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Abstract

The coincidence problem is studied for the dark energy model of effective
Yang—-Mills condensate (YMC) in a flat expanding universe during the matter-
dominated stage. The YMC energy p, (¢) is taken to represent the dark energy,
which is coupled either with the matter p,, (), or with both the matter and
the radiation components p, (). The effective YM Lagrangian is completely
determined by the quantum field theory up to 1-loop order with an energy
scale ~1073 eV as a model parameter, and for each coupling, there is an
extra model parameter. We have studied extensively the coupling models: the
YMC decaying into the matter and the radiation; or vice versa the matter
and radiation decaying into the YMC. It is found that, starting from the
equality of radiation-matter p,,; = p,;, for a wide range of initial conditions
of py; = (10719,1072) p,,,;, the models have a scaling solution during the early
stages, and the YMC levels off and becomes dominant at late time, and the
present state with 2, ~ 0.7, Q,, >~ 0.3 and Q, ~ 1079 is always achieved. If
the YMC decays into a component, then this component also levels off later
and approaches a constant value asymptotically, and the equation of state (EoS)
of the YMC w, = p,/p, crosses over —1 and takes the value w, >~ —1.1 at
z = 0. If the matter and radiation decay into the YMC, then p,, (t) o a(t)~>
and p, () o a(t)~* approximately for all the time, and w, approaches —1 but
does not cross over —1. We have also demonstrated that, att — oo, the coupled
dynamics for (o, (t), p,, (1), p,(t)) is a stable attractor. Therefore, under generic
circumstances, the existence of the scaling solution during the early stages
and the subsequential exit from the scaling regime around z ~ (0.3-0.5) are
inevitable. Thus the coincidence problem can be naturally solved in the YMC
dark energy models.
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1. Introduction

The observations on the cosmic microwave background radiation (CMB) [1] suggest a flat
universe. This observation, together with that from the Type Ia Supernova (SNIa) [2],
implies that the universe consists of some mysterious dark energy (2, ~ 0.73), dark matter
(4 ~ 0.23), ordinary baryon matter (2, ~ 0.04) and a radiation component 2, ~ 1077,
This is also supported by the large scale structure of the universe [3]. The dark energy as the
dominant cosmic energy component drives the current accelerating expansion of the universe.
The simplest model for the dark energy is the cosmological constant A, which corresponds to
a homogeneous and time-independent energy density py ~ 5.8h3 x 107! eV* with an EoS
of wpn = pa/pa = —1. Although this model can account for the observations so far, it has
a coincidence problem. The observations show that the present value of the energy density
for the matter component p,, = pg + pp is about one third of p,, but it varies with time as
om(t) o a(t)=3. So, for example, at an earlier time of radiation-matter equality with redshift
7 2 3454 [4], pa should be a very fine tuned value ~ 6.3 x 10~'! p,,, (¢). Otherwise, a slightly
variant initial value of p, would lead to a value of the ratio p, /p,, drastically different from
the observed one. This is called the coincidence problem.

One class of models aiming at solving the coincidence problem is based upon the dynamics
of some scalar field ¢, such as quintessence [5], K-essence [6], tachyon [7], phantom [8§]
and quintom [9], etc. These models can give rise to certain desired features of evolutional
dynamics, such as scaling solutions [10] and tracking behaviour. As a common point, these
scalar models need to make use of some special forms of the potential V (¢) with certain chosen
parameters. For example, in the quintessence model, one needs to choose V (¢) o< (M /¢)*
with & and M being a positive number, or oce"#/"» [11]. In the phantom model one may take
V(¢) = Volcosh(agp/m p,)]’1 [12]. Moreover, phantom models typically introduce a negative
kinetic energy term —?/2. Some of these models are expected to be the low energy effective
field theory, coming from some fundamental field theory; others are simply introduced by
hand. The approach based on the Born—Infeld quantum condensate [13] is interesting, which
seeks an alternative candidate for the dark energy other than the scalar fields. But there the
important issue of evolution has not been addressed in detail.

As far as cosmological observations are concerned, a cosmological model has to give the
current status: Q, ~ 0.7 and 2,, ~ 0.3. Besides, it is safer for a model not to contradict
the conventional scenario in the Big Bang model from the energy scale ~1 MeV down to the
present. Therefore, one idea to solve the coincidence problem is that during the early stages of
the expansion the dark energy density need not be a constant, but varies with time. Even its EoS
w need not be close to —1 at early stages. Only at some rather recent moment has it become
dominant and acquired an EoS w ~ —1. In order to allow the conventional cosmological
processes, such as the nucleosynthesis and the recombination, etc, to have been occurred in
the past, the dark energy component should be subdominant to the matter component at early
stages.

In the approach of the scalar field models, certain coupling has been introduced between
the scalar field dark energy and the matter [14—16]. With some particular choice of the model
parameters, there can exist a scaling solution of dynamics, in which the dark energy density
is proportional to that of matter during the early stages of evolution. However, to achieve the
tracking solution, some scalar models need to have a very large coupling, so that the universe
would enter the acceleration stage soon after the matter era. This would result in a picture
of structure formation, totally different from that required by the observations. To remedy
this defect some models [17, 18] introduce certain particular forms of couplings, but still the
entrance to the accelerating stage is a little earlier than what observations suggested. On the
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other hand, it has been pointed out that the k-essence models always have, at some stage,
the difficulty of superluminal propagation, leading to violation of causality, and the EoS and
the sound speed of k-essence could be greater than >1 [19]. Besides the unconventional
negative kinetic energy, after the EoS w cross —1, a class of scalar models may suffer from
severe quantum instabilities and the Big Rip singularity, i.e. either the energy density p, or
the pressure p, may grow to infinity within a finite time. More recently, an overall estimate
of scalar models has been given on the issue of coincidence problem. By examining the most
general form of scalar Lagrangian with a generic coupling between scalar dark energy and
dark matter, it has been shown that a vast class of scalar models, including all the models
in the current literature, have the difficulty of implementing both a scaling solution without
singularity and a sequence of expansion epochs required by standard cosmology, such as the
radiation-dominated, matter-dominated and dark energy-dominated epochs [20]. Therefore,
the coincidence problem still remains after over a decade of extensive studies [21].

The introduction of the quantum effective YMC into cosmology [22] has been motivated
by the fact that the SU(3) YMC has given a phenomenological description of the vacuum
within hadrons confining quarks, and yet at the same time all the important properties of a
proper quantum field are kept, such as the Lorentz invariance, the gauge symmetry and the
correct trace anomaly [23]. Quarks inside a hadron would experience the existence of the Bag
constant, B, which is equivalent to an energy density p = B and a pressure p = —B. So quarks
would feel an energy—momentum tensor of the vacuum as 7,,, = B diag(1, —1, —1, —1). This
non-trivial vacuum has been formed mainly by the contributions from the quantum effective
YMC, and from the possible interactions with quarks. Our thinking has been that, like the
vacuum of QCD inside a hadron, what if the vacuum of the universe as a whole is also
filled with some kind of YMC. Gauge fields play a very important role in, and are the
indispensable cornerstone to, particle physics. All known fundamental interactions between
particles are mediated through gauge bosons. Generally speaking, as a gauge field, the YMC
under consideration may have interactions with other species of particles in the universe. In
our previous studies of [27, 28], the possible interactions of the YMC with other cosmic
components have not been examined. However, unlike those well known interactions in QED,
QCD and the electro-weak unification, at the moment we do not yet have a model for the
details of the microscopic interactions between the YMC and other particles. Therefore,
in this paper on the dark energy model, we will adopt a simple description of the possible
interactions between the YMC and other cosmic particles. That is, we introduce coupling
terms in the continuity equations of cosmic energy densities, such as the YMC, the matter and
the radiation, study the cosmic evolution of the universe from the matter-dominated era up to
the present. As we will show, in our model the current status of the universe turns out to be
a natural result of evolutional dynamics driven by the effective YMC as the dark energy, plus
the matter and the radiation that are coupled to the former. What is important is that this has
been achieved with a choice of the initial value of the fractional energy density of the YMC
ranging from 107! to 1072. As a novel feature in contrast to the non-coupling models, the
coupling YMC dark energy models can give rise to an EoS of dark energy w, crossing —1,
say w, ~ —1.1 at present. The coincidence problem can be solved.

In section 2, as a basis for the setup, an introduction is given to the effective Yang—Mills
condensate theory, and the dynamic equations for the three components in the Robertson—
Walker spacetime are derived. Section 3 is about the simplest case of non-coupling.
Section 4 studies the dynamic cosmic evolution with the effective YMC decaying into the
matter component. There are two dynamic equations for the YMC and the matter, respectively.
Section 5 studies the model in which the matter decays into the YMC. The matter component
has different dynamic evolutions, especially at late stages for these two coupling models.
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Nevertheless, in both these two models, the YMC has a scaling solution and a tracking
behaviour as a natural outcome of the dynamic evolution. Section 6 extends to the general
case with the YMC coupling to both the matter and the radiation. Now one has one more
coupled dynamic equation and an extra coupling for the radiation component. Two cases
are studied, the YMC decaying into the matter and radiation, and the matter and radiation
decaying into the YMC. The dynamics are examined parallel to sections 4 and 5. In each of
these four models, various functional forms of coupling have been explored. The major part
of the study is in sections 4, 5 and 6, which contain the calculations and the results. Section 7
gives an analysis on asymptotic behaviour of the dynamic system at t — oo. It is found that
there exists a unique attractor in the asymptotic region, which is stable against perturbations.
Section 8 contains a summary and discussions.
Throughout this paper we will work with unit, in whichc =% = kg = 1.

2. YM condensate as dark energy

In the effective YMC dark energy model, the effective YM field Lagrangian is given

by [22, 23]:
—2‘ - 1) )
K

where « is the renormalization scale of dimension of squared mass, F' = —%F =
E? — B? plays the role of the order parameter of the YMC. In this paper, for simplicity, we only
discuss the pure ‘electric’ case, F = E2. For a general case with both ‘electric’ and ‘magnetic’
fields being present, the extended model of YM dark energy also works, and the behaviour of
evolution of dark energy is similar to the pure ‘electric’ case. Specifically, in the expanding
universe, a given ‘magnetic’ component of YM field decreases quite rapidly, and the YM field
becomes the ‘electric’ type. The Callan-Symanzik coefficient b = (11N — 2Ny) /2472 for
SU(N) with N being the number of quark flavours. For the gauge group SU (2) considered
in this paper, one has b = 2 x 11/247% when the fermion’s contribution is neglected, and
b = 2 x 5/247? when the number of quark flavours is taken to be N; = 6. For the case of
SU (3) the effective Lagrangian in equation (1) leads to a phenomenological description of the
asymptotic freedom for the quarks inside hadrons [23]. It should be noted that the SU (2) YM
field is introduced here as a model for the cosmic dark energy, it may not be directly identified
as the QCD gluon fields, nor the weak-electromagnetic unification gauge fields, such as Z°
and W*. As will be seen later, the YMC has an energy scale characterized by the parameter
k2 ~ 1073 eV, much smaller than that of QCD and of the weak-electromagnetic unification.
An explanation can be given for the form in equation (1) as an effective Lagrangian up to
1-loop quantum correction [23-25]. A classical SU(N) YM field Lagrangian is

1
Leff = EbF (11’1

1

L=—
2g2

F7
where g is the bare coupling constant. As is known, when the 1-loop quantum corrections

are included, the bare coupling go will be replaced by a running one g as the following [26]

> 2 4x 122 2
S8 S uNi(s) b(h)
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where £ is the momentum transfer and k is the energy scale. To build up an effective theory
[23-25], one may just replace the momentum transfer k2 by the field strength F in the following

manner:
k? F
In - — 2In =2(In|—|—-1),
kg K2

yielding equation (1). We would like to point out that the renormalization scale « is the
only parameter of this effective YM model, and its value should be determined by comparing
the observations. In contrast to the scalar-field dark energy models, the YMC Lagrangian
is completely fixed by quantum corrections up to order of 1-loops, and there is no room for
adjusting its functional form. This is an attractive feature of the effective YMC dark energy
model.

From equation (1) we can derive the energy density and the pressure of the condensate
[22, 27] in the flat R-W spacetime:

K-e

py = 3€E*+ 1bE?, )

py = teE* — 1pE?, 3)

where € is called the dielectric constant of the YMC, given by [23]

et _ pinl £ 4)
€ = =bln|—
oF K2
The EoS of YMC is given by
P y—3
Wy = == P (5)
py 3y+3
where
€ E?
=—=In|— 6
y=g=hl-= (6)

is a dimensionless quantity, in terms of which the energy density and pressure of the YMC
will be given by

py = 3bi*(y+ e’ (7)
py = sbi*(3y —1)e’. ®)

One sees that, to ensure that the energy density be positive in any physically viable model, the
allowance for the quantity y should be y > —1,i.e. F > «?/e ~ 0.368«>. Before setting up
a cosmological model, the EoS w itself as a function of F is interesting. From equations (2)
and (3) one sees that the YMC exhibits an EoS of radiation with p, = %py and w = 1/3 for
a large dielectric € > b (i.e. F > «%). On the other hand, for ¢ = 0 (i.e. F = «?), which is
called the critical point, the YMC has an EoS of the cosmological constant with p, = —p,
and w = —1. The latter case occurs when the YMC energy density takes on the value of the
critical energy density p, = %b/c2 [22]. It is this interesting property of the EoS of YMC,
going from w = 1/3 at higher energies (F > «?) to w = —1 at low energies (F = «?), that
makes it possible for the scaling solution [10] for the dark energy component to exist in our
model. More interestingly, this transition is smooth since w is a smooth function of y in the
range (—1, 00). Now we ask the question: can w, cross over —1? By looking at equation (5)
for wy, we see that w, only depends on the value of the condensate strength F. In principle,
w, < —1 can be achieved as soon as F < k2. Moreover, in regard to the behaviour of wy as a
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function of F, this crossing is also smooth. However, as shall be shown explicitly later, when
the YMC is put into a cosmological model as the dark energy component, together with the
radiation and matter components, to drive the expansion of the universe, the value of F cannot
be arbitrary, it comes out as a function of time ¢ and has to be determined by the dynamic
evolution. Specifically, when the YMC does not decay into the matter and radiation, w, can
only approach —1 asymptotically, but will not cross over —1. On the other hand, when the
YMC decays into the matter and/or radiation, w, does cross over —1, and, depending on the
strength of the coupling, w, will settle down to an asymptotic value ~ — 1.17. As a merit,
in this lower region of w, < —1, all the physical quantities p,, p, and w, behave smoothly,
there are no finite-time singularities that are suffered by a class of scalar models.

Now we put the YMC into the cosmic setting, which is assumed to be a spatially flat
(k = 0) Robertson—Walker spacetime

ds? = dr* — a®(1)8;; dx’ dx/. 9)

As it stands, the present universe is filled with three kinds of major energy components, the dark
energy, the matter, including both baryons and dark matter, and the radiation. In our model,
the dark energy component is represented by the YMC, and the matter component is simply
described by a non-relativistic dust with negligible pressure, and the radiation component
consists of CMB and possibly other particles, such as neutrinos, if they are massless. Since
the universe is assumed to be flat, the sum of the fraction densities is Q2 = Q, + 2, + 2, =1,
where the fractional energy densities are Q2, = p,/p, 2, = p,/p and Q, = p,/p. The
overall expansion of the universe is determined by the Friedmann equations

a\’> 8nG
- = _(py + Pm + pr)s (10)
a 3

a 4n G

o =73 Oy 3Pyt pwtpr+3p), 0

in which all these three components of energy contribute to the source on the right-hand side
of the equations. The dynamical evolutions of the three components are determined by their
equations of motion, which can be written as equations of conservation of energy [22, 27]:

a
py+33(py+py) = _Qm_ Qr: (12)
. a
Pm +3_,0m = Qm» (13)
a
. a
pr+3—(pr+pr) = Q. (14)

where Q,, represents the energy exchange between the YMC and the matter, and Q, between
the YMC and the radiation, respectively. In the natural unit, both quantities have the dimension
of [energy]’. The couplings Q,, and Q, are phenomenological, and their specific forms will
be addressed later. The sum of equations (12), (13) and (14) guarantees that the total energy
is still conserved. As is known, equation (11) is not independent and can be derived from
equations (10), (12), (13) and (14). It is noted that once the couplings Q,, and Q, are
introduced as above, they will bring two new parameters in our model. When Q,, > 0, the
YMC transfers energy into the matter, and this could be implemented, for instance, by the
processes with the YMC decaying into pairs of matter particles. On the other hand, when
O, < 0, the matter transfers energy into the YM condensate. Similarly, when Q, > 0, the
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YMC transfers energy into the radiation. Therefore, in the most general case of coupling,
there will be three model parameters: Q,,, O, and k.

In the following computations, it is simpler to employ the following functions rescaled
by the critical energy density %sz of YMC,

X = —, 15
o (15)
_ P
r= %b/cz’ (16)
QﬂT
i =1 (17)
0
"= T (18)

Here the dimensionless functions x and r are simply the rescaled energy density of the matter
and radiation, respectively, and the rescaled exchange rates ¢,, and g, have unit of [time] ™.
Then, in terms of x, y and r, the dynamical evolutions given in equations (10), (12)—(14) can
be recast into:

d 4 m + qr
AV — L (19)
dN  2+y Hh(2+y)eY
dx dm
— 43x = 2, 20
aN " T Ha 20)
dr qr
— 4y = 2D
dN Hh
a 2
<—> = H’h?, (22)
a

where the variable N = Ina(¢), the function 7 = /(1+y)e’ +x +r and the constant
H = /47 Gbk?/3. Note that H is not exactly the present Hubble constant Hy. From
equation (22) one can see that it is the quantity H h that determines the actual expansion rate of
the universe, and the present value of H# is identified as the Hubble constant Hy. However, as
our calculations will show later, the value of 7 ~ 1.07 at present, so approximately H =~ H.
It should be emphasized that H is not an independent parameter, it is fixed by the model
parameter k. Once the YMC is put into the cosmological context, one can estimate the
order of magnitude of « as follows. The critical density p, = 8.09943 x 10~!! eV* with
the Hubble parameter /4y ~ 0.72, and the current value of the dark energy density should be
py = Qype 22 0.7p.. As calculations will show, the present value of the factor (1+y)e” ~ 0.8
in equation (7), and p, >~ 0.8 x %b/cz. So one has

k2~ 5% 103y eV. (23)

This energy scale is much smaller than those typical energy scales occurring in the standard
model of particle physics, such as ~10> MeV for QCD, and ~10*> GeV for the weak-
electromagnetic unification. Therefore, for the lack of an explanation of the origin of this
energy scale x within the standard model, we may have to regard the YM condensate as a new
physics beyond the standard model of particle physics. In this sense, like other dark energy
models, the fine-tuning problem, i.e. why « has just this small value, also exists in our model.
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The set of equations (19)—(22) holds for a generic stage of cosmic expansion driven by
the combination of the radiation, the matter and the dark energy. In this paper we focus on the
matter-dominated era and the subsequent accelerating era. In particular, we like to see how
the cosmic expansion evolves and transits from the matter-dominated to the accelerating era.
In the remaining of the paper, we always take the initial condition to be at the time #; of the
equality of radiation-matter (with a redshift z = 34543%52 [4])

Qmi = Qria (24)

with the subscript i denoting the initial value. Of course, once the initial value 2,; for the
YMC is given, one has immediately

Qi = Qi = 5 — 7. (25)

In order to keep the main features of the conventional scenario of cosmic expansion, it is also

assumed that initially the matter and the radiation are dominant, €2,,;, = €2,; >~ 1/2, and the
YMC is subdominant

Qi < 1/2. (26)

In [28] we considered the constraints on the YMC energy density at an earlier stage. There the
initial condition was taken at a redshift z ~ 10'°, corresponding to an energy ~1 MeV, during
the radiation stage, when the Big Bang nucleosynthesis processes took place. The upper bound
has been found to be Q, < 0.269, at z =~ 10'°. Afterwards up to z ~ 3000, both p, and p,
evolved approximately in a similar way oc a(t)~3. Thus, at the equality of radiation-matter
with z 2~ 3500, this consideration will give an upper bound €2,; ~ 0.1. Within this restriction,
the initial value €2,; may still be allowed to vary in a very broad range. In the following we
take a safe value

Q, < 102 @7)

as the upper bound both for illustration purposes. This choice has been made in concordance
with the thinking that the dark energy component has been existing in the universe from the
equality of radiation-matter, but its initial relative contribution is bounded by a few per cent
of the total, so that during most of the history of the universe the cosmic evolution will be the
same as in the standard Big Bang model. Only quite recently has the dark energy component
become dominant and modified the cosmic evolution considerably.

We like to mention that the initial condition in equation (27) has been taken so as not
to spoil the conventional Big Bang nucleosynthesis processes that occurred at 7 ~ 1 Mey,
i.e. z ~ 10'°. As is known, an extra amount of energy around this period will speed up the
expansion, enhancing the effective species of neutrinos, thus might endanger the BBN. As has
been analysed in [28], as long as the ratio (dark energy)/(radiation) <0.26 around the period
of T ~ 1 Meyv, the BBN remains valid. In our present context, for computational simplicity,
the initial condition of dark energy is taken to be at the equality of radiation-matter z ~ 3454,
and its upper limit is given in equation (27). Moreover, as will be explicitly shown later,
tracing back to z ~ 10'°, the YM component has the similar behaviour to the radiation with
py & p, o a~* during the radiation-dominated stage, thus their ratio remains almost the same.
Hence, BBM is to be spoiled by the presence of the YM dark energy.

3. Non-coupling case

The simplest case is the non-coupling with Q,, = 0 and Q, = 0 in equations (12), (13) and
(14). Then there is only one model parameter « that has already been fixed in equation (23).
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Figure 1. Non-coupling case: the evolution of energy densities. For a wide range of initial
conditions py; = (10719, 1072) p,;, there always exists a scaling solution during the early stages,
and py (¢) levels off and becomes dominant around z ~ 0.35.
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Figure 2. Non-coupling case: the evolution of fraction of energy densities. The two curves of 2,
for y; = 1 and y; = 16.12 are very close to each other, and nearly overlap in this figure.

Each component evolves independently in the expanding RW spacetime. To solve the dynamic
equations, we take the initial YMC at the time #; to be in the broad range

Q= (107,107,

(28)

consistent with restriction (27), that is, the initial value of p,; ranges over eight orders of
magnitude. In terms of y, x and r, the initial condition above can be written as

Yi

Xi

(1, 16.12),
ri = 1.7 x 10'°.

(29)
(30)

Equations (19), (20) and (21) with g,, = g, = 0 are solved easily for p,(t), p,,(t) and p, (1),
which are shown as a function of redshift z in figure 2. Both p,, (t) oc a=3(¢) and p, (¢) < a=*(t)
decrease monotonically at their fixed slope, respectively, and do not level off as t — oco. More
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Figure 3. Non-coupling case: the evolution of EoS. w), approaches —1 as t — oo, but does not
cross over —1.

interesting is the evolution of YMC energy density. At the early stage p,(f) is subdominant
to p,(t) and p,(t), and decreases at a slope between those of p,(t) and p,, (t), tracking the
matter. Later, p,(#) gradually levels off at and approaches a constant. At z ~ 0.35, p, ()
starts to dominate over p,,(¢) and the accelerating expansion takes over. This exit from the
subdominant region (scaling) to the dominant region is naturally realized. It is important to
note that, as long as the initial value is in the broad range of equation (28), p, (¢) always has the
same asymptotic value as t — oo. By the way, the first-order differential equations (20) and
(21) for x(¢) and r () have no fixed points since dx /dN 5 0 and dr/dN # 0 during the course
of evolution, but the differential equation (19) for y(¢) has a fixed point y; = 0 as a solution
of dy/dN = 0ast — oo. Figure 3 gives the corresponding evolution of the fractional energy
densities. Starting with the initial value €2,; >~ 1/2, the radiation component €2, has a simple
evolution of monotonic decrease. In contrast, the matter component £2,,, starting with >~1/2,
increases quickly and approaches ~1 around a redshift (1 +z) ~ 174. At (1 +z) ~ 2.7, 2,
drops down and is dominated by €2, at z ~ 0.35. The YMC component €2, starts with the
very small initial value and increases slowly and monotonically. Around (1 +z) ~ 2.7, 2,
has a quick increase, and around z ~ 0.35 it dominates over £2,,. Observe in figure 3 that
the two curves of 2, for the two different initial values 1071% and 1072, respectively, are
almost overlapped into one curve. This pattern of degeneracy for 2, demonstrates vividly the
fact that the cosmic evolution and the current status are insensitive to the initial condition of
the YMC. As the result of evolution, at present (z = 0), one has 2, ~ 0.7, ,, ~ 0.3 and
Q, ~ 1072, Figure 1 shows the evolution of w, and that of the effective EoS wcf defined by

Pm t+ Dy

Pm+ Py
Both approach —1 as + — o0, but, they cannot across —1. So there is no super-accelerating
stage in the non-coupling model. Looking back at equations (5) and (6), it is clear that in the
non-coupling case the YM field strength will always stay above the critical value: F > k2.
The asymptotic region at t — oo corresponds to F = k2. This is a state with the dielectric
constant € = 0. Thus, for the non-coupling case, no matter what kind of initial condition is
given, the YMC always settles down to the state of € = 0 as a result of dynamic evolution.
As for the current status €, ~ 0.7 and €2, ~ 0.3, it has been achieved for the whole range
of initial values in equation (29) at the fixed model parameter « in equation (23). Therefore,

Weff = €19
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the coincidence problem is solved in this model, but the fine-tuning problem still exists, i.e.,
we do not have an answer to the question why « should have such a value as in equation (23).
The non-coupling case with Q,, = 0 and Q, = 0 has also been studied in [27, 28] with the
initial condition being taken at a redshift z ~ 10'? at the radiation-dominated stage. There the
evolution behaviour found for the matter-dominated era is similar to what is obtained here.

4. YMC decaying into matter

Consider the case that the YMC couples to the matter component only. In terms of the
cosmic energy densities today, the radiation fraction is roughly Q, ~ 107>, a very small
contribution relatively, much lower than the other two components. Therefore, in this section
we temporarily neglect its coupling with the YMC by setting O, = 0. There is only one free
parameter Q,, since « has been fixed. Then equations (19), (20) and (21) reduce to

dy 4y Gm

dy 4 , (32)
AN " 2+y  HhQ+y)e

d m

_x +3x = q s (33)
dN Hh

& a0 (34)
dN r = U.

The dynamic evolution of the radiation is independent of the other two, and p, (t) o< a=*(t),
as is seen in equation (34). To proceed further, one needs to know the coupling ¢g,, to solve
equations (32) and (33). As mentioned earlier, in general there are two kinds of models
depending on whether Q,, > 0 or Q,, < 0. In this section, we examine the model Q,, > 0
with the YMC decaying constantly into the matter. We call this model 1. It can be generically
expressed as

On = pr» (35)

where I' > 0 is of dimension [time]~! and measures the decay rate of the YMC energy density
as well as the production rate of the matter energy density. Here I" is simply taken as a model
parameter describing phenomenologically the interactions between the YMC and the matter.
In the following we discuss several cases for the parameter I'. Substituting equation (35) into
equations (32) and (33) yields

dr T (1+y)e
dN _H h

dy_ r 1+y 4y
AN = HQ@+y)h 2+y

— 3y, (36)

(37)

1. Consider the simple case of a constant rate with
I'/H =0.5. (38)

We have taken this magnitude of the rate I', so that the present status of the universe will be
2, ~ 0.7 and £2,, 2= 0.3 as the outcome from our computation. In fact, this status can be also
achieved by taking a whole family of values for I" between 0 and 0.5 H, and we have checked
this property by carrying out computations for other cases I' = 0.01 H and 0.1 H. Now at the
time #; with z >~ 3454 the initial YMC energy density is taken to be in the range

Q, = (10719,3 x 1077, 39)
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Figure 4. Model | with Q,, > 0 for I'/H = 0.5: the evolution of energy densities with the
YMC decaying into the matter. For a wide range of initial conditions p,; = (10710, 10_2)/0m1,
ie., y; = (1, 15), there always exists a scaling solution during the early stages, and py (¢) levels off
and becomes dominant around z ~ 0.48. Due to the coupling, p,, (¢) also levels off at late time.

similar to equation (28), which corresponds to

yi = (1,15). (40)
The initial values for the matter and the radiation components are given by
xi =7 = 1.0 x 10", (41)

which are a little bit smaller than that in equation (30). This is because in the case here
the matter is being generated out of the decaying YMC during the course of evolution.
Consequently, smaller initial values x; and r; are needed to arrive at the current status.
Given the different initial values of €2,; in equation (39), the corresponding initial values of
Qi = Q2 = (1 — ,,;)/2 also vary by a small amount. But for the different values of y; in
equation (40) we have taken the same set of values in equation (41) since the initial total energy
density py; + pmi + pyi itself at z > 3454 has some errors. The results are given as functions
of the redshift z in figures 4-6 . The evolution of p,(¢) is also similar to the non-coupling
case. During the early stage p, () is lower than, and keeps track of p,, (t). Later, p, () levels
off and approaches a constant, and around z ~ 0.48, it starts to dominate over p,,(¢), and the
accelerating stage begins. In fact in figure 4 for three different y; there are three curves of
the matter p,, (), respectively. However, these three curves are too close to each other so that
they are overlapped. The similar is for p,(¢). Note that, in the presence of coupling Q,,, the
evolution of p,, (¢) is different from the non-coupling case in that at the late stage around z ~ 0
it also levels off just like p,(¢). In this sense, the evolution of the matter component is sort of
bound to the YMC. In fact, as t — oo, the set of equations (36) and (37) has the asymptotic
behaviour
dx dy
— >0, i
dN dN
and both p,(7) and p,, () have asymptotic values. This will be addressed later in section 6.
As a novel feature of the coupling model, in contrast to the non-coupling case, now the
EoS of the YMC as a function of time ¢, w,(¢) crosses over —1 around z ~ 2, takes a value
wy, =~ —1.1 at present z = 0, and approaches w, ~ —1.17 asymptotically, as shown in
figure 6. We have also checked that the value of EoS depends directly on the value I', and a

— 0, (42)
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Figure 5. Model 1 with Q,, > 0 for I'/H = 0.5: the evolution of fractional energy densities in
the same model as in figure 4.
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Figure 6. Model 1 with Q,, > 0 for I'/H = 0.5: the evolution of EoS in the same model as in
figures 4 and 5. Due to the coupling, w) crosses over —1, takes on value ~ — 1.1 at z = 0 and
approaches —1.17 asymptotically. This is in contrast to the non-coupling case. The trend of w(z)
here agrees with the reconstructed one from the supernova data given by [31].

smaller value of I' < 0.5H will yield a greater w > —1.17. If w turns out to be some other
value by the future observations, then we can adjust I" accordingly. The occurrence of crossing
over —1 in this model can be understood, since the coupling makes the YMC lose energy into
the matter; consequently, the YM field strength F will drop down below the critical value 2,
leading to € = by < 0 and w, < —1 as in equation (5). This can also be arrived at by looking
at the asymptotic region determined by the equation 3—]{, = 0, which by equation (37) is just

——— 2 4y =0. 4
Hh+y0 (43)

Recall that for the non-coupling I' = 0 the asymptotic value is y, = 0, yielding w, = —1 by
equation (5). Once I' > 0, equation (43) yields an asymptotic value ys < 0 as the solution,
hence w, < —1. Thus, when transferring energy to the matter, the YMC will eventually settle
down in the state of w, < —1, which is equivalent to a negative dielectric ¢ < 0. Recently,
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there have been some observational indications that the current value of EoS of dark energy
w is less than —1; for instance, w = —1.023 4 0.090(stat) 4= 0.054(sys) from the 71 high
redshift supernovae discovered during the first year SNLS [29], and w = —1.21*% "3, from the
blind analysis of 21 high redshift supernovae by CMAGIC technique [30]. Reference [31]
uses two supernovae datasets, Gold+HST and SNLS, to reconstruct the dark energy properties,
yielding an estimate of the EoS going from w ~ —0.5atz = l.6tow ~ —1.5atz =0 at
20 CL. Reference [32] uses the neutrino mass result from the Heidelberg—Moscow double
beta decay experiment, combines it with the WMAP 3-year data and constrains the EoS to
—1.67 < w < —1.05 at 95% c.l., ruling out a cosmological constant at more than 95% c.l.
Reference [33] combines gamma-ray bursts, SNe Ia Gold sample, WMAP, SDSS, and 2dFGRS
data, and obtains the EoS w = —1.09 + 0.89 ;. Analysing the ESSENCE supernova survey,
reference [34] gives the EoS w = —1.05*%!3 (stat 10') + 0.13(sys), and, when combining it
with the SNLS, gives a joint constraint w = —1.07*¢%) (stat 10)20.13(sys); the data are still
fully consistent with a cosmological constant. Of course, these are still to be observationally
examined with a higher confidence level in future. However, the crossing-over —1 would be
difficult for scalar models, except for quintom models at a price of introducing two scalar
fields and an artificially designed potential [35, 36]. As we just have demonstrated, in the
YMC dark energy model with coupling Q,, > O, this crossing is realized naturally. In general,
the asymptotic value of w, at# — oo and the current value w, at z = 0 are determined by the
asymptotic value of y through equation (5), and the latter is obtained from the combination
of equations (37) and (42), and thus depends on the ratio I'/H. Thus the asymptotic value
of w, is determined by the ratio I'/H of the two parameters of our model. For instance,
the observed EoS of dark energy w = —1.023 from SNLS [29] can be obtained, in our
model, by taking a slightly smaller decay rate I'/ H = 0.13 and slightly higher initial densities
x; = r; = 1.5 x 10'°, and the value w = —1.21 from the analysis by CMAGIC [30] can
be obtained by taking a slightly larger decay rate I'/H = 0.81 and a slightly lower density
x; =r; = 0.7 x 10, respectively. Figure 6 also shows that the effective w.g cannot cross
—1 yet, and its asymptotic value is ~ — 0.96. Interestingly, this model predicts that in the
upcoming future the dark energy density p, will remain a constant slightly larger than today,
and the matter energy density p,, will be a constant slightly lower than today. Eventually the
universe will settle down to a steady state with 2, ~ 0.85, €,, ~ 0.15 and 2, ~ 0.

Therefore, this model yields a picture of the evolutional cosmos, the early part of which
can account for the past history of the expanding universe, i.e., that of the standard Big-Bang
model, and the late part of which, i.e. the future of the universe, is similar to the steady-state
model [37, 38]. As a plus for the YMC model, there are no Big Rip singularities in finite time,
since all the quantities p,, p, and w, are smooth function of the time .

Although in the above we have only presented the results for the initial values within the
range Q,; > 107" given in equation (28), as a matter of fact, we have worked out for even
lower values ,; < 107'°. For instance, we have calculated the case of Q,; >~ 2 x 1072, i.e.,
vi = —0.9. The initial energy density p,; is even lower than the current values p, >~ 0.7p,.
The details are given by the curves denoted by y; = —0.9 in figures 4-6. The evolution is
such that p, (¢) starts initially from the given very low value, increases (instead of decreasing)
very quickly with time ¢ and approaches its corresponding asymptotic value ~ 0.7p., as is
seen in figure 4. The evolutions for p,, (t) and p,(¢) are similar to the cases in equation (39).
Thus, except for the initial increase in p, (), the current status of the universe is the same as
those in the range of equation (39).

2. Now consider a case of the YMC decaying into fermion pairs. As is known in QED,
a constant electric field is unstable against decay into pair of particles [39]. Analogously, a
constant ‘electric’ SU(3) Yang—Mills field configuration of QCD is unstable against decay
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into quark pairs and gluon pairs [40-42]. Calculations have shown that for a gauge group
SU(N), due to the decay into fermion pairs and gauge boson pairs, the average local colour
electric field decreases at a rate

oE

ot
where ¢ is a dimensionless constant [22, 41, 42]. Note that this rate is derived from the
energy—momentum conversation of pair creation. From the point of view of particle physics,
the SU (2) YM field in our case should be allowed to have some fundamental interactions with
other microscopic particles. At the moment we do not intend to proceed further to build up
the detail of its interaction. Instead, we simply assume that, similar to the SU (3) gauge field
in QCD, the YM condensate, here a constant in space, also has the property of being unstable
against decay into other particles, and the decay rate of the field strength has the same form as
equation (44). Consequently, this in turn will give rise to the decay rate of the YMC energy
density

— B, (44)

apy
a_r) = —TIp,. (45)
Making use of the chain rule relation % — o OE

5 = 35 3, and equation (44), one obtains the following
expression for the decay rate [22],

124y »
I' =2ck? es, 46)
1+y

depending on the coefficient constant ¢, which is treated as the model parameter in place of
I". We choose the value of ¢ = 0.125H /k'/?, so that

r 2+y o

— =025 er. 47)

H 1+y
As our computations show, the value of variable y at the present stage is very small y ~ 0, so
equation (47) yields I' ~ 0.5H, quite close to that in equation (38). The initial condition is
taken to be the same as equations (40) and (41). Figures 7, 8 and 9 show the results, which are
very similar to that in the previous case of the constant rate. From equation (13) it is seen that,
in the late-time asymptotic region when p,, =~ 0, the matter generation rate is estimated as
QO ~3Hp,, ~ 107 g cm™ s~!, a very small rate, equivalent to generation of ~0.3 protons
in a cubic kilometer per year. This value is approximately equal to that in the steady-state
model [37, 38]. Thus in our model the particle pairs are continuously generated, at a very low
rate, out of the vacuum filled with the YMC. As is known, in order to continuously generate
the cosmic matter, the steady-state model has to introduce some C-field with negative energy
[38], which is problematic in a physical theory. Here in our model, the effective quantum
YMC plays the role of a matter generator; there is no negative energy to occur in the proper
range. The YMC has a positive energy and a negative pressure.

From equations (38) and (47) it seems that the overall behaviour of the dynamic evolution
is not sensitive to the particular form of the coupling I', as long as its magnitude isI" ~ 0.5H.
This has been confirmed in our examinations. For example, we have also investigated the case
with the decay rate of the form

'/H =0.5¢e7, (48)

and the results are very similar to that in the previous case. Therefore, in model 1 of the
YM-matter coupling with the coupling Q,, = I'p,, as long as I" is constant or depends on p,,
the overall features of the dynamic evolution are similar. We have also studied the cases with



3324

Y Zhang et al

N

yad
/

p/(b112)
3
/
/
/

3 2 1 0 -1 -2
log (1+z)

Figure 7. Model 1 with Q,, > O for I'/H = 0.25 et f:—; the evolution of energy densities with

the YMC decaying into the matter. For a wide range of initial conditions py; = (107191072 pyi
there always exists a scaling solution during the early stages, and py () levels off and becomes
dominant around z ~ 0.48. Due to the coupling, p,, (¢) also levels off at late time. This is quite
similar to the case of a constant rate I'/H = 0.5 in figure 4.
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Figure 8. Model 1 with Q,, > 0 for I'/H = 0.25 S ﬁ—; the evolution of fractional energy
densities in the same model as in figure 7.

" depending on the matter p,,. It is found that, if the decay rate [ depends on the matter p,,,

for instance

I'/H = bx, (49)

where b is some constant and x is defined in equation (15), then for b < 1073 the evolution
will be similar to the non-coupling case. When the constant b > 1073, the decay rate is too
fast, and at the start p,(¢) drops down quickly, later it increases to its asymptotic value from
below. To keep the paper short, we do not demonstrate these detailed graphs of the cases of
equations (48) and (49).
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Figure 9. Model 1 with Q,, > 0 for I'/H = 0.25 e 2Y: the evolution of EoS in the same model

T+y
as in figures 7 and 8. Again, due to the coupling, wy, crosses over —1, and takes on value ~ — 1.1

atz = 0.

5. Matter decaying into YMC

In this section we study the situation in which the matter decays constantly into the YMC with
O < 0, just opposite to model 1. We call this model 2. It can be generically expressed as

Omn =—Tpm, (50)

i.e. the matter transports energy into the YM condensate. Then equations (32) and (33) reduce
to

d I' x
—+3x:——}—l, (51)

dy 4y r X

— 4+ = — —. (52)
dN 2+y HQ+y)eh

1. Consider the simple case of a constant decay rate
'/JH = 0.02. (53)

Again, the value 0.02 has been taken here, so that the resulting energy densities from our
computation will be £, ~ 0.7 and £2,, >~ 0.3 at present. So in model 2 the decay rate of the
matter into the YM condensate needs to be almost two orders of magnitude smaller than the
expansion rate. The initial values of x; are taken to be

xi =r ~ 1.8 x 10", (54)

Since the matter is decaying and constantly being converted into the YMC component, a
slightly larger initial value of the matter has been taken than that in equation (41). The initial
value of the YMC is taken to be y; = (1, 15), the same as equation (40). The results are given
in figures 10—-12. Now w, does not cross over —1. Itis interesting to find out that the evolution
of the YM condensate behaves differently for two different ranges of y;. For the higher range

v =(5,15), (55)
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Figure 10. Model 2 with Q,, < 0 for the constant coupling I'/ H = 0.02: the evolution of energy
densities with the matter decaying into the YMC.
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Figure 11. Model 2 with Q,, < 0 for the constant coupling I'/H = 0.02: the evolution of
fractional energy densities in the same model as in figure 10.

corresponding to Q2,; = (5 x 1078, 3 x 1073), all the quantities have similar evolution to the
non-coupling case in figures 1-3. For the lower range

yi =(1,5), (56)

however, the YMC has an instantly sudden increase during the initial stage, and quickly catches
up the evolution pattern of the y; = 5 case. This is in contrast to the smooth behaviour on
the higher range. Thus, in order to have a rather smooth evolution within model 2, the initial
value y; should be given by the higher range in equation (55). Moreover, we have also found
that the overall behaviour of the dynamic evolution is not sensitive to the particular form of
the coupling Q,,. For instance, we have checked a case of

I'/H =0.02¢e™", (57)

and the resulting evolutions are similar to the case of equation (53). Thus, the coincidence
problem can also be solved in model 2.
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Figure 12. Model 2 with Q,, < 0 for the constant coupling I'/ H = 0.02: the evolution of EoS in
the same model as in figures 10 and 11. Since the YMC gets energy from the matter, w, approaches
—1, but does not cross over —1.

So far in model 1 and model 2, in regard to the coupling between the YMC and the matter,
we have not explicitly distinguished the baryons and the dark matter, and have assumed, for
simplicity, the same coupling Q,, for both the baryons and the dark matter. We can roughly
estimate the current value of the cross section corresponding to the collisions involving the
baryons as in equations (38), (47), (48), (49) with b < 1073, (53) and (57). For instance, take
the baryon decay rate I' ~ bx H as in equation (49). Then, by definition, the rate is I' ~ vno,
where v is the baryon velocity, the baryon number density is n = p,/m; ~ 0.04p./m;, and
o is the crossing section for the collisions between the baryons and the YM gauge bosons for
this type of interaction. Then we can get an estimate

o ~ 25bmyH [vp,. (58)

Taking b ~ 1072, v ~ 10° km s~!, the baryon mass m; ~ 0.94 GeV, the current Hubble
constant for H, one has o ~ 6 x 1072° cm?. This is an order lower than the Thomson’s cross
section o7 >~ 6.7 x 10723 cm? for QED. Similarly, letting I" ~ 0.5H as in equations (38) and
(47) for the YMC decaying into baryons, we would get o ~ 20 x 1072 ¢m? analogously,
slightly greater than or. Therefore, given this magnitude for the cross section o in both cases,
we would, in principle, be able to observe these kinds of interactions occurring, either with
the baryon decaying into the YM boson pairs or the baryon pairs jumping out of the vacuum.
However, as said earlier, the rate I for these kinds of events is too low, giving Q,, ~ 0.3 proton
generated in one cubic kilometer per year. For the galaxy of a volume ~ 103(kpc)?, this rate
is roughly equivalent to an amount of mass ~10~%M, generated per year, a small production
rate. The chance of directly detecting the event may be small. Even if future experiments rule
out or restrict the coupling with the baryons, one has to drop it or reduce its magnitude as a
model parameter. Nevertheless, the coupling with the dark matter probably still remains. This
is because the dark matter is usually assumed not to have interactions with ordinary particles,
such as baryons, photons, etc. So it is difficult to directly detect productions of dark particle
pairs and decays of dark particles.

6. Coupling with both matter and radiation

It is quite natural to allow the YMC to couple with both the matter and the radiation
simultaneously. Now we study model 3, that the YMC decays into the matter and the
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Figure 13. Model 3 with Q,, > 0O and Q, > O for I'/H = 0.5 and I'/H = 0.00018: the
evolution of energy densities with the YMC decaying into both the matter and the radiation. For
a wide range of initial conditions py; = (10719,1072) p,p;, there always exists a scaling solution
during the early stages, and p, (¢) levels off and becomes dominant around z ~ 0.48. Note that,
due to coupling, both py, () and p, (¢) level off like p, ().

radiation as well:
On=Tpy, >0, Q,=T"p, >0. (59)
Then equations (19)—(21) reduce to

dy  T'+I" 1+y 4y 60)
dN  H Q+y)h 2+y’

d ra y

e _Ld#+yel 5 61)
dN — H

ar Ia y

ar _Dd+pe . (62)
dN — H &

Consider the case of the constant decay rates
I'/H =0.5, I"/H = 1.8 x 1074, (63)

Note that I’ is lower than I" by three orders of magnitude. These values of coupling are taken
so that the current values are Q, ~ 0.7, 2, ~ 0.3,Q, ~ 8.6 x 1073 (including massless
neutrinos). The initial condition is the same as in equations (40) and (41). The results are
given in figures 13—15. As before, the particular form of the couplings is not important for the
overall behaviour of evolution. For instance, we have also examined the case

2 + ‘
Y ek (64)
1 +y

based on an analogous consideration to equation (47). The evolution is similar to the case of
equation (63). In these two cases of model 3, due to the couplings with the YMC, both the
energy densities, p,, and p,, level off around z ~ 0, and w, crosses over —1 around z 2 2.5.
Thus all the three components of cosmic energy will remain constant in future, and the state
of the universe will remain almost the same as it is today. This is similar to the steady-state
universe [37, 38]. Hence, according to model 3, the past history of the universe is consistent

+y ¥ ’ 742
I/H =0.25 el I'/H =09 x 10
+y 1
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Figure 14. The evolution of a fraction of energy densities in the same model as in figure 13.
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Figure 15. Model 3 with Q,, > 0 and Q, > 0 for I/H = 0.5 and I'"/H = 0.00018: the
evolution of EoS in the same model as in figures 13 and 14. Note that w, also crosses over —1 and
takes on a value ~ — 1.1 at z = 0.

with the conventional standard Big Bang model, and from now on, the cosmic evolution tends
to that of a steady state, that is, the universe will remain similar to what it is today, but with
Q, ~0.85,2, ~0.15and 2, ~ 107°.

We have also studied the case with both the matter and radiation decaying into the YMC.
We call this model 4. The couplings are such that

On=-Tpn <0, 0= _F/pr < 0. (65)
We take
I'/JH = 0.02, I"'/H =1.8x10"%. (66)

The initial condition for the YMC is the same as equations (55) and (56) and the initial
densities for the matter and radiation are the same as in equation (54). The resulting
evolution is qualitatively similar to those in model 2 with O, < 0. Approximately,
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Pm (1) o< a(®)™3, p(t) o a(t)™*, and py(t) also has a scaling solution and exits the scaling
regime, just as in the non-coupling case. The EoS of the YMC w,, approaches —1 from above,
but does not cross over —1. To keep the paper short and concise, we will not repeat these
details and no longer give the corresponding graphs here.

7. Asymptotic behaviour and stable attractor

It is interesting to investigate the asymptotic behaviour of the dynamical evolution. First we
study model 1 with the YMC coupling to the matter component only. Now since the evolution
of the radiation component is independent of the YMC and the matter, and the value of r at
late time is much less than the other variables, it can be neglected in the analysis of the fixed
point. To find the fixed points, one sets dx/dN = dy/dN = 0 in equations (32) and (33), and
obtains the relations at the fixed point:

4
Xf=—§yfey/, (67)

r 1
= (1 + —> - 4]1- y?fewﬂ, (68)
Vy

where the sub-index f refers to the respective values at the fixed point. From these two
equations one can write the asymptotic value of the fractional matter density

4yr
yr—=3
Equations (67) and (68) depend on the value of the ratio I'/ H, so does the solution (x, yr).
Here we consider the case that I'/H is constant. Because €2,,; must be larger than 0 and
smaller than 1, so y; must be in the range from —1 to O at the fixed point. Thus, as long as

I'/H € (0, oo) there will exist fixed points. To be specific, consider I'/H = 0.5. In the region
of physics there is only one fixed point:

(xf,yr) = (0.136 66, —0.114 99). (70)

Qur = (69)

This is, in terms of the respective densities,
(Pmys Pyr) = Sbk*(0.136 66, 0.788 88). (71)

The stability of this fixed point can be analysed in the conventional way as follows. Because
the two equations for x and y are nonlinear, a local analysis can be given by linearizing the
two evolution equations (36) and (37). By a standard procedure, expanding x = x + ¢ and
Yy = yr +n, where ¢ and 7 are small perturbations around the fixed point, and keeping up to
the first order of small perturbations, equations (36) and (37) reduce to

d /¢ e
dN <n) =M <n) ’ 72)

where M is a 2 x 2 matrix depending on the values of x/, y; and I'/ H, whose elements are

{1+ s
My = — Ldxyper yf3)e +31,
H 2h%

e Q2+ yp) e
Mp=——1(1+yp)|1- 2225t
Hhy 20’
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Figure 16. Model 1 with Q,, > 0 for I'/H = 0.5: the trajectories in the phase plane. Each
trajectory starts with a different initial condition. All of them approach the fixed point (xz, ys) =
(0.136 66, —0.114.99).

r 1+
My = — 44
H22+ yf)hf
| (1+yp)e 1 8
My = — 3 - 2 - 2’
H 2hf (2 + yf) ]’lf (2 + yf)

where hy = \/ (I+ys)e’ +xy+ry. The general solution for the linear perturbations is of
the form

e = C eV 4+ Cyer2V (73)

T}:C36M1N+C46M2N (74)

where 1 and pu;, are eigenvalues of M. If they are both negative, the fixed point (x, yy) is
stable, and the solution is called an attractor. For the case of I'/H = 0.5 one finds the matrix

M= —3.22146 0.50112
~\ 0.13180 —2.17625)"

and its two eigenvalues pu; = —3.28123 and u, = —2.11648, respectively, both negative.
Thus the fixed point of this model is stable, and is an attractor. For illustration, we plot in
figure 16 the phase graph of trajectories, each trajectory starts with a different initial condition,
and ends up at the fixed point of equation (70). As a matter of fact, one can check that the
asymptotic behaviour of other cases of model 1 are also stable fixed points.

The analysis of the asymptotic behaviour can be done analogously for model 3 with
the couplings to the matter and the radiation. Setting dx/dN = dy/dN = dr/dN = 0 in
equations (60), (61) and (62) one has the following three relations at the fixed point:

F+T 1+y;
4y = ——= 75
Yf H (75)
T (1+yp)er
3xf=—%, (76)

H  hy
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T (+ypey

4
TTHT R

(77)

The fixed point (xf, yr, r¢) as the solution of this set of equations depends on the ratios of
rates I'/H and I'"/H as well. Consider the constant I" and I'". The local analysis of the
stability of the fixed point can be carried out similarly. By setting x = xy +¢&,y = ys +1,
and r =r; +y, where ¢, , and y are small perturbations around the fixed point, one has the
equations

e €
v | 7] = M|n], (78)
14 14

where M’ is a 3 x 3 matrix depending on the values of xp,ys, vy I'/H and I'"/H, whose the

elements are:
I (1+yp)es
Mil = — [_%+3:| ,

H  2h
, e 2+yp)e
M, =—— 11+ 1— =217 |+1},
12 th{( yf)[ 2h2
) L (1+ys)e"
Ms=—g—m3
7
M r+Ir’ 1+yf
21 = )
H 2Q+yp)h}
M = F+T7 | (1+yp)e” 1 8
2 H 2% Q+y)2hy | Q+yp?
M r+I1’/ 1+yf
23 = )
H 2Q2+yp)h}
, " (1+ys) e
A A T
!
C''2+vaer | (1+ yr
M§2=——( e | ( yfz)e ‘1
H  hy 2h%

I’ 1+ yr
My = — | D AEypen
H  2h

Consider the specific case I'/H = 0.5 and I"/H = 1.8 x 107*. Substituting these into
equations (75), (76) and (77) yields the unique fixed point given by

(xp,yr.rp) = (0.136 66, —0.11503, 4 x 1079), (79)
and the matrix
—3.22149 0.50110 —0.22149

M = 013187 —-2.17631 0.13187
—0.00008 0.00045 —4.00008
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Figure 17. Model 3 with Q,, > 0 and Q, > 0 for I/H = 0.5 and I'"/H = 0.00018: the
trajectories in the phase plane (x, y). Each trajectory starts with a different initial condition. All
of them approach the fixed point (xz, y s, rs) = (0.136 66, —0.11503, 4 x 10_5). The parameters
are the same as in figure 13.
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Figure 18. Model 3 with Q,, > 0 and Q, > 0 for I'/H = 0.5 and I'/H = 0.00018: the
trajectories in the phase plane (r, y). The parameters are the same as in figure 13.

The three eigenvalues of the matrix M’ are found to be —4.000 15, —3.281 24 and —2.116 49,
each being negative. Therefore, this attractor of model 3 is also stable. Notice that there are
three quantities (x, y, r) in model 3, so we need the two phase graphs of trajectories. They are
plotted in figure 17 for (x, y) and figure 18 for (r, y), separately. Each trajectory starts with a
different initial condition, and ends up at the fixed point of equation (79). One can check the
dynamics of other cases in model 3 also have a stable attractor.

As for model 2 and model 4, only p, (#) has an asymptotic constant value and has a stable
attractor.

8. Conclusion and discussion

Our motivation of this study is to investigate the coincidence problem for the cosmic dark
energy in a spatially flat universe. We have presented a detailed and comprehensive analysis
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of the model of the effective YMC dark energy interacting with the matter and radiation. This
work has been an extended development of our previous work on the non-coupling YMC
dark energy model. Through the Friedmann equation and the dynamic equations for each
cosmic component, once the couplings between these components are specified, the overall
cosmic evolution is fully determined by the initial conditions of these three components. We
have studied the evolution for the matter-dominated era starting from the equality of radiation
matter at z ~ 3454.

The major results of this work are the following.

Given the initial dominant matter and radiation €2,; = €2,; ~ 1/2 and the subdominant
YMC energy density Q,; < 1072, no matter what kind of coupling between the YMC and
the matter, or between the YMC and the radiation, the evolution is such that the YMC is
subdominant to, and keeps track of, the matter, until later, at a redshift z ~ 0.48 for a coupling
On > 0, 0r z ~ 0.35 for a coupling Q,, < 0, the YMC becomes dominant over the matter.
The era is followed by a subsequent accelerating era driven by the dominant YM dark energy.
As the evolution outcome, the universe arrives at the present state with , ~ 0.7, Q, ~ 0.3
and ©, ~ 1073, It is very important to note that this has been achieved for a variety of
coupling forms Q,, and Q,, and, nevertheless, under a very broad range of initial conditions
Qi >~ (107193 x 107%).

If the YMC decays only into the matter, as a result of the coupling in model 1, to achieve
the present state of the universe, the decay rate needs to be of the same order of magnitude
of the expansion rate of the universe, i.e., ' ~ 0.5H. Moreover, for this coupled system,
as t — oo, both p, and p,, asymptotically approach constants, respectively. That is, for the
system there is a unique attractor. Furthermore, as our analysis has shown, this attractor is
stable. As an interesting behaviour, the EoS for the YMC w, always crosses over —1 around
z 2 2.5, and the present value is w, ~ —1.1. This crossing —1 seems to have preliminary
indications by the recent observations on SN 1a.

When the YMC decays into both the matter and the radiation as in model 3, there are two
parameters I' ~ 0.5H and " ~ 1.8 x 10~*H, representing the respective decay rate. The
evolutional behaviour is almost the same as model 1, and w, crosses over —1. Moreover, the
radiation energy density also asymptotically approaches a constant, as t — oo, like the YMC
and the matter components. Most of the conclusions are the same as for model 1.

On the other hand, if the matter decays into the YMC as in model 2 witharate I ~ 0.02H,
or if both the matter and radiation decay into the YMC as in model 4 with rates I" ~ 0.02H
and IV ~ 1.8 x 10~*H, respectively, then only py asymptotically approaches a constant. w,
approaches — 1, but does not cross over —1. The evolution is nearly similar to the non-coupling
case.

Therefore, for all four types of models that we have studied, the coincidence problem can
be naturally solved by introducing the effective YMC as the dark energy at the fixed parameter
k given in equation (38). The present state of the universe is a natural result of the dynamic
evolution. The past history of the evolving universe is that of the standard Big Bang model,
and the future of the universe depends on the details of the coupling. If there is no coupling,
or if the matter decays, or both matter and radiation decay, into the YMC, as in model 2
and in model 4, the matter and the radiation will keep on decreasing as p,, (f) o a()~3 and
o (t) o a(t)™. If the YMC decays into the matter only as in model 1, then p,, () will
asymptotically remain constant, like p,(¢) does, but p,(¢) o a(t)~*. If the YMC decays into
both the matter and radiation as in model 3, then all the components p,(¢), p,,(t), and p,(t)
will asymptotically remain as constant. In model 1 and model 3 the future of the universe is a
steady state, quite similar to that of the Steady State model, thus, in a sense, these two models
bridge between the Big Bang model and the Steady State model.



Yang—Mills condensate dark energy coupled with matter and radiation 3335

The distinguished characteristics of the YMC dark energy model are the following.

The YM field is known to be indispensable to particle physics, the effective YMC
employed in our work comes from quantum corrections up to 1-loop . Therefore, there
is no room to adjust the form of the effective Lagrangian. This is in contrast to scalar field
models, which have to design the form of potential and sometimes even the form of kinetic
energy.

The solution of the coincidence problem has relied on the parameter « in all our models.
Viewed from the standard model of particle physics, the energy scale by « is much smaller
than the other known microscopic energy scales. And this stands as the fine-tuning problem
for any current cosmological model so far, and for our model as well. However, if the YM field
in our model is regarded as a fundamental gauge field with « being the energy scale for this
new physics, then the fine-tuning problem is traced up to the new physics. When the couplings
are included, there are two more parameters I' and I''. But the present state of the universe
requires that I" be roughly the same order of magnitude of the expansion rate I' ~ 0.5H, and
I'" be roughly three orders lower. Since H ~ ~/Gk? = k/mp with m, being the Planck
mass, the couplings I' ~ k/m ,; and T ~ 10’3/</mp1 are also associated with the scale «.

On the dynamic evolution, in comparison with scalar models, our models have the
following features. All our models, for a broad range of the initial conditions and for a
variety of the coupling forms, automatically have the scaling property, i.e., o, () is initially
subdominant to, and keeps track of, the matter. The accelerating stage has begun only
quite recently around a redshift z ~ (0.35, 0.48). This will allow the Big Bang cosmology to
remain without drastic modifications. Besides, all our models have only one stable fixed point,
uniquely determined by the ratio I'/ H, and have nothing to do with the initial conditions €2,;.
Moreover, all the quantities in our model, especially p,(¢) and p,(t) are continuous functions
of ¢. So there are no Big Rip singularities in our models. Interestingly, as a function of ¢, w,
behaves quite smoothly during the evolution, going from ~1/3, approaching —1. And in the
case of the YMC decaying, w, crosses over —1 at z ~ 2, acquires the present value ~ —1.1
and settles down to an asymptotic value ~ — 1.17.
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