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The f (R) gravity can be cast into the form of a scalar–tensor theory, and scalar degree of freedom 
can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general 
f (R) gravity, using a scalar–tensor representation with the chameleon mechanism, we calculate the 
parametrized post-Newtonian parameters γ and β , the effective gravitational constant Geff, and the 
effective cosmological constant �eff. In addition, for the general f (R) gravity, we also calculate the rate 
of orbital period decay of the binary system due to gravitational radiation. Then we apply these results 
to specific f (R) models (Hu–Sawicki model, Tsujikawa model and Starobinsky model) and derive the 
constraints on the model parameters by combining the observations in solar system, cosmological scales 
and the binary systems.
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1. Introduction

Since the discovery of cosmic acceleration in 1998 [1,2], con-
siderable efforts have been devoted in cosmology to understand 
the physical mechanism responsible for it. The �CDM model in-
terprets the acceleration of the universe as a consequence of the 
cosmological constant. Although this model matches cosmological 
observations well [3], the cosmological constant suffers from some 
theoretical problems. If the cosmological constant originates from 
the vacuum energy in quantum field theory, extreme fine-tuning 
is required to explain its smallness [4]. It is also difficult to ex-
plain its closeness to the present matter density of the universe 
[4]. This motivates the search for alternative explanations for the 
cosmic acceleration.

Two types of approaches have been considered. One can either 
introduce a new kind of matter whose role is to trigger accelera-
tion, or modify the behavior of gravity on cosmological scales [5,
6]. In the first approach, dark energy is introduced as a new energy 
form, which has positive energy density but negative pressure. In 
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the second approach, various attempts to modify gravity have been 
presented. For recent reviews on modified gravity, see [7–10].

Lovelock’s theorem states that General Relativity (GR) repre-
sents the most general theory describing a single metric that in 
four dimensions has field equations with at most second-order 
derivatives [11]. As a result of this theorem, one way to mod-
ify Einstein’s field equations is to permit the field equations to 
be higher than second order. In this paper, we will consider the 
so-called f (R) gravity which has fourth order field equations. The 
Ricci scalar R in the gravity action is replaced by a general func-
tion of Ricci scalar f (R). For reviews on f (R) gravity, see [12,
13]. The f (R) gravity does not introduce any new type of mat-
ter and can lead to the late time acceleration of the universe 
[14,15]. When cast into the scalar–tensor theory, the f (R) grav-
ity implies a strong coupling between the scalar field and matter. 
This would violate all experimental constraints on deviations from 
Newton’s gravitation [16]. Certain constraints have to be imposed 
on the function f (R) for the model to be linearly stable [17,18]
and pass local gravitational tests [19]. The first attempt f (R) =
R − μ2(n+1)/Rn proposed by Carroll et al. in [20] failed these con-
straints right away. However, since then, models that evade them 
have been found [21,22]. Fortunately, the chameleon mechanism 
can alleviate these constraints. Imposing the chameleon mecha-
nism, the scalar field can develop an environment dependent mass 
[23–25]. When the ambient matter density is large enough, its 
mass becomes large, and the corresponding fifth force range is 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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short. Thus the scalar field can be hidden in the high density en-
vironment and the fifth force cannot be detected [16].

The parametrized post-Newtonian (PPN) formalism is useful to 
study different theories of gravity [26–29]. In the PPN formalism, 
the PN (weak field and slow motion) limit of different theories 
are characterized by a set of PPN parameters and the most impor-
tant two parameters are γ and β . These two parameters can be 
directly measured by the solar system experiments. The GR pre-
diction (γ = 1 and β = 1) is consistent with the observations [30], 
which provide constraints on various modified gravity models [31,
32]. Meanwhile, the binary pulsar systems can emit gravitational 
waves and provide a good test for gravitational theories [26,27,
33–35]. Since these systems lose energy due to gravitational ra-
diation, the orbital period of these systems will decay.1 Several au-
thors have considered this effect in f (R) gravity [41–43] for some 
specific models. However, in these works, the authors have ignored 
the chameleon mechanism. Although some authors have applied 
the chameleon mechanism to f (R) gravity when they study the 
PN limit, they only calculate the PPN parameter γ [44,45].

In this paper, we give a comprehensive investigation on various 
constraints on the general f (R) gravity with chameleon mecha-
nism. Following the method developed in our previous work [46], 
we first calculate the PPN parameters γ and β , the effective cos-
mological constant, and the effective gravitational constant in the 
general f (R) gravity. Considering the current observations in so-
lar system and cosmological scales, we derive the combined con-
straint for the general f (R) gravity. Binary pulsar system is a good 
testing ground for alternative theories of gravity. In the previous 
work [47], we have derived the orbital period derivative for qua-
sicircular binary systems in scalar–tensor gravity with chameleon 
mechanism. Here, applying the similar analysis to f (R) gravity, we 
obtain the orbital period derivative for quasicircular neutron star-
white dwarf (NS-WD) binary systems. Using the observational data 
of PSR J0348+0432 [48] and PSR J1738+0333 [49], we also obtain 
the binary pulsar constraints on f (R) gravity. We find that the 
chameleon mechanism cannot apply to Palatini f (R) gravity. Thus, 
in the paper, we mainly focus on metric f (R) gravity. Applying 
the general results to the specific f (R) models, including Starobin-
sky model, Hu–Sawicki model and Tsujikawa model, we obtain the 
constraints on the model parameters.

The paper is organized as follows: In Sec. 2, we review f (R)

gravity and chameleon mechanism. In Sec. 3, we study various ob-
servational constraints on f (R) gravity, and obtain the parameter 
constraints on the specific models. We conclude in Sec. 4.

Through out this paper, the metric convention is chosen as 
(−, +, +, +), and Greek indices (μ, ν, · · · ) run over 0, 1, 2, 3. We 
set the units to c = h̄ = 1, and therefore the reduced Planck mass 
is MPl = √

1/8πG , where G is the gravitational constant.

2. f (R) gravity and Chameleon mechanism

The f (R) gravity comes about by a straightforward generaliza-
tion of the Ricci scalar R to become a general function f (R) in the 
action for gravity. When varying the action, there exist two for-
malisms: the metric formalism and the Palatini formalism. In the 
Palatini formalism, the connection is not taken to be the Levi-Civita 
connection of the metric a priori and one varies the action assum-
ing that the metric and the connection are independent variables. 
Although these two formalisms lead to the same field equations in 
GR [50], this is no longer true for f (R) gravity. We will investigate 
these two formalisms respectively.

1 The LIGO Scientific Collaboration and Virgo Collaboration have detected the 
gravitational waves [36–40]. This is an important milestone and opens new win-
dows in the gravitational physics and astrophysics.
2.1. Metric f (R) gravity

The total action for metric f (R) gravity takes the form [12]

S = 1

16πG

∫
d4x

√−g f (R) + Sm(gμν,�m), (1)

where �m denotes all the matter fields. Variation with respect to 
the metric gμν gives the field equations [12]

f ′(R)Rμν − 1

2
f (R)gμν − [∇μ∇ν − gμν�] f ′(R) = 8πGTμν, (2)

where a prime denotes differentiation with respect to R and � =
∇μ∇μ . Since the field equations contain the second derivative of R
and R includes second derivatives of the metric, the field equations 
are fourth order partial differential equations in the metric.

Handling fourth order equations can be troublesome, but f (R)

gravity can be recast as a scalar–tensor theory via a conformal 
transformation and the corresponding field equations become sec-
ond order. Conformal transformation of the metric can also show 
the scalar degree of freedom explicitly. Introducing a new field χ , 
we obtain a dynamical equivalent action [12]

S = 1

16πG

∫
d4x

√−g [ f (χ) + f ′(χ)(R − χ)] + Sm(gμν,�m).

(3)

Varying this action with respect to χ , we have f ′′(χ)(R − χ) = 0. 
If f ′′(χ) �= 0, we have R = χ . Substituting this into Eq. (3) leads 
to Eq. (1). Redefining the field by θ = f ′(χ) and setting U (θ) =
θχ(θ) − f (χ(θ)), we have

S = 1

16πG

∫
d4x

√−g [θ R − U (θ)] + Sm(gμν,�m). (4)

The action (4) is in the Jordan frame, which should be transformed 
into the Einstein frame to utilize the results of the prior studies 
[46,47], although the chameleon mechanism also works in the Jor-
dan frame [51].

Defining the metric in Einstein frame as g̃μν = θ gμν , we get 
the Einstein frame action as follows [12],

S E = 1

16πG

∫
d4x

√
−g̃[R̃ − 3

2θ2
(∂̃θ)2 − U (θ)

θ2
]

+ Sm(θ−1 g̃μν,�m), (5)

where (∂̃θ)2 = g̃μν∂μθ∂νθ and R̃ is the Ricci scalar of g̃μν . 
To change the kinetic term into the standard form, we intro-
duce another scalar field φ that satisfies the following relation 
3(∂̃θ)2/32πGθ2 = (∂̃φ)2/2, that is dφ

dθ
= −

√
3

16πG
1
θ

. Solving this 

differential equation, we have θ = exp(−
√

16πG
3 φ). The scalar field 

φ can be directly related to the Jordan frame Ricci scalar by

f ′(R) = exp(−
√

16πG

3
φ). (6)

Therefore, the action in the Einstein frame has the form [12],

S E =
∫

d4x
√

−g̃[ R̃

16πG
− 1

2
(∂̃φ)2 −V (φ)]+ Sm(A2(φ)g̃μν,�m),

(7)

where the bare potential is

V (φ) = f ′(R)R − f (R)

′ 2
. (8)
16πG f (R)
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The conformal coupling function is [12]

A(φ) = 1√
f ′(R)

= exp(
ξφ

MPl
) (9)

with the conformal coupling parameter ξ = 1/
√

6. Variation of S E

with respect to g̃μν and φ gives the field equations

R̃μν = 8πG[ S̃μν + ∂μφ∂νφ + V (φ)g̃μν ], (10)

�̃φ = dV

dφ
− T̃

A

dA

dφ
, (11)

with

S̃μν ≡ T̃μν − 1

2
g̃μν T̃ , (12)

where T̃μν ≡ (−2/
√−g̃)δSm/δ g̃μν is the energy-momentum ten-

sor of matter in the Einstein frame, and �̃ ≡ g̃μν ∇̃μ∇̃ν . The co-
variant derivatives ∇̃μ obey ∇̃μ g̃αβ = 0. The scalar field equation 
can be rewritten as follows:

�̃φ = dV eff

dφ
, (13)

with the effective potential

V eff(φ) ≡ V (φ) + ρ[A(φ) − 1]. (14)

Here the matter is assumed to be nonrelativistic, and ρ ≡ −T̃ /A
is the conserved energy density in the Einstein frame, which is 
independent of φ [24].

2.2. Chameleon mechanism

An important consequence of the conformal coupling function 
A(φ) is that matter will generally feel a fifth force mediated by the 
scalar field. Since the conformal coupling parameter ξ is of order 
unity, the fifth force will have a significant impact on the motion 
of particles [16]. In order to evade the fifth force constraints, the 
mass of the field should be sufficiently large in high density envi-
ronment [52]. Since scalar field needs to have cosmological effects 
to accelerate the expansion of the Universe, on cosmological scales, 
the magnitude of the scalar mass can be Hubble scale to cause the 
acceleration of the universe. Thus a mechanism is needed to screen 
the scalar field in local environment while let the scalar field ac-
celerate the Universe on large scale [16,45].

The behavior of the scalar field is governed by the effective po-
tential V eff(φ). An essential element of the model is the fact that 
V eff(φ) depends explicitly on the matter density, as seen in Eq. 
(14). The shape of the effective potential is determined by the 
function f (R). For a suitably chosen function f (R), the effective 
potential can have a minimum. We denote by φmin the value at 
the minimum, that is [46],

dV eff

dφ

∣∣∣∣
φmin

= 0. (15)

Whilst the mass of small fluctuations around the minimum is [16],

m2
eff = d2 V eff

dφ2

∣∣∣∣∣
φmin

=
[

d2 V

dφ2
+ ξ2

M2
Pl

ρ exp(
ξφ

MPl
)

]
φmin

. (16)

It can be observed that the scalar field has a density dependent 
mass. When the density of the environment is large enough, the 
mass becomes large, and the corresponding fifth force range is 
so small that it cannot be detected by gravitational experiments 
[16]. Laboratory constraints can be greatly alleviated if the mass 
develops a strong dependence on the ambient density of matter. 
Theories in which such a dependence is realized are called to have 
a chameleon mechanism. Therefore, if the following three condi-
tions can be satisfied in some regions of φ space, the f (R) model 
can have a chameleon mechanism [6]: (1) V ′(φ) < 0: The effective 
potential V eff has a minimum; (2) V ′′(φ) > 0: The mass squared 
m2

eff is positive; (3) V ′′′(φ) < 0: The mass can increase with den-
sity.

Using Eq. (6), these conditions can be translated into [16]

V ′(φ) = ξ MPl

f ′ 2
[R f ′ − 2 f ] < 0, (17)

V ′′(φ) = 1

3
[ R

f ′ + 1

f ′′ − 4 f

f ′ 2
] > 0, (18)

V ′′′(φ) = 2ξ

3MPl
[ 3

f ′′ + f ′ f ′′′

f ′′ 3
+ R

f ′ − 8 f

f ′ 2
] < 0. (19)

2.3. Palatini f (R) gravity

Previous discussions have focused on the metric formalism. We 
now discuss the Palatini formalism. The action in the Palatini for-
malism is formally the same as in the metric formalism. However, 
the Ricci tensor is constructed from the independent connection 
and is not related to the metric tensor. The Palatini action takes 
the form [12]

S p = 1

16πG

∫
d4x

√−g f (R) + Sm(gμν,�m). (20)

Here R ≡ gμνRμν and the Ricci tensor Rμν is determined by the 
independent connection �μ

αβ . Variations with respect to the metric 
and the connection can yield the following formulae respectively 
[12],

f ′(R)R(μν) − 1

2
f (R)gμν = 8πGTμν, (21)

and

∇μ[√−g(δ
μ
α f ′gβν − 1

2
δ
β
α f ′ μν − 1

2
δν
α f ′gβμ)] = 0. (22)

Transforming the action into the Einstein frame, we obtain [12]

S ′
E =

∫
d4x

√
−g̃[ R̃

16πG
− V (θ)] + Sm(θ−1 g̃μν,�m), (23)

which follows the scalar field equation,

2θ
dV

dθ
+ T̃ = 0. (24)

Note that, the scalar field θ is algebraically related to T̃ , i.e., θ =
θ(T̃ ), which is non-dynamical and cannot propagate in spacetime. 
Therefore, we cannot define a mass of the scalar field θ , as discus-
sion above. As a result of the non-dynamical nature of the scalar 
field, the chameleon mechanism does not apply to Palatini f (R)

gravity. There exists another significant difference between Pala-
tini f (R) gravity and the chameleon theory: Since the fifth force is 
produced by the gradient of the scalar field, and in chameleon the-
ories a compact object in a homogeneous background can generate 
a scalar field with Yukawa profile. A test particle in the homoge-
neous background can feel the fifth force. While in Palatini f (R)

gravity, the scalar field does not have gradient in a homogeneous 
background and does not mediate a fifth force. In addition, there 
are other serious shortcomings of Palatini f (R) gravity [12]. So, in 
the rest of this paper, we will only focus on metric f (R) gravity.
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2.4. Stability issues

More recent attention has focused on the stability issues about 
metric f (R) gravity. These include Ostrogradski instability [53], 
Frolov instability [54], Dolgov–Kawasaki instability [55] and insta-
bility of de Sitter space [18]. A scrutiny of these issues is needed to 
make sure that f (R) gravity is viable. The first two stability issues 
can be bypassed in the specific models discussed below [53,56].

Dolgov and Kawasaki [55] found that the Ricci scalar is instable 
in the f (R) model proposed by Carroll et al. [20]. Their analysis is 
generalized to a general function by Faraoni [17]. The origin of this 
issue is that the mass squared of the scalar degree of freedom is 
negative. Since the mass squared has the same sign as f ′′(R), the 
stability condition can be written as [12]

f ′′(R) > 0, for R ≥ R0(> 0), (25)

where R0 is the Ricci scalar today. This condition is satisfied for all 
the models studied in the following section.

In order to investigate the stability of de Sitter space, we con-
sider a spatial flat Friedmann–Lemaître–Robertson–Walker (FLRW) 
universe. The vacuum field equations take the form [12]

H2 = 1

3 f ′ (
R f ′

2
− f

2
− 3H ḟ ′),

Ḣ = − 1

2 f ′ ( f̈ ′ − H ḟ ′), (26)

where an overdot denotes differentiation with respect to t . The 
stationary points of the dynamical system (26) are de Sitter space 
with Hubble constant H . The condition for the existence of de Sit-
ter space is [12]

R f ′ − 2 f = 0. (27)

The stability condition of de Sitter space with respect to inhomo-
geneous linear perturbations reads [18]

f ′

f ′′ − R ≥ 0. (28)

If the solution to Eq. (27) meets the stability condition (28), the 
Universe will enter into a stable de Sitter phase in the future [14].

We now impose the stability condition of de Sitter space on 
the specific f (R) models. We will investigate the following well 
studied models

(A) f (R) = R − m2 c1(R/m2)n

c2(R/m2)n + 1
(c1, c2,n > 0), (29)

(B) f (R) = R − μRc tanh
R

Rc
(μ, Rc > 0), (30)

(C) f (R) = R − μRc[1 − (1 + R2

R2
c
)−k] (μ,k, Rc > 0). (31)

The models (A), (B) and (C) are proposed by Hu and Sawicki [45], 
Tsujikawa [19] and Starobinsky [15], respectively. In the model (A), 
the mass scale is chosen to be [45]

m2 = 8πGρ̄0

3
, (32)

where ρ̄0 is the average matter density in the universe today. In 
the models (B) and (C), Rc roughly corresponds to the order of 
observed cosmological constant for μ = O(1). During the whole 
expansion history of the Universe, the Ricci scalar is in the high 
curvature region, i.e., R 	 m2 or R 	 Rc [45]. Thus, the model (A) 
can be approximated by
f (R) = R − c1

c2
m2 + c1

c2
2

m2(
m2

R
)n (33)

and the model (C) can be approximated by

f (R) = R − μRc + μRc(
Rc

R
)2k. (34)

It can be observed that the free parameters of the model (A) are in 
one-to-one correspondence with that of the model (C) through the 
relations m2c1/c2 → μRc , m2(n+1)c1/c2

2 → μR2k+1
c and n → 2k. So 

we only study the models (A) and (B) in the following.
The model (A) can be expressed as another useful form [19]

f (R) = R − αRc
(R/Rc)

n

(R/Rc)n + 1
, (35)

where α = c1c1/n−1
2 and Rc = m2c−1/n

2 . The following relation 
holds at the de Sitter point: [13]

α = (1 + xn)2

xn−1(2 + 2xn − n)
, (36)

where x ≡ R/Rc . The stability condition (28) implies the relation 
[13],

2x2n − (n − 1)(n + 4)xn + (n − 1)(n − 2) ≥ 0. (37)

Thus for each specific n, the above inequality gives a bound on x
and this bound can be transformed into a bound on α through Eq. 
(36). For instance, when n = 2, one has x ≥ √

3 and α ≥ 8
√

3/9. In 
the following section, we will come back to discuss this inequality.

3. Constraints on f (R) gravity

In this section, we consider the observational constraints on 
metric f (R) gravity in cosmological scale, solar system and binary 
pulsar systems, respectively.

3.1. Cosmological constraints

In order to satisfy the tests on cosmological scales, the f (R)

models should mimic the �CDM model at the late time and pro-
vide an effective cosmological constant. Similar to the previous 
work [46], in this paper we do not consider the cosmological per-
turbations of f (R) gravity [13]. We leave this issue for the general 
f (R) gravity as a future work. The bare potential V (φ) in action 
(7) can provide the effective cosmological constant to accelerate 
the universe expansion, which is given by [46]

�eff = 8πG V VEV = R f ′(R) − f (R)

2 f ′(R)2

∣∣∣∣
R=R∞

, (38)

where R∞ is the background value of Ricci scalar. In order to 
mimic the �CDM model, we need that the value of �eff is equal to 
the observed cosmological constant �, which accelerates the cos-
mic expansion.

Now, we can apply the cosmological constraint (38) to specific 
f (R) models. For model (A), we substitute Eq. (33) into Eq. (38), 
and obtain

�eff ≈ c1

2c2
m2, (39)

which, in turn, implies that

c1 ≈ 2�eff
2

= 6
�� = 13.5. (40)
c2 m �m
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Note that, we adopted the density parameters �m = 0.308 and 
�� = 0.692 [3]. This expression of c1/c2 is consistent with Eq. 
(26) in [45]. Now it can be seen from Eq. (33) that there are two 
remaining parameters n and c1/c2

2 in this model.

Using the relation α = c1c1/n−1
2 and the cosmological constraint 

(40), we have

c1

c2
2

= 13.5(
13.5

α
)n. (41)

Thus, in the case n = 2, the stability condition α ≥ 8
√

3/9 implies 
an upper bound on c1/c2

2

c1

c2
2

≤ 1038. (42)

Using Eq. (33), we have

c1

c2
2

= 1 − f ′(R0)

n

(
R0

m2

)n+1

. (43)

For a spatial flat FLRW universe, the scalar curvature at the present 
epoch is R0 = m2(12/�m − 9) [45]. Consequently, for different n, 
we can obtain different upper bounds on | f ′(R0) − 1|. The results 
are presented in Fig. 1 with dotted line.

Similarly, for the model (B), the cosmological constraint is

�eff ≈ μRc

2
, (44)

and the stability condition (28) implies that [13]

μ > 0.905. (45)

3.2. Solar system constraints

In the solar system, the gravitational field is weak and the ve-
locity of planets is slow compared with the speed of light. Thus we 
can apply the PPN formalism to solar system tests. In the PN limit, 
the spacetime metric predicted by different metric theory of grav-
ity has the same structure and can be characterized by ten PPN 
parameters [26]. Among them, the most important parameters are 
γ and β .

Here, we derive the PPN parameters γ and β and the effective 
gravitational constant Geff in the general metric f (R) gravity with 
chameleon mechanism. For a scalar–tensor theory with action (7), 
the solution to the scalar field equation (11) is given by [47]

φ(r) = φ∞ − εMPl
GME

r
e−m∞r, (46)

where the screened parameter is defined as,

ε ≡ φ∞ − φ0

MPl�E
. (47)

The parameters ME and �E ≡ GME/r are the mass and the New-
tonian potential at the surface of the source object in the Einstein 
frame, respectively. The quantity φ0 is the field in side the source 
object and φ∞ is the field in the background environment. m∞ is 
the effective mass of scalar field at φ = φ∞ .

In order to solve the metric field equations, we make use of 
the PPN formalism introduced in [26,27]. In this formalism, the 
gravitational field of the source is weak GM/r � 1, and the typi-
cal velocity �v of the source is small, i.e. v2 ∼ GM/r � 1. Thus, we 
can use the perturbative expansion method to solve the field equa-
tions, and all dynamical quantities can be expanded to O(n) ∝ v2n . 
The metric field gμν can be expanded around the Minkowski back-
ground as follows:

gμν = ημν +
(1)

hμν +
(2)

hμν +O(3). (48)

We solve the field equations (10) and (11) using the PPN 
method [27], and transform the metric to the Jordan frame. Mak-
ing use of the definitions of γ and β as follows [46],

(1)

hJ00 = 2GeffMJ

χ
,

(1)

hJχχ = γ
2GeffMJ

χ
,

(2)

hJ00 = −β
4G2

effM
2
J

2χ2
, (49)

where M J and χ are the mass and radial coordinate in the Jordan 
frame, respectively. We obtain the PPN parameters

γ = 1 − 2A1

AVEV
MPlε, β = 1 − M2

Pl(
A2

1

2A2
VEV

− A2

AVEV
)ε2,

Geff = G A2
VEV(1 + A1

AVEV
MPlε), (50)

where AVEV, A1 and A2 are the expansion coefficients of A(φ), i.e.,

A(φ) = AVEV + A1(φ − φ∞) + A2(φ − φ∞)2 + · · · . (51)

Note that, here we have taken the limit m∞r � 1, since in the 
solar system, the distance r is always much less than the Compton 
wavelength m−1∞ [46].

Applying to the general metric f (R) gravity, using Eqs. (6) and 
(9) we obtain the expansion coefficients

AVEV = 1√
f ′(R∞)

, A1 = 1√
6MPl

1√
f ′(R∞)

,

A2 = 1

12M2
Pl

1√
f ′(R∞)

. (52)

Following the discussion of [45], R∞ = 8πGρg and ρg =
10−24 g cm−3 is the average galactic density in the solar vicin-
ity. In the solar system, the source object of the scalar field is the 
Sun and the background is the Milky Way. Since the density of the 
Sun is much higher compared with the galactic background, we 
have φ∞ 	 φ0. Then the screened parameter can be approximated 
by

ε = φ∞
MPl�E

. (53)

Substituting the above parameters into Eq. (50), we obtain

γ = 1 + ln f ′(R∞)

�E
, β = 1, Geff = G

f ′(R∞)
(1 − ln f ′(R∞)

2�E
).

(54)

We find that the expression of parameter γ is consistent with Eq. 
(64) in [45]. The parameter β is unity no matter whatever the 
functional form f (R) is. As can be seen from Eq. (50), when the 
conformal coupling function A(φ) has the exponential form, the 
two terms in the bracket of the expression of β cancel each other 
out. And Eq. (9) shows that the conformal coupling function A(φ)

always has the exponential form in metric f (R) gravity. This sug-
gests that the experimental tests of parameter β cannot distinguish 
between GR and metric f (R) gravity. The relation between γ and 
Geff is

Geff − 1 ≈ −γ − 1
. (55)
G 2
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Fig. 1. Maximum value of | f ′(R0) − 1| in Hu–Sawicki model allowed by the solar 
system constraint (solid line), the pulsar constraint (dashed line) and the stability 
condition (dotted line), respectively. Note that, for the dotted line, we have consid-
ered the cosmological constraint.

Using the Cassini constraint |γ − 1| < 2.3 × 10−5 [30] and the 
Newtonian potential at the surface of the Sun �E = 2.12 × 10−6, 
we obtain the constraint on general f (R) gravity as follows,

| ln f ′(R∞)| = |γ − 1|�E < 4.9 × 10−11. (56)

Since ln f ′(R∞) ≈ f ′(R∞) − 1, we have

| f ′(R∞) − 1| < 4.9 × 10−11. (57)

Note that, this is a general constraint for any metric f (R) gravity 
with chameleon mechanism, which is independent of the form of 
f (R).

We can apply this solar system constraint to the models (A) 
and (B). In the model (A), using Eq. (33), we have [45]

(1 − f ′(R∞)

1 − f ′(R0)

) 1
n+1

= R0

8πGρg
= 8.14 × 10−7 R0

m2

�mh2

0.13

( ρg

10−24 g cm−3

)−1
(58)

Here, R∞ = 8πGρg and ρg = 10−24 g cm−3 is the average galac-
tic density in the solar vicinity. We adopted the physical matter 
density �mh2 = 0.1415 [3].

Applying inequality (57) to the above equation, we have

| f ′(R0) − 1| < 4.9 × 10−11
(8πGρg

R0

)n+1
. (59)

The equivalence principle places a bound on the parameter of 
model (A) [57]

n > 1.8. (60)

As shown in Fig. 1, in the region 1.8 < n < 3, the solar system con-
straint (solid line) is fairly weak when compared with the stability 
condition (dotted line) and is sensitive to the value of n.

Similarly, in the model (B) we have

1 − f ′(R∞) = μ

cosh2 μR∞
2�eff

, (61)

where Eq. (44) was used to eliminate Rc in terms of μ. The solar 
system constraint (57) yields
μ > 9.5 × 10−5. (62)

Compared with the stability condition (45), this shows that the 
solar system constraint on f (R) gravity is weaker for this model.

Assuming that the cosmological constraint (38) and solar sys-
tem constraint (57) are both satisfied, we have checked that in 
the model (A) and (B), the conditions for chameleon mechanism 
(17)–(19) can all be satisfied.

3.3. Binary pulsar constraints

It is well known that the compact binary systems can lose the 
orbital energy due to gravitational radiation, and the orbital pe-
riod will decay. In different theories of gravity, the decay rates are 
different [27,26], which provides another independent opportuni-
ties to test the metric f (R) gravity. In a binary system, when the 
difference between the screened parameters of the two compact 
stars is significant, the dipole radiation dominates the orbital de-
cay rate. Since the screened parameter is inversely proportional to 
surface gravitational potential, the neutron star-white dwarf (NS-
WD) systems are the best testbeds to constrain the parameters of 
f (R) gravity. In the previous work [47], we have studied this effect 
in the most general scalar–tensor gravity with screening mecha-
nism. For a quasicircular (e � 1) NS-WD binary system, the orbital 
period derivative is given by [47]

Ṗ = Ṗ GR
[

1 + 5

192

( P

2πGm

)2/3
(εWD − εNS)

2
]

. (63)

Here, P denotes the orbital period, m = mNS + mWD is the total 
mass, μ = mNSmWD/m is the reduced mass, εWD = φ∞/MPl�WD

and εNS = φ∞/MPl�NS are the screened parameter of the white 
dwarf and the neutron star respectively and

Ṗ GR = −192π

5

(
2πGm

P

)5/3(μ

m

)
(64)

represents the GR prediction of the orbital period derivative. The 
second term in Eq. (63) corresponds to the scalar dipole radiation 
correction.

We apply this result to the general metric f (R) gravity with 
chameleon mechanism. Using Eq. (6), the orbital period derivative 
translates into

Ṗ

Ṗ GR
= 1 + 15

384

( P

2πGm

)2/3( ln f ′(R∞)

�WD
− ln f ′(R∞)

�NS

)2
. (65)

It can be seen that in the special case f (R) = R − 2�, the above 
result is reduced to Ṗ = Ṗ GR. Because �NS/�WD ∼ 104, the orbital 
period derivative can be approximated by

Ṗ

Ṗ GR
= 1 + 15

384

( P

2πGm

)2/3( ln f ′(R∞)

�WD

)2
. (66)

Since all the pulsar observation agrees well with the GR prediction 
within the errors [35,48,49], the observation value of the period 
derivative can be expressed as

Ṗ obs

Ṗ GR
= 1 + δ ± σ (67)

where δ is the fractional deviation of the observed Ṗ obs from the 
GR prediction, σ is the observational uncertainty. Thus the back-
ground field value f ′(R∞) cannot deviate from unity too much, 
that is,
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Table 1
Parameters of the binary systems with 1-σ uncertainties.

PSR J0348+0432 [48] J1738+0333 [49]

Eccentricity, e ∼ 10−6 (3.4 ± 1.1) × 10−7

Period, P (day) 0.102424062722(7) 0.3547907398724(13)
Period derivative, Ṗ (10−14) −27.3 ± 4.5 −2.59 ± 0.32
Ṗ obs/ Ṗ GR 1.05 ± 0.18 0.93 ± 0.13
Total mass, m (M�) 2.18 ± 0.04 1.65+0.07

−0.06

WD mass, mWD (M�) 0.172 ± 0.003 0.181+0.008
−0.007

WD radius, RWD (R�) 0.065 ± 0.005 0.037+0.004
−0.003

| ln f ′(R∞)| ≈ | f ′(R∞) − 1|
< (|δ| + 2σ)

1
2 (

m

M�
)

1
3 (

P

1d
)−

1
3 (

mWD

M�
)(

RWD

R�
)−1

× 7.63 × 10−9 (68)

at 95% confidence level.
Up to now, more than 2500 pulsars have been observed [33]. 

However, most of them are isolated and their mass cannot be 
determined. Table 2 in [33] lists fifteen NS-WD systems with 
low-eccentricity orbits which have accurate measurement of mass. 
Among these fifteen NS-WD systems only PSR J0348+0432 and PSR 
J1738+0333 have accurate observation value of the radius of the 
white dwarf companion. Thus we use these two NS-WD systems 
to constrain f (R) gravity and list here the relevant parameters in 
Table 1.

In the PSR J0348+0432 case (see Table 1), δ = 0.05 and σ =
0.18. Substituting the parameters into inequality (68), we obtain 
the upper bound

| f ′(R∞) − 1| < 3.583 × 10−8 (69)

at 95% confidence level. Similarly, using the observation data of 
PSR J1738+0333, we obtain

| f ′(R∞) − 1| < 3.579 × 10−8 (70)

at 95% confidence level. Compared with the solar system constraint 
(57), the pulsar constraint is three orders of magnitude weaker.

Applying the pulsar constraint to the model (A), we obtain

| f ′(R0) − 1| < 3.6 × 10−8
(8πGρg

R0

)n+1
. (71)

The above result is also shown in Fig. 1 with dashed line. Similarly, 
applying the pulsar constraint to the model (B), we obtain

μ > 5.4 × 10−5. (72)

Consistently, we find both of them are relatively weaker than the 
corresponding constraints of solar system.

4. Conclusions

The f (R) gravity has been extensively studied to explain the ac-
celerating expansion of the universe. In this paper, we have studied 
the general f (R) gravity through the scalar–tensor representation. 
In this theory, the chameleon mechanism is crucial for f (R) grav-
ity to escape the fifth force constraints. However, due to the non-
dynamical nature of the scalar field in Palatini f (R) gravity, this 
mechanism does not apply to the theory. Therefore, we focused on 
the metric f (R) gravity with chameleon mechanism.

We calculated the PPN parameters γ and β for the general 
f (R) gravity, and found that β = 1 in the limit m∞r � 1. As a 
result, the observed value of β cannot constrain the parameters of 
f (R) models. Applying the Cassini spacecraft measurement of γ , 
we obtained the constraint | f ′(R∞) −1| < 4.9 ×10−11 on the met-
ric f (R) gravity, which is consistent with the previous works. To 
pass the cosmological test, the metric f (R) gravity should pro-
vide the effective cosmological constant. We also calculated the 
effective cosmological constant in f (R) gravity. In general, the cos-
mological constraint can reduce one free model parameter in a 
given specific f (R) model.

In addition, we calculated the orbital period derivative Ṗ of 
binary pulsar systems in the metric f (R) gravity. Since GR has 
survived the binary pulsar test, the Ṗ in the metric f (R) grav-
ity cannot deviate from that in GR too much. We found that the 
pulsar constraint from the observations of PSR J0348+0432 and 
PSR J1738+0333 is | f ′(R∞) − 1| < 3.6 × 10−8. This is relatively 
weaker than the current constraints derived from the solar system 
observations. We also studied the stability condition of de Sitter 
space. Compared with the observational constraints (binary pul-
sar and solar system), this theoretical constraint is more stringent 
in Hu–Sawicki model and Tsujikawa model. With the chameleon 
mechanism, the metric f (R) gravity with suitable parameters can 
pass the cosmological test, the solar system test and the binary 
pulsar test at the same time.
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