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Abstract
Testing the so-called consistency relations plays an important role in
distinguishing the different classes of inflation models. In this paper, we
investigate the possible testing for various single-field inflation models based
on the potential future observations of the cosmic microwave background
(CMB) radiation, including the planned CMBPol mission and the ideal CMB
experiment where only the reduced cosmic weak lensing contamination for
the B-mode polarization is considered. We find that for the canonical single-
field inflation, the phantom inflation and the potential-driven G-inflation,
the consistency relations are quite hard to be tested: the testing is possible
only if r > 0.14 for the CMBPol mission, and r > 0.06 for the ideal
experiment. However, the situation could become much more optimistic for
the general Lorentz-invariant single-field inflation model with large non-local
non-Gaussian signal. We find that testing the latter class of inflation is possible
if r � 10−2 or even smaller for both CMBPol and ideal CMB experiments.

PACS numbers: 98.70.Vc, 98.80.Cq, 04.30.−w

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the expansion history of the Universe is a fundamental task of modern
cosmology. The standard hot big-bang cosmological model is the most successful model to
explain various observations [1]. However, in this scenario, one has to face the flatness, horizon
and monopole puzzles. In order to solve these problems, various inflation-like scenarios for
the expansion history of the Universe at the very early time have been proposed [2]. The
necessity of this stage can also be understood in the following way: it seems logical to suggest
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that our Universe came into being as a configuration with a Planckian size and a Planckian
energy density, and with a total energy, including gravity, equal to zero (see [3] and references
therein). The newly created classical configuration cannot reach the average energy density
and size of the presently observed Universe, unless the configuration experienced a primordial
kick, i.e. an inflation-like stage [3].

Nowadays, there are various inflation models in the market [2]. The problem is how to
distinguish these quite different models from observations. It is well known that the strong
variable gravitational field of the inflationary Universe inevitably generates primordial density
perturbations (i.e. scalar perturbations) and relic gravitational waves (i.e. tensor perturbations)
[4, 5]. The former provides the seed of the large-scale structure formation, and the latter
faithfully encodes the information of the whole expansion history of the Universe [6]. Searching
for the evidence of these perturbations provides a way to study the physics in the inflationary
stage, and opens an observational window to explore the physics around the very high energy
scale.

The current observations on the cosmic microwave background (CMB) radiation and the
large-scale structure support that the primordial density perturbations have the nearly scale-
invariant power spectrum which are predicted by the inflation models. However, it is not
sufficient to distinguish various inflation models, i.e. almost all the models can explain the
present observations, so long as the proper model parameters are chosen. At present, we do
not even have an obscure picture of this stage: Was the inflationary stage promoted by a single
effective scalar field, multiple scalar fields or some effective fields with non-canonical kinetic
terms?

Recently, a number of authors have discussed how to test the inflation models by the
current and potential future CMB observations (see, for instance, [7–13]). In these works,
the authors mainly focused on testing the canonical single-field slow-roll inflation models,
by determining the scalar spectrum index ns, its running αs and the tensor-to-scalar ratio r.
Different from these works, in this paper, we investigate the possibilities of confirming or
ruling out the different single-field inflationary scenarios (including canonical single-field
models, phantom models, general Lorentz-invariant models and so on) by the potential future
CMB observations.

One of the most powerful tools to distinguish these different scenarios is to test the
so-called consistency relations, which are independent of the inflaton potential and are quite
different in different scenarios. The experimental determination of the parameters specifying
the relic gravitational waves plays a crucial role in approaching this aim. The CMB has proved
to be a valuable tool in this respect. Relic gravitational waves leave an observable imprint in
the temperature and polarization anisotropies on the CMB [14], which provides the unique
way to detect the relic gravitational waves with the largest wavelength.

Although the recent effort, including the WMAP satellite [15, 16], QUaD [17], BICEP
[18] and QUIET [19], has not found the definite evidence of relic gravitational waves, their
purpose remains one of the key tasks for the current, upcoming and future CMB observations
on the ground [17–26], on balloons [27–29] and in the space [11, 30–34].

The accurate measurement of the parameters specifying the relic gravitational waves, e.g.
the spectral index nt , depends on the full-sky observations of the CMB B-mode polarization
field with the sensitive experiments [35–38]. The proposed CMBPol project [11], which is
taken as a next-generation mission of the Planck satellite [31], provides an excellent opportunity
to realize this aim. In this paper, we will carefully discuss the possibility of testing the
consistency relations in various single-field inflation models by the CMBPol mission and an
ideal CMB experiment where only the reduced cosmic weak lensing contamination for the
B-mode polarization is considered. We find that although it is a very hard task which has been
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claimed by many other authors, it is still possible to test these consistency relations by the
CMBPol mission and the ideal CMB experiment, so long as the amplitude of relic gravitational
waves is not too small. If so, these observations will certainly provide a great chance for us to
investigate the physics in the early Universe and figure out a natural inflationary scenario.

The outline of the paper is as follows. In section 2, we introduce how to measure the
parameters: the tensor-to-scalar ratio r and the spectral index nt , by the potential future CMB
observations, including the planned CMBPol mission and the ideal CMB experiment. Based
on these results, in section 3, we carefully discuss the possibility of testing the inflationary
consistency relations in the canonical single-field slow-roll inflation, the general Lorentz-
invariant single-field inflation, the phantom inflation and the potential-driven G-inflation.
Section 4 is a simple conclusion, which summarizes the main results in this paper.

2. Detecting relic gravitational waves in the CMB

The main contribution to the observed temperature and polarization anisotropies of the CMB
comes from two types of the cosmological perturbations, density perturbations and relic
gravitational waves. These perturbations are generally characterized by their primordial power
spectra. These power spectra are usually assumed to be power-law, which is a generic prediction
of a wide range of scenarios of the early Universe, for example the inflation models4. Thus,
the power spectra of the perturbation fields take the form

Ps(k) = As(k0)(k/k0)
ns−1, Pt (k) = At (k0)(k/k0)

nt , (1)

for density perturbations and relic gravitational waves, respectively. In the above expression,
k0 is an arbitrarily chosen pivot wavenumber, ns is the primordial power spectral index for
density perturbations and nt is the spectral index for gravitational waves. As(k0) and At (k0) are
the normalization coefficients determining the absolute values of the primordial power spectra
at the pivot wavenumber k0.

We can also define the tensor-to-scalar ratio as follows:

r(k0) ≡ At (k0)

As(k0)
, (2)

which describes the relative contribution of density perturbations and gravitational waves. The
amplitude of gravitational waves At (k0) = r(k0)As(k0) provides us with direct information
on the Hubble parameter in the very early Universe [39]. More specifically, this amplitude is
directly related to the value of the Hubble parameter H at a time when perturbation mode with
wavenumber k0 crossed the horizon [8]:

A1/2
t (k0) =

√
2

Mpl

H

π

∣∣∣∣∣
k0/a=H

, (3)

where Mpl = 1/
√

8πG is the reduced Planck mass. If we adopt As = 2.430 × 10−9 from the
7 year WMAP observations [15], the Hubble parameter is H � 2.67r1/2 × 1014 GeV which
only depends on the value of r. In the standard single-field slow-roll inflation models, the
Hubble parameter directly relates to the energy scale of inflation V 1/4. Relation (3) follows
that V 1/4 � 3.35r1/4 × 1016 GeV, which has been emphasized by a number of authors.

Density perturbations and gravitational waves produce temperature and polarization
anisotropies in the CMB, which are characterized by four angular power spectra CT

� , CC
� ,

CE
� and CB

� as functions of the multipole number �. Here, CT
� is the power spectrum of the

4 In general there might be deviations from a power-law, which can be parameterized in terms of the running of the
spectral index (see for example [39, 40]), but we will not consider this possibility in this paper.
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temperature anisotropies, CE
� and CB

� are the power spectra of the so-called E-mode and B-
mode of polarization (note that, density perturbations do not generate B-mode of polarization
[14]) and CC

� is the power spectrum of the temperature-polarization cross correlation.
In general, the power spectra CY

� (where Y = T, E, B or C) can be presented in the
following form:

CY
� = CY

� (dp) + CY
� (gw), (4)

where CY
� (dp) is the power spectrum due to the density perturbations and CY

� (gw) is the
spectrum due to gravitational waves.

Since we are primarily interested in the parameters of the gravitational-wave field, in the
following discussion, we work with a fixed cosmological background model. More specifically,
we work in the framework of the �CDM model, and keep the background cosmological
parameters fixed at the values determined by a typical model [15] h = 0.705, �bh2 = 0.02255,
�mh2 = 0.1126, �k = 0, τreion = 0.088, As = 2.430×10−9. Furthermore, the spectral indices
of density perturbations and gravitational waves are adopted as follows for simplicity:

ns = 1, nt = 0. (5)

Note that, although the constraint of ns is quite tight based on the WMAP observations, its
value strongly depends on the assumption of the primordial power spectrum, i.e. running or no
running (see [15] for details). In this section, in order to simplify the calculation and without
loss of generality, we assume the scale-invariant power spectra for both density perturbations
and gravitational waves in the fiducial model.

The CMB power spectraCY
� are theoretical constructions determined by ensemble averages

over all possible realizations of the underlying random process. However, in real CMB
observations, we only have access to a single sky, and hence to a single realization. In order to
obtain information on the power spectra from a single realization, it is necessary to construct
estimators of power spectra. In order to differentiate the estimators from the actual power
spectra, we use the notation DY

� to denote the estimators while retaining the notation CY
� to

denote the power spectrum. The probability distribution functions for the estimators predict
the expectation values of the estimators〈

DY
�

〉 = CY
� , (6)

and the standard deviations

(
σDX

�

)2 = 2
(
CX

� + NX
�

)2

(2� + 1) fsky
, (X = T, E, B)

(
σDC

�

)2 =
(
CT

� + NT
�

)(
CE

� + NE
�

) + (
CC

� + NC
�

)2

(2� + 1) fsky
, (7)

where fsky is the sky-cut factor and NY
� are the noise power spectra, which are all determined

by the specific experiments.
In order to estimate the parameters r and nt characterizing the gravitational-wave

background, we use an analysis based on the likelihood function [41]. In previous work
[35], we have analytically discussed how to constrain the parameters of the relic gravitational
waves, r and nt , by the CMB observations. We found that in general, the constraints on r and
nt correlate with each other. However, if we consider the tensor-to-scalar ratio at the best-
pivot wavenumber kt , the constraints on r and nt become independent of each other, and the
uncertainties 	r and 	nt have the minimum values. We have derived the analytical formulae
to calculate the following quantities: the best-pivot wavenumber kt , and the uncertainties of
the parameters 	r and 	nt , which provides a simple and quick method to investigate the
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detection abilities of the future CMB observations. In [35], we have also found that these
analytical results are well consistent with the simulation results by using the Markov-chain
Monte Carlo method. We briefly introduce these results in this section.

It is convenient to define the quantities as follows:

aY
� ≡ CY

� (gw)

σDY
�

, b� ≡ ln

(
�

�t

)
, dY

� ≡ DY
� − CY

� (dp)

σDY
�

, (8)

where σDY
�

is the standard deviation of the estimator DY
� , which can be calculated by

equation (7). We should note that the quantity dY
� is dependent on the random date DY

� .
By considering the relations in (6) and (4), we can obtain that

〈
dY

�

〉 = aY
� , which shows that dY

�

is an unbiased estimator of aY
� . �t is the so-called best-pivot multipole, which is determined by

solving the following equation [35]:∑
�

∑
Y

aY 2
� b� = 0. (9)

So, the value of �t depends on the cosmological model, the amplitude of gravitational waves
and noise power spectra by the quantity aY

� . The best-pivot wavenumber kt relates to �t by the
approximation relation [35]

kt � �t × 10−4 Mpc−1. (10)

Note that, in our previous work [35], the best-pivot wavenumber kt and multipole �t have
been denoted as k∗

t and �∗
t , respectively. Once the value of �t is obtained, the uncertainties 	r

and 	nt can be calculated by the following simple formulae:

	r = r

/√∑
�

∑
Y

aY 2
� , 	nt = 1

/√∑
�

∑
Y

(
aY

� b�

)2
. (11)

As usual, we can define the signal-to-noise ratio S/N ≡ r/	r. Using (11), we obtain

S/N =
√∑

�

∑
Y

aY 2
� . (12)

Here, we mention that in equation (11) and throughout the paper below, the quantity r denotes
the tensor-to-scalar ratio at the best-pivot wavenumber, i.e. r ≡ r(kt ), which has been written
as r∗ in the previous work [35].

For a given gravitational-wave background, the values of S/N and 	nt mainly depend on
two experimental quantities: the total noise level of the experiment and the surveyed sky area.
The lower noise and larger sky survey follow a larger S/N and a smaller 	nt . In the previous
works [16, 35–38], we have carefully investigated the detection abilities of various future CMB
experiments. We found that in the optimistic case, the launched Planck satellite is expected
to find the signal of gravitational waves if r > 0.03, consistent with [42]. The ground-based
experiments, such as QUIET and POLARBEAR, are expected to have a detection if r > 0.01.
However, both of them cannot well determine the spectral index nt , due to the large noise
level for the Planck satellite and the small sky-cut factor for the ground-based experiments.
Even if we combine the Planck and ground-based POLARBEAR experiments, we only obtain
	nt = 0.1 for the case with the tensor-to-scalar ratio r = 0.1 [36], which is not accurate
enough to distinguish different inflation models.

It has been noted that the well detection of gravitational waves needs a full-sky observation
by the high-sensitivity detectors. The proposed CMBPol mission provides an excellent
opportunity in this respect [11]. The CMBPol mission is expected to have a full-sky survey
for the CMB temperature and polarization fields, and the instrumental noises are close to,
or even lower than, the cosmic weak lensing contamination for the B-mode polarization. So,
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Figure 1. The figures show the values of the best-pivot multipole �t (left panel), signal-to-noise
ratio S/N (middle panel) and the uncertainty of the spectral index 	nt (right panel) as functions of
the tensor-to-scalar ratio r.

in this paper, we discuss the detection of relic gravitational waves and the distinguishing
of the inflation models by the potential CMBPol observations. For the CMBPol mission,
we consider a sky-cut factor fsky = 0.8, proposed in the CMBPol white book [11]. The
total noises of CMBPol observation mainly include three parts: the instrumental noises, the
foreground contaminations (including the synchrotron and dust emissions) and cosmic weak
lensing contamination for the B-mode polarization. For the instrumental noises, there are
several proposals [11, 43]. In this paper, we focus on the middle-cost EPIC-2m proposal.
The detailed calculation of the total noise power spectra of EPIC-2m is given in our recent
work [38], where the analytical formulae are given to calculate the noise power spectrum.
Throughout this paper, we have used the CAMB package [44] to calculate the CMB power
spectra, and the contaminations due to the cosmic weak lensing. We note that, the total noise
power spectra depend on the assumed parameters σ fore and σ lens, which describe the residual
fractions of foreground emissions and lensed B-mode polarization considered as the effective
noises. In this paper, we focus on the optimistic case with the assumed parameters (σ fore, σ lens)
being (0.01, 0.5). Note that, in our discussion, we have not considered the leakage from the
E-mode into the B-mode polarization due to the partial sky analysis. We assume that this E–B
mixture can be properly avoided (or deeply reduced) by constructing the pure E-mode and
B-mode polarization fields [45].

Taking into account the total noises, and using the formulae in equations (9), (11) and
(12), we calculate the quantities �t , S/N and 	nt as functions of the input tensor-to-scalar ratio
r. The results are shown in figure 1 (red solid lines), which are consistent with the previous
works [11, 37, 38]. Figure 1 shows that as expected, the model with a larger r follows a larger
S/N, and a smaller 	nt . It is interesting to find that when r > 0.001, EPIC-2m can detect the
signal of gravitational waves at more than 5σ level. For the r = 0.01 case, we have S/N = 29,
and for r = 0.1, we have S/N = 78. So we conclude that EPIC-2m can well detect the signal
of gravitational waves so long as the tensor-to-scalar ratio is larger than 0.001. At the same
time, the determination of the spectral index nt is also quite accurate. If r = 0.001, one has
	nt = 0.2, and if r = 0.01, one has 	nt = 0.05. Especially, for r = 0.1, the uncertainty
reduces to 	nt = 0.02. So, it would be a quite powerful tool to study the physics in the
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early Universe, especially for distinguishing different inflation models, which will be shown
in section 3.

It was noted that the detection abilities of the future CMB experiments for the relic
gravitational waves are limited by the cosmic variance and cosmic weak lensing effect
(see [46] and references therein). Especially, when the instrumental noise power spectra of
the future experiment become smaller than ∼10−6μK2, the weak lensing contamination for
the B-mode polarization could be dominant among the total noises, and forms a detection limit
for the CMB experiments [35, 47]. A number of works have discussed methods to subtract
the lensed B-mode signal (see [48, 49]). In [49], the authors claimed that a reduction in
lensing power by a faction of 40, i.e. a residual faction σ lens = 0.025, is possible using an
approximate iterative maximum-likelihood method. For this reason, as an idealized scenario,
we also consider the case with reduced cosmic lensing noise with σ lens. In this ideal case, we
assume an exactly full sky survey with fsky = 1. We also assume that there are no instrumental
noises or foreground emissions.

Using similar steps, we calculate the quantities �t , S/N and 	nt as functions of the input
tensor-to-scalar ratio r in this ideal case. The results are also shown in figure 1 with dashed
lines, consistent with [35]. We find that the gravitational waves with r > 3.7 × 10−6 can
be detected at more than 2σ level. This can be treated as the detection limit of the CMB
experiments. This lower limit corresponds to the Hubble parameter H � 3.1 × 1011 GeV, and
the energy scale of inflation V 1/4 � 1.5 × 1015 GeV. From figure 1, we also find that when
r > 2 × 10−5, the signal-to-noise ratio becomes quite large, i.e. S/N > 5. In this idealized
situation, the uncertainty of the spectral index nt also becomes very small. We can constrain nt

to the level 	nt = 0.014 if r = 0.01, and 	nt = 0.007 for r = 0.1. Distinguishing different
inflation models in this ideal case will also be presented in section 3.

3. Testing the inflationary consistency relations

Nowadays, the inflationary scenario has been widely accepted by almost all of the cosmologists.
Inflation can naturally explain the well-observed primordial density perturbations with a nearly
scale-invariant power spectrum. However, we still do not know which inflation model describes
our real Universe, since almost all the models are compatible with the current observations
if the proper model parameters are adopted. So, distinguishing different inflation models,
especially different classes of models, is the key task for the future research.

The so-called consistency relation gives a clear difference for different classes of inflation.
For example, for the canonical single-field slow-roll inflation models, the consistency relation
r = −8nt is held, which provides a unique way to confirm or rule out this class of models. In
this section, we carefully investigate the possibility of testing the consistency relations for the
canonical single-field slow-roll inflation, the general Lorentz-invariant single-field inflation,
the phantom inflation and the potential-driven G-inflation, by the potential future observations,
such as the planned CMBPol mission and the ideal CMB experiment.

3.1. Canonical single-field slow-roll inflation model

First of all, we focus on the simplest version of inflation, i.e. the canonical single-field slow-roll
inflation model. In this scenario, the dynamics of the Universe is governed by a scalar field
(the inflaton) φ with a canonical kinetic term. The inflaton slowly rolled down its flat potential
in the inflationary stage. Inflation ended when the slow-roll conditions were broken down, and
the inflaton decayed into the relativistic particles and re-heated the Universe. See some recent
discussions in [50].

7
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The Lagrangian for the canonical single-field inflation model is given by [2]

L(φ) = 1
2 (∂φ)2 − V (φ), (13)

where V (φ) is the potential of the inflaton field φ. Different V (φ) describes the different
inflation models. In the inflationary stage, the potential energy of the inflaton dominates over
its kinetic energy, and V (φ) should be quite flat. Thus, we can define the slow-roll parameter

ε = − Ḣ

H2
� M2

pl

2

(
V ′

V

)2

, (14)

where the dot denotes d/dt, and the prime denotes d/dφ. This parameter ε should be much
smaller than the one during inflation.

The tensor-to-scalar ratio r and the tensor spectral index nt in this scenario are related to
the slow-roll parameter ε by [2]

r = 16ε, nt = −2ε. (15)

The above equations lead to the so-called consistency relation for the canonical single-field
slow-roll inflation [2] (for a detailed critical discussion of this consistency relation see the last
paper in [4]):

nt = −r/8. (16)

This consistency relation is independent of the form of the potential and valid for all the
single-field slow-roll inflation models with canonical kinetic terms5. So, testing this relation
provides a model-independent criteria to confirm or rule out the canonical single-field slow-roll
inflation models.

From (16), we find that testing this relation depends on the measurement of the
gravitational-wave’s parameters r and nt , since the absolute value of nt is expected to be
one order smaller than that of r (see equation (16)), and the measurement of nt is much more
difficult than that of r [35–37]. How well we can measure the spectral index nt plays a crucial
role in testing the consistency relation (16).

Now, let us discuss how well this consistency relation can be tested by the potential future
CMB observations, which has been partly discussed in the previous works [13, 37, 38, 52].
Here, we will revisit this problem based on the discussion in section 2, where a best-pivot
wavenumber and the best determinations of the parameters r and nt are considered.

The uncertainty 	nt as a function of the input r is replotted in figure 2 (red lines). We
investigate if the future experiments might distinguish the tilted gravitation waves from the
scale-invariant one (i.e. nt = 0). To attain the goal of this testing, in figure 2 we compare
the value of |nt | = r/8 with that of 	nt

6. If 	nt < |nt |, then the constraint on nt is tight
enough to allow the consistency relation to be tested. We find that 	nt < |nt | is satisfied only
if r > 0.14 for the EPIC-2m experiment, which is quite close to the current upper limit of r
obtained from the 7 year WMAP observations [15]. So we conclude that there is only a small
space left for testing the consistency relation for CMBPol. This is the reason why many people
claimed that the consistency relation is difficult to test [11]. However, from figure 2, we find
that this situation can be slightly alleviated for the ideal observation. In this case, 	nt < |nt |
5 It was pointed out that this consistency relation could be violated if considering the trans-Planckian physics in the
early Universe [51]. So in this sense, the testing of this consistency relation also provides the change to study the
trans-Planckian physics.
6 In principle, for any given nt , we should compare its value with that of 	nt , derived from the model with this nt as
input. However, we note that in the inflation models considered in this paper, the value of nt is always very close to
zero, which follows that the difference between these 	nt ’s and that in section 2 is very small. Throughout this paper,
we ignore this little difference.

8
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Figure 2. For the EPIC-2m mission and the ideal CMB experiment, the value of 	nt compares
with that of |nt | = r/8 (grey (blue) solid line). Note that the red lines are identical to those in
figure 1 (right panel).

is satisfied so long as r > 0.06. Thus, it is possible to test the consistency relation (16) only
for some inflation models with fairly large r.

Let us consider two specific models. First, we discuss the chaotic inflation. The prototype
for chaotic inflation involves a single polynomial term V (φ) = �p(φ/μ)p with p > 0 [53].
Here, the scale μ < Mpl is relevant for the higher dimensional terms in this effective potential.
The chaotic inflation models of this form make the following prediction [11]:

r = 8

(
p

p + 2

)
(1 − ns). (17)

Assuming ns = 0.968 [15] and p = 2, we have r = 0.128. So in this model, the consistency
relation could be tested by the ideal experiment. Another typical model we consider is the
hill-top model with quadratic term, which has the potential form V (φ) = V0

[
1 − (φ/μ)p

]
with p � 2 and φ < μ. This potential is considered as an approximation to a generic
symmetry-breaking potential [2, 11]. If p = 2, the value of r can be expressed as [11]

r = 8(1 − ns) exp[−1 − Ne(1 − ns)], (18)

where Ne is the number of e-folds, taking to be in the range Ne ∈ [40, 70] based on the current
observations of the CMB [15]. For ns = 0.968, we find that r ∈ [0.010, 0.026]. So, if this
model describes our real Universe, the consistency relation cannot be tested even in the ideal
case.

3.2. General Lorentz-invariant single-field inflation model

In this subsection, we will consider the general Lorentz-invariant single-field inflation model,
in particular the model with non-canonical kinetic terms, such as K-inflation [54], Dirac–
Born–Infeld (DBI) inflation [55], the power-law kinetic inflation [56, 57] and so on. These
models may be motivated by the high-dimensional superstring theory or brane theory [11].

The Lagrangian for a general Lorentz-invariant single-field inflation takes the form

L(φ) = P(X, φ), (19)

9
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where X ≡ (∂φ)2/2. The canonical single-field inflation is included in (19). The function
P(X, φ) corresponds to the pressure of the scalar fluid, while the energy density is E =
2XP,X − P, where P,X ≡ ∂P/∂X . An important parameter in this model is the speed of sound,
which is defined as

c2
s ≡ P,X

E,X
= P,X

P,X + 2XP,XX
. (20)

For the canonical single-field inflation we have c2
s = 1. However, in the general K-inflation

model, the value of c2
s can be larger or smaller than the speed of light [54].

The parameters related to the gravitational waves can be quantified in terms of the sound
speed cs and the slow-roll parameter ε ≡ −Ḣ/H2 [54], i.e.

r = 16εcs, nt = −2ε. (21)

Thus, the consistency relation becomes

nt = − r

8cs
. (22)

When cs = 1, equation (16) is naturally recovered. However, when cs 	 1 or cs 
 1, the
difference between (22) and (16) becomes obvious, and makes it possible to distinguish these
two classes of models.

Due to the dependence of cs in the consistency relation (22), it is necessary to consider
another observation to constrain the sound speed in the models. In addition to directly
constraining cs, there are some other possibilities of constraining the sound speed by the
observations. For the models with cs �= 1, higher derivative terms in the Lagrangian are
included and usually a large non-local form bispectrum is predicted. However, the full
bispectrum is controlled by two parameters [58]: c2

s and λ/� = (
X2P,XX + 2

3 X3P,XXX
)/

(XP,X +
2X2P,XX ). Therefore, we need two observables to fix c2

s . Fortunately, two independent
templates have been well defined for measuring the non-local form bispectrum: equilateral
and orthogonal forms whose sizes are respectively measured by two non-Gaussian parameters
f equil
NL and f orth

NL [15, 59–61]. In some specific cases, such as the DBI inflations [55] and power-
law kinetic inflations [56, 57], c2

s and λ/� can be determined by the unique parameter f equil
NL .

However, for the general Lorentz-invariant single-field inflations, in [62] one of us (QGH)
found that the speed of sound cs can be fixed once both f equil

NL and f orth
NL are detected, i.e.

1

c2
s

− 1 = −1.260 f equil
NL − 23.19 f orth

NL . (23)

The constraints on the non-Gaussian parameters by the current and potential future CMB
observations have been discussed by a number of authors [15, 59, 63–65]. Different from
the constraint on the relic gravitational waves, the detection of a non-Gaussian signal mainly
depends on the observations of CMB T T , T E and EE power spectra. So, we expect that
there is no degeneration between constraints of the non-Gaussian parameters and those of the
gravitational-wave’s parameters. The current 7 year WMAP data indicate a constraint on the
non-Gaussian parameters as follows [15]:

−214 < f equil
NL < 266, and − 410 < f orth

NL < 6(95%C.L.). (24)

These constraints have been obtained using the temperature signal only. The upcoming Planck
satellite will improve this to the level 	 f equil

NL � 	 f orth
NL � 25, mainly by the observations of

the E-mode polarization signal. In addition, a satellite mission such as CMBPol, dedicated to
polarization and cosmic variance limited up to � ∼ 2000, would be able to further improve
on Planck by a factor of order 1.6, reaching 	 f equil

NL � 	 f orth
NL � 14 [11, 66]. This can also be

treated as the detection ability of the ideal CMB experiment, due to the cosmic variance limit.

10
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Figure 3. For the EPIC-2m mission and the ideal CMB experiment, the value of 	nt compares
with that of |nt | = r/(8cs) (grey (blue) lines). Note that, the red lines are identical to those in the
figure 1 (right panel), while the dashed blue line is identical to the blue line in figure 2.

In the limit of f equil
NL = −214 and f orth

NL = −410, signal of non-Gaussianity will be quite
well observed by the future observations, such as the Planck satellite [31]. In this limit, we
have cs = 0.01 and the consistency relation becomes nt = −12.5r. In figure 3, we compare
the values of |nt | = 12.5r (blue solid line) with 	nt . We find that 	nt < |nt | is satisfied if
r > 0.006 for EPIC-2m experiment, and r > 0.002 for the ideal experiment. Comparing with
the conclusion in section 3.1, the quite promising results are expected for the study of inflation.

However, we have to mention that this is a too optimistic case. Actually, the values of | fNL|
could be much smaller. With the decrease of | fNL|, the value of cs increases, and the testing of
the consistency relation becomes more and more difficult. A non-Gaussian signal exceeding
| fNL| � 14 will be detectable from the future CMB observations [11]. So as another limit case,
let us assume f equil

NL = f orth
NL = −14, which follows that cs = 0.054 and the consistency relation

nt = −2.31r. From figure 3, we find that 	nt < |nt | is satisfied if r > 0.017 for EPIC-2m
experiment, and r > 0.007 for the ideal experiment. We mention that when

∣∣ f equil
NL

∣∣ < 14
or

∣∣ f orth
NL

∣∣ < 14, the detection of the non-Gaussian signal becomes impossible, and testing of
the consistency relation by this method becomes impossible as well. In figure 4, we plot the
value of rmin (where |nt | = 	nt is satisfied) for different values of cs by the blue lines. In this
figure, we use the dashed grey lines to label two limit cases considered above. It is important
to mention that these results are only correct for the non-canonical Lorentz-invariant single-
field inflation models. As a subclass of the general single-field inflation model, the canonical
inflation model has a definite prediction cs = 1. So the sound speed is not a free parameter for
this subclass of models, and we do not need to constrain cs for the testing of the consistency
relation, which has been clearly discussed in section 3.1

Recall that an important goal of inflation programs is to test whether inflation really arises
from the canonical single-field slow-roll models. To attain the goal of this testing, we should
compare 	nt with the quantity δnt ≡ |nt − r/8|. If 	nt < δnt , the constraint of nt is tight
enough to allow this test. Similar to above, for any given cs, we define r′

min (where δnt = 	nt

is satisfied). This is the minimal r, when the test is allowed. In figure 4, we also plot the value
of r′

min for different values of cs by the black lines. As expected, the black lines are quite close
to the corresponding blue ones.

11
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Figure 4. The values of rmin (grey (blue) lines) and r′
min (black lines) as functions of the speed

parameter cs for both the EPIC-2m mission and the ideal CMB experiment.

3.3. Phantom inflation model

In a spatially flat Friedmann–Lemaı̂tre–Robertson–Walker Universe, the null energy condition
corresponds to the inequality Ḣ < 0 and hence nt < 0. In order to obtain blue tilted
gravitational waves, one needs to break the null energy condition, for example phantom
inflation [67] in which the Lagrangian is given by

L(φ) = − 1
2 (∂φ)2 − V (φ). (25)

The tensor-to-scalar ratio r and the tensor spectral index nt in this scenario are related to the
slow-roll parameter ε by

r = 16ε, nt = 2ε, (26)

which leads to the consistency relation for the phantom inflation [67]:

nt = r/8. (27)

This consistency relation is the same as that in (16), except the sign of nt . Therefore, the
analysis on phantom inflation is exactly the same as that in the canonical single-field inflation
discussed in section 3.1. So, we can easily obtain the conclusion: 	nt < |nt | is satisfied only
if r > 0.14 for the EPIC-2m experiment, r > 0.06 for the ideal CMB experiment. However,
distinguishing phantom inflation from the canonical single-field slow-roll inflation is a little
easier. In order to attain this goal, we compare 	nt with δnt = r/4. We find that 	nt < δnt is
satisfied if r > 0.09 for EPIC-2m experiment, and r > 0.06 for the ideal experiment.

3.4. Potential-driven G-inflation model

Recently, an inflation model dubbed as ‘G-inflation’ was proposed in [68–70]. In this class of
models, inflation is driven by a scalar field with Galileon-like kinetic term. In [68], the authors
found that the model can generate a scale-invariant power spectrum of density perturbations,

12
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and significantly large amplitude of gravitational waves. The general Lagrangian of G-inflation
is of the form

Lφ = K(φ, X ) − G(φ, X )� φ, (28)

where K and G are general functions of φ and X ≡ (∂φ)2/2. If G = 0, this model returns
to the general Lorentz-invariant single-field inflation discussed in section 3.2. In [70], the
potential-driven G-inflations were discussed. In this subclass of models, the Lagrangian in
(28) has the following form:

K(φ, X ) = X − V (φ), G(φ, X ) = g(φ)X. (29)

In the inflationary stage, the energy density is dominated by the potential V (φ) under the
slow-roll condition. In these models, the model-independent consistency relation between the
tensor-to-scalar ratio and the tensor spectral index is satisfied [70]:

nt = − 9r

32
√

6
, (30)

which is the smoking-gun evidence for the potential-driven G-inflation.
First, we investigate whether it is possible to test the consistency relation in (30) by

discriminating the tilted gravitational waves from the scale-invariant one. Very similar to the
case with canonical single-field slow-roll inflation, we find that 	nt < |nt | is satisfied if
r > 0.14 for the EPIC-2m mission, and r > 0.06 for the ideal experiment.

Another test for the consistency relation is discriminating this G-inflation from the
canonical single-field inflation. To attain the goal, we compare 	nt with δnt ≡ |nt − r/8|.
Since the two consistency relations (16) and (30) are very close to each other, which induces
a very small δnt = 0.01r, we find that it is impossible to obtain the condition 	nt < δnt for
the EPIC-2m mission so long as r < 1. Even if we consider the ideal CMB observations,
	nt < δnt is satisfied only if r > 0.47, which is conflicted with the current constraint on
r [15]. So we conclude that by the CMB observations, it is impossible to discriminate the
potential-driven G-inflation from the canonical single-field inflation by testing the consistency
relations.

4. Conclusions

The inflationary scenario has been accepted by most cosmologists, which naturally solves the
flatness, horizon and monopole puzzles in the standard hot big-bang cosmological model, and
predicts the nearly scale-invariant power spectra of the primordial density perturbations and
gravitational waves. Although the recent experimental efforts, including the CMB and the
large-scale structure, have led to a robust detection of the primordial density perturbations,
and indirectly supported the existence of the early inflationary stage, how to distinguish
different inflation models still remains an outstanding experimental challenge. It depends on
how accurately we can measure the primordial perturbations, in particular the primordial
gravitational waves.

In this paper, based on the potential future CMB observations by the planned CMBPol
mission and an ideal CMB experiment, we investigated the possible tests for the consistency
relations in several classes of single-field inflation models: the canonical single-field slow-roll
inflation, the general Lorentz-invariant single-field inflation, the phantom inflation and the
potential-driven G-inflation. For the canonical single-field inflation, phantom inflation and
the potential-driven G-inflation, we found that the consistency relations are quite hard to be
tested, due to the smallness of the spectral index nt . For example, the testing is possible only
if r > 0.14 for the CMBPol mission and r > 0.06 for the ideal experiment.
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Dramatically the situation becomes quite promising for the general Lorentz-invariant
single-field inflation with large non-local non-Gaussianity, because the value of |nt | could be
quite large compared to that in the canonical single-field inflation for a given r in these cases.
For the general Lorentz-invariant single-field inflation with the non-Gaussian parameters
f equil
NL = f orth

NL = −20, the testing is possible if r > 0.015 for the CMBPol mission and
r > 0.006 for the ideal experiment.

At the end of this paper, it is worthy to point out that the similar analysis can be applied to
observationally test some other inflationary scenarios [71, 72]. At the same time, in addition
to the relations related to r and nt , the other inflationary consistency relations (see [62, 73, 74]
for instance) can also be used to distinguish different inflation models. We leave it as a future
work.
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