of shear ¢ to
the background expansion rate, because the shear
vanishes in the background. The amplitudes of
the shear and expansion are, respectively, (&/S)
v and $/S%. The ratio is

B
B +1

£=(kS/S)!) ~ %(—c 22 +dx'25’1> (5.12)

at x<<1, which has the same time dependence
for each mode as €,. For w<1, or 8>3, the de-
caying homogeneous mode is unambiguously sin-
gular at x=0. The gauge-invariant amplitude

&, becomes singular as x#* in the decaying
mode, but we shall see that this overstates the
physical strength of the singularity. On the co-
moving and the uniform-Hubble -constant hyper -
surfaces the distortion only becomes singular as
x™%-1  similar to €, and the relative shear in Eq.
(5.12).

The results so far are familiar ones,*
though the explicit gauge-invariant form is new.
However, relatively little attention has been paid
to the generation of density perturbations at early
times through stress perturbations. As mentioned
in Sec. I and as is obvious from Eq. (4.9), an
energy density perturbation can only arise from a
nonadiabatic pressure perturbation or an aniso-
tropic stress perturbation if the Universe began
perfectly homogeneous. Local conservation of
energy and momentum prevents any action di-
rectly on the energy and momentum densities.

Entropy perturbations have been considered
before,'? but it appears from Eq. (5.5) that aniso-
tropic stress perturbations might be more in-
teresting. At x <1 the second anisotropic stress
term is of order x™ times the entropy perturba-
tion term for comparable values of wn and wr'?’.

The solution of Eq. (5.5) for an arbitrary source
is accomplished by variation of parameters or
(equivalently) by constructing the Green’s func-
tion. I will apply initial conditions that the per-
turbations vanish at x =0, but some of the homo-
geneous solution, Eq. (5.7), can always be added
if desired. The derivative on the right-hand side
of Eq. (5.5) can be integrated by parts. The iden-
tity

11,22

d
g;[yﬂ“ns(cs ]=c 3 g4 (c,y), (5.13)

and similarly for j,, simplifies the result, which
is

£ =¢, [ "y Pen - 20n) e myle,9) — ngle 2Vl ,)]

(o)

=2Bcy  wP’ [ (e x)mg 1 (cy) —ng(cgx)jgalegy)1}. (5.14)

If cx<<1, the spherical Bessel functions may be replaced by

JalcxIngle )~ = (28 +1)(c ) (x/y)? and x —y ,

.7.5(0336)n8-1(csy)2 - (432 - 1)'1(95/3))8 ’ B>% ’

nB(Csx)jB-l (Csy) = - (Csx)'z(y/x)"" .

Keeping only the dominant terms, Eq. (5.14) simplifies to
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2 B8+

flx)= (28 +1)™* {x"J dyy’1[3 35— 1w17‘°) 'n] +x""1fxdyy25[— 28(28 +1)y2uwml® +wn]} . (5.15)

If B=% the contribution of wr'?’ to the growing
mode is not infinite; rather, »_, , contains a lo-
garithm, and

%%}11 ~im(l/y). (5.16)

In Eq. (5.15), the entropy perturbation contri-
butes comparable amounts of growing mode and
decaying mode to f and therefore to €, =x*®f. The
contribution to €, while the entropy perturbation
is present is of order x*wm, once the entropy
perturbation has been on at roughly constant am-
plitude for at least one expansion time. Press and
Vishniac'? claim that an entropy perturbation
couples only to the growing mode at x<<1. The
apparent contradiction arises because their de-
finition of the “physical” energy density pertur-
bation is based on uniform-Hubble- constant hy-
persurfaces; the relative strength of the growing
and decaying modes is hypersurface dependent,
as we shall soon see in detail. Still, if the en-
tropy perturbation turns off at x <1, by the time
the perturbation comes within the particle hori-
zon at x~1 the decaying mode is insignificant
compared with the growing mode. At x~1 the
latter has an amplitude in €,, which is roughly the
maximum previous amplitude of wn, the ratio of
the nonadiabatic pressure perturbation to the
background energy density, averaged over one

e-folding in the conformal time 7.

The anisotropic stress source term of order
x"2 relative to the entropy perturbation source
term contributes only to the decaying mode at
x<«1 in Eq. (5.15). Except for a modest enhance-~
ment if B is close to 3, as indicated in Eq. (5.16),
anisotropic stress and isotropic stress perturba-
tions of the same amplitude generate comparable
amounts of the growing mode in f, €, and [see
Eq. (5.4)] ®,. After an anisotropic stress per-
turbation has been on at roughly constant am-
plitude for one expansion time, Eq. (5.15) shows
that the part of €, associated with the decaying
mode is of order w'?’ and the part of ¢, asso-
ciated with the growing mode is of order x?*wn'p’.
If the anisotropic stress then disappears at x =x,,
by the time x =1 the decaying-mode contribution
to €, is of order xf‘”"’wﬂ("), small (unless B= 3)
compared with the growing-mode contribution of
order wn'®’, if x, «<1.

The perturbation in €, is always small if w1r‘°
<« 1. On the other hand, the amplitude &, whlch
measures the global distortion of the zero-shear

)

r

hypersurfaces, is of order x7%¢, and while the
anisotropic stress is present can be larger than
one even if the anisotropic stress is small com-
pared with the background energy density, as

long as the anisotropic stress is present at a very
early time, with x® <w1r‘,;’). Some gauge-theory
symmetry breaking might take place near the
Planck time.® At the Planck time the value of

x =kT corresponding to a mass M in the present
universe is x~1026(102M /M)'3, so even though
the comoving volume of a galactic mass is large
compared with the particle horizon at this value
of x, it is not inconceivable that a small statistical
residual anisotropy on a galactic scale could make
in a sense the perturbations nonlinear.

Does ®,>1 really imply a physically significant
nonlinearity, one that could perhaps couple the
large amplitude decaying mode to the growing
mode and give a value of €, at the particle hori-
zon large compared with the maximum previous
value of wn‘,?’? To answer this question, at least
in part, one should look carefully at the complete
description of the perturbation on various types
of hypersurfaces while the anisotropic stress is
present or just after it turns off.

The description definitely is potentially non-
linear on the zero-shear hypersurfaces. The
distortion amplitude ¢, =@, is a measure of the
amplitude of the spatial metric perturbations on
the zero-shear hypersurfaces, and the amplitude
a,=®, measures the fractional perturbation in
the lapse function. Both these are of order x2
wn‘T‘”, as is the fractional energy density pertur-
bation amplitude €, from Eq. (5.11). The matter
velocity amplitude on zero-shear hypersurfaces
is v, =0, and from Eq. (5.6) is of order xwm'®’,
though the shear to expansion rate ratio is of
order wr'®’ [see Eq. (5.12)].

Now consider the comoving hypersurfaces. We
have already seen that the fractional energy den-
sity perturbation amplitude is only of order
wr{. The matter velocity relative to the como-
ving hypersurface is zero by definition. To get
the geometrical amplitudes, consider a gauge
transformation from the longitudinal gauge H{
=B©® =0, where A=®,, H =®,, v@=0{?, to a co-
moving gauge with 2© — B® =0, Equations (3.5b)
and (3.6) give

T=k (0@ - BO) =10, (5.17)

Then from Eq. (3.5a) the fractional perturbation
in the lapse function has an amplitude
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A=¢A—k“<bs‘°>+gv§°’> =qa,, (5.18)

and the measure of the distortion of the intrinsic
geometry is

G=y + $iip =0y =3 K0 (5.19)
Equation (4.5) gives
- ) w
o, =-1+w)*(c e, +wn) + 2(1 - 3K/F) Tow ),
(5.20)

S0 a,, is of order wr{” and wn. An equation for
$,, can be derived from Egs. (4.5), (4.7), and
(2.5), with the result

¢n=—Kr 0®

(1 w) g[cszemﬂ,m] —2(1 = 3K/Pwr?].
(5.21)

Each term on the right-hand side of Eq. (5.21) is
at most of order 77'(wn,wn{>’) and therefore ¢,,
is also of order wn, wr{®’, without any special
assumption that w is constant.

On comoving hypersurfaces, then, all relative
perturbation amplitudes are small up until the
time the perturbation enters the particle horizon
if the perturbation vanishes initially and subse-
quent stress perturbations are small (wn <1,
wr « 1), no matter how early the stress pertur-
bations turn on, as long as the stress perturba-
tions are on in full strength for only a reasonably
finite number of e-foldings in 7. The larger am-
plitudes ¢,, a,, €,, and v{” for zero-shear hyper-
surfaces then are only due to a large warping of
the zero-shear hypersurfaces relative to comov-
ing hypersurfaces.

Finally, consider the perturbations relative to
uniform-Hubble-constant hypersurfaces. Again,
the simplest route to the gauge-invariant ampli-
tudes describing the matter and geometry from
the point of view of this hypersurface is the gauge
transformation from the longitudinal gauge to the
gauge satisfying the hypersurface condition [see
Eq. (AT)]

= k2o é'_
Hy+3B® -3A=0. (5.22)

The amplitude of change in the time coordinate is
T=-3[F - 3K+ 3(E,+P,)S*]™* (:'I:,, —§¢A>

=YE,+Py)S*[F° = 3K + 3(Ey+ Py)S* ] 'k~ 0,
(5.23)
after simplifying with the help of Eqs. (4.4) and

(4.7). The intrinsic geometry of the uniform-Hub-
ble-canstant hypersurface is governed by the am-
plitude

=+ [1+3(F - 3K)'1(EO+P0)52]-1§ Rl

(5.24)

Similarly, the lapse function perturbation ampli-
tude is

ap=a,+k 1S H[1+3(F - 3K)H(E,+ P)S* ] iSv {0} .
(5.25)

The amplitude of the fractional energy density per-
turbation can be written as

€,=[1+3(k* = 3K) ™ (E,+ Po)S*| e, + 31 +w)®,,].
(5.26)

After simplification using the Einstein equations,
the amplitude of the matter velocity relative to the

- hypersurface is

v, = 7 - BO

=[1+3(k* = 3K)H(E,+ Po)S* |0 . (5.27)

In a constant-w background, and with #*> K, the
ubiquitous factor in Egs. (5.24)-(5.27) becomes

[1+2(F - 3K)(E,+Py)S*]"*=4*/[38(8+1) + ¥*].
(5.28)

The description of both the matter and the geome-
try changes character depending on whether the
perturbation is larger or smaller than the particle
horizon at x~1. On the other hand, the descrip-
tion of the matter and geometry relative to the co-
moving hypersurface is in all respects oblivious to
the particle horizon. I have already remarked on
this for €, but it also holds for ¢, and @,, as is
obvious from Eqs. (5.20) and (5.21). Relative to
the zero-shear hypersurfaces, the description of
the geometry is unaffected by the particle horizon,
since ®, acts as a quasi-Newtonian potential foe
€., but €, does change character at the particle
horizon [see Eq. (5.11)].

There are several measures of the relative am-
plitude of the perturbation whose physical inter-
pretation is hypersurface dependent, but only one,
the ratio £ of matter shear rate to expansion rate
[Eq. (5.12)], which has a hypersurface-independent
physical significance. Since all are formally gauge
invariant, the mathematical values of the ampli-
tudes are independent of the gauge/hypersurface
choice.

Table I gives the comparison of the hypersur-
face-dependent amplitudes with £ for each of the
above hypersurface conditions and for each of the
two komogeneous modes of scalar perturbations,
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TABLE I. Amplitudes of physical perturbations at x <1 compared with amplitude £ of the ratio of the shear rate of

the matter to the background expansion rate.

(a) “Growing” mode, &~x

2

Hypersurface : €/t v/E P/t alt
Uniform-Hubble- 2 28+1 1 g [x 28+1 ((x\ 2 2 2B+1
constant “3 B 3B+1\8 T B \B 3 BE+1)
; 2 p+1 —28+1 (x\7? 12-8
Comoving -3 B 0 B B 3 B
Zero-shear -2 Bl (—i)—z (—’ﬁ- o _Bx1 (" )-2 _Ei(i 2
B \B B B \B B B
(b) “Decaying” mode, &~y (26-1
Hypersurface €/t ' v/t o/t a/t
Uniform-Hubble- 2_ B [x\? 1_8 ( x 1_8B 2 B PAY
constant 9 28—1\8 3 B+1 3 28—1 T 9 B+1(2-1) \ B
. 2 1_ B@2-p 12-8
Comoving 5 0 3 B+1@B-1) =3 B+l
v B+1 [x\? x| (_x_ -2 _(L)'Z
Zero-shear -2 3 (ﬁ) ’ (ﬁ) g ) B

in the limit that x«< 1. Of course, I also assume
w is constant and 2*> K. A couple of points are
particularly noteworthy. First, for the growing
mode the amplitude of the distortion in the intrin-
sic geometry (¢) is independent of time and rough-
ly the same in all three hypersurfaces. The values
of ¢ in all three hypersurfaces then predicts the
value of the fractional energy density perturbation
at the particle horizon, where ¢,,, €, and ¢, con-
verge. Second, for the decaying mode, but not the
growing mode, the amplitudes ¢, and o, are down
by a factor of »* relative to ¢, and a,. The rela-
tively small value of o, means that the uniform-
Hubble-constant hypersurfaces are close to being
synchronous when &% «<1, The relatively small
value of €, is the basis for the claim of Press and
Vishniac!'? that an entropy perturbation couples
only to the growing mode, but this claim is valid
just for the one hypersurface condition. The value
of ¢, is nof suppressed relative to ¢,, so the per-
turbation as a whole has the same time depen-
dence, x~ @8- from the point of view of the uni-
form-Hubble-constant hypersurfaces as from the
point of view of the comoving hypersurfaces.

In conjunction with Table I, it may be helpful to
give explicit results for how the entropy perturba-
tion and the anisotropic stress contribute to the
amplitude §. Assume that the stress perturbations
are each on for »n e-foldings in the scale factor S,
i.e., nB e-foldings in the conformal time 7, at a
time when £S/S=x/B<« 1. During this time the

relative stress amplitudes wn and wr{’’ are con-
stant. The inhomogeneous stress perturbations
disappear at x=x;. The growing mode in £ at x
>x, is then :

_ § ﬁz _ ik . Zz
5‘”[2 EDEs D" 432—1w"‘f’](ﬁ) :
(5.29)

If n>>1, and -5 <w <1 (o> p>3), the ratio of the
entropy perturbation part of the decaying mode in
¢ to the corresponding part of the growing mode in
£is nt [(B+1)/(28+1)](x,/x)?8*:. The same ratio
associated with the anisotropic stress is 3(np)~*

X (28+1)(B/x,)*(xy/%)? "2,

While all relative amplitudes on the comoving
and uniform-Hubble-constant hypersurfaces are
small if excited by small stress perturbations with
wn <1 and wr{® « 1, it is perhaps conceivable that
explicit nonlinear terms in the Einstein equations
could generate enough growing mode at early times
to give a large fractional energy density perturba-
tion at the particle horizon. This possibility will
be laid to rest in Sec. VI. S8till, the strictly linear
perturbation analysis will be shown to fail on uni-
form-Hubble-constant hypersurfaces-at the same
point it fails on zero-shear hypersurfaces, when
wm$® > «*, though only because the linear perturba-
tion in fractional energy density is anomalously
small, not because the hypersurface is strongly
warped. The nonperturbative formulation of the
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Einstein equations in Sec. VI also gives directly
the perturbation equations in terms of €,, v,, ¢,,
and o,

So far, in discussing the solutions to the pertur-
bation equations I have implicitly assumed that
the background equation of state has some rela-
tion to that of a fluid, with 0<w <1, so Bis always
of order unity. However, it is conceivable that the
net pressure could have been negative in the early
Universe. One possibility is that at early times
the vacuum could have had a large energy density
and pressure, i.e., a contribution to the energy-
momentum tensor like that of a cosmological con-
stant, with pressure equal to minus the energy
density.?* A phase change of the vacuum would be
required at some point to reduce the effective cos-
mological constant to zero or to a small value con-
sistent with the present Universe. Another possi-
bility is that quantum fluctuations of nongravita-
tional and/or gravitational fields could result in an
effective negative pressure around the Planck time
or before.”® Zel’dovich et al.’® propose that do-
main boundaries associated with gauge theories of

weak interactions could produce an average w
2

=-Z,

In idealized models with w constant S/S is con-
stant or decreasing as S-0if w < -3, i.e., if the
strong energy condition is violated.?® Thus as
S -0 the conformal time 7- -, even though for
w > —1 the proper time from the initial singularity
is finite. If w < —% at the beginning of the Uni-
verse, light signals can propagate arbitrarily far
relative to the comoving background coordinates,
and particle horizons in the strict sense do not
exist. Nevertheless, it makes sense to talk of a
perturbation being larger than the effective particle
horizon while £~1S/S>1. It is #7'8/S, equal to
B/x if w is constant, that governs which terms in
the perturbation equations are dominant. If w
< —% initially, £~1S/S for a protogalaxy begins less
than one, increases to a value much greater than
one, and then, once w > -, decreases and eventual-
ly becomes less then one again at relatively recent
times.

A density perturbation established during an
early epoch when communication over a wavelength
is possible will persist through the period when
the perturbation is larger than the effective par-
ticle horizon. Assuming a homogeneous solution,
the equation

(ExS%,)" +3(1+ csz)-g- (E,S% )

+[c B - 2(1+ 3¢ 2K + (¢ 2 ~w)ES?|(E,S%,,) =0
(5.30)

shows that E S, is roughly constant for the grow-

ing mode while £2~'S/S>>1. The change in the back-
ground equation of state from w < ~% to w ~ % chang-
es E S%,, by only a factor of 2 or so. Since E S
increases and decreases with (S/S)?, ¢, is very
small when 271S/S>>1 relative to its value when
k*S/S~1. The “growth” of €, at early times in
conventional backgrounds is a purely kinematic
consequence of the time dependence of E,S*, with
no dynamic significance.

B. Vector perturbations

. The solution of Eq. (4.13) for the vortical veloci-
ty amplitude v, can be put in the form
kT
SYE,+Py)v,=— f dy S*P{, (5.31)
0
assuming no perturbation initially. Since S*P,

acy?B-1 once the anisotropic stress has been on
for more than a few expansion times,

X _ w0 (5.32)

Ye"T98-1 14w T

After the anisotropic stress turns off,

v, [SH(Ey+Pg) |71 ~ = 2B-1) (5.33)

At the particle horizon v, is at best roughly com-
parable to the maximum previous value of wr§’,
and then only if 7§’ is at full strength at the par-
ticle horizon or if 8is close to 3.

The “frame-dragging potential” ¥ is

U =2(k - 2K)"'S*(E,+Py)v,~48(8+1)x %0, .
(5.34)

Even if wr{’<«1 and v,« 1 at all times, ¥= 1 is
quite possible if the anisotropic stress is present
when £S/S< wn{". While ¥>1 does mean that
there is no gauge in which all the metric perturba-
tions are small, there is a formulation of the Ein-
stein equations (see Sec. VI) in which the equations
remain approximately linear. The physical sig-
nificance is that, as in the ergoregion around a ro-
tating black hole, a timelike observer cannot be at
rest relative to nonshearing spatial coordinates
(with A =0).

C. Tensor perturbations

The homogeneous solution of Eq. (4.14) for ten-
sor perturbations is well known (see Ref. 15), and
the inhomogeneous solution raises no new physical
questions. The gravitational wave amplitude H$’
can never exceed in order of magnitude the maxi-
mum previous value of wr$’, if H{) vanishes at
the initial singularity, as long as E,S*/k° > 1.
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VI. RELATIONSHIP TO NONLINEAR DYNAMICS

The standard Arnowitt-Deser-Misner (ADM) ap-
proach®” to the nonlinear dynamics of the gravita-
tional field, with or without the presence of matter,
begins with the initial-value problem? on a space-
like hypersurface characterized by an intrinsic
metric tensor h,p and an extrinsic curvature ten-
sor X,g. The proper-time spacing between suc-
cessive hypersurfaces is characterized by the
lapse function N, a spatial scalar determined from
the geometric condition specifying the spacelike
hypersurfaces by, typically, an elliptic equation.?
The dynamic equations evolve X,z and 7,4 forward
in time from one hypersurface to the next. It is
instructive to consider the cosmological perturba-
tion problem from this point of view, to understand
better the physical meaning of the gauge-invariant
variables, to derive the equations governing the
amplitudes ¢,, «,, €,, and v, appropriate to uni-
form-Hubble-constant hypersurfaces, and to in-
vestigate the possible effect of nonlinearities on
the development of the perturbations.

Let each hypersurface be labeled by a single
value of the time coordinate 7, and let n, be the
unit future-directed four-vector normal to the hy-
persurface. Then

no==N, ny,=0, n°= N-*, n®= N-IN®, (6.1)

The shift vector N*, the coordinate three-velocity
of the normal world line, describes how spatial
coordinates are propagated from one hypersurface
to the next. In this section a three-vector is a
three-vector relative to the exact spatial metric
h,s. The metric tensor of the spacetime g, is
given by '

goo="Nz+NaNa’ 8oa=~Nys Zas=Nuss (6.2)

and the inverse is
*=—N-2N%, g%P=p%B_ N-2NN°
(6.3)

Note /%8 is the inverse of &,z and N, =h,gN>.

From the three-metric 7,5 one calculates the
spatial Ricci tensor ® 5 and the scalar intrinsic
curvature ®=h%® 4. The extrinsic curvature
tensor describes the embedding of the hypersur-
face in the spacetime and is the natural focus of a
geometrical condition picking out a particular
family of hypersurfaces. Mathematically, it is
given by*’

8oo= _N_z,

Kep==Ng;8==Nl0g
==3Nhop,ot Noig+ Ngjol.  (6.4)

The semicolon denotes a covariant derivative in
the spacetime, the slash a covariant derivative

(with respect to 7,g) in the spacelike hypersur-
face. The comma indicates an ordinary partial
derivative.

The correspondence with my representation of
the cosmological perturbations is made more
transparent by defining the conformal metric ten-
sor by,

;laﬂgh_l/shas ’ (6-5)

where 7 is the determinant of %,5. The background
scale factor is not present in %z, and the pertur-
bation in 7,4 is entirely due to the traceless part
of the metric tensor perturbation. In a similar
spirit, split X, into the trace X and the traceless
part

Kep=Kas= 5hask- (6.6)
Equation (6.4) then becomes the two equations

h,o/h=-2NX~ 2N°, (6.7)
and '

i’aﬁ,0+ﬁaﬁ,ﬂNu+;lo(BNu,B+;lu_BNﬂ,a_gilaBNu.#
=-2N"V3%,,, (6.8)

which correspond to decomposition of X§ in terms
of perturbation amplitudes given in Eq. (A7).

The Einstein equations separate into the initial-
value equations relating the extrinsic and intrinsic
geometry of the constant-7 hypersurface to the
matter energy density

8=n,T%n,=N*T (6.9)
and the momentum density

9,=-n,T%=NT9, (6.10)

and into the dynamic equations for the evolution
of the extrinsic curvature in time.** The momen-
tum initial-value equation

(6.11)

is conventionally viewed?® as an equation for the
longitudinal part of '552 and the energy equation

R=28+X,,%x*° - 2x® (6.12)

as an equation for the determinant of the spatial
metric tensor 7, given the conformal metric %
the transverse part of #'/2X2 relative to 7
as a hypersurface condition, X.

The dynamic equations® involve the matter
stress tensor

w8 =
Kaig= Jat %xla

aBs

o8 and,

8.8=Typ- {6.13)

Let the traceless part of 8,4 be 8,4, and denote
the trace by 8. Let &,z be the traceless part of
the spatial Ricci tensor. Then

Ko+ N*K,,=—AN+N@+%* + 38 - 38) (6.14)
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and
X3,0+ NG, 0 — Nou Xg + NY g
=N L LEIAN+ N(RE + X% ~8%) . (6.15)

In both equations the left-hand side is the time
derivative along the normal to the hypersurface,
and A is the Laplacian operator in the hypersur-
face.

The physical dynamics of scalar and vector
cosmological perturbations lies in the matter evo-
lution equations, rather then Eqs. (6.14) and
(6.15). The equation governing local energy con-
servation, 7* =0, gives the rate of change of the
energy density § along the normal to the hyper-
surface,

8.0+ N8 = NK(E +58) + NX*58 5+ N} (N?%) 4 -

(6.16)

Similarly, the evolution of the momentum density
3, is given by 7%,,=0, or

I0 0+ NBY s+ NB G s=NXKJ, — (808 +85)N 4
~-N88 4. (6.17)

Although redundant, it will prove useful to have
an equation directly for the evolution of the spatial
scalar curvature. Take a convective time deriva-
tive of Eq. (6.12) along the normal to the hyper-
surface and eliminate the time derivatives of X,
%%, and § with Egs. (6.14)-(6.16). After simplifi-
cation with the help of Eq. (6.12) again, the result
is

R0+ N°R = ZNXR + 2N"H(N*9°) |, + 2 AN
CORGNRE-N'® ) (6.18)

There is considerable cancellation between the
time derivatives of the separate terms on the
right-hand side of Eq. (6.12).

The solution of the above equations requires a
hypersurface condition to determine N and, of sec-
ondary importance in the present circumstances,
some prescription for N% The most straightfor-
ward hypersurface condition in the nonlinear con-
text is the uniform-Hubble-constant condition that
X be spatially uniform on each hypersurface.?
The choice of the time dependence of X is the
choice of time coordinate 7; at least in spatially
closed cosmologies each value of X picks out a
more or less unique hypersurface in the space-
time. The value of X may also pick out a unique
hypersurface in spatially open cosmologies.* On
uniform-Hubble-constant hypersurfaces, then
X =0, X , can be specified, and Eq. (6.14) be-
comes an elliptic equation for N whose mathemat-
ical properties, including existence and unique-
ness theorems, have been explored rather exten-

sively (see Ref. 30).

The zero-shear hypersurface condition,‘ in the
present language X,5=0, is applicable only to
scalar perturbations, since it is compatible with
Eq. (6.11) only if g, is the gradient of a scalar.
The obvious generalization, which I will call the
minimal shear hypersurface condition, is
xB,,5=0. (6.19)
The longitudinal part of Eq. (6.11) becomes an
equation for X,

Ax=-39%, . (6.20)

Then the right-hand side of Eq. (6.11) is the trans-
verse part of the vector field §,. An equation for
N is more difficult to come by. The best proce-
dure seems to be to combine a time derivative of
Eq. (6.20) with a Laplacian of Eq. (6.14). Elimi-
nate AX between the two equations and eliminate
ja using Eq. (6.17). The result is a complicated
fourth-order equation for N. Acceptable solutions
may not always exist in an open universe if highly
nonlinear regions such as black holes are present,
and may not be unique in closed universes. The
linear scalar perturbation with #*= 3K satisfies the
minimal-shear condition for any amplitude of
warping of the hypersurface since, as mentioned
in Sec. IV, @} vanishes identically.

The complexity of the minimal-shear hypersur-
face condition magically disappears for linear
scalar perturbations. Then, with X_,5=0, Eq.
(6.15) reduces to Eq. (4.4) for the perturbation in
N. Also, note that Eq. (6.12) reduces to Eq. (4.3)
relating &, to €, after the perturbation in X is
eliminated in favor of §, through Eq. (6.20).  The
simplicity of Eq. (4.3) is somewhat deceptive.

The comoving hypersurface condition generalizes
from J, =0 for linear scalar perturbations to

9% 4,=0. (6.21)

The equation for N, obtained by taking a diver-
gence of Eq. (6.17), is only second order, simpler
than in the minimal-shear case, but is still con-
siderably more complicated than for uniform-Hub-
ble-constant hypersurfaces.

The uniform-Hubble-constant hypersurface con-
dition will be used in our analysis of nonlinear ef-
fects on the time development of perturbations.
Somewhat different questions arise in the consid-
eration of nonlinearities associated with scalar
and vector perturbations, so these will be con-
sidered separately.

A. Scalar perturbations

The gauge-invariant scalar perturbation ampli-
tudes appropriate to uniform-Hubble-constant hy-
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persurfaces were defined in Egs. (5.24)-(5.27).

The perturbation equations directly in terms of
these amplitudes are most easily derived from

the equations of this section, rather than by re-
working the equations of Sec, IV, and their deriva-
tion will clarify the later consideration of nonlinear
effects.

On a uniform-Hubble-constant hypersurface ¢,
=H, +:H® and a,=A. The hypersurface condi-
tion, Eq. (5.22), gives a gauge-invariant amplitude
for the traceless part of the extrinsic curvature
tensor

1 -
Kg=-= (H;?) - kBO)Q Qe

(¢,, —a,,) oo, (6.22)
The two initial-value equations (6.11) and (6.12)
become

“2ra- 3K/k2)(q's,, -3 a,,) =S(E,+PJv, (6.23)

and
45-2(F? - 3K)¢,=2E€,. (6.24)

Eguations (6.14) and (6.24) combine to determine
o, in terms of ¢, and 7,

[#* = 3K+ 3(E,+P)S]a,
=—(1+3c) (K -3K)¢p, - . (6.25)

The geometric evolution equation (6.15) reduces to
(¢n n> +23 ( [
(6.26)

Elimination of a, with Eq. (6.25) gives a single
equation in a single unknown ¢,, but the equation is
much more complicated than Eq. (4.9) for €,,.

The solution is also not nearly as simple a func-
tion of time as the solution for €¢,/®, given in Eq.
(5.14); consider Egs. (5.24), (5.19), and (5.6).

The uniform-Hubble-constant hypersurfaces do
deal successfully with the spatial harmonics #
=3K in a closed universe. Since Q% vanishes
identically,” Eq. (6.23) no longer applies. Equa-
tion (6.24) gives e,,-0 and from Eqgs. (6.25) and
(6.17)

3PS

) 122 (p,+ ap) = 5P ST .

0p=- n, [SYE,+Pyv,] =0. (6.27)

w
1+w
The amplitude ¢, now depends on the way spatial
coordinates are propagated from one hypersurface
to the next through the hypersurface condition Eq.
(5.22). The traceless part of the metric tensor
perturbation and the spatial curvature perturba-
tion vanish. The absence of any physical adiabatic

mode when %?=3K was first recognized by Lif-
shitz and Khalatnikov.?

A relatively simple direct solution of Egs.
(6.23)—(6.26) is possible under the assumptions
of Sec. V when the perturbation is large compared
with the particle horizon, x/8«1. To lowest or-
der,

€y~ 38749, (6.28)
w
ah__1+wn7 (6.29)
and with
Bw_ _
g=¢4— (B/x)a, =~ T n, (6.30)
Eq. (6.26) becomes
&' +2(8/x)g = (B/xVwn{ . (6.31)
With no perturbation at x =0, the solution is
* .
g=ﬁ2x—2ﬂf wn(,‘.’)y2ﬁ"2dy , (6.32)
0
[ o -t [
=), &(y)dy -~ | wny dy . (6.33)

An entropy perturbation present only at y <1
couples predominantly to the growing mode of
energy density perturbation on uniform-Hubble-
constant hypersurfaces, while anisotropic stress
at ¥ <1 couples with comparable strength to both
modes. The discussion in Sec. V showed rather
different behavior for the energy density pertur-
bation on comoving or zero-shear hypersurfaces.
These and the hypersurface-independent ratio of
shear rate to expansion rate displayed a coupling
of the entropy perturbation to both growing and
decaying modes and a coupling of the anisotropic
stress predominantly to the decaying mode at
early times. The situation is not as simple as
presented by Press and Vishniac.'?

The linear perturbations relative to the uniform-
Hubble-constant hypersurfaces are small as long
as wn<1and wr'Q < 1. I the stress perturba-
tions are present for at least one expansion time
at x<<1, Eq. (6.33) gives ¢,~wn, wr'®’ ; Eq.
(6.28) gives €, ~x%wn, x2wr'Y; Eq. (6.25)
gives a, ~wn, x*wtY’; and from Egs. (6.23) and
(6.32) v, ~ x%g~ x3wn, xwtY, Nevertheless, some
second-order terms in the Einstein equations are
larger than the linear perturbations whenever
wr‘®> x2, Consider, for instance, the initial
value Eq. (6.12). The linear perturbation in &
is of order (k2/$?)¢,~ (k/S)? [wn, wr'® ], as IS
the linear perturbation in §. The term KagX®
since X § ~ (k/S)g~ (k/S) xwn, x 'wrQ], is of
order (£/S)*[x%(wn)?, x™(wri’)?] times the first
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order perturbations. When 1>>w‘9 > x2 the
second~order term is not large in an absolute
sense, since ¥ 3 X% /%2 is of order wn'Q’)?; the
first-order perturbation in § is anomalously
small. The key physical question is whether this
breakdown of linearity on uniform-Hubble-con-
stant hypersurfaces has an effect on the time de-
velopment of the energy density perturbation, so
that the fractional energy density perturbation as
the perturbation enters the particle horizon is
not predicted correctly by the linear theory.

A partial answer is that on comoving hypersur-
faces the initial second-order perturbation is
small compared with the corresponding first-or-
der perturbation as long as wr‘) <1, independent
of the value of x. The term X,%X°® in Eq. (6.12),
now the square of the shear of the matter, is still
of order (k/S)>x"%w=‘? )2, However, the linear
perturbations in § and X2 are now of order (k/
S)zx-z(w"(g))z'

Can nonlinear effects couple the decaying mode
of fractional energy density perturbation on co-
moving hypersurfaces to the growing mode so that
at the particle horizon the fractional energy den-
sity is large compared with the original value of
wn'Q’ 2 At the particle horizon the fractional en-
ergy density perturbation is comparable to the
distortion of the spacelike hypersurface, which is
(S/k)? times the perturbation in scalar curvature
®. The time development of & is given by Eq.
(6.18). From Eq. (6.14) the fractional perturba-
tion in N is at most the order of the fractional
perturbation in § or &, which is the order of
wr'Q’. The explicit second-order terms in Eq.
(6.18) are of order 771(k/S)*wm’ )2, down by a
factor of order wr‘?’ relative to the first-order
terms. The nonlinearities are unable to alter
appreciably the linear theory prediction for &
as long as wr'Y < 1,

The linear perturbation equations are really
the same equations, but with variables regrouped,
no matter what hypersurface condition is used to
interpret the variables physically. The validity
of the linear equations on the comoving hypersur-
faces implies their validity on all sets of hyper-
surfaces as long as the physical interpretation
of the linear perturbation amplitudes is qualified
appropriately. For instance, if ww“:’p’ >x2%in a
linear perturbation calculation on uniform-Hub-
ble-constant hypersurfaces (or zero-shear hy-
persurfaces), €, (or €,) is at first not the ampli-
tude of the actual fractional energy density per-
turbation, but by the time the perturbation comes
inside the particle horizon the discrepancy has
disappeared. The dynamical origin of the non-
linear corrections to the fractional energy density
perturbation is the work done by the anisotropic

stress on the shearing volume element [see Eq.
(6.16)].

B. Vector perturbations

The amplitude ¥ of the frame-dragging potential
is a gauge-invariant measure of the amplitude of
metric tensor perturbations associated with vor-
tical motions of the matter. It is generated by an-
isotropic stress through Eqs. (4.12) and (4.13). In
a standard background ¥ ~x"(w=‘})) from Egs.
(5.32) and (5.34). The possibility that ¥ = 1 even
if wn‘) <1 at all times was pointed out in Sec. V.
The physical significance of this can best be un-
derstood in the context of the full Einstein equa-
tions as presented in this section.

One can verify that wn}) <1 at all times does
guarantee the validity of the linear equations in a
gauge such that H %’ vanishes. Then ¥ =B, and

N“=‘I’Q(1)a . (6.34)

The lapse function N, as a spatial scalar, is un-
perturbed to first order, and from Eq. (6.2)

8o =S*(1 =¥2QW QM) , (8.35)

Indices on the spatial harmonics are always
raised and lowered with the background metric.

If ¥ > 1 there are likely, depending on the pre-
cise normalization of Q2’, to be regions where a
physical observer or particle cannot be at rest
relative to nonshearing spatial coordinates, an-
alogous to an ergoregion in a stationary space-
time. However, g, as such does not appear in
the nonlinear equations (6.11)-(6.18), and these
equations are not in any way singular when g,
= 0. That the second-order perturbation in N is
small on uniform-Hubble-constant hypersurfaces
can be verified from Eq. (6.14).

The dynamically significant nonlinearities arise
in the same way as in the scalar case. From Eq.
(AT)

%G =(k/S)¥QY*~(k/S)x wr} , (6.36)

which in Eq. (6.16) implies a nonlinear contribu-
tion to the fractional energy density perturbation
of order (ww‘})?. Again, this belongs predomi-
nantly to the decaying mode at x <1, and Eq.
(6.18) shows that the nonlinear correction to ®

is small compared to the linear scalar perturba-
tion for mixed scalar-vector perturbations. If
the only linear perturbations are pure vector har-
monics, the dominant nonlinearities in ® come
from the % xAN term in Eq. (6.18), since &§ van-
ishes to first order for vector perturbations, and
give ¢, ~ (S/k)?@ ~wn‘}))? for the induced scalar
perturbation. This is roughly what one expects



for the fractional energy density perturbation at
x~1.

Even though N* may be large at x <1, the con-
vective terms involving N* and a spatial gradient
are of order x¥ ~ wn‘}) times the time-derivative
term in Eqs. (6.14)—-(6.18) as the perturbation is
being generated.

C. Tensor perturbations

The nonlinear perturbation of the energy density
follows the same pattern for tensor perturbations
as for vector and scalar perturbations. If the
completely transverse anisotropic stress is on
for the order of one expansion time, Eq. (4.14)

- 3 L4 -
integrates to give H'?' ~x"wr?, so

g ~(R/S)x" wn® | (6.37)

The potentially largest nonlinear contribution to
the fractional energy density perturbation is the
order of the square of the ratio of anisotropic
stress to background energy density, both when
the anisotropic stress is present (presumably at
x<<1) and at the particle horizon, regardless of
whether the anisotropic stress is associated with
scalar, vector, or tensor harmonics or a mixture
of all three.

VII. SUMMARY AND CONCLUSIONS

The primary gauge-invariant amplitudes for
scalar (density) perturbations were chosen in
Sec. III on the grounds of mathematical simplici-
ty, based on a description of the geometry through
the metric tensor and a description of the matter
through the energy-momentum tensor. Three of
these amplitudes have, to first order in the dev-
iation from the homogeneous and isotropic back-~
ground, a universal physical significance. The
amplitude v, or £=(k/SW, is a measure of
the shear of the curl-free part of matter velocity
field. The amplitude 1 is a measure of the non-
adiabatic, relative to the background pressure-
energy-density relation, part of the perturbation
in the isotropic pressure, while 72’ measures
the completely longitudinal part of the anisotropic
stress. In each case the physical quantity van-
ishes in the background.

On the other hand, the amplitude €,, while
mathematically gauge invariant, has the physical
significance of measuring the fractional energy
density perturbation only on spacelike hypersur-
faces orthogonal to the four-velocity of the frames
in which the matter energy flux vanishes. The
purely geometrical amplitudes ®, and ¢, also have
physical meaning with respect to a particular set
of spacelike hypersurfaces, the hypersurfaces for
which the normal unit vectors have zero shear.
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Specifically, ¢, measures the amount of warping
of the zero-shear hypersurfaces due to the pres-
ence of the perturbation, and ¢, is the amplitude
of the fractional perturbation in the lapse function.
The mathematical simplicity of the definition of
these amplitudes carries over into the simple
quasi-Newtonian structure of the equations which
govern them. The nonadiabatic stress amplitudes
7 and w‘g’ are formally regarded as known func-
tions of time which through the source terms in
Eq. (4.9) for €, generate the perturbations in ener-
gy density shear, and spatial curvature. A more
detailed treatment of the matter would require ad-
ditional equations governing the evolution of in-
dividual components such as the microwave back-
ground radiation, neutrinos, and at very early
times quarks and various gauge bosons, particu-
larly if these components are thermally decoupled.
It is straightforward to write these additional
equations in gauge-invariant form, and presumably
a complete theory of the matter would determine
the time dependence of n and 7‘Q’, rather than
leaving them as free functions. In the optically
thick limit, nQ‘* is roughly the fractional pertur-
bation in the photon-to-baryon ratio times the
ratio of rest-mass energy density to total energy
density in a standard radiation-plus-matter model.
The gauge-invariant variables and equations are
closely related to the variables and perturbation
equations in certain specific gauges. For instance,
¢, and ¢, are the metric perturbation amplitudes
in the longitudinal gauge of Harrison, and €, is
the density perturbation amplitude in the comoving
gauge of Sakai.'' Both Harrison® and Sakai! ar-
rived at equations equivalent to the homogeneous
version of Eq. (4.9). Unfortunately, most of the
standard references, including the textbooks of
Weinberg!® and Peebles,” rely on the synchronous
gauge. This gauge is unnecessarily complicated
mathematically, since the presence of purely
gauge modes means that the analog of Eq. (4.9) is
a fourth-order equation, and the physical inter-
pretation of the results is not straightforward. Of
course, a calculation can be done in any gauge if
done consistently and completely, and in practice
difficulties of interpretation disappear once the
perturbation is well within the particle horizon.
The physical interpretation of such hypersur-
face-dependent quantities as the fractional energy
density perturbation is somewhat ambiguous even
in the gauge-invariant formalism when the per-
turbation wavelength is larger than the particle
horizon. In Secs. III and V I define in addition to
€, gauge-invariant amplitudes €, and €, which
measure the fractional energy density perturba-
tion on zero-shear and uniform-Hubble-constant
hypersurfaces, respectively. Which is considered
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the physically most appropriate is a matter of
taste. = A calculation done in a particular gauge
or with a particular set of gauge-invariant var-
iables can always be physically interpreted by
computing the gauge-invariant amplitude appro-
priate to the preferred hypersurface.

The same is true of the geometrical amplitudes.
While ¢, =%, measures the distortion of zero-
shear hypersurfaces and a, =¢, the perturbation
in the lapse function between zero-shear hyper-
surfaces, appropriate combinations of ¢, and ¢,
as defined in Sec. V give the amplitudes of the
distortion and the perturbation in the lapse func-
tion for comoving (¢,, and «,,) and uniform-Hub-
ble-constant (¢, and a,) hypersurfaces.

The comparison between the values of the gauge-
invariant amplitudes appropriate to these three
hypersurfaces for each of the two independent
homogeneous modes in a background with negli-
gible spatial curvature and w = P,/E, independent
of time is given in Table I. The fractional energy
density perturbation is particularly sensitive to
the choice of hypersurface when kS/S =k7/8<<1.

The hypersurface conditions discussed in this
paper have the property that eack hypersurface
is picked out by a physical criterion based either
on the extrinsic geometry of the hypersurface or
on its relation to the matter. The geometric cri-
teria are spatially global in character, since the
lapse function relating one hypersurface to the
next satisfies an elliptic equation. Even the co-
moving hypersurface condition is fundamentally
global, since the separation of the longitudinal and
vortical parts of the velocity field also requires
the solution of an elliptic equation.

In contrast, the hypersurfaces might be chosen
as surfaces of constant proper time along the
world lines of a particular family of observers.

If these observers are comoving with the matter
one has the sort of hypersurface condition used
by Sachs and Wolfe® and Olson? to define a den-
sity perturbation, even though Olson’s dynamical
calculation was performed with a variable (essen-
tially equivalent to ¢,,) defined on hypersurfaces
orthogonal to the matter world lines. In a syn-
chronous gauge the observers are freely falling
and their world lines are orthogonal to the hyper-
surfaces of constant propertime.

The problem with these proper-time hypersur-
face conditions is that at any one time the choice of
the hypersurface is completely arbitrary. There
is a corresponding arbitrariness in the value of,
say, the fractional energy density perturbation,
and the description is intrinsically non-gauge-
invariant. Press and Vishniac!? avoid this prob-
lem, even though they calculate in a synchronous
gauge, by continuously transforming to a uniform-

Hubble-constant hypersurface to interpret their
results. However, it would seem better to work
directly with variables whose physical meaning is
unambiguous.

A proper-time description may be useful in con-
sidering local physics in the presence of given in-
homogeneities, e.g., in studying element formation
in the early Universe. However, it is in appro-
priate when the dynamics of the inhomogeneities
themselves are the focus of interest.

Is there any one best measure of the true am-
plitude of the perturbation? Once the perturbation
is within the particle horizon the value of the frac-
tional energy density perturbation on any of the
standard hypersurfaces is a reasonable choice.

At early times, when kS/S <1, the true amplitude
should indicate the limits of validity of the linear
perturbation analysis for both growing and decaying
modes. All of the amplitudes compared in Table I
are relative amplitudes in the sense some sort of
breakdown of linearity is implied if one of them is
larger than unity. A “good” hypersurface condition
should not introduce any apparent nonlinearities
which are only due to a large warping of the hyper-
surface. In this sense the zero-shear hypersurface
condition is “bad,” since for a decaying mode o
and a, can exceed one even though all the relative
amplitudes are small on comoving and uniform-
Hubble-constant hypersurfaces.

On no hypersurface does the fractional energy
density perturbation indicate the true amplitude
for both homogeneous scalar modes at kS/S<<1,
The one hypersurface-invariant amplitude & is un-~
suitable because £ is down by a factor (kS/$)?
compared with the irreducible relative amplitude
of the geometry perturbations for the growing
mode. For the decaying mode ¢,, is anomalously
small compared with, say,£ when P,/E,<<1 (3
close to 2). The one generally suitable choice is
¢, the amplitude of warping of the uniform-Hub-
ble-constant hypersurface. Both comoving and
uniform-Hubble-constant hypersurfaces minimize
(within a factor of order unity) the maximum rela-
tive amplitude, and ¢, is always comparable with,
if not identical to, this maximum relative ampli-
tude. )

A further advantage of ¢, can be seen from Eq.
(6.26). If no nonadiabatic stress perturbations are
present (wn=w‘Q’=0) at a time when kS/S <1,
Eq. (6.25) shows that a,=0[(kS/S)?¢,], and Eq.
(6.26) reduces to

B+ 2% ¢ —5k%p, =0 . (7.1)

In a time A7T<<k™!, so light can travel only a small
fraction of a wavelength, the growing mode in ¢,



is to a good approximation constant in-amplitude
regardless of any change in the background equa-
tion of state, even a change from P,/E,< —3 to
P,/E,> 0 as discussed in connection with Eq.
(5.30). Meanwhile, the fractional energy density
perturbation as measured by €, or €, varies in-
versely with E;S? or ($/S)? and can increase or de-
crease by many orders of magnitude. It is ¢,,
rather than €, or ¢,, that gives the correct phy-
sical picture of the dynamics of the perturbation
while the perturbation is large compared with the
effective particle horizon. The perturbation ampli-
tude can decay adiabatically but cannot grow except
in divect response to a nonadiabatic stress pertur-
bation. This conclusion may seem an obvious con-
sequence of causality, but is obscured in many
standard references which emphasize power-law
growth of the fractional energy density perturba-
tion at early times.

While the above considerations give preference
to the uniform-Hubble-constant hypersurface for
dealing with the nonlinear Einstein equations, we
did point out in Sec. VI that the linear perturbation
treatment is strictly valid to the fullest possible
extent only on comoving hypersurfaces. On uni-
form-Hubble-constant hypersurfaces the second-
order correction to the fractional energy density
perturbation can exceed the linear term at kS/S$
<1 even though the overall perturbation amplitude
is small. In this circumstance ¢, @ is not equal
to the actual perturbation in the fractional energy
density on uniform-Hubble-constant hypersurfaces,
but the gauge-invariant linear perturbation equa-
tions still give the correct evolution and by the
time kS/$~1, the fractional energy density pertur-
bation is equal to €, Q.

The exact inhomogeneous solutions to the pertur-
bation equations obtained in Sec. V, assuming
negligible spatial curvature and P,/E, independent
of time in the background, are new, though Press
and Vishniac'? did consider the effect of entropy
perturbations at £S/S <1. The exact solution dis-
played in Eq. (5.14) reduces to Eq. (5.15) in this
limit, assuming -3 < P,/E,< 1, so ©>g> 3. With
-3 <w < 1 the strong energy condition is satisfied
and kS/S increases toward the future; the particle
horizon expands rather than shrinks relative to
the wavelength of the perturbation. While the
adiabatic speed of sound is imaginary for w < 0,

a single-component treatment of the matter is in-
appropriate when the net pressure is negative.

Over the whole range ~3 <w <1 the analytic sol-
ution shows that the fractional energy density at
the particle horizon cannot greatly exceed the
maximum previous ratio of stress perturbation to
background energy density, averaged over one
e-folding in S, no matter how early the stress
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perturbation occurs. For w close to one (8 ~%),
(28 = 1)"* should be replaced by In(5/kS) in the
integral over the anisotropic stress. This logar-
ithmic enhancement of the perturbation amplitude
over the amplitude of the stress perturbation is at
most a factor of order 10? even if the stress per-
turbation was excited as early as the Planck time.

As measured by ¢, an entropy or isotropic
stress perturbation predominantly excites the
growing mode (which really has constant ampli-
tude until the perturbation comes within the par-
ticle horizon). An anisotropic stress perturbation
excites comparable amounts of the growing mode
and the decaying mode. Of course, at the particle
horizon all that is left is the growing mode.

From the point of view of the fractional energy
density perturbation it seems that small nonlinear
coupling of the decaying mode excited by aniso-
tropic stress to the growing mode could perhaps
significantly enhance the amount of growing mode
beyond what is expected from the linear theory.

I showed rather conclusively in Sec. VI that as
long as the amplitude of the stress perturbation
relative to the background energy density and
therefore ¢, is small, nothing of the sort can
happen. The nonlinear effects of anisotropic
stress associated with scalar (purely longitudinal),
vector (semilongitudinal), and tensor (purely
transverse) perturbations on the fractional energy
density are similar even though the frame dragg-
ing associated with a vector perturbation can gen-
erate large metric perturbations at 2S/S < 1.

In summary, then, I conclude that there is no
possibility of explaining the origin of galaxies
through the dynamical evolution of perturbations
which arise from genuinely small or “statistical”
causes within the context of general relativity and
the strong energy condition. Either rather large
perturbations, with a relative amplitude of at
least 1072 or so, are present initially or corre-
spondingly large stress perturbations appear at a
later time. This conclusion is hardly new, but
has been strengthened by consideration of com-
pletely general energy-momentum tensor pertur-
bations and the nonlinear interaction of modes.

Of course, it also requires consideration of the
physical processes which act on the perturbation
once it is inside the particle horizon, but for any-
thing like a galaxy scale these are fairly well
understood.”

The one real hope for a dynamical explanation
of the origin of structure in the Universe is the
abolition of particle horizons at early times,
perhaps through quantum modifications to the en-
ergy-momentum tensor and/or the gravitational
field equations which in effect violate the strong
energy condition that E;+3P,>0.
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APPENDIX

The general expressions are written down for
the perturbed Ricci tensor components and the
perturbed matter equations of motion in terms of
the metric tensor perturbations and energy-mo-
mentum tensor perturbations defined in Egs.
(2.14)~(2.20). Also included are the intrinsic and
extrinsic curvature tensors for the constant-7
spacelike hypersurface.

The Ricci tensor for scalar perturbations is

oR)= :2 HL+ H —-A+[k2/3 2(5/5)" 1A
+§ (B(o)+§:B(o))]Q(o) ’ (Ala)
0o _2[ : i 2y 77(0)
ﬁRa_s_z -kH, -3k(1 ~-3K/k YH '3
-
é (0) (0)
+kSA-KB®|QY, (Alb)
ORE=— [%(k2—3K)(HL+%H(°T))+ﬁL+ 521'&
S 2 -2(c0)"
-§A+(k /3 - 2572(SS) A
+§ (1‘3(0)+5 g—B“”)]ﬁg‘Qm
+§12_ [H(o)+2 Shw- k(B‘°)+2 SB(‘”)
- k¥(H, + SR +A)]Q‘§’°‘ . (Ale)
The Ricci tensor for vector perturbations:
. bRg=0 ’ (A2a)
k2% < 2K 1
0 _ (1)__ 1) 1)
oRY= T (B -p AP )Y, (am)
O0Rg = Slz [H‘”+ 2SH‘1’
k(sw $ ) Wa
-5 B +2§B Q% . (A2¢)
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The Ricci tensor for tensor perturbations:

6R2=0 , (A3a)

ORY = (A3Db)

0

1 [- S .

aRg=§2—[H‘;’+z SH T+ -+ 20HP|QP*
(A3c)

Equations of motion for scalar perturbations:

[EoS%0]% (Ey+ Py)S*(kv @ + 3H,) +3P,S*S 1, =0 ,
(Ada)

[,U(O) _B(o)]'+g (1 _3032)[0(0)

—B(O)]—A—k

+2k(1 - 3K /k?) 1ifw 79 =0. (A4D)

Equation of motion for vector perturbations:

[0(1) _B(1)1'+§ (1 —3032)[1)(1) _B(1)]

(1) _ =0

+k1+w T =

(A5)

Intrinsic curvature tensor on the constant-7
spacelike hypersurface for general perturbations:

L (2K £ (2 = 3K, +3HD)Q® ] 6

0§ =3

2
__§ (HL+§H(2) )Q(é))a

(k2 + 2K)

L g (a6)

Extrinsic curvature tensor for general perturba-

tions:
. Sk
XK=~ %[— (HL—§A+§B(°)>Q(°’]5§‘
1, 0 o0
§[H -kB1Qf
1w _ppwiowe_l o p@a
"E[HT - kB ]QB —§HT QF .

(A7)

Neither the intrinsic curvature nor the extrinsic
curvature are gauge invariant, but both are in-
.variant under a purely spatial gauge transforma-
tion (7'=0) and depend only on the instantaneous

value of T for a time gauge transformation.



22 GAUGE-INVARIANT COSMOLOGICAL PERTURBATIONS 1905

*Permanent address: Department of Physics, University

of Washington, Seattle, Washington 98195,

LE. M. Lifschitz, J. Phys. (Moscow) 10, 116 (1946).

’E. M. Lifschitz and I. M. Khalatnikov, Adv. Phys. 12,
185 (1963).

3S. W. Hawking, Astrophys. J. 145, 544 (1966).

‘E. R. Harrison, Rev. Mod. Phys. 39, 862 (1967).

SR. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73
(1967).

8G. B. Field, in Galaxies and the Universe, edited by
A. Sandage, M. Sandage, and J. Kristian (Univeristy
of Chicago Press, Chicago, 1975).

P, J. E. Peebles, Cosmology: The Physics of Large
Scale Structure (Princeton University Press, Prince-
ton, 1980).

8A. H. Guth and S.-H.H. Tye, Phys. Rev. Lett. 44,
631 (1980).

'W. H. Press, Phys. Scr. 21, 702 (1980).

10G, B. Field and L. C. Shepley, Astrophys. Space Sci.
1, 309 (1968).

UK, sakai, Prog. Theor. Phys. 41, 1461 (1969).

12y, H. Press and E. T. Vishniac, Astrophys. J. 239,

1 (1980).

13p, W. Olson, Phys. Rev. D 14, 327 (1976).

14y, H. Gerlach and U. K. Sengupta, Phys. Rev. D 18,
1789 (1978).

155, Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972).

16ya, B. Zel’dovich, L. B. Okun’, and I. Yu. Kabzarev,
Zh. Eksp. Teor. Fiz. 67, 3 (1974) [Sov. Phys.-JETP

40,1 (1975)]. :

177, W. B. Kibble, J. Phys. A 9, 1387 (1976).

181, D, Novikov, Zh. Eksp. Teor. Fiz. 46, 686 (1964)
[Sov. Phys.-JETP 19, 467 (1964)1.

19p, J, E. Peebles, Nature 220, 237 (1968). Peebles
does recognize the unphysical nature of these *statisti-
cal fluctuations.”

20p, D. D’Eath, Ann. Phys. (N.Y.) 98, 237 (1976).

Ap, J, E. Peebles and J. T. Yu, Astrophys. J. 162,
815 (1970).

223, Silk, Astrophys. J. 151, 459 (1968).

2B. Carter, in 1979 Les Houches Summer School Pro-
ceedings (unpublished).

2E, W. Kolb and S. Wolfram (unpublished).

%)M, V. Fischetti, J. B. Hartle, and B. L. Hu, Phys.
Rev. D 20, 1757 (1979).

%63, W. Hawking and G. F. R. Ellis, Large Scale Struc-
ture of Spacetime (Cambridge University Press, Cam-
bridge, 1973).

2TR. Arnowitt, S. Deser, and C. W. Misner, in Gravi-
tation, An Introduction to Current Reseavch, edited by
L. Witten (Wiley, New York, 1962). See also, C. W.
Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

28N, O Murchadha and J. W. York, Phys. Rev. D 10.
428 (1974).

297,, Smarr and J. W. York, Phys. Rev. D 17, 2529
(1978).

30p, M. Eardley and L. Smarr, Phys. Rev. D19, 2239
(1979).



