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Abstract

We review the formalism and applications of non-linear perturbation theory (PT) to understanding the
large-scale structure of the Universe. We 9rst discuss the dynamics of gravitational instability, from the
linear to the non-linear regime. This includes Eulerian and Lagrangian PT, non-linear approximations, and
a brief description of numerical simulation techniques. We then cover the basic statistical tools used in
cosmology to describe cosmic 9elds, such as correlation functions in real and Fourier space, probability
distribution functions, cumulants and generating functions. In subsequent sections we review the use of PT to
make quantitative predictions about these statistics according to initial conditions, including e=ects of possible
non-Gaussianity of the primordial 9elds. Results are illustrated by detailed comparisons of PT predictions
with numerical simulations. The last sections deal with applications to observations. First, we review in detail
practical estimators of statistics in galaxy catalogs and related errors, including traditional approaches and
more recent developments. Then, we consider the e=ects of the bias between the galaxy distribution and
the matter distribution, the treatment of redshift distortions in three-dimensional surveys and of projection
e=ects in angular catalogs, and some applications to weak gravitational lensing. We 9nally review the current
observational situation regarding statistics in galaxy catalogs and what the future generation of galaxy surveys
promises to deliver. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and notation

Understanding the large-scale structure of the universe is one of the main goals of cosmology. In
the last two decades it has become widely accepted that gravitational instability plays a central role in
giving rise to the remarkable structures seen in galaxy surveys. Extracting the wealth of information
contained in galaxy clustering to learn about cosmology thus requires a quantitative understanding
of the dynamics of gravitational instability and application of sophisticated statistical tools that can
best be used to test theoretical models against observations.
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In this work we review the use of non-linear cosmological perturbation theory (hereafter PT)
to accomplish this goal. The usefulness of PT in interpreting results from galaxy surveys is based
on the fact that in the gravitational instability scenario density Juctuations become small enough
at large scales (the so-called “weakly non-linear regime”) that a perturbative approach suQces to
understand their evolution. Since early developments in the 1980s, PT has gone through a period of
rapid evolution in the last decade which gave rise to numerous useful results. Given the imminent
completion of next-generation large-scale galaxy surveys ideal for applications of PT, it seems timely
to provide a comprehensive review of the subject.

The purpose of this review is twofold:

(1) To summarize the most important theoretical results, which are sometimes rather technical
and appeared somewhat scattered in the literature with often Juctuating notation, in a clear,
consistent and uni9ed fashion. We tried, in particular, to unveil approximations that might have
been overlooked in the original papers, and to highlight the outstanding theoretical issues that
remain to be addressed.

(2) To present the state-of-the-art observational knowledge of galaxy clustering with particular
emphasis on constraints derived from higher-order statistics on galaxy biasing and primordial
non-Gaussianity, and give a rigorous basis for the confrontation of theoretical results with
observational data from upcoming galaxy catalogues.

We assume throughout this review that the universe satis9es the standard homogeneous and
isotropic big-bang model. The framework of gravitational instability, in which PT is based, as-
sumes that gravity is the only agent at large scales responsible for the formation of structures
in a universe with density Juctuations dominated by dark matter. This assumption is in very
good agreement with observations of galaxy clustering, in particular, as we discuss in detail here,
from higher-order statistics which are sensitive to the detailed structure of the dynamics respon-
sible for large-scale structures. 1 The non-gravitational e=ects associated with galaxy formation
may alter the distribution of luminous matter compared to that of the underlying dark matter, in
particular at small scales: such “galaxy biasing” can be probed with the techniques reviewed in
this work.

Inevitably, we had to make some decisions in the choice of topics to be covered. Our presenta-
tion is de9nitely focused on the density 9eld, with much less coverage on peculiar velocities. This
choice is, in particular, motivated by the comparatively still preliminary stage of cosmic velocity
9elds, at least from an observational point of view (see however [607,160] for a review). On the
other hand, note that since velocity 9eld results are often obtained by identical techniques to those
used for the density 9eld, we mention some of these results but without giving them their due
importance.

In order to fully characterize the density 9eld, we choose to follow the traditional approach
of using statistical methods, in particular, N -point correlation functions [508]. Alternative methods
include morphological descriptors such as Minkowski functionals (of which the genus is perhaps the
most widely known), percolation analysis, etc. Unlike correlation functions, however, these other
statistics are not as directly linked to dynamics as correlation functions, and thus are not as easy

1 As opposed to just properties of the linearized equations of motion, which can be mimicked by non-gravitational
theories of structure formation in some cases [10].
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to predict from theoretical models. Furthermore, applications of PT to make predictions of these
quantities is still in its infancy (see e.g. [441] and references therein for recent work).

Given that PT is an approximate method to solve the dynamics of gravitational clustering, it is
desirable to test the validity of the results with other techniques. In particular, we resort to numerical
simulations, which involve di=erent approximations in solving the equations of motion that are not
restricted to the weakly non-linear regime. There is a strong and healthy interplay between PT and
N -body simulations which we extensively illustrate throughout this review. At large scales PT can
be used to test quantitatively for spurious e=ects in numerical simulations (e.g. 9nite volume e=ects,
transients from initial conditions), whereas at smaller, non-linear scales N -body simulations can be
used to investigate the regime of validity of PT predictions.

Although reviewing the current understanding of clustering at small scales is beyond the scope
of this review, we have also included a discussion of the predictions of non-linear clustering ampli-
tudes because connections between PT and strongly non-linear behavior have been suggested in the
literature. We also include a discussion about stable clustering at small scales which, when coupled
with self-similarity, leads to a connection between the large- and small-scale scaling behavior of
correlations functions.

This review is structured so that di=erent chapters can be read independently, although there are
inevitable relations. Section 2 deals with the basic equations of motion and their solution in PT,
including a brief summary of numerical simulations. Section 3 is a review of the basics of statistics;
we have made it as succinct as possible to swiftly introduce the reader to the core of the review.
For a more in-depth treatment we refer the reader to [609,61]. The next two sections represent the
main theoretical results; Section 4 deals with N -point functions, whereas Section 5 reviews results
for the smoothed one-point moments and PDFs. These two sections heavily rely on material covered
in Sections 2 and 3.

In Section 6 we describe in detail the standard theory of estimators and errors for application
to galaxy surveys, with particular attention to the issue of cosmic bias and errors of estimators of
the two-point correlation function, power spectrum and higher-order moments such as the skewness.
Section 7 deals with theoretical issues related to surveys, such as redshift distortions, projection
e=ects, galaxy biasing and weak gravitational lensing. Section 8 presents the current observational
status of galaxy clustering, including future prospects in upcoming surveys, with particular emphasis
on higher-order statistics. Section 9 contains our conclusions and outlook. A number of appendices
extend the material in the main text for those interested in carrying out detailed calculations. Finally,
to help the reader, Tables 1–4 list the main abbreviations and notations used for various cosmological
variables, 9elds and statistics.

2. Dynamics of gravitational instability

The most natural explanation for the large-scale structures seen in galaxy surveys (e.g. superclus-
ters, walls and 9laments) is that they are the result of gravitational ampli9cation of small primordial
Juctuations due to the gravitational interaction of collisionless cold dark matter (CDM) particles
in an expanding universe [509,75,173,174]. Throughout this review we will assume this framework
and discuss how PT can be used to understand the physics of gravitational instability and test this
hypothesis against observations.
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Table 1
Abbreviations

PT Perturbation theory
2LPT Second-order Lagrangian perturbation theory
EPT Extended perturbation theory
HEPT Hyperextended perturbation theory
ZA Zel’dovich approximation
SC Spherical collapse
CDM Cold dark matter (model)
SCDM Standard CDM model
�CDM Flat CDM model with a cosmological constant
PDF Probability distribution function
CPDF Count probability distribution function

Table 2
Notation for various cosmological variables

	m The total matter density in units of critical density
	� The reduced cosmological constant
	tot The total energy density of the universe in units of critical density, 	tot = 	m + 	�

H The Hubble constant
h The Hubble constant at present time, in units of 100 km=s=Mpc; h ≡ H0=100
a The scale factor
� The conformal time, d� = dt=a
H The conformal expansion rate, H = aH
D1 The linear growth factor
Dn The nth-order growth factor
f(	m; 	�) The logarithmic derivative of (the fastest growing mode of) the linear growth factor with

respect to a: f(	m; 	�) ≡ dln D1=dln a

Table 3
Notation for the cosmic 9elds

X̃ The Fourier transform of 9eld X ; X̃ (k) = (2�)−3 ∫ d3x e−ik·x X (x) (except in Section 6.5)
x The comoving position in real space
�(x) The local cosmic density
�(x) The local density contrast, � = �= P�− 1
�(x) The gravitational potential
u(x) The local peculiar velocity 9eld
�(x) The local velocity divergence in units of H = aH
Fp(k1; : : : ; kp) The pth-order density 9eld kernel
Gp(k1; : : : ; kp) The pth-order velocity divergence 9eld kernel
 (q) The Lagrangian displacement 9eld
J (q) The Jacobian of the Lagrangian–Eulerian mapping

Although the nature of dark matter has not yet been identi9ed, all candidates for CDM particles are
extremely light compared to the mass scale of typical galaxies, with expected number densities of at
least 1050 particles=Mpc3 [383]. In this limit where the number of particles N�1, discreteness e=ects
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Table 4
Notation for statistical quantities

P(k) The density power spectrum
 (k) The dimensionless power,  = 4�k3P(k)
B(k1; k2; k3) The bispectrum
PN (k1; : : : ; kN ) The N -point polyspectrum
PN The count-in-cell probability distribution function
p(�) d� The cosmic density probability distribution function
Fk The factorial moment of order k
�2(x1; x2) ≡ �12 ≡ � The two-point correlation function, �2(x1; x2) = 〈�(x1)�(x2)〉 = 〈�(x1)�(x2)〉c

"2 ≡ P� ≡ P�2 The cell-average two-point correlation function
"8 The value of the (linearly extrapolated) " in a sphere of 8h−1 Mpc radius
# Shape parameter of the linear power spectrum, # � 	mh
�N (x1; : : : ; xN ) The N -point correlation functions �N (x1; : : : ; xN ) = 〈�(x1) · · · �(xN )〉c;
wN (�1; : : : ; �N ) The angular N -point correlation functions
P�N The cell-averaged N -point correlation functions P�N = 〈�N

R 〉c

PwN The cell-averaged angular N -point correlation functions

Sp The density normalized cumulants, Sp = 〈�p
R〉c=〈�2

R〉p−1 = P�p= P�
p−1

S3; S4 The (reduced) skewness=kurtosis
sp The projected density normalized cumulants
Q ≡ Q3; Q̃ ≡ Q̃3 The three-point hierarchical amplitude in real=Fourier space
QN ; Q̃N The N -point hierarchical amplitude in real=Fourier space; QN can also stand for SN =NN−2

(Section 6)
qN ; q̃N The projected N -point hierarchical amplitude in real=Fourier space can also stand for

sN =NN−2 (Section 6)
Tp The velocity divergence normalized cumulants
Cpq The two-point density normalized cumulants, Cpq = 〈�p

1 �
q
2〉c=(�12〈�2〉p+q−2)

’(y) The one-point cumulant generating function, ’(y) =
∑

p Sp(−y)p=p!
.p; /p The density=velocity 9eld vertices
G�(�) ≡ GL

� (�); The vertex generating function for the density=velocity 9eld, G�(�) ≡∑p¿1 .p(−�)p=p!
G�(�) ≡ GL

� (�) and G�(�) ≡ −f(	m; 	�)
∑

p¿1 .p(−�)p=p!
〈X 〉 The ensemble average of statistic X
X̂ The estimator of statistic X
Y(X̂ ) dX̂ The cosmic distribution function of estimator X̂
ZX The cosmic error on estimator X̂

such as two-body relaxation (important e.g. in globular clusters) are negligible, and collisionless dark
matter 2 obeys the Vlasov equation for the distribution function in phase space, Eq. (12). This is
the master equation from which all subsequent calculations of gravitational instability are derived.

Since CDM particles are non-relativistic, at scales much smaller than the Hubble radius the equa-
tions of motion reduce essentially to those of Newtonian gravity. 3 The expansion of the universe
simply calls for a rede9nition of the variable used to describe the position and momentum of par-
ticles, and a rede9nition of the gravitational potential. For a detailed discussion of the Newtonian

2 There has been recently a renewed interest in studying collisional dark matter [600,700,170], which may help solve
some problems with collisionless CDM at small scales, of order few kpc.

3 A detailed treatment of relativistic linear PT of gravitational instability can be found in [19,466,400].
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limit from general relativity see e.g. [508]. We will simply motivate the results without giving a
derivation.

2.1. The Vlasov equation

Let us consider a set of particles of mass m that interact only gravitationally in an expanding
universe. The equation of motion for a particle of velocity v at position r is thus,

dv
dt

= Gm
∑

i

ri − r
|ri − r|3 ; (1)

where the summation is made over all other particles at position ri.
In the limit of a large number of particles, this equation can be rewritten in terms of a smooth

gravitational potential due to the particle distribution,

dv
dt

= −929r ; (2)

where 2 is the Newtonian potential induced by the local mass density �(r),

2(r) = G
∫

d3r′
�(r′)
|r′ − r| : (3)

In the context of gravitational instabilities in an expanding universe we have to consider the depar-
tures from the homogeneous Hubble expansion. Positions of particles are described by their comoving
coordinates x such that the physical coordinates are r=a(�)x where a is the cosmological scale fac-
tor. We choose to describe the equations of motion in terms of the conformal time � related to cosmic
time by dt = a(�) d�. The equations of motion that follow are valid in an arbitrary homogeneous
and isotropic background universe, which evolves according to Friedmann equations:

9H(�)
9� = −	m(�)

2
H2(�) +

�
3

a2(�) ≡
(
	�(�) − 	m(�)

2

)
H2(�) ; (4)

(	tot(�) − 1)H2(�) = k ; (5)

where H ≡ dln a=d� = Ha is the conformal expansion rate, H is the Hubble constant, 	m is
the ratio of matter density to critical density, � is the cosmological constant and k = −1; 0; 1 for
	tot ¡ 1; 	tot = 1 and 	tot ¿ 1, respectively (	tot ≡ 	m + 	�). Note that 	m and 	� are time
dependent.

We then de9ne the density contrast �(x) by

�(x; �) ≡ P�(�)[1 + �(x; �)] ; (6)

the peculiar velocity u with

v(x; �) ≡ Hx + u(x; �) (7)
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and the cosmological gravitational potential � with

2(x; �) ≡ −1
2
9H
9� x2 + �(x; �) (8)

so that the latter is sourced only by density Juctuations, as expected; indeed the Poisson equation
reads

∇2�(x; �) = 3
2 	m(�)H2(�)�(x; �) : (9)

In the following we will only use comoving coordinates as the spatial variable so that all space
derivatives should be understood as done with respect to x.

The equation of motion (Eq. (2)) then reads

dp
d�

= −am∇�(x) (10)

with

p = amu : (11)

Let us now de9ne the particle number density in phase space by f(x; p; �); phase-space conservation
implies the Vlasov equation

df
d�

=
9f
9� +

p
ma

· ∇f − am∇� · 9f9p = 0 : (12)

Needless to say, this equation is very diQcult to solve, being a non-linear partial di=erential equation
involving seven variables. The non-linearity is induced by the fact that the potential � depends
through Poisson equation on the integral of the distribution function over momentum (which gives
the density 9eld, see Eq. (13)).

2.2. Eulerian dynamics

In practice, however, we are usually not interested in solving the full phase-space dynamics, but
rather the evolution of the spatial distribution. This can be conveniently obtained by taking momen-
tum moments of the distribution function. The zeroth-order moment simply relates the phase-space
density to the local mass density 9eld,∫

d3pf(x; p; �) ≡ �(x; �) : (13)

The next order moments,∫
d3p

p
am

f(x; p; �) ≡ �(x; �)u(x; �) ; (14)

∫
d3p

pipj

a2m2 f(x; p; �) ≡ �(x; �)ui(x; �)uj(x; �) + "ij(x; �) ; (15)
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de9ne the peculiar velocity Eow u(x; �) and the stress tensor "ij(x; �). The equation for these 9elds
follow from taking moments of the Vlasov equation. The zeroth moment gives the continuity equation

9�(x; �)
9� + ∇ · {[1 + �(x; �)]u(x; �)} = 0 ; (16)

which describes conservation of mass. Taking the 9rst moment of Eq. (12) and subtracting u(x; �)
times the continuity equation we obtain the Euler equation

9u(x; �)
9� + H(�)u(x; �) + u(x; �) · ∇u(x; �) = −∇�(x; �) − 1

�
∇j(�"ij) ; (17)

which describes conservation of momentum. Note that the continuity equation couples the zeroth (�)
to the 9rst moment (u) of the distribution function, the Euler equation couples the 9rst moment (u)
to the second moment ("ij), and so on. However, having integrated out the phase-space information,
we are here in a more familiar ground, and we have reasonable phenomenological models to close
the hierarchy by postulating an ansatz for the stress tensor "ij, i.e. the equation of state of the
cosmological Juid. For example, standard Juid dynamics [392] gives "ij =−p�ij + 7(∇iuj +∇jui −
2
3 �ij∇ · u) + 9�ij∇ · u, where p denotes the pressure and 7 and 9 are viscosity coeQcients.

The equation of state basically relies on the assumption that cosmological structure formation is
driven by matter with negligible velocity dispersion or pressure, as for example CDM. Note that from
its de9nition, Eq. (15), the stress tensor characterizes the deviation of particle motions from a single
coherent Jow (single stream), for which the 9rst term will be the dominant contribution. Therefore,
it is a good approximation to set "ij ≈ 0, at least in the 9rst stages of gravitational instability when
structures did not have time to collapse and virialize. As time goes on, this approximation will break
down at progressively larger scales, but we will see that at present times at the scales relevant to
large-scale structure, a great deal can be explored and understood using this simple approximation.
In particular, the breakdown of "ij ≈ 0 describes the generation of velocity dispersion (or even
anisotropic pressure) due to multiple streams, generically known as shell crossing. We will discuss
this issue further below.

We now turn to a systematic investigation of the solutions of Eqs. (9), (16) and (17) for vanishing
stress tensor.

2.3. Eulerian linear perturbation theory

At large scales, where we expect the universe to become smooth, the Juctuation 9elds in
Eqs. (6)–(8) can be assumed to be small compared to the homogeneous contribution described
by the 9rst terms. Therefore, it follows that we can linearize Eqs. (9), (16) and (17) to obtain the
equations of motion in the linear regime:

9�(x; �)
9� + �(x; �) = 0 ; (18)

9u(x; �)
9� + H(�)u(x; �) = −∇�(x; �) ; (19)

where �(x; �) ≡ ∇·u(x; �) is the divergence of the velocity 9eld. These equations are now straightfor-
ward to solve. The velocity 9eld, as any vector 9eld, can be completely described by its divergence
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�(x; �) and its vorticity w(x; �) ≡ ∇× u(x; �), whose equations of motion follow from Eq. (19):

9�(x; �)
9� + H(�)�(x; �) +

3
2
	m(�)H2(�)�(x; �) = 0 ; (20)

9w(x; �)
9� + H(�)w(x; �) = 0 : (21)

The vorticity evolution readily follows from Eq. (21), w(�) ˙ a−1, i.e. in the linear regime any
initial vorticity decays away due to the expansion of the universe. The density contrast evolution
follows by taking the time derivative of Eq. (20) and replacing in Eq. (18):

d2D1(�)
d�2 + H(�)

dD1(�)
d�

=
3
2
	m(�)H2(�)D1(�) ; (22)

where we wrote �(x; �) = D1(�)�(x; 0), with D1(�) the linear growth factor. This equation, together
with the Friedmann equations, Eqs. (4) and (5), determines the growth of density perturbations in
the linear regime as a function of cosmology. Since it is a second-order di=erential equation, it has
two independent solutions. Let us denote the fastest growing mode D(+)

1 (�) and the slowest one
D(−)

1 (�). The evolution of the density is then

�(x; �) = D(+)
1 (�)A(x) + D(−)

1 (�)B(x) ; (23)

where A(x) and B(x) are two arbitrary functions of position describing the initial density 9eld
con9guration, whereas the velocity divergence [using Eq. (18)] is given by

�(x; �) = −H(�)[f(	m;	�)A(x) + g(	m;	�)B(x)] ; (24)

f(	m;	�) ≡ dln D(+)
1

dln a
=

1
H

dln D(+)
1

d�
; g(	m;	�) =

1
H

dln D(−)
1

d�
: (25)

The most important cases are

(1) When 	m = 1; 	� = 0, we have the simple solution

D(+)
1 = a; D(−)

1 = a−3=2; f(1; 0) = 1 ; (26)

thus density Juctuations grow as the scale factor.
(2) When 	m ¡ 1; 	� = 0 we have (x ≡ 1=	m − 1) [504]

D(+)
1 = 1 +

3
x

+ 3

√
1 + x
x3 ln[

√
1 + x −√

x]; D(−)
1 =

√
1 + x
x3 ; (27)

and the logarithmic derivative can be approximated by [506]

f(	m; 0) ≈ 	3=5
m : (28)

As 	m → 0 (x�1); D(+)
1 → 1 and D(−)

1 → x−1 and perturbations cease to grow.
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(3) In the case where there is only matter and vacuum energy, the linear growth factor admits the
integral representation [305] as a function of 	m and 	�:

D(+)
1 = a3H (a)

5	m

2

∫ a

0

da
a3H 3(a)

; (29)

where H (a) =
√

	0
ma−3 + (1 − 	0

m − 	0
�)a−2 + 	0

�. In general, it is not possible to solve ana-
lytically for D(+)

1 (unlike D(−)
1 , see [305]), but can be approximated by [390,114]

D(+)
1 ≈

(
5
2

)
a	m

	4=7
m − 	� + (1 + 	m=2)(1 + 	�=70)

; (30)

D(−)
1 =

H

a
; (31)

f(	m;	�) ≈ 1
[1 − (	0 + 	0

� − 1)a + 	0
�a3]0:6 ; (32)

where 	0
� ≡ 	�(a = 1). When 	m + 	� = 1, we have

f(	m; 1 − 	m) ≈ 	5=9
m : (33)

Due to Eqs. (31) and (4), g(	m;	�) = 	m − 	�=2 − 1 holds for arbitrary 	m and 	�.

2.4. Eulerian non-linear perturbation theory

We will now consider the evolution of density and velocity 9elds beyond the linear approximation.
To do so, we shall 9rst make a self-consistent approximation, that is, we will characterize the velocity
9eld by its divergence, and neglect the vorticity degrees of freedom. This can be justi9ed as follows.
From Eq. (17) we can write the vorticity equation of motion

9w(x; �)
9� + H(�)w(x; �) −∇× [u(x; �) × w(x; �)] = ∇×

(
1
�
∇ · "̃

)
; (34)

where we have temporarily restored the stress tensor contribution ("ij) to the conservation of mo-
mentum. We see that if "ij ≈ 0, as in the case of a pressureless perfect Juid, if the primordial
vorticity vanishes, it remains zero at all times. On the other hand, if the initial vorticity is non-zero,
we saw in the previous section that in the linear regime vorticity decays due to the expansion of
the universe; however, it can be ampli9ed non-linearly through the third term in Eq. (34). In what
follows, we shall assume that the initial vorticity vanishes, thus Eq. (34) together with the equation
of state "ij ≈ 0 guarantees that vorticity remains zero throughout the evolution. We must note, how-
ever, that this assumption is self-consistent only as long as the condition "ij ≈ 0 remains valid; in
particular, multi-streaming and shocks can generate vorticity (see for instance [521]). This is indeed
expected to happen at small enough scales. We will come back to this point in order to interpret
the breakdown of PT at small scales.
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The assumption of PT is that it is possible to expand the density and velocity 9elds about the
linear solutions, e=ectively treating the variance of the linear Juctuations as a small parameter (and
assuming no vorticity in the velocity 9eld). Linear solutions correspond to simple (time dependent)
scalings of the initial density 9eld; thus we can write

�(x; t) =
∞∑
n=1

�(n)(x; t); �(x; t) =
∞∑
n=1

� (n)(x; t) ; (35)

where �(1) and � (1) are linear in the initial density 9eld, �(2) and � (2) are quadratic in the initial
density 9eld, etc.

2.4.1. The equations of motion in the Fourier representation
At large scales, when Juctuations are small, linear PT provides an adequate description of cosmo-

logical 9elds. In this regime, di=erent Fourier modes evolve independently conserving the primordial
statistics. Therefore, it is natural to Fourier transform Eqs. (9), (16) and (17) and work in Fourier
space. Our convention for the Fourier transform of a 9eld A(x; �) is

Ã(k; �) =
∫

d3x
(2�)3 exp(−ik · x)A(x; �) : (36)

When non-linear terms in the perturbation series are taken into account, the equations of motion in
Fourier space show the coupling between di=erent Fourier modes characteristic of non-linear theories.
Taking the divergence of Eq. (17) and Fourier transforming the resulting equations of motion we
get

9�̃(k; �)
9� + �̃(k; �) = −

∫
d3k1 d3k2 �D(k − k12)=(k1; k2)�̃(k1; �)�̃(k2; �) ; (37)

9�̃(k; �)
9� + H(�)�̃(k; �) +

3
2
	mH

2(�)�̃(k; �) =−
∫

d3k1 d3k2 �D(k − k12)

×>(k1; k2)�̃(k1; �)�̃(k2; �) (38)

(�D denotes the three-dimensional Dirac delta distribution) where the functions

=(k1; k2) ≡ k12 · k1

k2
1

; >(k1; k2) ≡ k2
12(k1 · k2)

2k2
1k

2
2

(39)

encode the non-linearity of the evolution (mode coupling) and come from the non-linear terms in
continuity equation (16) and Euler equation (17), respectively. From Eqs. (37) and (38) we see
that the evolution of �̃(k; �) and �̃(k; �) is determined by the mode coupling of the 9elds at all
pairs of wave vectors k1 and k2 whose sum is k, as required by translation invariance in a spatially
homogeneous universe.

2.4.2. General solutions in Einstein–de Sitter cosmology
Let us 9rst consider an Einstein–de Sitter universe, for which 	m = 1 and 	� = 0. In this case the

Friedmann equation, Eq. (4), implies a(�) ˙ �2; H(�) = 2=�, and scaling out an overall factor of
H from the velocity 9eld brings Eqs. (37) and (38) into homogeneous form in � or, equivalently,
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in a(�). As a consequence, these equations can formally be solved with the following perturbative
expansion [270,334,428]:

�̃(k; �) =
∞∑
n=1

an(�)�n(k); �̃(k; �) = −H(�)
∞∑
n=1

an(�)�n(k) ; (40)

where only the fastest growing mode is taken into account. Remarkably, it implies that the PT
expansions de9ned in Eq. (35) are actually expansions with respect to the linear density 9eld with
time-independent coeQcients. At small a, the series are dominated by their 9rst term, and since
�1(k) = �1(k) from the continuity equation, �1(k) completely characterizes the linear Juctuations.

The equations of motion, Eqs. (37) and (38) determine �n(k) and �n(k) in terms of the linear
Juctuations to be

�n(k) =
∫

d3q1 · · ·
∫

d3qn �D(k − q1···n)Fn(q1; : : : ; qn)�1(q1) · · · �1(qn) ; (41)

�n(k) =
∫

d3q1 · · ·
∫

d3qn �D(k − q1···n)Gn(q1; : : : ; qn)�1(q1) · · · �1(qn) ; (42)

where Fn and Gn are homogeneous functions of the wave vectors {q1; : : : ; qn} with degree zero. They
are constructed from the fundamental mode coupling functions =(k1; k2) and >(k1; k2) according to
the recursion relations (n¿ 2, see [270,334] for a derivation)

Fn(q1; : : : ; qn) =
n−1∑
m=1

Gm(q1; : : : ; qm)
(2n + 3)(n− 1)

[(2n + 1)=(k1; k2)Fn−m(qm+1; : : : ; qn)

+ 2>(k1; k2)Gn−m(qm+1; : : : ; qn)] ; (43)

Gn(q1; : : : ; qn) =
n−1∑
m=1

Gm(q1; : : : ; qm)
(2n + 3)(n− 1)

[3=(k1; k2)Fn−m(qm+1; : : : ; qn)

+ 2n>(k1; k2)Gn−m(qm+1; : : : ; qn)] (44)

(where k1 ≡ q1 + · · · + qm; k2 ≡ qm+1 + · · · + qn; k ≡ k1 + k2 and F1 = G1 ≡ 1).
For n = 2, we have

F2(q1; q2) =
5
7

+
1
2
q1 · q2

q1q2

(
q1

q2
+

q2

q1

)
+

2
7

(q1 · q2)2

q2
1q

2
2

; (45)

G2(q1; q2) =
3
7

+
1
2
q1 · q2

q1q2

(
q1

q2
+

q2

q1

)
+

4
7

(q1 · q2)2

q2
1q

2
2

: (46)

Explicit expressions for the kernels F3 and F4 are given in [270]. Note that the symmetrized kernels,
F (s)

n (obtained by a summation of Fn with all possible permutations of the variables), have the
following properties [270,692]:
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(1) As k=q1 + · · ·+qn goes to zero, but the individual qi do not, F (s)
n ˙ k2. This is a consequence

of momentum conservation in center-of-mass coordinates.
(2) As some of the arguments of F (s)

n get large but the total sum k = q1 + · · ·+ qn stays 9xed, the
kernels vanish in inverse square law. That is, for p�qi, we have

F (s)
n (q1; : : : ; qn−2; p;−p) ˙ k2=p2 ; (47)

and similarly for G(s)
n .

(3) If one of the arguments qi of F (s)
n or G(s)

n goes to zero, there is an infrared divergence of the
form qi=q2

i . This comes from the infrared behavior of the mode-coupling functions =(k1; k2) and
>(k1; k2). There are no infrared divergences as partial sums of several wave vectors go to zero.

A simple application of the recursion relations is to derive the corresponding recursion relation for
vertices .n and /n which correspond to the spherical average of the PT kernels:

.n ≡ n!
∫

d	1

4�
· · · d	n

4�
Fn(k1; : : : ; kn) ; (48)

/n ≡ n!
∫

d	1

4�
· · · d	n

4�
Gn(k1; : : : ; kn) : (49)

Since the kernels Fn and Gn depend only on the ratios ki=kj, the vertices depend a priori on these
quantities as well. Considering Eqs. (43) and (44), one can see that the angle integrations can be
done recursively: it is possible to integrate 9rst on the angle between the vectors k1 = q1 + · · ·+ qm
and k2 =qm+1 + · · ·+qn, which amounts to replace =(k1; k2) and >(k1; k2) by their angular averages
P= = 1 and P> = 1

3 . As a result we have

.n =
n−1∑
m=1

(
n
m

)
/m

(2n + 3)(n− 1)

[
(2n + 1).n−m +

2
3
/n−m

]
; (50)

/n =
n−1∑
m=1

(
n
m

)
/m

(2n + 3)(n− 1)

[
3.n−m +

2
3
n/n−m

]
; (51)

and the vertices are thus pure numbers, e.g.

.1 = /1 = 1; .2 = 34
21 ; .3 = 682

189 ; /2 = − 26
21 ; /3 = 142

63 : (52)

This recursion relation plays a central role for the derivation of many results in PT [43].
In particular, it can be shown that it is directly related to the spherical collapse dynamics [43,222].

In this case the initial density 9eld is such that it has a spherical symmetry around x = 0. As a
consequence, the Fourier transform of the linear density 9eld �1(k) depends only on the norm of
k, and this property remains valid at any stage of the dynamics. Then the central density for such
initial conditions, �sc, can be written (assuming 	m = 1 for de9niteness) as

�sc(a) =
∑
n

an
∫

d3q1 · · ·
∫

d3qn Fn(q1; : : : ; qn)�1(|q1|) · · · �1(|qn|) : (53)
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Performing 9rst the integration over the angles of the wave vectors, one recovers

�sc(a) =
∑
n

.n
n!

anjn (54)

with j=
∫

d3q �1(|q|). Similarly, the central velocity divergence for the spherical collapse is expanded
in terms of the /n parameters. The angular averages of the PT kernels are thus directly related to
the spherical collapse dynamics. This result is valid for any cosmological model.

2.4.3. Cosmology dependence of non-linear growth factors
In general, the PT expansion is more complicated because the solutions at each order become

non-separable functions of � and k [91,93,46,118]. In particular, the growing mode at order n does
not scale as Dn

1(�) (or an(�) as in Eq. (40)).
However, using the recursion relations, we can easily 9nd the full dependence on cosmological

parameters for the vertices, that is, the dependence that arises in the spherical collapse approximation.
The PT kernels can then be constructed order by order in terms of these solutions [46]. In the
spherical model, we can write

�(�) =
∞∑
n=1

.n(�)
n!

[D1(�) j]n ; (55)

�(�) = −H(�)f(	m;	�)
∞∑
n=1

/n(�)
n!

[D1(�) j]n : (56)

From the Fourier space equations of motion, Eqs. (37) and (38), and taking into account that the
spherical averages of = and > can be taken at once, one gets

d.n
dlogD1

+ n.n − /n =
n−1∑
m=1

(
n
m

)
.n−m/m ; (57)

d/n

dlogD1
+ n/n +

(
3	m

2f2 − 1
)

/n − 3	m

2f2 .n =
1
3

n−1∑
m=1

(
n
m

)
/n−m/m ; (58)

noting that dlogD1 =Hf d�. This hierarchy of di=erential equations must then be solved numerically
at each order. The results for n=2; 3 show that indeed the dependence of the vertices on cosmological
parameters is a few percent e=ect at most [46,223].

For a perfect Juid with a equation of state p = 7� we have [259]

.2 =
2(17 + 487 + 2772)
3(1 + 7)(7 + 157)

(59)

for an Einstein–de Sitter universe. Of course, this reduces to Eq. (52) as 7 → 0. For the Brans–Dicke
cosmology [98], with a coupling ! to gravity

.2 =
34! + 56
21! + 36

; (60)
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which reduces to the standard result .2 = 34
21 in the limit ! → ∞ (see [259] for details and results

for .4). Even in these extreme cosmologies, the possible variations of .2 are quite small given the
observational constraints on 7 and ! [259].

2.4.4. Approximate solutions in arbitrary cosmology
This quite remarkable result is asking for an explanation. It is indeed possible to show that a

simple approximation to the equations of motion for general 	m and 	� leads to separable solutions
to arbitrary order in PT and the same recursion relations as in the Einstein–de Sitter case [560]. All
the information on the dependence of the PT solutions on the cosmological parameters 	m and 	�

is then encoded in the linear growth factor, D1(�).
In linear PT, the growing-mode solution to the equations of motion (37) and (38) reads

�(k; �) = D1(�)�1(k) ; (61)

�(k; �) = −H(�)f(	m;	�)D1(�)�1(k) ; (62)

where D1(�) is linear growing mode. As mentioned before, we look for separable solutions of the
form (compare with Eq. (40))

�(k; �) =
∞∑
n=1

Dn(�)�n(k) ; (63)

�(k; �) = −H(�)f(	m;	�)
∞∑
n=1

En(�)�n(k) : (64)

From equations of motion (37) and (38) we get, for the nth-order solutions,

dDn

dlogD1
�n − En�n =

∫
d3k1 d3k2 �D(k − k12)=(k; k1)

×
n−1∑
m=1

Dn−mEm�m(k1)�n−m(k2) ; (65)

dEn

dlogD1
�n +

(
3	m

2f2 − 1
)

En�n − 3	m

2f2 Dn�n

=
∫

d3k1 d3k2 �D(k − k12)>(k; k1; k2)
n−1∑
m=1

En−mEm�m(k1)�n−m(k2) : (66)

By simple inspection, we see that if f(	m;	�) = 	1=2
m , then the system of equations becomes

indeed separable, with Dn = En = (D1)n. In fact, the recursion relations then reduce to the standard
	m = 1; 	� = 0 case, shown in Eqs. (43) and (44). Then 	m=f2 = 1 leads to separability of the
PT solutions to any order, generalizing what has been noted before in the case of second-order PT
[432]. From Section 2.3, the approximation f(	m;	�) ≈ 	1=2

m is actually very good in practice. As
a result, for example, as we review in the next section, the exact solution for the 	� = 0 case gives
D2=(D1)2 =1+3=17(	−2=63

m −1), extremely insensitive to 	m, even more than what the approximation
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f(	m;	�) = 	3=5
m ≈ 	1=2

m would suggest, since for most of the time evolution 	m and 	� are close
to their Einstein–de Sitter values.

2.4.5. The density and velocity Felds up to third order
The computations of the local density 9eld can be done order by order for any cosmological model.

We give here their explicit expression up to third order. The detailed calculations can be found in
[46]. Di=erent approaches have been used in the literature to do such calculations [105,118,93]. The
direct calculation appears to be the most secure, if not the rapid or most instructive.

The time dependence of the solutions can be written as a function of D1(�); .2(�); .3(�) and an
auxiliary function A3(�) which satis9es

d2(A3D3
1)

d�2 + H
d(A3D3

1)
d�

− 3
2
H2	mA3D3

1 =
3
2
H2	mD3

1 (67)

with A3 ∼ 9
10 when � → 0. The geometrical dependences can all be expressed in terms of the two

functions =(q1; qj) [see Eq. (39)] and

B(qi; qj) =
1
2

[=(qi ; qj) + =(qj; qi)] − >(qi ; qj) = 1 − (qi · qj)2

(q2
i q

2
j )

; (68)

which for short will be denoted =i; j and Bi; j respectively. Then we have

F2(q1; q2) = (3
4.2 − 3

2)B1;2 + =1;2 ; (69)

G2(q1; q2) = −f(	m;	�)[( 3
4/2 − 3

2)B1;2 + =1;2] (70)

for the second-order solutions. Their symmetrized parts can be shown to take the form (see Section
2.7)

F (s)
2 (q1; q2) =

1
2

(1 + C) +
1
2
q1 · q2

q1q2

(
q1

q2
+

q2

q1

)
+
(

2
7
− C

2

)
(q1 · q2)2

q2
1q

2
2

; (71)

G(s)
2 (q1; q2) = C +

1
2
q1 · q2

q1q2

(
q1

q2
+

q2

q1

)
+ (1 − C)

(q1 · q2)2

q2
1q

2
2

; (72)

where C ≈ ( 3
7)	−2=63

m for 	m & 0:1 [93]. At third order the kernel reads

F3(q1; q2; q3) = R1 + .2R2 + .3R3 + A3R4 ; (73)

where, using the simpli9ed notation =ij; k = =(qi + qj; qk); =i; jk = =(qi ; qj + qk) and similar de9nitions
for Bij; k and Bi; jk , we have

R1 = (1
2=3;12 + 1

2=12;3 − 1
3B3;12)=1;2 + (− 3

2=12;3 − 4
3=3;12 + 5

2B3;12)B1;2 ; (74)

R2 = 3
4(=3;12 + =12;3 − 3B3;12)B1;2 ; (75)

R3 = 3
8B3;12B1;2 ; (76)

R4 = 2
3B3;12=1;2 − ( 1

3=3;12 + 1
2B3;12)B1;2 : (77)
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These results exhibit the explicit time and geometrical dependence of the density 9eld up to third
order (a similar expression can be found for G3, see [46]). In Section 5 we examine the consequences
of these results for the statistical properties of the cosmic 9elds.

2.4.6. Non-linear growing and decaying modes
Perturbation theory describes the non-linear dynamics as a collection of linear waves, �1(k),

interacting through the mode-coupling functions = and > in Eq. (39). Even if the initial conditions
are set in the growing mode, after scattering due to non-linear interactions waves do not remain
purely in the growing mode. In the standard treatment, described above, the sub-dominant time
dependencies that necessarily appear due to this process have been neglected, i.e. only the fastest
growing mode (proportional to Dn

1) is taken into account at each order n in PT. Here we discuss how
one can generalize the standard results to include the full time dependence of the solutions at every
order in PT [561,569]. This is necessary, for example, to properly address the problem of transients
in N -body simulations in which initial conditions are set up using the Zel’dovich approximation (see
Section 2.5). This is reviewed in Section 5.7. In addition, the approach presented here can be useful
to address evolution from non-Gaussian initial conditions.

The equations of motion can be rewritten in a more symmetric form by de9ning a two-component
“vector” Da(k; z), where a = 1; 2; z ≡ ln a (we assume 	m = 1 for de9niteness), and

Da(k; z) ≡ (�(k; z);−�(k; z)=H) ; (78)

which leads to the following equations of motion (we henceforth use the convention that repeated
Fourier arguments are integrated over):

9zDa(k; z) + 	abDb(k; z) = Babc(k; k1; k2)Db(k1; z)Dc(k2; z) ; (79)

where Babc is a matrix whose only non-zero elements are B121(k; k1; k2) = �D(k − k1 − k2)=(k; k1)
and B222(k; k1; k2) = �D(k − k1 − k2)>(k1; k2) and

	ab ≡
[

0 −1

− 3
2

1
2

]
: (80)

The somewhat complicated expressions for the PT kernels recursion relations in Section 2.4.2 can
be easily derived in this formalism. The perturbative solutions read [see Eq. (40)]

Da(k; z) =
∞∑
n=1

enz (n)
a (k) ; (81)

which leads to

(n�ab + 	ab) 
(n)
b (k) = Babc(k; k1; k2)

n−1∑
m=1

 (n−m)
b (k1) (m)

c (k2) : (82)

Now, let "−1
ab (n) ≡ n�ab + 	ab, then we have

 (n)
a (k) = "ab(n)Bbcd(k; k1; k2)

n−1∑
m=1

 (n−m)
c (k1) (m)

d (k2) ; (83)
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where

"ab(n) =
1

(2n + 3)(n− 1)

[
2n + 1 2

3 2n

]
: (84)

Eq. (83) is the equivalent of the recursion relations in Eqs. (43) and (44) for the nth-order Fourier
amplitude solutions  (n)

a (k).
To go beyond this, that is, to incorporate the transient behavior before the asymptotics of solutions

in Eq. (81) are valid, it turns out to be convenient to write down the equation of motion, Eq. (79),
in integral form. Laplace transformation in the variable z leads to

"−1
ab (!)Db(k; !) = 2a(k) + Babc(k; k1; k2)

∮
d!1

2�i
Db(k1; !1)Dc(k2; !− !1) ; (85)

where 2a(k) denote the initial conditions, that is Da(k; z = 0) ≡ 2a(k). Multiplying by the matrix
"ab, and performing the inversion of the Laplace transform gives [569]

Da(k; z) = gab(z)2b(k) +
∫ z

0
ds gab(z − s)Bbcd(k; k1; k2)Dc(k1; s)Dd(k2; s) ; (86)

where the linear propagator gab(z) is de9ned as (c¿ 1 to pick out the standard retarded propagator
[561])

gab(z) =

c+i∞∮
c−i∞

d!
2�i

"ab(!) e!z =
ez

5

[
3 2

3 2

]
− e−3z=2

5

[−2 2

3 −3

]
(87)

for z¿ 0, whereas gab(z) = 0 for z¡ 0 due to causality, gab(z) → �ab as z → 0+. The 9rst term in
Eq. (87) represents the propagation of linear growing-mode solutions, where the second corresponds
to the decaying modes propagation. Eq. (86) can be thought as an equation for Da(k; z) in the
presence of an “external source” 2b(k) with prescribed statistics given by the initial conditions. 4 It
contains the full time dependence of non-linear solutions, as will be discussed in detail in Section
5.7. To recover the standard (asymptotic) time dependence one must take the initial conditions to
be set in the growing mode, 2b ˙ (1; 1), which vanishes upon contraction with the second term in
Eq. (87), and reduces to the familiar linear scaling 2a(z) = ez2a(0) = a(�)2a(0); and, in addition,
set the lower limit of integration in Eq. (86) to s = −∞, to place initial conditions “in9nitely far
away” in the past.

2.5. Lagrangian dynamics

So far we have dealt with density and velocity 9elds and their equations of motion. However,
it is possible to develop non-linear PT in a di=erent framework, the so-called Lagrangian scheme,
by following the trajectories of particles or Juid elements [705,102,465], rather than studying the

4 This is essentially a 9eld-theoretic description of gravitational instability, non-linear corrections can be thought as loop
corrections to the propagator and the vertex given by the Babc matrix, see [569] for details.
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dynamics of density and velocity 9elds. 5 In Lagrangian PT, 6 the object of interest is the dis-
placement 9eld �(q) which maps the initial particle positions q into the 9nal Eulerian particle
positions x,

x(�) = q + �(q; �) : (88)

The equation of motion for particle trajectories x(�) is then

d2x
d�2 + H(�)

dx
d�

= −∇� ; (89)

where � denotes the gravitational potential and ∇ the gradient operator in Eulerian coordinates x.
Taking the divergence of this equation we obtain

J (q; �)∇ ·
[

d2�
d�2 + H(�)

d�
d�

]
=

3
2
	mH

2(J − 1) ; (90)

where we have used Poisson equation together with the fact that the density 9eld obeys P� (1 +
�(x)) d3x = P� d3q, thus

1 + �(x) =
1

Det(�ij + Di;j)
≡ 1

J (q; �)
; (91)

where Di;j ≡ 9Di=9q j and J (q; �) is the Jacobian of the transformation between Eulerian and La-
grangian space. Note that when there is shell crossing, i.e. Juid elements with di=erent initial po-
sitions q end up at the same Eulerian position x through the mapping in Eq. (88), the Jacobian
vanishes and the density 9eld becomes singular. At these points the description of dynamics in
terms of a mapping does not hold anymore.

Eq. (90) can be fully rewritten in terms of Lagrangian coordinates by using that ∇i = (�ij +
Di;j)−1∇qj , where ∇q ≡ 9=9q denotes the gradient operator in Lagrangian coordinates. The resulting
non-linear equation for �(q) is then solved perturbatively, expanding about its linear solution.

2.6. Linear solutions and the Zel’dovich approximation

The linear solution of Eq. (90)

∇q ·�(1) = −D1(�)�(q) ; (92)

where �(q) denotes the density 9eld imposed by the initial conditions and D1(�) is the linear growth
factor, which obeys Eq. (22). We implicitly assume that vorticity vanishes, then Eq. (92) completely
determines the displacement 9eld to linear order. Linear Lagrangian solutions have the property that
they become exact for local one-dimensional motion, i.e. when the two eigenvalues of the velocity
gradient along the trajectory vanish [102]. Note that the evolution of Juid elements at this order is
local, i.e. it does not depend on the behavior of the rest of Juid elements.

5 It is also possible to study Lagrangian dynamics of density and velocity 9elds following the Juid elements, by using
the convective derivative D=Dt ≡ 9=9t + u · ∇ in the equations of motion, Eqs. (16) and (17). We will not discuss this
possibility here, but e.g. see [62,327].

6 For reviews of Lagrangian PT, see e.g. [107,94].
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The Zel’dovich approximation (hereafter ZA) [705] consists in using the linear displacement 9eld
as an approximate solution for the dynamical equations. 7 It follows from Eq. (91) that the local
density 9eld reads

1 + �(x; �) =
1

[1 − A1D1(�)][1 − A2D1(�)][1 − A3D1(�)]
; (93)

where Ai are the local eigenvalues of the tidal tensor Di;j. From this expression we can see that
depending on the relative magnitude of these eigenvalues, the ZA leads to planar collapse (one
positive eigenvalue larger than the rest), 9lamentary collapse (two positive eigenvalues larger than
the third) or spherical collapse (all eigenvalues positive and equal). If all eigenvalues are negative,
then the evolution corresponds to an underdense region, eventually reaching � = −1. For Gaussian
initial conditions, it is possible to work out the probability distribution for the eigenvalues [190],
which leads through the non-linear transformation in Eq. (93) to a characterization of the one-point
statistical properties of the density 9eld. These results will be discussed in Section 5.8.3.

2.7. Lagrangian perturbation theory

Unlike in Eulerian PT, there is no known recursive solution for the expression of the order-by-order
cosmic 9elds in Lagrangian PT, even for the Einstein–de Sitter case. One reason for that is that
beyond second order, even though one can assume an irrotational Jow in Eulerian space, this does not
imply that the displacement 9eld is irrotational [105]. It has been stressed that already second-order
Lagrangian PT for the displacement 9eld (hereafter 2LPT), does provide a remarkable improvement
over the ZA in describing the global properties of density and velocity 9elds [106,455,93] and in
most practical cases the improvement brought by third-order Lagrangian PT is marginal [106,455].

One way to understand this situation is to recall that the Lagrangian picture is intrinsically
non-linear in the density 9eld (e.g. see Eq. (91)), and a small perturbation in Lagrangian Juid
element paths carries a considerable amount of non-linear information about the corresponding Eule-
rian density and velocity 9elds. In particular, as we shall see below, a truncation of Lagrangian PT
at a 9xed order, yields non-zero Eulerian PT kernels at every order. However, as we shall review in
the next few sections, this is not always an advantage, particularly when dealing with initial condi-
tions with enough small-scale power where shell crossing is signi9cant. In these cases, Lagrangian
PT generally breaks down at scales larger than Eulerian PT.

The reason for the remarkable improvement of 2LPT over ZA is in fact not surprising. The solution
of Eq. (90) to second order describes the correction to the ZA displacement due to gravitational
tidal e=ects, that is, it takes into account the fact that gravitational instability is non-local. It reads

∇q ·�(2) =
1
2
D2(�)

∑
i �=j

(D(1)
i; i D

(1)
j; j −D(1)

i; j D
(1)
j; i ) ; (94)

where D2(�) denotes the second-order growth factor, which for 0:16	m6 3 (	� = 0) obeys

D2(�) ≈ − 3
7 D2

1(�) ; (95)

7 Rigorously, the ZA results from using the linear displacement 9eld with the constraint that at large scales one recovers
linear Eulerian PT [103].
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or more precisely

D2(�) ≈ − 3
7 D2

1(�)	−2=63
m ; (96)

to better than 7% and 0.5% respectively [91], whereas for Jat models with non-zero cosmological
constant 	� we have for 0:016	m6 1

D2(�) ≈ − 3
7 D2

1(�)	−1=143
m ; (97)

to better than 0.6% [93]. Since Lagrangian solutions up to second order are curl free, 8 it is conve-
nient to de9ne Lagrangian potentials 2(1) and 2(2) so that in 2LPT

x(q) = q − D1∇q2(1) + D2∇q2(2) ; (98)

and the velocity 9eld then reads

u = −D1f1H∇q2(1) + D2f2H∇q2(2) ; (99)

where the logarithmic derivatives of the growth factors fi ≡ (dln Di)=(dln a) can be approximated
for open models with 0:16	m6 1 by

f1 ≈ 	3=5
m ; f2 ≈ 2	4=7

m ; (100)

to better than 2% [506] and 5% [93], respectively. For Jat models with non-zero cosmological
constant 	� we have for 0:016	m6 1

f1 ≈ 	5=9
m ; f2 ≈ 2	6=11

m ; (101)

to better than 10% and 12%, respectively [93]. The accuracy of these two 9ts improves signif-
icantly for 	m¿ 0:1, in the relevant range according to present observations. Summarizing, the
time-independent potentials in Eqs. (98) and (99) obey the following Poisson equations [106]:

∇2
q2

(1)(q) = �(q) ; (102)

∇2
q2

(2)(q) =
∑
i¿j

[2(1)
; ii (q)2(1)

; jj (q) − (2(1)
; ij (q))2] : (103)

It is possible to improve on 2LPT by going to third order in the displacement 9eld (3LPT), how-
ever it becomes more costly due to the need of solving three additional Poisson equations [105,117].
Third-order results give a better behavior in underdense regions [93] and lead to additional substruc-
ture in high-density regions [108]. Detailed comparison of Lagrangian PT at di=erent orders against
numerical simulations is given in [93,367].

2.8. Non-linear approximations

When density Juctuations become strongly non-linear, PT breaks down and one has to resort
to numerical simulations to study their evolution. However, numerical simulations provide limited
physical insight into the physics of gravitational clustering. On the other hand, many non-linear
approximations to the equations of motion have been suggested in the literature which allow calcu-
lations to be extrapolated to the non-linear regime. However, as we shall see, it seems fair to say

8 This is assuming that initial conditions are in the growing mode, for a more general treatment see [104].
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that these approximations have mostly been useful to gain understanding about di=erent aspects of
gravitational clustering while quantitatively none of them seem to be accurate enough for practical
use. Rigorous PT has provided a very useful way to benchmark these di=erent approximations in
the weakly non-linear regime.

In general, most non-linear approximations can be considered as di=erent assumptions (valid in
linear PT) that replace Poisson’s equation [470]. These modi9ed dynamics, are often local, in the
sense described above for the ZA, in order to provide a simpler way of calculating the evolution of
perturbations than the full non-local dynamics.

Probably, the best known of non-linear approximations is the ZA, which in Eulerian space is
equivalent to replacing the Poisson equation by the following ansatz [470,327]:

u(x; �) = − 2f
3	mH(�)

∇�(x; �) ; (104)

which is the relation between velocity and gravitational potential valid in linear PT. Conservation of
momentum (assuming for de9niteness 	m = 1) then becomes [see Eq. (17)]

9u(x; �)
9� − H(�)

2
u(x; �) + u(x; �) · ∇u(x; �) = 0 : (105)

It is straightforward to 9nd the PT recursion relations using these equations of motion [557]; the
result for the density 9eld kernel is particularly simple [274],

F (s)
n (q1; : : : ; qn) =

1
n!

k · q1

q2
1

· · · k · qn

q2
n

; (106)

where k ≡ q1 + · · · + qn. As we mentioned before, the ZA is a local approximation and becomes
the exact dynamics in one-dimensional collapse. It is also possible to formulate local approximations
that besides being exact for planar collapse like the ZA, are also exact for spherical [62] and even
cylindrical collapse [327]. However, their implementation for the calculation of statistical properties
of density and velocity 9elds is not straightforward.

A signi9cant shortcoming of the ZA is the fact that after shell crossing (“pancake formation”),
matter continues to Jow throughout the pancake without ever turning around, washing out structures
at small scales. This can be 9xed phenomenologically by adding some small e=ective viscosity to
Eq. (105), which then becomes the Burgers’ equation 9

9u(x; �)
9� − H(�)

2
u(x; �) + u(x; �) · ∇u(x; �) = .∇2u(x; �) : (107)

This is the so-called adhesion approximation [278]. This equation has the nice property that for
a potential Jow it can be reduced to a linear di=usion equation, and therefore solved exactly.
Given the initial conditions, this can be used to predict the location of pancakes and clusters,
giving good agreement when compared to numerical simulations [381]. More detailed comparisons
with numerical simulations for density 9eld statistics show an improvement over the ZA at small
scales [683]; however, at weakly non-linear scales the adhesion approximation is essentially equal
to the ZA.

9 An attempt to see how this equation might arise from the physics of multi-streaming has been given in [109].
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The linear potential approximation [97,13] assumes that the gravitational potential remains the
same as in the linear regime; therefore,

∇2�(x; �) = 3
2 	mH

2(�)�1(x; �) ; (108)

where �1(x; �) =D(+)
1 (�)�1(x) is the linearly extrapolated density 9eld. The idea behind this approx-

imation is that since � ˙ �=k2, the gravitational potential is dominated by long-wavelength modes
more than the density 9eld, and therefore it ought to obey linear PT to a better approximation.

In the frozen Eow approximation [433], the velocity 9eld is instead assumed to remain linear,

�(x; �) = −H(�)f(	m;	�)�1(x; �) ; (109)

i.e. the velocity 9eld kernels G(s)
n ≡ 0 (n¿ 1). In the next sections we will brieJy review how

these di=erent approximations compare in the weakly non-linear regime [470,471,47,557], see e.g.
Table 4.

2.9. Numerical simulations

2.9.1. Introduction
Cosmological dark matter simulations have become a central tool in predicting the evolution of

structure in the universe well into the non-linear regime. Current state-of-the-art numerical simulations
can follow the dynamics of about 109 particles (see e.g. [163]), which although impressive, is
still tens of orders of magnitude smaller than the number of dark matter particles expected in a
cosmological volume, as mentioned in the introduction.

However, this is not an insurmountable limitation. As we discussed in Section 2.1, in the limit that
the number of particles N�1, collisionless dark matter obeys the Vlasov equation for the distribution
function in phase space, Eq. (12). The task of numerical simulations is to sample this distribution
by partitioning phase space into N elementary volumes, “particles” with positions, velocities and
(possibly di=erent) masses mi; i = 1; : : : ; N , and following the evolution of these test particles due
to the action of gravity and the expansion of the universe (technically, these particles obey the
equations of the characteristics of the Vlasov equation). The number of particles N 9xes the mass
resolution of the numerical simulation.

Each particle i can be thought of as carrying a “smooth” density pro9le, which can be viewed as
a “cloud” of typical size ji. The parameter ji is called the softening length (associated to particle
i). In general, ji ˙ m1=3

i . This softening is introduced to suppress interactions between nearby
particles in order to reduce N -body relaxation, which is an artifact of the discrete description of the
distribution function. It 9xes the spatial resolution of the simulation. In general, it is chosen to be a
small fraction of the (local or global) mean inter-particle separation, but this can vary signi9cantly
depending on the type of code used.

In this section, we brieJy discuss methods used to solve numerically the Vlasov equation. A
complete discussion of N -body methods is beyond the scope of this work, we shall only describe
the most common methods closely following [155]; for a comprehensive review see e.g. [63].

The basic steps in an N -body simulation can be summarized as follows:

(i) implementation of initial conditions ([379,199], see e.g. [64] and references therein for recent
developments);
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(ii) calculation of the force by solving the Poisson equation;
(iii) update of positions and velocities of particles;
(iv) diagnostics, e.g. tests of energy conservation;
(v) go back to (ii) until simulation is completed.

In general, step (iii) is performed with time integrators accurate to second order, preferably symplec-
tic (i.e. that preserve phase-space volume). The Leapfrog integrator (e.g. [314]), where velocities
and positions are shifted from each other by half a time step, is probably the most common one.
The Predictor–Corrector scheme is also popular since it allows easy implementation of individual,
varying time step per particle (e.g. [601]). Low-order integrators are used mostly to minimize the
storage of variables for a large number of particles whose orbits must be integrated and to reduce
the cost of the force calculation. Because of the chaotic nature of gravitational dynamics, it is not
feasible to follow very accurately individual particle orbits but only to properly recover the properties
of bound objects in a statistical sense.

All the methods that we describe in what follows mainly di=er in the calculation of the force
applied to each particle or, in other words, in how the Poisson equation is solved.

2.9.2. Direct summation
Also known as particle–particle (PP) method (e.g. [1]), it consists in evaluating the force on each

particle by summing directly the inJuence exerted on it by all neighbors. This method is robust but
very CPU consuming: scaling as O(N 2), it allows a small number of particles, typically N ∼ 103–
105. It was revived recently by the development of special hardware dedicated to the computation of
the Newtonian force (e.g. [427]), mostly used for stellar dynamics calculations (but see e.g. [243]
for a cosmological application).

2.9.3. The tree algorithm
The tree code is the most natural improvement of the PP method. It uses the fact that the inJuence

of remote structures on each particle can be computed by performing a multipole expansion on
clusters containing many particles. With appropriate selection of the clusters, the expansion can be
truncated at low order. Therefore, the list of interactions on each particle is much shorter than in
the PP method, of order ∼ logN , resulting in a O(N logN ) code. The practical implementation of
the tree code consists in decomposing hierarchically the system on a tree structure, which can be,
for example, a mutually nearest neighbor binary tree (e.g. [8]), or a space-balanced Oct tree in
which each branch is a cubical portion of space (e.g. [22,309,89]). Then a criterion is applied to
see whether or not a given cluster of particles has to be broken into smaller pieces (or equivalently,
if it is necessary to walk down the tree).

Various schemes exist (e.g. [545]), the simplest one for the Oct tree [22] consisting in subdividing
the cells until the condition s=r6 � is ful9lled, where s is the size of the cell, r is the distance of
the cell center of mass to the particle and � is a tunable parameter of order unity.

The tree data structure has many advantages: (i) the CPU spent per time step does not depend
signi9cantly on the degree of clustering of the system; (ii) implementation of individual time steps
per particle is fairly easy and this can speed up the simulation signi9cantly; (iii) the use of individual
masses per particle allows “zooming” in a particular region, for example a cluster, a galaxy halo or a
void: the location of interest is sampled accurately with high-resolution particles (with small mass),
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while tidal e=ects are modeled by low-resolution particles of mass increasing with distance from
the high-resolution region; (iv) implementation on parallel architectures with distributed memory is
relatively straightforward (e.g. [546,193,601]). However, tree codes are rather demanding in memory
(25–35 words per particles, e.g. [163]) and accurate handling of periodic boundaries (e.g. [310]) is
costly.

Typically, simulations using the tree code can involve up to ∼ 107–108 particles if done on parallel
supercomputers. They have high spatial resolution, of order j ∼ A=(10–20), where A is the mean
inter-particle distance.

2.9.4. The PM algorithm
In the particle–mesh (PM) method (e.g. see [314,191,454,86]), the mass of each particle is inter-

polated on a 9xed grid of size Ng (with N 3
g sites) to compute the density. The Poisson equation is

solved on the grid, generally by using a fast Fourier transform, then forces are interpolated back on
the particles. Implementing a PM code is thus rather simple, even on parallel architectures. Scaling
as O(N; N 3

g logNg), PM simulations have generally the advantage being low CPU consumers and
require reasonable amount of memory. Thus, a large number of particles can be used, N ∼ 107–109,
and typically Ng = N 1=3 or 2N 1=3. The main advantage and weakness of the PM approach is its low
spatial resolution. Indeed, the softening parameter is 9xed by the size of the grid, j ∼ L=Ng, where
L is the size of the box: large softening length reduces the e=ects of N -body relaxation and allows
good phase-space sampling, but considerably narrows the available dynamic scale range. To achieve
a spatial resolution comparable to that of a tree code while keeping the advantage of the PM code,
very large values of Ng and N would be needed, implying a tremendous cost both in memory and
in CPU.

2.9.5. Hybrid methods
To increase spatial resolution of the PM approach, several improvements have been suggested.
The most popular one is the P3M code (PP+PM) where the PM force is supplemented with

a short-range contribution obtained by direct summation of individual interactions between nearby
particles (e.g. [314,199]). Implementation of this code on a parallel supercomputer (T3E) produced a
very large cosmological simulation with 109 particles in a “Hubble” volume of size L=2000h−1 Mpc
[420]. The main caveat of the P3M approach is that as the system evolves to a more clustered state,
the time spent in calculation of PP interactions becomes increasingly signi9cant. To reduce the
slowing-down due to PP interactions, it was proposed to use a hierarchy of adaptive meshes in
regions of high particle density [162], giving birth to a very eQcient N -body code, the adaptive
P3M (AP3M).

Instead of direct PP summations to correct the PM force for short-range interactions, it is possible
to use a tree algorithm in high-density regions [695] or in all PM cells [12] similarly as in the P3M
code. Both these methods are potentially faster than their P3M competitor.

In the same spirit as in AP3M, but without the PP part, another alternative is to use adaptive
mesh re9nement (AMR): the PM mesh is increased locally when required with a hierarchy of
nested rectangular sub-grids (e.g. [675,6,341,264]). The forces can be computed at each level of the
hierarchy by a Fourier transform with appropriate boundary conditions. In fact, the sub-grids need
not be rectangular if one uses Oct tree structures, which is theoretically even more eQcient. In this
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adaptive re9nement tree (ART) method [386], the Poisson equation is solved by relaxation methods
(e.g. [314,532]).

Finally, it is worth mentioning a Lagrangian approach, which consists in using a mesh with
9xed size like in the PM code, but moving with the Jow so that resolution increases in high-density
regions and decreases elsewhere [269,516]. However, this potentially powerful method presents some
diQculties, e.g. mesh distortions may induce severe force anisotropies.

3. Random cosmic "elds and their statistical description

In this section we succinctly recall current ideas about the physical origin of stochasticity in cosmic
9elds in di=erent cosmological scenarios. We then present the statistical tools that are commonly used
to describe random cosmic 9elds such as power spectra, probability distribution functions, moments
and cumulants, and give some mathematical properties of interest.

3.1. The need for a statistical approach

As we shall review in detail in the following sections, the current explanation of the large-scale
structure of the universe is that the present distribution of matter on cosmological scales results from
the growth of primordial, small, seed Juctuations on an otherwise homogeneous universe ampli9ed
by gravitational instability. Tests of cosmological theories which characterize these primordial seeds
are not deterministic in nature but rather statistical, for the following reasons. First, we do not have
direct observational access to primordial Juctuations (which would provide de9nite initial conditions
for the deterministic evolution equations). In addition, the time scale for cosmological evolution is
so much longer than that over which we can make observations, that it is not possible to follow the
evolution of single systems. In other words, what we observe through our past light cone is di=erent
objects at di=erent times of their evolution; therefore, testing the evolution of structure must be done
statistically.

The observable universe is thus modeled as a stochastic realization of a statistical ensemble of
possibilities. The goal is to make statistical predictions, which in turn depend on the statistical
properties of the primordial perturbations leading to the formation of large-scale structures. Among
the two classes of models that have emerged to explain the large-scale structure of the universe, the
physical origin of stochasticity can be quite di=erent and thus give rise to very di=erent predictions.

The most widely considered models, based on the inJationary paradigm [279], generically give
birth to adiabatic 10 Gaussian initial Juctuations, at least in the simplest single-9eld models [602,304,
280,20]. In this case the origin of stochasticity lies on quantum Juctuations generated in the early
universe; we will consider this case in more detail below. However, one should keep in mind that
inJation is not necessarily the only mechanism that leads to Gaussian, or almost Gaussian, initial
conditions. For instance, topological defects based on the non-linear "-model in the large N -limit

10 As opposed to isocurvature Juctuations which is a set of individual perturbations such that the total Juctuation
amplitude vanishes. In the adiabatic case, the total amplitude does not vanish and this leads to perturbations in the spatial
curvature.
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would also give Gaussian initial conditions [655,333]. And in general the central limit theorem
ensures that such initial conditions are likely to happen in very broad classes of models.

The second class of models that have been developed for structure formation are based on topo-
logical defects, of which cosmic strings have been studied in most detail. In this case, the origin of
stochasticity lies on thermal Juctuations of a 9eld that undergoes a phase transition as the universe
cools, and is likely to obey non-Gaussian properties. Note, however, that these two classes of mod-
els do not necessarily exclude each other. For instance, formation of cosmic strings is encountered
in speci9c models of inJation [65,66,352]. There are also models inspired by duality properties of
superstring theories, in which an inJationary phase can be encountered but structure formation is
caused by the quantum Juctuations of the axion 9eld 11 [668,159,111] rather than the inJation 9eld.
With such a mechanism the initial metric Juctuations will not obey Gaussian statistics.

3.1.1. Physical origin of Euctuations from inEation
In models of inJation the stochastic properties of the 9elds originate from quantum Juctuations of

a scalar 9eld, the inJation. It is beyond the scope of this review to describe inJationary models in
any detail. We, instead, refer the reader to recent reviews for a complete discussion [399,400,415].
However, it is worth recalling that in such models (at least for the simplest single-9eld models
within the slow-roll approximation) all Juctuations originate from scalar adiabatic perturbations.
During the inJationary phase the energy density of the universe is dominated by the density stored
in the inJation 9eld. This 9eld has quantum Juctuations that can be decomposed in Fourier modes
using the creation and annihilation operators a†k and ak for a wave mode k:

�’ =
∫

d3k [ak k(t) exp(ik · x) + a†k 
∗
k (t) exp(−ik · x)] : (110)

The operators obey the standard commutation relation

[ak; a
†
−k′] = �D(k + k′) ; (111)

and the mode functions  k(t) are obtained from the Klein–Gordon equation for ’ in an expanding
universe. We give here its expression for a de-Sitter metric (i.e. when the spatial sections are Jat
and H is constant),

 k(t) =
H

(2k)1=2k

(
i +

k
aH

)
exp
[

ik
aH

]
; (112)

where a and H are, respectively, the expansion factor and the Hubble constant that are determined
by the overall content of the universe through the Friedmann equations, Eqs. (4) and (5).

When the modes exit the Hubble radius, k=(aH)�1, one can see from Eq. (112) that the dominant
mode reads

’k ≈ iH√
2k3=2

(ak + a†−k); �’ =
∫

d3k’keik·x : (113)

Thus these modes are all proportional to ak + a†−k. One important consequence of this is that the
quantum nature of the Juctuations has disappeared [281,375,376]: any combinations of ’k commute

11 However, this generally leads to isocurvature Juctuations rather than adiabatic.
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with each other. The 9eld ’ can then be seen as a classic stochastic 9eld where ensemble averages
identify with vacuum expectation values,

〈· · ·〉 ≡ 〈0| · · · |〉0 : (114)

After the inJationary phase the modes re-enter the Hubble radius. They leave imprints of their energy
Juctuations in the gravitational potential, the statistical properties of which can therefore be deduced
from Eqs. (111) and (113). All subsequent stochasticity that appears in the cosmic 9elds can thus
be expressed in terms of the random variable ’k.

3.1.2. Physical origin of Euctuations from topological defects
In models of structure formation with topological defects, stochasticity originates from thermal

Juctuations. One important diQculty in this case is that topological defects generally behave as
active seeds, and except in some special cases (see for instance [194]), the dynamical evolution
of these seeds is non-linear and non-local, hence requiring heavy numerical calculation for their
description. This is in particular true for cosmic strings that form a network whose evolution is
extremely complex (see for instance [90]). Therefore, in this case it is not possible to write down in
general how the stochasticity in cosmic 9elds relates to more fundamental processes. See [674] for a
review of the physics of topological defects. Current observations of multiple acoustic peaks in the
power spectrum of microwave background anisotropies severely constrain signi9cant contributions
to perturbations from active seeds [476,282,397].

3.2. Correlation functions and power spectra

From now on, we consider a cosmic scalar 9eld whose statistical properties we want to describe.
This 9eld can either be the cosmic density 9eld, �(x), the cosmic gravitational potential, the velocity
divergence 9eld, or any other 9eld of interest.

3.2.1. Statistical homogeneity and isotropy
A random 9eld is called statistically homogeneous 12 if all the joint multipoint probability distri-

bution functions p(�1; �2; : : :) or its moments, ensemble averages of local density products, remain
the same under translation of the coordinates x1; x2; : : : in space (here �i ≡ �(xi)). Thus the prob-
abilities depend only on the relative positions. A stochastic 9eld is called statistically isotropic if
p(�1; �2; : : :) is invariant under spatial rotations. We will assume that cosmic 9elds are statistically
homogeneous and isotropic, as predicted by most cosmological theories. The validity of this assump-
tion can and should be tested against the observational data. Examples of primordial 9elds which
do not obey statistical homogeneity and isotropy are Juctuations in compact hyperbolic spaces (see
e.g. [82]). Furthermore, redshift distortions in galaxy redshift surveys introduce signi9cant deviations
from statistical isotropy and homogeneity in the redshift-space density 9eld, as will be reviewed in
Section 7.

12 This is in contrast with a homogeneous 9eld, which takes the same value everywhere in space.
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3.2.2. Two-point correlation function and power spectrum
The two-point correlation function is de9ned as the joint ensemble average of the density at two

di=erent locations,

�(r) = 〈�(x)�(x + r)〉 ; (115)

which depends only on the norm of r due to statistical homogeneity and isotropy. The density
contrast �(x) is usually written in terms of its Fourier components,

�(x) =
∫

d3k �(k) exp(ik · x) : (116)

The quantities �(k) are then complex random variables. As �(x) is real, it follows that

�(k) = �∗(−k) : (117)

The density 9eld is, therefore, determined entirely by the statistical properties of the random variable
�(k). We can compute the correlators in Fourier space,

〈�(k)�(k′)〉 =
∫

d3x
(2�)3

d3r
(2�)3 〈�(x)�(x + r)〉 exp[ − i(k + k′) · x− ik′ · r] (118)

which gives,

〈�(k)�(k′)〉=
∫

d3x
(2�)3

d3r
(2�)3 �(r) exp[ − i(k + k′) · x− ik′ · r]

= �D(k + k′)
∫

d3r
(2�)3 �(r) exp(ik · r) ≡ �D(k + k′)P(k) ; (119)

where P(k) is by de9nition the density power spectrum. The inverse relation between two-point
correlation function and power spectrum thus reads

�(r) =
∫

d3kP(k) exp(ik · r) : (120)

There are basically two conventions in the literature regarding the de9nition of the power spectrum,
which di=er by a factor of (2�)3. In this review we use the convention in Eqs. (36), (116) and (119)
which lead to Eq. (120). Another popular choice is to reverse the role of (2�)3 factors in the Fourier
transforms, i.e. �(k) ≡ ∫ d3r exp(−ik · r)�(r), and then modify Eq. (119) to read 〈�(k)�(k′)〉 ≡
(2�)3�D(k+k′)P(k), which leads to k3P(k)=(2�2) being the contribution per logarithmic wavenumber
to the variance, rather than 4�k3P(k) as in our case.

3.2.3. The Wick theorem for Gaussian Felds
The power spectrum is a well-de9ned quantity for almost all homogeneous random 9elds. This

concept becomes, however, extremely fruitful when one considers a Gaussian 9eld. It means that
any joint distribution of local densities is Gaussian distributed. Any ensemble average of product of
variables can then be obtained by product of ensemble averages of pairs. We write explicitly this
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property for the Fourier modes as it will be used extensively in this work:

〈�(k1) · · · �(k2p+1)〉 = 0 ; (121)

〈�(k1) · · · �(k2p)〉 =
∑

all pair associations

∏
p pairs (i; j)

〈�(ki)�(kj)〉 : (122)

This is the Wick theorem, a fundamental theorem for classic and quantum 9eld theories.
The statistical properties of the random variables �(k) are then entirely determined by the shape

and normalization of P(k). A speci9c cosmological model will eventually be determined e.g. by the
power spectrum in the linear regime, by 	m and 	� only as long as one is only interested in the
dark matter behavior. 13

As mentioned in the previous section, in the case of an inJationary scenario the initial energy
Juctuations are expected to be distributed as a Gaussian random 9eld [602,304,280,20]. This is a
consequence of the commutation rules given by Eq. (111) for the creation and annihilation operators
for a free quantum 9eld. They imply that

[(ak + a†−k); (ak′ + a†−k′)] = �D(k + k′) : (123)

As a consequence of this, the relations in Eqs. (121) and (122) are veri9ed for ’k for all modes
that exit the Hubble radius, which long afterwards come back in as classical stochastic perturbations.
These properties obviously apply also to any quantities linearly related to ’k.

3.2.4. Higher-order correlators: diagrammatics
In general, it is possible to de9ne higher-order correlation functions. They are de9ned as the

connected part (denoted with subscript c) of the joint ensemble average of the density in an arbitrarily
number of locations. They can be formally written as

�N (x1; : : : ; xN ) = 〈�(x1); : : : ; �(xN )〉c (124)

≡ 〈�(x1); : : : ; �(xN )〉 −
∑

S∈P({x1 ;:::;xn})

∏
si∈S

�#si(xsi(1); : : : ; xsi(#si)) ; (125)

where the sum is made over the proper partitions (any partition except the set itself) of {x1; : : : ; xN}
and si is thus a subset of {x1; : : : ; xN} contained in partition S. When the average of �(x) is de9ned
as zero, only partitions that contain no singlets contribute.

The decomposition in connected and non-connected parts can be easily visualized. It means that
any ensemble average can be decomposed in a product of connected parts. They are de9ned, for
instance, in Fig. 1. The tree-point moment is “written” in Fig. 2 and the four-point moment in Fig. 3.

In case of a Gaussian 9eld, all connected correlation functions are zero except �2. This is a
consequence of Wick’s theorem. As a result, the only non-zero connected part is the two-point
correlation function. An important consequence is that the statistical properties of any 9eld, not
necessarily linear, built from a Gaussian 9eld � can be written in terms of combinations of two-point
functions of �. Note that in a diagrammatic representation, the connected moments of any of such
9eld is represented by a connected graph. This is illustrated in Fig. 4 for the 9eld � = 22: the

13 Note that there are now emerging models with a non-standard vacuum equation of state, the so-called quintessence
models [536,707], in which the vacuum energy is that of a non-static scalar 9eld. In this case, the detailed behavior of
the large-scale structure growth will depend on the dynamical evolution of the quintessence 9eld.
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Fig. 1. Representation of the connected part of the moments.

Fig. 2. Writing of the three-point moment in terms of connected parts.

Fig. 3. Same as Fig. 2 for the four-point moment.

Fig. 4. Disconnected and connected part of the two-point function of the 9eld � assuming it is given by � = 22 with 2
Gaussian.

connected part of the two-point function of this 9eld is obtained by all the diagrams that explicitly
join the two points. The other ones contribute to the moments, but not to its connected part.

The connected part has the important property that it vanishes when one or more points are
separated by in9nite separation. In addition, it provides a useful way of characterizing the statis-
tical properties since unlike unconnected correlation functions, each connected correlation provides
independent information.

These de9nitions can be extended to Fourier space. Because of homogeneity of space
〈�(k1) · · · �(kN )〉c is always proportional to �D(k1 + · · · + kN ). Then we can de9ne PN (k1; : : : ; kN )
with

〈�(k1) · · · �(kN )〉c = �D(k1 + · · · + kN )PN (k1; : : : ; kN ) : (126)

One particular case that will be discussed in the following is for n = 3, the bispectrum, which is
usually denoted by B(k1; k2; k3).
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3.2.5. Probabilities and correlation functions
Correlation functions are directly related to the multi-point probability function, in fact they can

be de9ned from them. Here we illustrate this for the case of the density 9eld, as these results are
frequently used in the literature. The physical interpretation of the two-point correlation function is
that it measures the excess over random probability that two particles at volume elements dV1 and
dV2 are separated by distance x12 ≡ |x1 − x2|,

dP12 = n2[1 + �(x12)] dV1 dV2 ; (127)

where n is the mean density. If there is no clustering (random distribution), �=0 and the probability
of having a pair of particles is just given by the mean density squared, independent of distance.
Since the probability of having a particle in dV1 is n dV1, the conditional probability that there is a
particle at dV2 given that there is one at dV1 is

dP(2 | 1) = n[1 + �(x12)] dV2 : (128)

The nature of clustering is clear from this expression; if objects are clustered (�(x12)¿ 0), then the
conditional probability is enhanced, whereas if objects are anticorrelated (�(x12)¡ 0) the conditional
probability is suppressed over the random distribution case, as expected. Similar to Eq. (127), for
the three-point case the probability of having three objects is given by

dP123 = n3[1 + �(x12) + �(x23) + �(x31) + �3(x12; x23; x31)] dV1 dV2 dV3 ; (129)

where �3 denotes the three-point (connected) correlation function. If the density 9eld were Gaussian,
�3 = 0, and all probabilities are determined by �(r) alone. Analogous results hold for higher-order
correlations (e.g. see [508]).

3.3. Moments, cumulants and their generating functions

3.3.1. Moments and cumulants
One particular case for Eq. (125) is when all points are at the same location. Because of statis-

tical homogeneity �p(x; : : : ; x) is independent of the position x and it reduces to the cumulants of
the one-point density probability distribution functions, 〈�p〉c. Relation (125) tells us also how the
cumulants are related to the moments 〈�p〉. For convenience we write here the 9rst few terms

〈�〉c = 〈�〉 ;

〈�2〉c = "2 = 〈�2〉 − 〈�〉2
c ;

〈�3〉c = 〈�3〉 − 3〈�2〉c〈�〉c − 〈�〉3
c ;

〈�4〉c = 〈�4〉 − 4〈�3〉c〈�〉c − 3〈�2〉2
c − 6〈�2〉c〈�〉2

c − 〈�〉4
c ;

〈�5〉c = 〈�5〉 − 5〈�4〉c〈�〉c − 10〈�3〉c〈�2〉c − 10〈�3〉c〈�〉2
c − 15〈�2〉2

c〈�〉c

−10〈�2〉c〈�〉3
c − 〈�〉5

c : (130)
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In most cases 〈�〉 = 0 and the above equations simplify considerably. In the following we usually
denote "2 the local second-order cumulant. The Wick theorem then implies that in case of a Gaussian
9eld, "2 is the only non-vanishing cumulant.

It is important to note that the local PDF is essentially characterized by its cumulants which
constitute a set of independent quantities. This is important since in most of applications that follow
the higher order, cumulants are small compared to their associated moments. Finally, let us note that
a useful mathematical property of cumulants is that 〈(b�)n〉c =bn〈�n〉c and 〈(b+�)n〉c = 〈�n〉c, where
b is an ordinary number.

3.3.2. Smoothing
The density distribution is usually smoothed with a 9lter WR of a given size, R, commonly a

top-hat or a Gaussian window. Indeed, this is required by the discrete nature of galaxy catalogs
and N -body experiments used to simulate them. Moreover, we shall see later that the scale-free
nature of gravitational clustering implies some remarkable properties about the scaling behavior of
the smoothed density distribution. The quantities of interest are then the moments 〈�p

R〉 and the
cumulants 〈�p

R〉c of the smoothed density 9eld

�R(x) =
∫

WR(x′ − x)�(x′) d3x′ : (131)

Note that for the top-hat window,

〈�p
R〉c =

∫
vR

�p(x1; : : : ; xp)
dDx1 · · · dDxp

vpR
(132)

(where D=2 or 3 is the dimension of the 9eld) is nothing but the average of the N -point correlation
function over the corresponding cell of volume vR.

For a smooth 9eld, equations in Section 3.3.1 are valid for � as well as �R. Some corrections are
required if � is a sum of Dirac delta functions as in real galaxy catalogs. We shall come back to
this in Section 6.

In the remaining of this section, we shall omit the subscript R which stands for smoothing, but it
will be implicitly assumed.

3.3.3. Generating functions
It is convenient to de9ne a function from which all moments can be generated, namely the moment

generating function de9ned by

M(t) ≡
∞∑
p=0

〈�p〉
p!

tp =
∫ +∞

−∞
p(�)et�d� = 〈exp(t�)〉 : (133)

The moments can obviously be obtained by subsequent derivatives of this function at the origin
t = 0. A cumulant generating function can similarly be de9ned by

C(t) ≡
∞∑
p=2

〈�p〉c

p!
tp : (134)
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A fundamental result is that the cumulant generating function is given by the logarithm of the
moment generation function (see e.g. Appendix D in [67] for a proof)

M(t) = exp[C(t)] : (135)

In case of a Gaussian PDF, this is straightforward to check since 〈exp(t�)〉 = exp("2t2=2).

3.4. Probability distribution functions

The probability distribution function (PDF) of the local density can be obtained from the cumulant
generating function by inverting Eq. (133). 14 This inverse relation involves the inverse Laplace
transform, and can formally be written in terms of an integral in the complex plane (see [16] and
Appendix E for a detailed account of this relation):

P(�) =
∫ i∞

−i∞
dt
2�i

exp[t� + C(t)] : (136)

For a Gaussian distribution, the change of variable t → it gives the familiar Gaussian integral.
This can be easily generalized to multidimensional PDFs. We then have

P(�1; : : : ; �p) =
∫ i∞

−i∞
dt1
2�i

· · ·
∫ i∞

−i∞

dtq
2�i

exp




 p∑

q=1

tq�q


+ C(t1; : : : ; tp)


 ; (137)

with

C(t1; : : : ; tp) =
∑

q1 ;:::;qp

〈�q1
1 · · · �qp

p 〉c
tq1
1 · · · tqpp

q1! · · · qp!
: (138)

3.5. Weakly non-Gaussian distributions: Edgeworth expansion

Throughout this review we will be often dealing with 9elds that depart only weakly from a
Gaussian distribution. To be more speci9c, they depart in such a way that

〈�p〉c ∼ "2p−2 (139)

when " is small. 15 It is then natural to de9ne the coeQcient Sp as

Sp =
〈�p〉c

"2p−2 : (140)

(Similar de9nitions will be introduced subsequently for the other 9elds.) Introducing the Sp gener-
ating function (sometimes also called the cumulant generating function) with

’(y) =
∞∑
p=2

Sp
(−1)p−1

p!
yp = −"2C(−y="2) ; (141)

14 However, it may happen that the moment or cumulant generating function is not de9ned because of the lack of
convergence of the series in Eq. (133). In this case the PDF is not uniquely de9ned by its moments. In particular, this
is the case for the log-normal distribution. There are indeed other PDFs that have the same moments [312].

15 This is a consequence of Gaussian initial conditions and the fact that non-linearities in the equations of motion are
quadratic, see Section 4.
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we get from Eq. (136)

P(�) d� =
d�

2�i"2

∫ +i∞

−i∞
dy exp

[
−’(y)

"2 +
�y
"2

]
: (142)

Then a number of approximations and truncations can be applied to this expression to decompose the
local PDF. This leads to the Edgeworth form of the Gram–Charlier series [609] applied to statistics
of weakly non-linear 9elds. This expansion was derived initially in [405,406] and later proposed in
cosmological contexts [552,49,356].

The Edgeworth expansion can be derived from Eq. (142) of the density PDF assuming that the
density contrast � is of the order of " and small. The relevant values of y are then also of the order
of " and are thus expected to be small. It is then legitimate to expand the function ’(y):

’(y) ≈ −1
2
y2 +

S3

3!
y3 − S4

4!
y4 +

S5

5!
y5 ± · · · : (143)

To calculate the density PDF, we substitute expansion (143) into the integral in Eq. (142). Then
we make a further expansion of the non-Gaussian part of the factor exp[−’(y)="2] with respect to
both y and " assuming they are of the same order.

Finally, collecting the terms of the same order in " we obtain the so-called Edgeworth form of
the Gram–Charlier series for density PDF,

P(�) d� =
1

(2�"2)1=2 exp(−.2=2)
[
1 + "

S3

6
H3(.) + "2

(
S4

24
H4(.) +

S2
3

72
H6(.)

)

+"3

(
S5

120
H5(.) +

S4S3

144
H7(.) +

S3
3

1296
H9(.)

)
+ · · ·

]
d� ; (144)

where . = �=" and Hn(.) are the Hermite polynomials

Hn(.)≡ (−1)n exp(.2=2)
dn

d.n exp(−.2=2)

= .n − n(n− 1)
1!

.n−2

2
+

n(n− 1)(n− 2)(n− 3)
2!

.n−4

22 − · · · ; (145)

thus

H3(.) = .3 − 3. ; (146)

H4(.) = .4 − 6.2 + 3 ; (147)

H5(.) = .5 − 10.3 + 15. ; (148)

...

This is a universal form for any slightly non-Gaussian 9eld, i.e. when " is small and Sp are 9-
nite. Note that the parameters Sp might vary weakly with " a=ecting expansion (144) beyond the
third-order term (see [49]).

With such an approach, it is possible to get an approximate form of the density PDF from a few
known low-order cumulants. This method is irreplaceable when only a few cumulants have been
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derived from 9rst principles. However, it is important to note that this expansion is valid only in
the slightly non-Gaussian regime. The validity domain of form (144) is limited to 9nite values of
�=", typically �=". 0:5.

A well-known problem with the Edgeworth expansion is that it does not give a positive-de9nite
PDF, in particular this manifests itself in the tails of the distribution. To improve this behavior, an
Edgeworth-like expansion about the Gamma PDF (which has exponential tails) has been explored in
[258]. To bypass the positivity problem, it was proposed to apply the Edgeworth expansion to the
logarithm of the density instead of the density itself [148]. With this change of variable, motivated by
dynamics [136], the approximation works well even into the non-linear regime for "2.10 [148,656].

Extensions of Eq. (144) have been written for joint PDFs [406,409]. Note that it can be done
only when the cross-correlation matrix between the variables is regular (see [56] for details).

4. From dynamics to statistics: N -point results

A general approach to go from dynamics to statistics would be to solve the Vlasov equation
from initial conditions for the phase–space density function f(x; p) given by a stochastic process
such as inJation. Correlation functions in con9guration space reviewed in Section 3 can be trivially
extended to phase space, and the Vlasov equation yields equations of motion for these phase-space
correlation functions. The result is a set of coupled non-linear integro-di=erential equations, the
so-called BBGKY hierarchy, 16 in which the one-point density is related to the two-point phase-space
correlation function, the two-point depends on the three-point, and so forth. However, as mentioned
in Section 2, if we restrict ourselves to the single stream regime, study of the Vlasov equation
reduces to studying the evolution of the density and velocity 9elds given by the continuity, Euler
and Poisson equations. Therefore, all we have to consider in this case is the correlation functions of
density and velocity 9elds.

In this section, we review how the results discussed in Section 2 about the time evolution of
density and velocity 9elds can be used to understand the evolution of their statistical properties,
characterized by correlation functions as summarized in the previous section. Most of the calculations
will be done assuming Gaussian initial conditions; in this case the main focus is in quantitative
understanding of the emergence of non-Gaussianity due to non-linear evolution. In Section 4.4 we
discuss results derived from non-Gaussian initial conditions. In Section 5 we present, with similar
structure, analogous results for one-point statistics, with emphasis on the evolution of local moments
and PDFs.

4.1. The weakly non-linear regime: “tree-level” PT

4.1.1. Emergence of non-Gaussianity
If the cosmic 9elds are Gaussian, their power spectrum P(k; �),

〈�̃(k; �)�̃(k′; �)〉c = �D(k + k′)P(k; �) (149)

16 After N.N. Bogoliubov, M. Born, H.S. Green, J.G. Kirkwood and J. Yvon, who independently obtained the set of
equations between 1935 and 1962. Rigorously, this route from the Vlasov equation to the BBGKY equations is restricted
to the so-called “Juid limit” in which the number of particles is e=ectively in9nite and there are no relaxation e=ects.
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<δ (1)δ(2)δ(3)> = 
c +<δ(1)δ(2)δ(3)δ(4)> = c

Fig. 5. Tree diagrams for the three-point function or bispectrum.

Fig. 6. Tree diagrams for the four-point function or trispectrum.

(or, equivalently, their two-point correlation function) completely describes the statistical properties.
However, as we saw in Section 2, the dynamics of gravitational instability is non-linear, and therefore
non-linear evolution inevitably leads to the development of non-Gaussian features.

The statistical characterization of non-Gaussian 9elds is, in general, a non-trivial subject. As we
discussed in the previous section, the problem is that in principle all N -point correlation functions
are needed to specify the statistical properties of cosmic 9elds. In fact, for general non-Gaussian
9elds, it is not clear that correlation functions (either in real or Fourier space) are the best set of
quantities that describes the statistics in the most useful way.

The situation is somewhat di=erent for gravitational clustering from Gaussian initial conditions.
Here it is possible to calculate in a model-independent way precisely how the non-Gaussian features
arise, and what is the most natural statistical description. In particular, since the non-linearities
in the equations of motion are quadratic, gravitational instability generates connected higher-order
correlation functions that scale as �N ˙ �N−1

2 at large scales, where �2�1 and PT applies [232].
This scaling can be naturally represented by connected tree diagrams, where each link represents
the two-point function (or power spectrum in Fourier space), since for N points (N − 1) links are
necessary to connect them in a tree-like fashion.

As a consequence of this scaling, the so-called hierarchical amplitudes QN de9ned by

QN ≡ �N∑
labelings

∏N−1
edges ij �2(rij)

; (150)

where the denominator is given by all the topological distinct tree diagrams (the di=erent NN−2

ways of drawing N − 1 links that connect N points), are a very useful set of statistical quantities
to describe the properties of cosmic 9elds. In particular, they are independent of the amplitude of
the two-point function, and for scale-free initial conditions they are independent of overall scale.
As we shall see, the usefulness of these statistics is not just restricted to the weakly non-linear
regime (large scales); in fact, there are reasons to expect that in the opposite regime, at small scales
where �2�1, the scaling �N ˙ �N−1

2 is recovered. In this sense, the hierarchical amplitudes QN

(and their one-point cousins, the Sp parameters) are the most natural set of statistics to describe the
non-Gaussianity that results from gravitational clustering.

Figs. 5 and 6 show the tree diagrams that describe the three- and four-point function induced
by gravity. As we already said, N − 1 links (representing �2) are needed to describe the connected
N -point function, and furthermore, the number of lines coming out of a given vertex is the order
in PT that gives rise to such a diagram. For example, the diagram in Fig. 5 requires linear and
second-order PT, representing 〈�2(1)�1(2)�1(3)〉c (as in Section 2, subscripts describe the order in
PT). On the other hand, the diagrams in Fig. 6 require up to third order in PT. The 9rst term
represents 〈�1(1)�2(2)�2(3)�1(4)〉c whereas the second describes 〈�1(1)�3(2)�1(3)�1(4)〉c.
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<δ(1)δ(2)> =
c + +[ ]

Fig. 7. Diagrams for the two-point function or power spectrum up to one loop. See Eqs. (165) and (166) for one-loop
diagram amplitudes.

+ + +< δ(1)δ(2)δ(3)> =c

Fig. 8. Diagrams for the three-point function or bispectrum up to one loop.

In general, a consistent calculation of the connected p-point function induced by gravity to leading
order (“tree-level”) requires from 9rst to (p− 1)th order in PT [232]. At large scales, where �2�1,
tree-level PT leads to hierarchical amplitudes QN which are independent of �2. As �2 → 1, there
are corrections to tree-level PT which describe the �2 dependence of the QN amplitudes. These are
naturally described in terms of diagrams as well, in particular, the next to leading order contributions
(“one-loop” corrections) require from 9rst to (p + 1)th order in PT [557]. These are represented by
one-loop diagrams, i.e. connected diagrams where there is one closed loop. The additional link over
a tree diagram required to form a closed loop leads to QN ˙ �2.

Figs. 7 and 8 show the one-loop diagrams for the power spectrum and bispectrum. The one-loop
corrections to the power spectrum (the two terms in square brackets in Fig. 7) describe the non-linear
corrections to the linear evolution, that is, the e=ects of mode coupling and the onset of non-linear
structure growth. Recall that each line in a diagram represents the power spectrum P(0)(k) (or
two-point function) of the linear density 9eld. As a result, the one-loop power spectrum scales
P(1)(k) ˙ P(0)(k)2.

Are all these diagrams really necessary? In essence, what the diagrammatic representation does is
to order the contributions of the same order irrespective of the statistical quantity being considered.
For example, it is not consistent to consider the evolution of the power spectrum in second-order
PT (second term in Fig. 7) since there is a contribution of the same order coming from third-order
PT (third term in Fig. 7). Instead, one should consider the evolution of the power spectrum to
“one-loop” PT (which includes the two contributions of the same order, the terms in square brackets
in Fig. 7). A similar situation happens with the connected four-point function induced by gravity; it
is inconsistent to calculate it in second-order PT (9rst term in Fig. 6), rather a consistent calculation
of the four-point function to leading order requires “tree-level” PT (which also involves third-order
PT, i.e. the second term in Fig. 6).

We will now review results on the evolution of di=erent statistical quantities in tree-level PT.

4.1.2. Power spectrum evolution in linear PT
The simplest (trivial) application of PT is the leading order contribution to the evolution of the

power spectrum. Since we are dealing with the two-point function in Fourier space (N = 2), only
linear theory is required, that is, the connected part is just given by a single line joining the two
points.
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In this review we are concerned about time evolution of the cosmic 9elds during the matter
domination epoch. In this case, as we discussed in Section 2, di=usion e=ects are negligible and
the evolution can be cast in terms of perfect Juid equations that describe conservation of mass and
momentum. In this case, the evolution of the density 9eld is given by a simple time-dependent
scaling of the “linear” power spectrum

P(k; �) = [D(+)
1 (�)]2PL(k) ; (151)

where D(+)
1 (�) is the growing part of the linear growth factor. One must note, however, that the “lin-

ear” power spectrum speci9ed by PL(k) 17 derives from the linear evolution of density Juctuations
through the radiation domination era and the resulting decoupling of matter from radiation. This evo-
lution must be followed by using general relativistic Boltzmann numerical codes [499,76,416,578],
although analytic techniques can be used to understand quantitatively the results [320,321]. The end
result is that

PL(k) = knpT 2(k) ; (152)

where np is the primordial spectral index (np = 1 denotes the canonical scale-invariant spectrum
[300,706,499]), 18 T (k) is the transfer function that describes the evolution of the density 9eld
perturbations through decoupling (T (0) ≡ 1). It depends on cosmological parameters in a complicated
way, although in simple cases (where the baryonic content is negligible) it can be approximated by
a 9tting function that depends on the shape parameter # ≡ 	mh [76,21]. For the adiabatic CDM
scenario, T 2(k) → ln2(k)=k4 as k → ∞, due to the suppression of Juctuations growth during the
radiation dominated era, see e.g. [197] for a review.

4.1.3. The bispectrum induced by gravity
We now focus on the non-linear evolution of the three-point cumulant of the density 9eld, the

bispectrum B(k1; k2; �), de9ned by (compare with Eq. (149))

〈�̃(k1; �)�̃(k2; �)�̃(k3; �)〉c = �D(k1 + k2 + k3)B(k1; k2; �) : (153)

As we discussed already, it is convenient to de9ne the reduced bispectrum Q as follows [229,232]:

Q̃ ≡ B(k1; k2; �)
P(k1; �)P(k2; �) + P(k2; �)P(k3; �) + P(k3; �)P(k1; �)

; (154)

which has the desirable property that it is scale and time independent to lowest order (tree level) in
non-linear PT,

Q̃
(0)

=
2F2(k1; k2)P(k1; �)P(k2; �) + cyc:

P(k1; �)P(k2; �) + P(k2; �)P(k3; �) + P(k3; �)P(k1; �)
; (155)

17 We denote the linear power spectrum interchangeably by PL(k) or by P(0)(k).
18 This corresponds to Juctuations in the gravitational potential at the Hubble radius scale that have the same amplitude

for all modes, i.e. the gravitational potential has a power spectrum P’ ∼ k−3, as predicted by inJationary models, see
Eq. (113).
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Fig. 9. The tree-level reduced bispectrum Q̃
(0)

for triangle con9gurations given by k1=k2 = 2 as a function of the angle �
(k̂1 · k̂2 = cos �). The di=erent curves correspond to spectral indices n = −2;−1:5;−1;−0:5; 0 (from top to bottom).

Fig. 10. The tree-level three-point amplitude in real space Q(0) for triangle con9gurations given by r12=r23 =2 as a function
of the angle � (r̂12 · r̂23 = cos �). The di=erent curves correspond to spectral indices n=−2;−1:5;−1 (from top to bottom
at � = 0:4�).

where F2(k1; k2) denotes the second-order kernel obtained from the equations of motion, as in
Section 2.4.2. Recall that this kernel is very insensitive to cosmological parameters [see Eq. (71)],
as a consequence of this, the tree-level reduced bispectrum Q̃(0) is almost independent of cosmology
[236,313]. In addition, from Eq. (155) it follows that Q̃(0) is independent of time and normalization
[232]. Furthermore, for scale-free initial conditions, PL(k) ˙ kn, Q̃(0) is also independent of overall
scale. For the particular case of equilateral con9gurations (k1 = k2 = k3 and k̂ i · k̂ j = −0:5 for all
pairs), Q̃(0) is independent of spectral index as well, Q̃eq

(0) = 4
7 . In general, for scale-free initial power

spectra, Q̃(0) depends on con9guration shape through, e.g. the ratio k1=k2 and the angle � de9ned by
k̂1 · k̂2 = cos �. In fact, since bias between the galaxies and the underlying density 9eld is known to
change this shape dependence [235], measurements of the reduced bispectrum Q in galaxy surveys
could provide a measure of bias which is insensitive to other cosmological parameters [236], unlike
the usual determination from peculiar velocities which has a degeneracy with the density parameter
	m. We will review these applications in Section 8.

Fig. 9 shows Q̃(0) for the triangle con9guration given by k1=k2 = 2 as a function of the angle �
between these wave vectors (cos � ≡ k̂1 · k̂2) for di=erent spectral indices. The shape or con9guration
dependence of Q̃(0) comes from the second-order perturbation theory kernel F (s)

2 (see Eqs. (155) and
(170)) and can be understood in physical terms as follows. From the recursion relations given in
Section 2, we can write

F (s)
2 (k1; k2) = 5

14 [=(k2; k1) + =(k1; k2)] + 2
7>(k1; k2) ; (156)
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with = and > de9ned in Eq. (39). The terms in square brackets contribute a constant term, independent
of con9guration, coming from the �×� term in the equations of motion, plus terms which depend on
con9guration and describe gradients of the density 9eld in the direction of the Jow (i.e. the term u·∇�
in the continuity equation). Similarly, the last term in Eq. (156) contributes con9guration-dependent
terms which come from gradients of the velocity divergence in the direction of the Jow (due to
the term (u · ∇)u in Euler’s equation). Therefore, the con9guration dependence of the bispectrum
reJects the anisotropy of structures and Jows generated by gravitational instability. The enhancement
of correlations for collinear wave vectors (� = 0; �) in Fig. 9, reJects the fact that gravitational
instability generates density and velocity divergence gradients which are mostly parallel to the Jow
[559]. The dependence on the spectrum is also easy to understand: models with more large-scale
power (smaller spectral indices n) give rise to anisotropic structures and Jows with larger coherence
length, which upon ensemble averaging lead to a more anisotropic bispectrum.

4.1.4. The three-point correlation function
The three-point function �3 can be found straightforwardly by Fourier transformation of the bis-

pectrum, leading to

�3(x1; x2; x3) = [10
7 �(x13)�(x23) + ∇�(x13) · ∇−1�(x23)

+∇�(x23) · ∇−1�(x13) + 4
7(∇a∇−1

b �(x13))(∇a∇−1
b �(x23))] + cyc: ; (157)

where the inverse gradient is de9ned by the Fourier representation

∇−1�(x) ≡ −i
∫

d3k exp(ik · x)
k
k2P(k) : (158)

For scale-free initial conditions, P(k) ˙ kn, �(x) ˙ x−(n+3) (with n¡ 0 for convergence), and thus

�3(x1; x2; x3) =
[

10
7

+
n + 3
n

(x̂13 · x̂23)
(
x23

x13
+

x13

x23

)

+
4
7

[
3 − 2(n + 3) + (n + 3)2(x̂13 · x̂23)2

n2

]]
�(x13)�(x23) + cyc: (159)

Similar to Fourier space, we can de9ne the three-point amplitude in real space Q, 19

Q =
�3(x1; x2x3)

�(x12)�(x23) + �(x23)�(x31) + �(x31)�(x12)
; (160)

which is shown in Fig. 10 for spectral indices n = −2;−1:5;−1 (solid, dashed and short-dashed,
respectively). Note that in real space the three-point amplitude Q has a stronger shape dependence
for spectra with more power on small scales (larger spectral index n), unlike the case of Fourier
space. This is because scales are weighted di=erently. Since �(x) is actually equivalent to k3P(k)
rather than P(k), using �(x)=x3 to de9ne Q in real space rather than �(x) leads to a similar behavior
with spectral index than in Fourier space.

19 In this case, however, one must be careful not to use such a statistic for scales near the zero-crossing of �(r) [100].
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Fig. 11. Tree-level PT predictions of the three-point amplitude Q(0) in the �CDM model for triangle con9gurations given
by r12=r23 = 1 as a function of the angle = (r̂12 · r̂23 = cos =). The di=erent curves correspond to di=erent triangle sides
r12=6; 12; 18; 24 Mpc=h (from top to bottom at �=0:4�). Symbols with error bars correspond to measurements in numerical
simulations at "8 = 0:5 (left panel) and "8 = 1:0 (right panel). From [23].

Note that for scale-free initial conditions, the three-point amplitude for equilateral triangles reduces
to the following simple expression as a function of spectral index n:

Qeq =
18n2 + 19n− 3

7n2 : (161)

Fig. 11 shows a comparison of the tree-level PT prediction for Q3 in �CDM models (lines) with
the fully non-linear values of Q3 measured in N -body simulations (symbols with error bars). Even
on the earlier outputs ("8 = 0:5, left panel) corrections to the tree-level results become important
at scales r12 ¡ 12 Mpc=h. At larger scales there is an excellent agreement with tree-level PT. This
seems in contradiction with claims in [346], but note that for the later outputs ("8 =1:0, right panel)
non-linear corrections can be signi9cant at very large scales r12 ¡ 18 Mpc=h so that for precision
measurements one needs to take into account the loop corrections (see [23] for more details).

4.2. The transition to the non-linear regime: “loop corrections”

4.2.1. One-loop PT and previrialization
In the previous section we discussed the leading order contribution to correlations functions, and

found that these are given by tree-level PT, resulting in the linear evolution of the power spectrum
and in hierarchical amplitudes QN independent of the amplitude of Juctuations. Higher-order cor-
rections to tree-level PT (organized in terms of “loop” diagrams) can in principle be calculated, but
what new physics do they describe? Essentially, one-loop PT describes the 9rst e=ects of mode–mode
coupling in the evolution of the power spectrum, and the dependence of the hierarchical amplitudes
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QN on �2. It also gives a quantitative estimate of where tree-level PT breaks down, and leads to
a physical understanding of the transition to the non-linear regime.

One of the main lessons learned from one-loop PT is the fact that non-linear growth of density
and velocity 9elds can be slower than in linear PT, in contrast with e.g. the spherical collapse
model where non-linear growth is always faster than linear. This e=ect is due to tidal e=ects which
lead to non-radial motions and thus less e=ective collapse of perturbations. This was conjectured as
a possibility and termed “previrialization” [171]; numerical simulations however showed evidence
in favor [677,510] and against [207] this idea. The 9rst quantitative calculation of the evolution
of power spectra beyond linear theory for a wide class of initial conditions and comparison with
numerical simulations was done in [613], where it was shown that one-loop corrections to the linear
power spectrum can be either negative or positive depending on whether the initial spectral index
was larger or smaller than n ≈ −1. Subsequent work con9rmed these predictions in greater detail
[428,408,558]; in particular, the connection between one-loop corrections to the power spectrum and
previous work on previrialization was 9rst emphasized in [408]. In fact, a detailed investigation
shows that one-loop PT predicts the change of behavior to occur at n ≈ −1:4 [558], and divergences
appear for n& −1 which must be cuto= at some small scale in order to produce 9nite results. We
shall come back to this problem below.

In addition, one-loop corrections to the bispectrum show a very similar behavior with initial spec-
tral index [559,560]. For n . −1:4 one-loop corrections increase the con9guration dependence of
Q, whereas in the opposite case they tend to Jatten it out. These results for scale-free initial condi-
tions are relevant for understanding other spectra. Indeed, calculations for CDM spectra [27,334,560]
showed that the non-linear power spectrum is smaller than the linear one close to the non-linear
scale, where the e=ective spectral index is n& −1. Furthermore, these results give insight into the
evolution of CDM type of initial spectra: transfer of power happens from large to small scales be-
cause more positive spectral indices evolve slower than negative ones. In fact, as a result, non-linear
evolution drives the non-linear power spectrum closer to the critical index n ≈ −1 [558,14].

4.2.2. The one-loop power spectrum
As mentioned above, one-loop corrections to power spectrum (or equivalently to the two-point

correlation function) have been extensively studied in the literature [353,678,354,135,613,428,334,27,
408,558]. 20 We now brieJy review these results.

We can write the power spectrum up to one-loop corrections as

P(k; �) = P(0)(k; �) + P(1)(k; �) + · · · ; (162)

where the superscript (n) denotes an n-loop contribution, the tree-level (0-loop) contribution is just
the linear spectrum,

P(0)(k; �) = [D(+)
1 ]2PL(k) ; (163)

and the one-loop contribution consists of two terms (see Fig. 7),

P(1)(k; �) = P22(k; �) + P13(k; �) ; (164)

20 Multi-loop corrections to the power spectrum were considered in [237], including the full contributions up to two
loops and the most important terms at large k in 3- and 4-loop order.
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Table 5
Contributions to the one-loop power spectrum as a function of spectral index n

n P13=(�A2a4) P22=(�A2a4)

1 −122
315

k3k2
c

18
49

k4kc

0 −244
315

k2kc
29�2

196
k3

−1
128
225

k − 4
3
k ln

kc

j − 176
315

k ln
k
kc

80
147

k +
4
3
k ln

k
j

−2
5�2

28k
− 4

3j
75�2

196k
+

4
3j

with

P22(k; �) ≡ 2
∫

[F (s)
2 (k − q; q)]2PL(|k − q|; �)PL(q; �) d3q ; (165)

P13(k; �) ≡ 6
∫

F (s)
3 (k; q;−q)PL(k; �)PL(q; �) d3q : (166)

Here Pij denotes the amplitude given by a connected diagram representing the contribution from
〈�i�j〉c to the power spectrum. We have assumed Gaussian initial conditions, for which Pij vanishes
if i+ j is odd. Note the di=erent structure in the two contributions, Eq. (165) is positive de9nite and
describes the e=ects of mode coupling between waves with wave vectors k−q and q, i.e. if PL(k)=0
for k ¿kc, then P22(k) = 0 only when k ¿ 2kc. On the other hand, Eq. (166) is in general negative
(leading to the e=ects of previrialization mentioned above) and does not describe mode coupling,
i.e. P13(k) is proportional to PL(k). This term can be interpreted as the one-loop correction to the
propagator in Eq. (87) [569], i.e. the non-linear correction to the standard a(�) linear growth.

The structure of these contributions can be illustrated by their calculation for scale-free initial
conditions, where the linearly extrapolated power spectrum is PL(k) =Aa2kn, shown in Table 5. The
linear power spectrum is cuto= at low wavenumbers (infrared) and high wavenumbers (ultraviolet)
to control divergences that appear in the calculation; that is, PL(k) = 0 for k ¡ j and k ¿kc. These
results assume k�j and k�kc, otherwise there are additional terms [428,558].

The general structure of divergences is that for n6 − 1 there are infrared divergences that are
caused by terms of the kind

∫
P(q)=q2 d3q; these are cancelled when the partial contributions are

added. In fact, it is possible to show that this cancellation still holds for leading infrared divergences
to arbitrary number of loops [336]. It was shown in [557] that this cancellation is general, infrared
divergences arise due to the rms velocity 9eld (whose large-scale limit variance is

∫
P(q)=q2 d3q),

but since a homogeneous Jow cannot a=ect equal-time correlation functions because of Galilean
invariance of the equations of motion, these terms must cancel at the end.

Ultraviolet divergences are more harmful. We see from Table 5 that as n¿ − 1 the P13 contri-
bution becomes ultraviolet divergent (and when n¿ 1 for P22 as well), but in this case there is no
cancellation. Thus, one-loop corrections to the power spectrum are meaningless at face value for
scale-free initial conditions with n¿ − 1. Furthermore, one-loop corrections to the bispectrum are
also divergent for scale-free initial spectra as n → −1. Of course, it is possible that these divergences
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Fig. 12. One-loop corrections to the power spectrum of the density 9eld as a function of spectral index [see Eq. (169)].
Also shown is the one-loop corrections to the velocity divergence power spectrum, =�(n). Note that non-linear e=ects can
slow down the growth of the velocity power spectrum for a broader class of initial conditions than in the case of the
density 9eld.

are cancelled by higher-order terms, but to date this has not been investigated. This seems a rather
academic problem since no linear power spectrum relevant in cosmology is scale free, and for
CDM-type spectra there are no divergences. On the other hand, understanding this problem may
shed light on aspects of gravitational clustering in the transition to the non-linear regime.

To characterize the degree of non-linear evolution when including one-loop corrections, it is
convenient to de9ne a physical scale from the linear power spectrum, the non-linear scale R0, as
the scale where the smoothed linear variance is unity:

"2
‘(R0) =

∫
d3kPL(k; �)W 2(kR0) ≡ 1 : (167)

For scale-free initial conditions and a Gaussian 9lter, W (x) = exp(−x2=2), Eq. (167) gives Rn+3
0 =

2�Aa2#[(n+3)=2]. This is related to the non-linear scale de9ned from the power spectrum,  (knl)=
4�k3

nlP(knl) = 1 by

knlR0 = #[(n + 5)=2] : (168)

Fig. 12 displays the one-loop correction to the power spectrum in terms of the function =�(n) de9ned
by

 (k) ≡ 2(kR0)n+3

#[(n + 3)=2]
[1 + =�(n)(kR0)n+3] ; (169)

which measures the strength of one-loop corrections (and similarly for the velocity divergence spec-
trum replacing =� by =�). This function has been calculated using the technique of dimensional
regularization in [558] (see Appendix D for a brief discussion of this). From Fig. 12 we see that
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Fig. 13. The power spectrum for n=−2 scale-free initial conditions. Symbols denote measurements in numerical simulations
from [560]. Lines denote linear PT, one-loop PT [Eq. (169)] and the Zel’dovich approximation results [Eq. (181)], as
labeled.

loop corrections are signi9cant with =� close to unity or larger for spectral indices n . −1:7. For
nc ≈ −1:4 one-loop corrections to the power spectrum vanish (and for the bispectrum as well [559]).
For this “critical” index, tree-level PT should be an excellent approximation. One should keep in
mind, however, that the value of the critical index can change when higher-order corrections are
taken into account, particularly, given the proximity of nc to n = −1 where ultraviolet divergences
drive = → −∞. On the other hand, recent numerical results agree very well with nc ≈ −1:4, at least
for redshifts z ∼ 3 evolved from CDM-like initial spectra [702].

Fig. 12 also shows the one-loop correction coeQcient =� for the velocity divergence spectrum. We
see that generally velocities grow much slower than the density 9eld when non-linear contributions
are taken into account. For n& −1:9 one-loop PT predicts that velocities grow slower than in linear
PT. Although this has not been investigated in detail against numerical simulations, the general trend
makes sense: tidal e=ects lead to increasingly non-radial motions as n increases, thus the velocity
divergence should grow increasingly slower than in the linear case.

Fig. 13 compares the results of one-loop corrections for n = −2 against numerical simulations,
whereas the top left panel in Fig. 14 shows results for n = −1:5. In both cases we see very good
agreement even into considerably non-linear scales where  (k) ∼ 10–100, providing a substantial
improvement over linear PT. Also note the general trend, in agreement with numerical simulations,
that non-linear corrections are signi9cantly larger for n = −2 than for n = −1:5.

4.2.3. The one-loop bispectrum
The loop expansion for the bispectrum, B = B(0) + B(1) + · · ·, is given by the tree-level part B(0)

in terms a single diagram from second-order PT (see Fig. 5) plus its permutations over external
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Fig. 14. The left top panel shows the non-linear power spectrum as a function of scale for n = −1:5 scale-free initial
conditions. Symbols denote measurements in numerical simulations, whereas lines show the linear, and the 9tting for-
mulas of [335,494] and one-loop perturbative results, as indicated. The other three panels show the reduced bispectrum
Q for triangle con9gurations with k1=k2 = 2, as a function of the angle � between k1 and k2, in numerical simulations
and for tree-level and one-loop PT. The panels correspond to stages of non-linear evolution characterized by  (k1).
Taken from [560].

momenta (recall that k1 + k2 + k3 ≡ 0):

B(0) ≡ 2PL(k1)PL(k2)F (s)
2 (k1; k2) + 2PL(k2)PL(k3)F (s)

2 (k2; k3)

+ 2PL(k3)PL(k1)F (s)
2 (k3; k1) : (170)

The one-loop contribution consists of four distinct diagrams involving up to fourth-order solutions
[559,560],

B(1) ≡ B222 + BI
321 + BII

321 + B411 ; (171)

where

B222 ≡ 8
∫

d3qPL(q; �)F (s)
2 (−q; q + k1)PL(|q + k1|; �)

×F (s)
2 (−q − k1; q − k2)PL(|q − k2|; �)F (s)

2 (k2 − q; q) ; (172)
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BI
321 ≡ 6PL(k3; �)

∫
d3qPL(q; �)F (s)

3 (−q; q − k2;−k3)PL(|q − k2|; �)

×F (s)
2 (q; k2 − q) + permutations ; (173)

BII
321 ≡ 6PL(k2; �)PL(k3; �)F

(s)
2 (k2; k3)

∫
d3qPL(q; �)F (s)

3 (k3; q;−q)

+ permutations ; (174)

B411 ≡ 12PL(k2; �)PL(k3; �)
∫

d3qPL(q; �)F (s)
4 (q;−q;−k2;−k3)

+ permutations : (175)

For the reduced bispectrum Q̃ [see Eq. (154)], the loop expansion yields

Q̃ ≡ B(0) + B(1) + · · ·
N(0) + N(1) + · · · ; (176)

where N(0) ≡ PL(k1)PL(k2) + PL(k2)PL(k3) + PL(k3)PL(k1), and its one-loop correction N(1) ≡
P(0)(k1)P(1)(k2) + permutations (recall P(0) ≡ PL). For large scales, it is possible to expand Q̃ ≡
Q̃

(0)
+ Q̃

(1)
+ · · ·, which gives

Q̃
(0) ≡ B(0)

N(0) ; Q̃
(1) ≡ B(1) − Q̃

(0)
N(1)

N(0) : (177)

Note that Q̃
(1)

depends on the normalization of the linear power spectrum, and its amplitude increases
with time evolution. For initial power-law spectra PL(k) = Aa2kn with n = −2, the calculation
using dimensional regularization (see Appendix D) yields a closed form; otherwise, the result can
be expressed in terms of hypergeometric functions of two variables [559] or computed by direct
numerical integration [560].

Fig. 14 shows the predictions of one-loop PT compared to N -body simulations for scale-free initial
conditions with n=−1:5. In the top right panel, we see that the predictions of Eq. (177) agree very
well with simulations at the non-linear scale. In the bottom panels, where  ¿ 1, we have used
Eq. (176) instead of Eq. (177). At these scales Eq. (176) saturates, that is, the one-loop quantities
B(1) and N(1) dominate over the corresponding tree-level values and further time evolution does not
change much the amplitude Q, because B(1) and N(1) have the same scale and, by self-similarity, time
dependence. At even more non-linear scales, simulations show that the con9guration dependence of
the bispectrum is completely washed out [560].

Using the one-loop power spectrum for n = −2 given in Table 5, P(1)(k) = A2a455�3=(98k), Q̃(1)

follows from Eq. (177). The calculation can be done analytically [559]; for conciseness we reproduce
here only the result for equilateral con9gurations,

Q̃eq =
4
7

+
1 426 697
3 863 552

�3=2kR0 = 0:57[1 + 3:6 kR0] (n = −2) (178)
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Fig. 15. One-loop bispectrum predictions for equilateral con9gurations for scale-free spectra with n = −2, Eq. (178),
and n = −1:5, Eq. (179), against N -body simulations measurements from [560]. Error bars come from di=erent output
times, assuming self-similarity, see Section 4.5.1. This might not be well obeyed for n = −2, due to the importance of
9nite-volume e=ects for such a steep spectrum, particularly at late times, see [418] and discussion in Section 6.12.1.

and for n = −1:5 we have from numerical integration [560]

Q̃eq = 4
7 + 1:32(kR0)3=2 = 0:57[1 + 2:316(kR0)3=2] (n = −1:5) : (179)

Fig. 15 compares these results against N -body simulations. We see that despite the strong correc-
tions, with one-loop coeQcients larger than unity, one-loop predictions are accurate even at kR0 = 1.
As we pointed out before, many of the scale-free results carry over to the CDM case taking into
account the e=ective spectral index. Fig. 16 illustrates the fact that one-loop corrections can in-
crease quite signi9cantly the con9guration dependence of the bispectrum at weakly non-linear scales
(left panel) when the spectral index is n¡ − 2, in agreement with numerical simulations. On the
other extreme, in the highly non-linear regime (right panel), the bispectrum becomes e=ectively
independent of triangle shape, with amplitude that approximately matches that of colinear amplitudes
in tree-level PT.

Based on results from N -body simulations, it has been pointed out in [234] (see also [240]) that
for n=−1 non-linear evolution tends to “wash out” the con9guration dependence of the bispectrum
present at the largest scales (and given by tree-level perturbation theory), giving rise to the so-called
hierarchical form Q ≈ const in the strongly non-linear regime (see Section 4.5.5). One-loop per-
turbation theory must predict this feature in order to be a good description of the transition to the
non-linear regime. In fact, numerical integration [559] of the one-loop bispectrum for di=erent spec-
tral indices from n=−2 to −1 shows that there is a change in behavior of the non-linear evolution:
for n . −1:4 the one-loop corrections enhance the con9guration dependence of the bispectrum,
whereas for n & −1:4, they tend to cancel it, in qualitative agreement with numerical simulations.
Note that this “critical index” nc ≈ −1:4 is the same spectral index at which one-loop corrections
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Fig. 16. The left panel shows the one-loop bispectrum predictions for CDM model at scales approaching the non-linear
regime, for k1=k2 = 2 and  ≈ 1 (left) against numerical simulations [560]. The right panel shows the saturation of Q̃ at
small scales in the highly non-linear regime, for two di=erent ratios for k1=k2 = 2; 3 and  & 100 [563]. Dashed lines in
both panels correspond to tree-level PT results.

to the power spectrum vanish, marking the transition between faster and slower than linear growth
of the variance of density Juctuations.

4.3. The power spectrum in the Zel’dovich approximation

The ZA [705] is one of the rare cases in which exact (non-perturbative) results can be obtained.
However, given the drastic approximation to the dynamics, these exact results for the evolution
of clustering statistics are of limited interest due to their restricted regime of validity. The reason
behind this is that in the ZA when di=erent streams cross they pass each other without interacting,
because the evolution of Juid elements is local. As a result, high-density regions become washed
out. Nonetheless, the ZA often provides useful insights into non-linear behavior.

For Gaussian initial conditions, the full non-linear power spectrum in the ZA can be obtained
as follows [77,430,556,220,642]. Changing from Eulerian to Lagrangian coordinates, the Fourier
transform of the density 9eld is �(k) =

∫
d3q exp[ik · (q+D)], where D(q) is the displacement 9eld.

The power spectrum is thus

P(k) =
∫

d3q exp(ik · q)〈exp(ik · ZD)〉 ; (180)

where ZD ≡ D(q1) −D(q2) and q = q1 − q2. For Gaussian initial conditions the ZA displacement
is a Gaussian random 9eld, so Eq. (180) can be evaluated in terms of the two-point correlator of
D(q). An analytic result for the power spectrum in the ZA has been obtained in [642] for scale-free
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initial conditions with −36 n6− 1. For n = −2 it is

 (k) =
k=knl

[1 + (�2=64)(k=knl)2]2

(
1 +

3�2

64
k=knl√

1 + (�2=64)(k=knl)2

)
; (181)

where the non-linear wavenumber obeys  L(knl) = 1. This result is shown in Fig. 13 (note that in
the 9gure we use R0 to characterize the non-linear scale, knlR0 = #[(n + 5)=2]), together with the
prediction of one-loop PT, linear theory and measurements in N -body simulations (symbols with
error bars). Clearly the lack of power at small scales due to shell crossing makes the ZA prediction
a poor description of the non-linear power spectrum. Attempts have been made in the literature to
truncate the small-scale power in the initial conditions and then use ZA [138], this improves the
cross-correlation coeQcient between ZA and N -body simulation density 9elds [138,106,455] but it
does not bring the power spectrum into agreement [106,455]. Similar results for the e=ect of shell
crossing on the power spectrum hold for 2LPT and 3LPT, see e.g. [106,455,367].

4.4. Non-Gaussian initial conditions

4.4.1. General results
So far we have discussed results for Gaussian initial conditions. When the initial conditions are

not Gaussian, higher-order correlation functions are non-zero from the beginning and their evolution
beyond linear PT is non-trivial [238]. Here we present a brief summary of the general results for the
power spectrum and bispectrum, in the next section we discuss the application to the �2 model, for
which correlation functions beyond linear perturbation theory have been derived [565]. This belongs
to the class of dimensional scaling models, in which the hierarchy of initial correlation functions obey
�N ∼ �N=2

2 . Another dimensional scaling model that has been studied is the non-linear "-model [333].
In addition, hierarchical scaling models, where �N ∼ �N−1

2 as generated by gravity from Gaussian
initial conditions, have been studied in [414,670]. Most quantitative studies of non-Gaussian initial
conditions, however, have been done using one-point statistics rather than correlation functions, we
review them in Section 5.6.

It is worth emphasizing that the arguments developed in this section (and in Section 5.6) are
valid only if the history of density Juctuations can be well separated into two periods, (i) imprint of
non-Gaussian initial Juctuations at very early times, where "I�1, and then (ii) growth of these Juc-
tuations due to gravitational instability. This is a good approximation for most physically motivated
non-Gaussian models.

Let us consider the evolution of the power spectrum and bispectrum from arbitrary non-Gaussian
initial conditions. 21 The 9rst non-trivial correction to the linear evolution of the power spectrum
involves second-order PT since 〈�2〉 = 〈(�1 + �2 + · · ·)2〉 ≈ 〈�2

1〉 + 2〈�1�2〉 + · · · ; the second term
which vanishes for the Gaussian case (since 〈�1�2〉 ∼ 〈�3

1〉) leads instead to 22

P(k) = PI(k) + 2
∫

d3qF2(k + q;−q)BI(k; q) ; (182)

21 See [672] for a recent study of the trispectrum for non-Gaussian initial conditions.
22 See Section 5.6 for additional explanation of the new contributions that appear due to primordial non-Gaussianity.
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which depends on the initial bispectrum BI, and similarly for the non-linear evolution of the bispec-
trum

B(0)
123 = BI

123 + BG
123 +

∫
d3qF2(k1 + k2 − q; q)PI

4(k1; k2; k1 + k2 − q; q) ; (183)

where BI
123 denotes the contribution of the initial bispectrum, scaled to the present time using linear

PT, BI
123(�) ˙ [D(+)

1 (�)]3, BG
123 represents the usual gravitationally induced bispectrum, Eq. (155),

and the last term represents the contribution coming from the initial trispectrum linearly evolved to
the present, PI

4 given by

〈�I(k1)�I(k2)�I(k3)�I(k4)〉c ≡ �D(k1 + k2 + k3 + k4) PI
4(k1; k2; k3; k4) : (184)

Clearly, the complicated term in Eq. (183) is the last one, which involves a convolution of the
initial trispectrum with the second-order PT kernel F2(k1; k2). Note that only the 9rst term scales as
[D(+)

1 (�)]3, the last two terms have the same scaling with time, [D(+)
1 (�)]4, and therefore dominate

at late times. The structure of these contributions is best illustrated by considering a speci9c model,
as we now do.

4.4.2. �2 initial conditions
An example that shows how di=erent the bispectrum can be in models with non-Gaussian initial

conditions is the chi-squared model [513,514]. There are, in fact, a number of inJationary models in
the literature that motivate �2 initial conditions [380,7,405,512]. It is also possible that this particular
model may be a good representation of the general behavior of dimensional scaling models, and thus
provide valuable insight. In this case, the density 9eld after inJation is proportional to the square
of a Gaussian scalar 9eld 2(x), �(x) ˙ 2(x)2. The initial correlations are most easily calculated in
real space [514],

�I
2 = 2

�2
2(r)

"4
2

; (185)

�I
3 = 23=2

√
�I

2(r12)�I
2(r23)�I

2(r31) ; (186)

�I
4 = 4

[√
�I

2(r12)�I
2(r23)�I

2(r34)�I
2(r41) +

√
�I

2(r12)�I
2(r24)�I

2(r43)�I
2(r31)

+
√

�I
2(r13)�I

2(r32)�I
2(r24)�I

2(r41)
]

; (187)

where rij ≡ |ri − rj|. However, non-linear corrections are more diQcult to calculate in real space
[238], so we turn to Fourier space. The initial density power spectrum and bispectrum read (a similar
expression holds for the trispectrum, see [565])

PI(k) = 2
∫

d3qP2(q)P2(|k − q|) ; (188)

BI(k1; k2; k3) = 12
∫

d3qP2(q)P2(|k1 − q|)P2(|k2 + q|) ; (189)
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where P2(k) denotes the power spectrum of the 2 9eld. For scale-free spectra, P2(k) ˙ kn2 ,
PI(k) ˙ k2n2+3, with amplitude calculable in terms of gamma functions, similarly, the bispectrum
can be expressed in terms of hypergeometric functions [565]. To calculate the hierarchical ampli-
tude to tree level we also need the next to leading order evolution of the power spectrum, that is
Eq. (182), which depends on the initial bispectrum, Eq. (189). A simple analytic result is obtained
for the particular case, P2(k)=Ak−2, not too far from the “canonical” n2=−2:4 (e.g. giving n=−1:8
[513,514]), then [565]

PI(k) =
2�3A2

k
+

96�4A3

7
; BI(k1; k2; k3) =

12�3A3

k1k2k3
: (190)

De9ning the non-linear scale knl from the linear power spectrum as usual, 4�k3
nlPL(knl)= L(knl)=1,

it follows that

 (k) =
(

k
knl

)2(
1 +

24

7
√

2�

k
knl

)
: (191)

Then the tree-level hierarchical amplitude reads [565]

Q̃123 =
4
√

2
�

knl

k1 + k2 + k3
− 192

7�2

k1k2 + k2k3 + k3k1

(k1 + k2 + k3)2 + Q̃123
G + Q̃123(P4) ; (192)

where Q̃123
G denotes the hierarchical amplitude obtained from Gaussian initial conditions and Q̃123(P4)

denotes the contribution from the last term in Eq. (183) which is diQcult to calculate analytically.
In particular, for equilateral con9gurations Q̃eq

I = (4
√

2=3�)(knl=k). On the other hand, for Gaussian
initial conditions, Q̃eq

G = 4
7 independent of spectral index; similarly, there is a contribution from

non-Gaussian initial conditions that is scale independent, �Q̃eq = −64=7�2. Since Q̃123(P4) is also
independent of scale, it turns out that the signature of this type of non-Gaussian initial conditions is
that Q̃123 shows a strong scale dependence at large scales as k=knl → 0. This is not just a peculiar
property of this particular model, but rather of any non-Gaussian initial conditions with dimensional
scaling. 23 Note also that Q̃I shows, in some sense, the opposite con9guration dependence from Q̃G,
for triangles where k1=k2 = 2 as in Fig. 9, Q̃I(�) is an increasing function of �, as expected from
the scale dependence, in particular Q̃I(�)=Q̃I(0) = 3

2 .
Fig. 17 shows the results of using 2LPT (see Section 2.7) evolved from �2 initial conditions [565].

The auxiliary Gaussian 9eld 2 was chosen to have a spectral index n2 =−2:4, leading to n=−1:8 as
proposed in [513]. The amplitude of the power spectrum has been chosen to give knl ≡ 0:33 h=Mpc.
The dashed lines in Fig. 17 (left panel) show the predictions of the 9rst term in Eq. (192) for
the reduced bispectrum at k1 = 0:068 h=Mpc, k2 = 2k1, as a function of angle � between k1 and
k2. This corresponds to n = −1, however, it approximately matches the numerical results (triangles,
n = −1:8). The latter show less dependence on angle, as expected because the scale dependence
in the n = −1:8 case (Q̃I ˙ k−0:6) is weaker than for n = −1 (Q̃I ˙ k−1). The right panel in

23 See Section 5.6 for a more detailed discussion of this point and its generalizations.
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Fig. 17. The reduced bispectrum Q̃ for triangles with sides k1 = 0:068 h=Mpc and k2 = 2k1 as a function of the angle �
between k1 and k2 (left panel). Right panel shows Q̃ for equilateral triangles as a function of scale k. Triangles denote
linear extrapolation from �2 initial conditions, whereas square symbols show the result of non-linear evolution. Dot–dashed
lines show the predictions of non-linear PT from Gaussian initial conditions with the same initial power spectrum as the
�2 model.

Fig. 17 shows equilateral con9gurations as a function of scale for �2 initial conditions (triangles)
and Q̃eq

I (k) = 0:8(k=knl)−0:6 (dashed lines), where the proportionality constant was chosen to 9t the
numerical result, this is slightly larger than the prediction in the 9rst term of Eq. (192) for n = −1
equilateral con9gurations, and closer to the real-space result Qeq(x) = 0:94(x=xnl)0:6.

The behavior of the �2 bispectrum is notoriously di=erent from that generated by gravity from
Gaussian initial conditions for identical power spectrum (dot–dashed lines in Fig. 17) [225]. The
structures generated by squaring a Gaussian 9eld roughly correspond to the underlying Gaussian
high peaks which are mostly spherical, thus the reduced bispectrum is approximately Jat. In fact,
the increase of Q̃I as � → � seen in Fig. 17 is basically due to the scale dependence of Q̃I, i.e. as
� → �, the side k3 decreases and thus Q̃I increases.

As shown in Eq. (192), non-linear corrections to the bispectrum are signi9cant at the scales of
interest, so linear extrapolation of the initial bispectrum is insuQcient to make comparison with
current observations. The square symbols in left panel of Fig. 17 show the reduced bispectrum after
non-linear corrections are included. As a result, the familiar dependence of Q̃123 on the triangle shape
due to the dynamics of large-scale structures is recovered, and the scale dependence shown by Q̃I

is now reduced (right panel in Fig. 17). However, the di=erences between the Gaussian and �2 case
are very obvious: the �2 evolved bispectrum has an amplitude about 2–4 times larger than that of
an initially Gaussian 9eld with the same power spectrum. Furthermore, the �2 case shows residual
scale dependence that reJects the dimensional scaling of the initial conditions. These signatures can
be used to test this model against observations [225,567,211], as we shall discuss in Section 8.
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4.5. The strongly non-linear regime

In this section we consider the behavior of the density and velocity 9elds in the strongly non-linear
regime, with emphasis on the connections with PT. Only a limited number of relevant results are
known in this regime, due to the complexity of solving the Vlasov equation for the phase-space den-
sity distribution. These results, based on simple arguments of symmetry and stability, lead however
to valuable insight into the behavior of correlations at small scales.

4.5.1. The self-similar solution
The existence of self-similar solutions relies on two assumptions within the framework of colli-

sionless dark matter clustering:

(1) There are no characteristic time scales, this requires 	m = 1 where the expansion factor scales
as a power law, a ∼ t2=3.

(2) There are no characteristic length scales. This implies scale-free initial conditions, e.g. Gaussian
with initial spectrum PI(k) ∼ kn.

Since gravity is scale free, there are no scales involved in the solution of the coupled Vlasov and
Poisson equations. As a result of this, the Vlasov equation admits self-similar solutions with [171]

f(x; p; t) = t−3−3=f̂(x=t=; p=t>+1=3) ; (193)

where > = =+ 1
3 and t is the cosmic time. Integration over momentum leads to correlation functions

that are only functions of the self-similarity variables si ≡ xi=t=, in particular the two-point correlation
function reads

�(x; t) = f2

( x
t=

)
; (194)

and similarly for higher-order correlation functions, e.g. �3(x1; x2; x3; t) =f3(s1; s2; s3). Note that this
solution holds in all regimes, from large to small scales. Using the large-scale behavior expected
from linear PT, it is then possible to compute the index =, requiring that �L(x; a) ∼ a2x−(n+3) be a
function only of the self-similarity variable xt−= leads to

= =
4

3(n + 3)
: (195)

Note that the self-similar scaling of correlation functions can also be obtained from the Juid equations
of motion [558], as expected since only symmetry arguments (which have nothing to do with shell
crossing) are involved. 24 Self-similarity reduces the dimensionality of the equations of motion; it
is possible to achieve further reduction by considering symmetric initial conditions, e.g. planar,
cylindrical or spherical. In these cases, exact self-similar solutions can be found by direct numerical
integration, see e.g. [214,60]. Although this provides useful insight about the non-linear behavior of
isolated perturbations, it does not address the evolution of correlation functions. Detailed results for
correlation functions in the non-linear regime can however be obtained by combining the self-similar
solution with stable clustering arguments, as we now discuss.

24 For n=−2, where 9nite-volume e=ects become very important, self-similarity has been diQcult to obtain in numerical
simulations. However, even in this case current results show that self-similarity is obeyed [338].
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4.5.2. Stable clustering
Stable clustering asserts that at small scales, high-density regions decouple from the Hubble ex-

pansion and their physical size is stable, i.e. it does not change with time [171]. This implies that
the relative motion of particles within gravitationally bound structures should compensate on average
the Hubble expansion. Following this idea, general relations can be obtained for the behavior of the
two-point correlation function from the continuity equation alone. Indeed, from Eq. (16) it follows
that

9�12

9� =
9
9�〈(1 + �(x1))(1 + �(x2))〉

= 〈−∇1[(1 + �(x1))u(x1)](1 + �(x2))〉
− 〈(1 + �(x1))∇2[(1 + �(x2))u(x2)]〉 : (196)

Pulling out the derivatives using statistical homogeneity, we arrive at the pair conservation equation
[171]

9�12

9� + ∇12 · [u12(1 + �12)] = 0 ; (197)

where the pairwise velocity is de9ned as

u12 ≡ 〈(1 + �(x1))(1 + �(x2))(u(x1) − u(x2))〉
〈(1 + �(x1))(1 + �(x2))〉 : (198)

In the non-linear regime, ��1, stable clustering implies that the pairwise velocity exactly cancels
the Hubble Jow, u12 = −Hx12. Under this assumption, Eq. (197) can be readily solved to yield

�(x; �) ≈ 1 + �(x; �) = a3(�)f2(ax) ; (199)

which means that the probability of having a neighbor at a 9xed physical separation, Eq. (128),
becomes independent of time. Eq. (197) can be rewritten as

− u12(x)
Hx

=
1

3(1 + �(x))
9�av(x)
9ln a

; (200)

which shows that the pairwise velocity is intimately related to the behavior of the two-point function.
Here we de9ned the average two-point function as

�av(x) =
3
x3

∫ x

0
x′2 d x′�(x′) (201)

and u12 is the norm of u12 that can only be along the x2 − x1 direction.
From Eq. (200) it follows that if the time evolution is modeled as following linear PT, then the

rhs becomes 2f�av=3. As �av & 1, �av grows faster than linear theory and thus pairwise velocities
overcompensate the Hubble Jow; this leads to the well-known “shoulder” (a sudden increase of
slope) in the two-point correlation function [271]. These regimes are illustrated in Fig. 18. 25 From
Eq. (200) it is also clear that a way to model the evolution of the two-point correlation function

25 See [244] for a recent study of the time dependence of the pairwise velocity in the non-linear regime due to merging.
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Fig. 18. The ratio of the mean pair (peculiar) velocity to the Hubble velocity, −u=Hx, as a function of the mean correlation
function �av for a CDM model. The pair conservation equation is used to solve for −u=Hx using the evolution of �av(a; x).
The three curves are for a= 0:3; 0:6; 0:8. They would coincide for a scale-free spectrum. They seem to approach the stable
clustering value −u=Hx = 1 for �av ¿ 200. Taken from [337].

is by modeling the dependence of pairwise velocities on �av [289,479,358,213,112]. The analysis of
high-resolution N -body simulations [358] run by the Virgo Consortium [342] show that the slope of
�2(r) indeed exhibits a “shoulder” in the form of an inJection point d2�2(r)=dr2 = 0 at separation
r∗ close to the correlation length r0 where �2(r0) = 1. This property has been recently corroborated
for di=erent initial power-spectrum shapes [260]. The equality between r∗ and r0 is related to the
fact that loop corrections become important close to the non-linear scale in CDM models at z = 0,
giving rise to a change in slope. For models where the spectral index at the non-linear scale is very
negative (such as CDM models at high redshift, z ∼ 3, see e.g. [702]), loop corrections can be very
large (see Fig. 12), and the non-linear scale r0 can be much smaller than that where loop corrections
become important (related to r∗).

A similar approach can be used to obtain the behavior of higher-order correlation functions under
additional stable clustering conditions [508,337]. The starting point is again the continuity equation,
Eq. (16), and for the three-point case we have

9h123

9� = −〈∇1 · (A123u1) + ∇2 · (A123u2) + ∇3 · (A123u3)〉 ; (202)

where A123 ≡ (1 + �(x1))(1 + �(x2))(1 + �(x3)) and h123 ≡ 〈A123〉 = 1 + �12 + �23 + �31 + �123.
Analogous calculations to the two-point case show that

9h123

9� + ∇12 · (w12;3 h123) + ∇23 · (w23;1 h123) = 0 ; (203)
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where

w12;3 ≡ 〈A123(u1 − u2)〉
h123

; (204)

and similarly for w23;1. Note that these three-body weighted pairwise velocities are actually three-point
quantities [337] since a third object is involved, so they are di=erent from Eq. (198). However, in
the same spirit as in the two-point case, if we assume that stable clustering leads to wij; k = −Hxij

independent of the position of object k, it follows that the solution of Eq. (203) is

�3(x1; x2; x3) ≈ h123 = a6(�)f3(ax1; ax2; ax3) ; (205)

and thus the probability of having two neighbors at a 9xed physical separation ax12 and ax23 from a
given object at x2 becomes independent of time [e.g. see Eqs. (128) and(129)]. Similar results hold
for higher-order N -point correlation functions �N [508], and imply that �N =�N−1

2 as a function of
physical separation become independent of time in the highly non-linear regime (1��2� · · ·��N ).
Note, however, that the additional stability conditions such as w12;3 ≈ −Hx12 have not been so far
tested against numerical simulations.

4.5.3. Scale invariance
The joint use of stable clustering arguments and the self-similar solution leads to scale-invariant

correlation functions in the non-linear regime, with precise predictions for the power-law indices.
Eqs. (194) and (199) impose that f2(x) follows a power law in x,

�(x) ∼ x−B (206)

and matching the time dependences it follows that

B =
6

3= + 2
=

3(n + 3)
(n + 5)

: (207)

Thus, self-similarity plus stable clustering 9xes the full time and spatial dependence of the two-point
correlation function in the non-linear regime in terms of the initial conditions [171].

A simple generalization of this argument is to assume that in the non-linear regime u12 =
−hHx12, where h is some constant, not necessarily unity. In this case, Eq. (199) becomes �(x; �) =
a3h(�)f(ah x), and this leads to B = 3h(n + 3)=[2 + h(n + 3)] [485,697]. Interestingly, if h(n + 3)
is a constant independent of spectral index n, then the slope of the two-point correlation function
becomes independent of initial conditions. 26 Current scale-free simulations do not see evidence for
a spectral index dependence of the asymptotic value of pairwise velocities and are in reasonable
agreement with stable clustering [150,337,164], although the dynamic range in the highly non-linear
regime is still somewhat limited. For a di=erent point of view see [486].

The behavior of the higher-order correlation functions can similarly be constrained. Since stable
clustering implies that QN ∼ �N =�N−1

2 is independent of time, adding self-similarity leads to QN being

26 A more detailed analysis of the BBGKY hierarchy shows that, in the absence of self-similarity, power-law solutions
for the two-point function in the non-linear regime exist, but their relation to the initial spectral index depends on h,
the scaling of �3 in terms of �2 and the skewness of the velocity distribution. Furthermore, perturbations away from
self-similarity may not be stable [542,697,698].
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independent of overall scale as well; this leads to a scaling relation for higher-order correlations that
can be formulated in general as

�N (Ax1; : : : ; AxN ) = A−(N−1)B�N (x1; : : : ; xN ) ; (208)

where B is the index of the two-point function, Eq. (207). As a result, self-similarity plus stable clus-
tering does not 9x completely the behavior of the three-point and higher-order correlation functions.
Although QN does not depend on the overall scale, it does in principle depend on the con9guration
of the N points, i.e. it can depend on ratios such as x12=x23. This is the same as in tree-level PT,
where Q3 depends on the triangle shape (Figs. 9 and 10).

We should, at this point, reconsider the results in this section from the point of view of the
dynamics of gravitational instability. The equations of motion for the two- and three-point correlation
functions, Eqs. (197) and (203), which express conservation of pairs and triplets, were obtained from
the equation of continuity alone. These are rigorous results. The validity of self-similarity is also
rigorous for scale-free initial conditions in a 	m = 1 universe. On the other hand, the conditions of
stable clustering are only a (physically motivated) ansatz, and they replace what might be obtained by
solving the remaining piece of the dynamics, i.e. momentum conservation, in the highly non-linear
regime. Note, however, that the conditions of stable clustering can only be part of the story for
higher-order correlation functions since these do not explain why e.g. Q3 tends to become constant
independent of triangle con9guration in the non-linear regime.

4.5.4. The non-linear evolution of two-point statistics
Self-similarity gives a powerful constraint on the space and time evolution of correlation functions,

by requiring that these depend only on the self-similarity variables. However, di=erent initial spectra
can lead to very di=erent functions of the self-similarity variables. Hamilton et al. [289] suggested
a useful way of thinking about the non-linear evolution of the two-point correlation function, by
which the evolution from di=erent initial spectra can all be described by the same (approximately)
universal formula, obtained empirically by 9tting to numerical simulations.

The starting point is conservation of pairs, Eq. (197), which implies

9[x3(1 + �av)]
9� + u12

9[x3(1 + �av)]
9x = 0 : (209)

Thus, a sphere of radius x such that x3(1 + �av) ≡ x3
L is independent of time will contain the same

number of neighbors throughout non-linear evolution. At early times, when Juctuations are small,
xL ≈ x; as clustering develops and becomes non-linear, x becomes smaller than xL. This motivated
the ansatz that the non-linear average two-point correlation function at scale x should be a function
of the linear one at scale xL [289]:

�av(x; �) = Fmap[�av L(xL; �)] ; (210)

where the mapping Fmap was assumed to be universal, i.e. independent of initial conditions. Using
more recent numerical simulations Jain et al. [335] showed that there is a dependence of Fmap
on spectral index (particularly as n¡ − 1); in addition Peacock and Dodds [493] extended the
mapping above to the power spectrum and arbitrary 	m and 	�. In this case, the non-linear power
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spectrum at scale k is assumed to be a function of the linear power spectrum at scale kL such that
k = [1 +  (k)]1=3kL, where  (k) ≡ 4�k3P(k),

 (k; �) = Fn;	m;	�[ (kL; �)] ; (211)

where it is emphasized that the mapping depends on spectral index and cosmological parameters.
Several groups have reported improved 9tting formulae that take into account these extra dependences
[335,30,494]. In the most often used version, the 9tting function Fmap contains 9ve free functions
of the spectral index n which interpolate between Fmap(x) ≈ x in the linear regime and Fmap ≈ x3=2

in the non-linear regime where stable clustering is assumed to hold [494]:

Fmap(x) = x
[

1 + B>x + [Ax]=>

1 + [(Ax)=g3(	)=(Vx1=2)]>

]1=>

; (212)

where A = 0:482(1 + n=3)−0:947, B = 0:226(1 + n=3)−1:778, = = 3:310(1 + n=3)−0:244, > = 0:862(1 +
n=3)−0:287, V =11:55(1+n=3)−0:423, and the linear growth factor has been written as D1 =ag(	) with
g(	) = 5

2	m=[	4=7
m −	� + (1 + 	m=2)(1 + 	�=70)] [114]. For models which are not scale free, such

as CDM models, the spectral index is taken as n(kL) ≡ [dln P=dln k](k = kL=2) [494]. Extensions
of this approach to models with massive neutrinos are considered in [417]; for a description of the
non-linear evolution of the bispectrum along these lines see [568].

The ansatz that the non-linear power spectrum at a given scale is a function of the linear power
at larger scales is a reasonable 9rst guess, but this cannot be expected to hold in detail. First, as we
described in Section 4.2.2, mode coupling leads to a transfer of power from large to small scales
(in CDM spectra with decreasing spectral index as a function of scale) and the resulting small-scale
power has a contribution from a range of scales in the linear power spectrum. In addition, the
mapping above is only based on the pair conservation equation, and thus only takes into account
mass conservation. The conditions of validity of the HKLM mapping have been explored in [479],
where it is shown that if the scaled pairwise velocity u12=(Hx12) is only a function of the average
correlation function, u12=(Hx12) = H (�av), then conservation of pairs implies

�av L(xL) = exp
[

2
3

∫ �av(x) ds
H (s)(1 + s)

]
; (213)

where xL and x are related as in the HKLM mapping. In linear PT, H = 2�av=3, and if stable
clustering holds H =1. In general, however, H cannot be strictly a function of �av alone (e.g. due to
mode coupling in the weakly non-linear regime). A recent numerical model for the evolution of the
pairwise velocity is given in [112], which is used to model the non-linear evolution of the average
correlation function.

4.5.5. The hierarchical models
The absence of solutions of the equations of motion in the non-linear regime has motivated

the search for consistent relations between correlation functions inspired by observations of galaxy
clustering and the symmetries of dynamics, i.e. the self-similar solution. The most common example
is the so-called hierarchical model for the connected p-point correlation function [275,231] which
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naturally obeys the scaling law (208):

�N (x1; : : : ; xN ) =
tN∑
a=1

QN;a

∑
labelings

N−1∏
edges

�AB : (214)

The product is over N − 1 edges that link N objects (vertices) A; B; : : : ; with a two-point correlation
function �XY assigned to each edge. These con9gurations can be associated with “tree” graphs, called
N trees. Topologically distinct N trees, denoted by a, in general have di=erent amplitudes, denoted
by QN;a, but those con9gurations which di=er only by permutations of the labels 1; : : : ; N (and
therefore correspond to the same topology) have the same amplitude. There are tN distinct N trees
(t3 = 1, t4 = 2, etc., see [232,85]) and a total of NN−2 labeled trees.

In summary, the hierarchical model represents the connected N -point functions as sums of products
of (N − 1) two-point functions, introducing at each level only as many extra parameters QN;a as
there are distinct topologies. In a degenerate hierarchical model, the amplitudes QN;a are furthermore
independent of scale and con9guration. In this case, QN;a =QN , and the hierarchical amplitudes SN �
NN−2QN . In the general case, it can be expected that the amplitudes QN depend on overall scale and
con9guration. For example, for Gaussian initial conditions, in the weakly non-linear regime, "2�1,
perturbation theory predicts a clustering pattern that is hierarchical but not degenerate.

It is important to note that if the degenerate hierarchical holds in the non-linear regime, the
QN ’s should obey positivity constraints. By requiring that the Juctuations of the number density of
neighbors should be positive, it follows that [508]

Q3¿ 1
3 : (215)

This constraint was latter generalized through Schwarz inequalities in [231] to get

(2M)2M−2Q2M (2N )2N−2Q2N ¿ [(M + N )M+N−2QM+N ]2 ; (216)

where M and N are integers or odd half-integers. Similar constraints 27 have been derived in [57]:

(N + 2)NQN+2 NN−2QN ¿ [(N + 1)N+1QN+1]2 : (218)

There is no proof, not even indications, that any model ful9lling these constraints is mathematically
valid. This is a serious limitation for building such models.

Using the BBGKY hierarchy obtained from the Vlasov equation and assuming a hierarchical form
similar to Eq. (214) for the phase-space N-point distribution function in the stable clustering limit,

27 A more physically motivated constraint can be derived by imposing that cluster points be more correlated than 9eld
points [287,288]. It leads to

Qp¿
1
2

(
p− 1

p

)p−3

Qp−1¿ · · ·¿ p!
2p−1pp−2

; (217)

which appear more stringent than the constraints above. These constraints are saturated in the model of Eq. (220) with
Q = 1

2 .
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Fry [228,231] obtained (N¿ 3)

QN = QN;a =
1
2

(
N

N − 1

)(
4Q3

N

)N−2

; (219)

in this case, di=erent tree diagrams all have the same amplitude, i.e. the clustering pattern is degener-
ate. On the other hand, Hamilton [286], correcting an unjusti9ed symmetry assumption in [228,231],
instead found

QN;snake = QN−2
3 ; QN;star = 0 ; (220)

where “star” graphs correspond to those tree graphs in which one vertex is connected to the other
(N − 1) vertices, the rest being “snake” graphs (if Q3 = 1

2 this corresponds to the Rayleigh–Lêvy
random walk fractal described in [508]). Summed over the snake graphs, (220) yields

QN =
N !
2

(
Q3

N

)N−2

: (221)

Unfortunately, as emphasized in [286], these results are not physically meaningful solutions to the
BBGKY hierarchy, but rather a direct consequence of the assumed factorization in phase space. As a
result, this approach leads to unphysical predictions such as that cluster–cluster correlations are equal
to galaxy–galaxy correlations to all orders. It remains to be seen whether physically relevant solutions
to the BBGKY hierarchy which satisfy Eq. (214) really do exist. Despite these shortcomings, the
results in Eqs. (219) and (220) are often quoted in the literature as physically relevant solutions to
the BBGKY hierarchy!

Another phenomenological assumption on the parameters QN;a, which has the virtue of being closer
to the mathematical structure found in PT, is provided by the tree hierarchical model [41,473,57].
In this case, the parameters QN;a are obtained by the product of weights .i associated to each of the
vertex appearing in the tree structure,

QN;a = Qi.
di(a)
i : (222)

In this expression the product is made over all vertices appearing in con9guration a, .i is the weight
of the vertex connected to i lines and di(a) is the number of such vertices. The parameter QN;a is,
therefore, completely speci9ed by the star diagram amplitudes. This pattern is analogous to what
emerges from PT at large scales, although the parameters QN;a are here usually taken to be constant,
independent of scale and con9guration. But even in the absence of this latter hypothesis, the genuine
tree structure 28 of the tree hierarchical model turned out to be very useful for phenomenological
investigations (see [57] and Section 7.1).

4.5.6. Hyperextended perturbation theory
More direct connections with PT results have been proposed to build models of non-linear clus-

tering. One is known as the “hyperextended perturbation theory” (HEPT [563]). 29 Its construction
is based on the observation that colinear con9gurations play a special role in gravitational clustering,
which become apparent in the discussion on the bispectrum loop corrections (see Section 4.2.3).
They correspond to matter Jowing parallel to density gradients, thus enhancing clustering at small

28 In the sense that any part of the diagram can be computed irrespective of the global con9guration.
29 A more phenomenological model, extended perturbation theory (EPT), is presented in Section 5.13.
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Fig. 19. HEPT compared to N -body simulations for scale-free initial conditions (left) and CDM (right).

scales until eventually giving rise to bound objects that support themselves by velocity dispersion
(virialization). HEPT conjectures that the “eLective” QN clustering amplitudes in the strongly
non-linear regime are the same as the weakly non-linear (tree-level PT) colinear amplitudes, as
shown in Fig. 16 to hold well for three-point correlations.

Note that by e=ective amplitudes Qe=
N the overall magnitude of QN is understood: it is possible that

QN , for N ¿ 3, although independent of overall scale, is a function of con9guration. To calculate the
resulting SN parameters, it is further assumed that SN � NN−2 Qe=

N , that is, the SN are given by the
typical con9guration amplitude Qe=

N times the total number of labeled trees, NN−2, neglecting a small
correction due to smoothing [85]. The resulting non-linear SN amplitudes follow from tree-level PT
[563]:

Ssat
3 (n) = 3Qsat

3 (n) = 3
4 − 2n

1 + 2n+1 ; (223)

Ssat
4 (n) = 16Qsat

4 (n) = 8
54 − 27 × 2n + 2 × 3n + 6n

1 + 6 × 2n + 3 × 3n + 6 × 6n ; (224)

Ssat
5 (n) = 125Qsat

5 (n) =
125
6

N (n)
D(n)

; (225)

where n is the spectral index, obtained from (n + 3) ≡ −dln "2
L(R)=dln R, N = 1536 − 11 522n +

1283n + 664n + 646n − 98n − 212n − 24n, D = 1 + 122n + 123n + 164n + 246n + 248n + 1212n + 2424n.
One can check that these QN amplitudes satisfy the above positivity constraints, Eqs. (216) and
(218) and even the constraint in Eq. (217) as long as n. 0:75, which is well within the physically
interesting range.

The left panel of Fig. 19 shows a comparison of these predictions with the numerical simulation
measurements in [150] for scale-free initial conditions with 	m =1. The plotted values correspond to
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the measured value of Sp when the non-linear variance "2 =100. We see that the N -body results are
generally in good agreement with the predictions of HEPT, Eqs. (223)–(225), keeping in mind that
for n = −2 9nite-volume corrections to the Sp measured in the simulations are quite large and thus
uncertain (see Section 6.12.1). The right panel shows a similar comparison of HEPT with numerical
simulations in the non-linear regime for the SCDM model (#=0:5, "8 =0:34 [147]). The agreement
between the N -body results and the HEPT predictions is excellent in this case. The small change in
predicted value of Sp with scale is due to the scale dependence of the linear CDM spectral index.

It is interesting to note that for n = 0, HEPT predicts Sp = (2p− 3)!!, which agrees exactly with
the excursion set model developed in [588] for white-noise Gaussian initial Juctuations. In this case,
the one-point PDF yields an inverse Gaussian distribution, which has been shown to agree well in
the non-linear regime when compared to numerical simulations [588]. This remarkable agreement
between HEPT and the excursion set model deserves further study.

5. From dynamics to statistics: the local cosmic "elds

We have seen in Section 4 that the non-linear nature of gravitational dynamics leads, through
mode-coupling e=ects, to the emergence of non-Gaussianity. In the previous section we have explored
the behavior of multi-point correlation functions. Here we present statistical properties related to
the local density contrast in real space. We 9rst describe the results that have been obtained for
the moments of the local density 9eld. In particular, we show how to compute the full cumulant
generating function of the one-point density contrast at tree level. Results including loop corrections
are given when known. Finally, we present techniques for the computation of the density PDF
and various applications of these results. When dealing with smoothed 9elds, we shall assume that
9ltering is done with a top-hat window unless speci9ed otherwise.

5.1. The density Feld third moment: skewness

5.1.1. The unsmoothed case
The 9rst non-trivial moment that emerges due to mode coupling is the third moment of the

local density PDF, characterized by the skewness parameter. The computation of the leading order
term of 〈�3〉 is obtained through the expansion 〈�3〉 = 〈(�(1) + �(2) + · · ·)3〉. When the terms that
appear in this formula are organized in increasing powers of the local linear density, we have
〈�3〉= 〈(�(1))3〉+ 3〈(�(1))2�(2)〉+ · · · ; where the neglected terms are of higher order in PT. The 9rst
term of this expansion is identically zero for Gaussian initial conditions. The second term is therefore
the leading order, “tree-level” in diagrammatic language (see Section 4.1). We then have 30

〈�3〉 ≈ 3〈(�(1))2�(2)〉 (226)

= 3 a4
∫

d3k1 · · ·
∫

d3k4〈�1(k1)�1(k2)�1(k3)�1(k4)〉

×F2(k2; k3) exp[i(k1 + k2 + k3 + k4) · x] : (227)

30 For simplicity, calculations in this section are done for the Einstein–de Sitter case, 	m = 1.
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For Gaussian initial conditions, linear Fourier modes �1(k) can only correlate in pairs [Eq. (122)].
If k2 and k3 are paired, the integral vanishes [because 〈�〉 = 0, see the structure of the kernel F2 in
Eq. (45)]. The other two pairings give identical contributions, and thus

〈�3〉 = 6a4
∫

d3k1

∫
d3k2 P(k1)P(k2)F2(k1; k2) : (228)

Integrating over the angle between k1 and k2 leads to 〈�3〉=(34
7 )〈�2〉2 [508]. For the reasons discussed

in Section 4.1.1, it is convenient to rescale the third moment and de9ne the skewness parameter S3

(see Section 2):

S3 ≡ 〈�3〉
〈�2〉2 =

34
7

+ O("2) : (229)

The skewness measures the tendency of gravitational clustering to create an asymmetry between
underdense and overdense regions (see Fig. 20). Indeed, as clustering proceeds there is an increased
probability of having large values of � (compared to a Gaussian distribution), leading to an en-
hancement of the high-density tail of the PDF. In addition, as underdense regions expand and most
of the volume becomes underdense, the maximum of the PDF shifts to negative values of �. From
Eq. (144) we see that the maximum of the PDF is in fact reached at

�max ≈ −S3

2
"2 ; (230)

to 9rst order in ". We thus see that the skewness factor S3 contains very useful information on the
shape of the PDF.

5.1.2. The smoothed case
At this stage however the calculation in Eq. (229) is somewhat academic because it applies to the

statistical properties of the local, un9ltered, density 9eld. In practice, the 9elds are always observed
at a 9nite spatial resolution (whether it is in an observational context or in numerical simulations).
The e=ect of 9ltering, which amounts to convolving the density 9eld with some window function,
should be taken into account in the computation of S3. The main diQculty lies in the complexity
this brings into the computation of the angular integral. To obtain the skewness of the local 9ltered
density, �R, one indeed needs to calculate

〈�3
R〉 = 3〈(�(1)

R )2�(2)
R 〉 (231)

with

�(1)
R = a

∫
d3k �(k) exp[ik · x]W3(k1 R) ; (232)

�(2)
R = a2

∫
d3k1

∫
d3k2 �(k1) �(k2) exp[i(k1 + k2) · x]

×F2(k1; k2)W3(|k1 + k2|R) ; (233)
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Fig. 20. Skewness is a measure of the asymmetry of the local density distribution function. It appears because underdense
regions evolve less rapidly than overdense regions as soon as non-linearities start to play a role. The dependence of
skewness on the shape of the power spectrum comes from a mapping between Lagrangian space, in which the initial size
of the perturbation is determined, and Eulerian space. For a given 9ltering scale R, overdense regions come from the
collapse of regions that had initially a larger size, whereas underdense regions come from initially smaller regions. As a
result, the skewness is expected to be smaller for power spectra with more small-scale Juctuations (steep spectra case,
that is when k3P(k) is rapidly increasing with k).

where W3(k) is the 3D 9ltering function in Fourier space. It leads to the expression for the third
moment,

〈�3
R〉= 6a4

∫
d3k1

∫
d3k2 P(k1)P(k2)W3(k1R)W3(k2R)

×F2(k1; k2)W3(|k1 + k2|R) (234)
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so that the relative angle between k1 and k2 appears in both F2 and W3. The result depends obviously
on the 9ltering procedure. It turns out that the 9nal result is simple for a top-hat 9lter in real space.
In this case

W3(k) =

√
3�
2

J3=2(k)
k3=2 =

3
k3 [sin(k) − k cos(k)] : (235)

Following the investigations initiated in [355] for the properties of the top-hat window function 31

it can be shown (see [46] and Appendix C) that∫
d	12

4�
W3(|k1 + k2|)

[
1 − (k1 · k2)2

k2
1 k2

2

]
=

2
3
W3(k1)W3(k2) ; (236)

∫
d	12

4�
W3(|k1 + k2|)

[
1 +

k1 · k2

k2
1

]
= W3(k1)

[
W3(k2) +

1
3
k2 W ′

3(k2)
]

: (237)

It is easy to see that F2 can be expressed with the help of the two polynomials involved in the
preceding relations. One 9nally obtains [46]

S3 =
34
7

+
dlog "2(R)

dlogR
: (238)

The skewness thus depends on the power spectrum shape (mainly at the 9ltering scale). For a
power-law spectrum, P(k) ˙ kn, it follows that S3 = 34

7 − (n + 3) [355]. Galaxy surveys indicate
that the spectral index n is of the order of n ≈ −1:5 close to the non-linear scale. Comparisons with
numerical simulations have shown that the prediction of Eq. (238) is very accurate, as can be seen
in Fig. 27.

5.1.3. Physical interpretation of smoothing
To understand the dependence of the skewness parameter on power spectrum shape it is very

instructive to examine in detail the nature of the contributions that appear when the 9ltering e=ects
are taken into account.

For this purpose let us consider the same problem in Lagrangian space. If one calculates J (2), the
second-order expansion of the Jacobian, one obtains [from Eqs. (90) and (94) and assuming 	m =1]

J (2) = a2 2
7

∫
d3k1

∫
d3k2 �(k1)�(k2) exp[i(k1 + k2) · q]

[
1 − (k1 · k2)2

k2
1k

2
2

]
: (239)

This gives for the density [e.g. Eq. (91)], once the Jacobian (which is a direct estimation of the
volume) has been 9ltered at a given Lagrangian scale R,

�(2)
R =
∫

d3k1

∫
d3k1 a2�(k1)�(k2) exp[i(k1 + k2) · q]

×
[
W (k1R)W (k2 R) − 2

7
W (|k1 + k2|R)

(
1 − (k1 · k2)2

k2
1k

2
2

)]
: (240)

31 These properties have been obtained from the summation theorem of Bessel functions, see e.g. [681]. Such relations
hold in any space dimension for top-hat 9lters.
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Fig. 21. The skewness S3 as a function of 	m for zero-	� universes (solid lines) and Jat universes with 	m + 	� = 1
(dashed lines). The upper and lower curves correspond to a power-law spectrum with n = −3 and −1, respectively.

Because smoothing e=ects are calculated in Lagrangian space (denoted by q), this expression is
di=erent from the Eulerian space 9ltering result, Eq. (233). In fact, it follows that SLag

3 = 34
7 even

when 9ltering e=ects are taken into account. The mere fact that one does not obtain the same result
should not be surprising. In this latter case the 9ltering has been made at a given mass scale. The
di=erence between the two calculations comes from the fact that the larger the mass of a region
initially is, the smaller the volume it occupies will be. Filtering at a 9xed Eulerian scale therefore
mixes di=erent initial mass scales. The asymmetry will then be less than one could have expected
because, for a standard hierarchical spectrum, larger mass scales correspond to smaller Juctuations.

5.1.4. Dependence of the skewness on cosmological parameters
As the skewness is induced by gravitational dynamics, it is important to know how much it can

depend on cosmological parameters. In general, the parameter S3 depends on the growth rate of the
second-order PT solution, see Section 2.4.3, through

S3 = 3.2 +
dlog "2(R)

dlogR
: (241)

Explicit calculations [91] have shown that .2 can be well approximated by

.2 ≈ 4
3 + 2

7 	−2=63
m ; (242)

obtained by expansion about 	m = 1 for 	� = 0. 32 We then have the following result:

S3 = 34
7 + 6

7(	−0:03
m − 1) − (n + 3) : (243)

A similar result follows when 	� �= 0, see [46,313] and also [223]. In practice, for current applications
to data, such a small dependence on cosmological parameters can simply be ignored, as illustrated
in Fig. 21. This turns out to be true even when cosmologies with non-standard vacuum equation of
state are considered (e.g. quintessence models) [366,259,34].

32 But it is valid for all values of 	m of cosmological interest.
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5.1.5. The skewness of the local velocity divergence
The skewness of the velocity divergence can obviously be calculated in a similar fashion. However,

because of the overall f(	m;	�) factor for the linear growth of velocities, it is natural to expect that
the velocity divergence skewness parameter, T3, has a signi9cant 	m dependence [50]. In general,

T3 ≡ 〈� 3〉
〈� 2〉2 = − 1

f(	m;	�)

[
3/2 +

dlog "2(R)
dlogR

]
: (244)

Taking into account the speci9c time dependence of /2 we get,

T3 = − 1
f(	m;	�)

[
2 +

12
7

	−1=21
m +

dlog "2(R)
dlogR

]
; (245)

which within a very good accuracy implies that T3 ≈ −[ 26
7 − (n + 3)]=	0:6

m for a power-law spec-
trum. This makes the dimensionless quantity T3 a very good candidate for the determination of 	m

independent of galaxy biasing. Attempts to carry out such measurements, however, faced very large
systematics in the data [50]. So far no reliable constraints have been drawn from this technique.

5.2. The fourth-order density cumulant: kurtosis

The previous results can be applied to any low-order cumulants of the cosmic 9eld. Fry [232]
computed the fourth cumulant of the cosmic density 9eld, but without taking into account the 9ltering
e=ects. These were included later for top-hat [46] and Gaussian 9lters [407].

Formally, the fourth-order cumulant of the local density is given by

〈�4〉c ≡ 〈�4〉 − 3〈�2〉2

= 12〈(�(1))2(�(2))2〉c + 4〈(�(1))3�(3)〉c : (246)

In these equations it is essential to take the connected part only. There are terms that involve loop
corrections to the variance that are of the same order in " but they naturally cancel when the
non-connected part of the fourth moment is subtracted out. The consequence is that

〈�4〉c ∼ 〈�2〉3 ; (247)

and one can de9ne the kurtosis parameter S4,

S4 ≡ 〈�4〉c=〈�2〉3 : (248)

This equation allows one to compute the leading part of S4 in the weakly non-linear regime. In
general, S4 can be expressed in terms of the functions D1, .2 and .3. This can be obtained by
successive applications of the geometrical properties of the top-hat window function (see [46] and
Appendix C for details). We have

S4 = 4.3 + 12.2
2 + (14.2 − 2)

dlog["2(R0)]
dlogR0

+
7
3

(
dlog["2(R0)]

dlogR0

)2

+
2
3

d2 log["2(R0)]
dlog2 R0

: (249)
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For a power-law spectrum of index n this leads to

S4 = 60 712
1323 − 62

3 (n + 3) + 7
3(n + 3)2 : (250)

This result is exact for an Einstein–de Sitter universe. It is extremely accurate, within a few percent
for all models of cosmological interest. Similar results can be obtained for the velocity divergence.

5.3. Results for Gaussian smoothing Flters

So far we have been giving results for a top-hat 9lter only. The reason is that they can be given
in a closed form for any shape of the power spectrum. Another quite natural 9lter to choose is the
Gaussian 9lter. In this case, however, there are no simple closed forms that are valid for any power
spectrum shape. Results are known for power-law spectra only [355,436,407].

The principle of the calculation in this case is to decompose the angular part that enters the
window function as a sum of Legendre functions,

e−p·q = e−pq cos ’ =
∞∑
m=0

(−1)m(2m + 1)
√

�
2pq

Im+1=2(pq)Pm(cos’) ; (251)

where Im+1=2(pq) are Bessel functions. The integration over ’ is made simple by the orthogonality
relation between the Legendre polynomials. Finally, each term appearing in the decomposition of
the Bessel function

I.(z) =
∞∑
m=0

1
m!#(. + m + 1)

( z
2

).+2m
(252)

can be integrated out for power-law spectra since∫ ∞

0
q= e−q2

dq =
1
2
#
(
= + 1

2

)
; (253)

which after resummation leads to hypergeometric functions of the kind 2F1. Eventually, the result
for S3 is

S3 = 3 2F1

(
n + 3

2
;
n + 3

2
;
3
2
;
1
4

)
−
(
n +

8
7

)
2F1

(
n + 3

2
;
n + 3

2
;
5
2
;
1
4

)
(254)

and similarly the velocity skewness is

T3 = −32F1

(
n + 3

2
;
n + 3

2
;
3
2
;
1
4

)
+
(
n +

16
7

)
2F1

(
n + 3

2
;
n + 3

2
;
5
2
;
1
4

)
: (255)

This result is exact for an Einstein–de Sitter universe but obviously, as for the top-hat 9lter, S3 is
expected to depend only weakly on cosmological parameters and the dominant dependence of T3 is
that proportional to 1=f(	m). The result for S3 is shown as a dashed line in Fig. 26.

The kurtosis cannot be calculated in closed form even for power-law spectra (although a semi-
analytic formula can be given [407]). However, there exists a simple prescription that allows one
to get an approximate expression for the kurtosis. It consists in using the formal expression of the
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kurtosis obtained for a top-hat 9lter but calculated for n=ne= such that it gives the correct value for
the skewness. Such a prescription has been found to give accurate results, about 1% accuracy for
n = −1 [407].

5.4. The density cumulants hierarchy

In general, the non-linear couplings are going to induce non-zero cumulants at any order. We can
de9ne [207]

Sp ≡ 〈�p〉c=〈�2〉p−1 ; (256)

that generalizes the S3 and S4 parameters considered in the previous section. All these quantities
are 9nite (and non-zero) at large scales for Gaussian initial conditions and can in principle be
computed from PT expansions. However, the direct calculation of Sp becomes extremely diQcult
with increasing order p due to the complexity of the kernels Fp and Gp. Fortunately, it turns out
to be possible to take great advantage of the close relationship between the Sp parameters and the
vertices .p describing the spherical collapse dynamics, as described in Section 2.4.2, to compute the
Sp parameters for any p.

In the derivation presented here we adopt a pedestrian approach for building, step by step, the
functional shape of the cumulant generating function. A more direct approach has recently been
developed in [660,661] in which the generating function of the cumulant is obtained directly, via a
saddle-point approximation in the computation of the cumulant generating function which corresponds
to its tree-order calculation. This approach avoids technical diQculties encountered in the computation
of the Lagrangian space 9ltering properties and in the Lagrangian–Eulerian mapping and is certainly
an interesting complementary view to what we present here.

5.4.1. The unsmoothed density cumulant generating function
The computation of Sp coeQcients is based on the property that each of them can be decomposed

into a sum of product of “vertices”, at least when 9ltering e=ects are not taken into account. As
seen before, S4 = 12.2

2 + 4.3. This property extends to all orders so that the Sp parameters can be
expressed as functions of .q’s only (q = 2; : : : ; p− 1). Note that the vertices .p de9ned in Eq. (48)
as angular averages of PT kernels correspond to

.p = 〈�(p)[�(1)]p〉c=〈[�(1)]2〉p : (257)

This decomposition of Sp into a sum of product of vertices can be observed easily in a graphical
representation. Indeed

〈�p〉c =
∑
qi

〈�(q1) · · · �(qp)〉c ; (258)

where each � has been expanded in PT. Each �(q) contains a product of q random Gaussian variables
�(k). Each of these points can be represented by one dot so that when the ensemble average is
computed, because of the Wick theorem, dots are connected pairwise. The �(q), therefore, can be
represented as in Fig. 22 with q outgoing lines.
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(1)
δ   = δ   =

(3)δ  =
(2)

etc...;;

Fig. 22. Diagrammatic representation of �(p). Each line stands for a factor �(k).

Fig. 23. Computation of the simplest graphs. Each line represents a factor "2. Vertices are obtained from the angular
average of the wave vectors leaving .p.

Fig. 24. A graph contributing to S5.

Diagrams that contribute to the leading order of Sp are those which contain enough dots so that
a connected diagram that minimizes the number of links can be built. The number of links for
connecting p points is p− 1, we should then have

∑
i qi = 2(p− 1) so that

Sp =
∑

graphs;
∑

i qi=2(p−1)

〈�(q1) · · · �(qp)〉c=〈[�(1)]2〉p−1 : (259)

An example of such a graph for S5 is shown in Fig. 24.
It is worth noting that all these diagrams are trees so that the integration over the wave vectors

can be made step by step. 33 Then the value of each diagram is obtained by assigning each line to
the value of "2 and each vertex to .p depending on the number p of lines it is connected to, see
e.g. Fig. 23.

This order-by-order decomposition can actually be replaced by a functional relation at the level
of the generating functions. If we de9ne the generating function of Sp as

’(y) =
∞∑
p=1

− Sp
(−y)p

p!
(S1 = S2 ≡ 1) (260)

and the vertex generating function as

G�(�) =
∞∑
p=1

.p
(−�)p

p!
; (261)

33 This is possible however only when smoothing e=ects are neglected.
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Fig. 25. Graphical representation of Eq. (263), � is the generating function of graphs with one external line.

it is possible to show that ’ and G� are related to each other through the system of equations

’(y) = yG�[�(y)] + 1
2 �2(y) ; (262)

�(y) = −yG′
�[�(y)] : (263)

The demonstration of these equations is not straightforward and is given in Appendix B. To get
some insight about these two equations, one can note that � is the conjugate variable to the one-line
vertex (that is .1, set to unity at the end of the calculation). As such, it corresponds to the generating
function of all graphs with one external line. It is then solution of an implicit equation, illustrated
in Fig. 25, which corresponds to Eq. (263). Naturally, it involves the vertex generating function.
It is to be noted however that in this perspective Eqs. (262) and (263) and the parameter y have
no intrinsic physical interpretation. It has been pointed out recently in [660,661] that this system
can actually be obtained directly from a saddle-point approximation in the computation of the local
density contrast PDF. It gives insights into the physical meaning of the solutions of Eq. (263). We
will come back to this point in Section 5.8.

Recall that vertices describe the spherical collapse dynamics (see Section 2.4.2), thus G�(�) cor-
responds to the density contrast of collapsing structures with spherical symmetry when (−�) is its
linear density contrast. The 9rst few values of .p can then be easily computed,

.2 =
34
21

; .3 =
682
189

; .4 =
446 440
43 659

; (264)

which implies,

S3 = 3.2 = 34
7 ; (265)

S4 = 4.3 + 12.2
2 =

60 712
1323

≈ 45:89 ; (266)

S5 = 5.4 + 60.3.2 + 60.3
2 =

200 575 880
305 613

≈ 656:3 ; (267)

S6 = 6.5 + 120.4.2 + 90.2
3 + 720.3.2

2 + 360.4
2 ≈ 12 700

... (268)

At this stage however, the e=ects of 9ltering have not been taken into account.

5.4.2. Geometrical properties of smoothing in Lagrangian space
As the examination of the particular case of S3 has shown, the smoothing e=ects for a top-hat 9lter

are entirely due to the mapping between Lagrangian and Eulerian spaces. This can be generalized
to any order [44].
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The Lagrangian space dynamics is jointly described by the displacement 9eld (that plays a role
similar to the velocity 9eld) and the Jacobian, whose inverse gives the density. The latter can be
expanded with respect to the initial density contrast:

J (q) = 1 + J (1)(q) + J (2)(q) + · · · : (269)

At a given order we will have 34

J (p)(q) = ap
∫

d3k1

(2�)3=2 · · ·
d3kp

(2�)3=2 Jp(k1; : : : ; kp) exp[iq · (k1 + · · · + kp)] : (270)

The Jacobian is actually given by the determinant of the deformation tensor, obtained from the 9rst
derivative of the displacement 9eld, �, see Eq. (91). The precise relation is

J (q)≡
∣∣∣∣9x9q
∣∣∣∣= 1 + ∇q ·� +

1
2

[
(∇q ·�)2 −

∑
ij

Di; jDj; i

]

+
1
6


(∇q ·�)3 − 3∇q ·�

∑
ij

Di; jDj; i + 2
∑
ijk

Di; jDj;kDk; i


 : (271)

The equations of motion are closed by the Euler equation, Eq. (90). This shows that the kernels of
the Jacobian expansion are built recursively from the function >(k1; k2) = 1 − (k1 · k2)2=(k1k2)2 and

7(k1; k2; k3) = 1 −
(
k1 · k2

k1k2

)2

−
(
k2 · k3

k2k3

)2

−
(
k3 · k1

k3k1

)2

+ 2
k1 · k2k2 · k3k3 · k1

k2
1k

2
2k

2
3

: (272)

We have seen previously that a top-hat 9lter commutes with >. It can also be shown that∫
d	1

4�
d	2

4�
d	3

4�
W (|k1 + k2 + k3|R)7(k1; k2; k3)

=
2
9
W (k1R)W (k2R)W (k3R) : (273)

Here again, an exact “commutation property” is observed. Successive applications of these geomet-
rical properties 35 then imply that [45]

jp ≡ Jp(k1; : : : ; kp)W (|k1 + · · · + kp|R) (274)

= Jp(k1; : : : ; kp)W (k1R) · · ·W (kpR) ; (275)

34 We assume 	m = 1, but the calculations trivially extend to all cosmologies.
35 This demonstration is incomplete here because the displacement in Lagrangian space is not, in general, potential (see

[45] for a more complete demonstration).
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where a bar denotes angular-averaged quantities. This is a generalization of the results obtained for
parameter S3, which has been found to be insensitive to 9ltering e=ects in Lagrangian space (for a
top-hat 9lter only).

5.4.3. Lagrangian to Eulerian space mapping: smoothed case
As for the skewness S3, a mapping between Lagrangian and Eulerian spaces should permit one

to calculate the Sp’s at any order p.
The hierarchy in Eq. (275) gives implicitly the cumulant generating function of the volume dis-

tribution function for a Fxed mass scale. One can then make the following remark: the probability
that a mass M occupies a volume larger than V is also the probability that a volume V contains a
mass lower than M . It suQces for that to consider concentric spheres around a given point x0. 36

It is, therefore, possible to relate the real space density PDF to the Lagrangian space one. At this
stage however we are only interested in the leading order behavior of the cumulants. We can then
notice that, in the small variance limit, the one-point density PDF formally given by Eq. (142), can
be calculated by the steepest descent method. The saddle-point position is given by the equation,
d’(y)=dy = �, and in addition we have d’(y)=dy =G�(�), when � is given implicitly by Eq. (263).
The saddle-point position is therefore obtained by a simple change of variable from the linear density
� to the non-linear density contrast �. It implies that the one-point PDF is roughly given by

p(�) d� ∼ exp
(
− �2

2"2

)
d� (276)

with a weakly �-dependent prefactor. It is important to note that the leading order cumulants of this
PDF do not depend on these prefactors. They are entirely encoded in the �–� relation.

As suggested in the previous paragraph, if we now identify pE(�¿�0) and pL(�¡�0) (one
being computed at a 9xed real space radius, the other at a 9xed mass scale) we obtain a consistency
relation

− �2
E

2"2(R)
= − �2

L

2"2[(1 + �)1=3R]
(277)

so that the two have the same leading order cumulants. Here and in the following we use indices L or
E for variables that live respectively in Lagrangian or Eulerian space. More precisely, we denote by
’L the cumulant generating function in Lagrangian space and GL

� the corresponding vertex generating
function. In Eulerian space we use the E superscript. 37 In the previous equation, the density contrast
is a parameter given a priori. The variables �E and �L depend formally on � through the saddle-point
equations,

� = GL
� (�L) = GE

� (�E) ; (278)

and in Lagrangian space " is taken at the mass scale corresponding to the density contrast � (" is
computed a priori in Eulerian space).

36 This statement is however rigorous for centered probabilities only.
37 It is always possible to assume that there exists a function GE

� associated to ’E, even if there is no associated
diagrammatic representation, assuming the same formal functional relation between them.
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From these equations we can eliminate �L to get an implicit equation between GE
� and �E,

GE
� (�E) = GL

�

(
"[(1 + GE

� (�E))1=3R]
"(R)

�E

)
; (279)

where GL
� (�L) is known and is obtained from spherical collapse dynamics. The cumulant generating

function, ’E(y), is then built from GE
� (�E) the same way as ’L(y) was from GL

� (�L) [Eqs. (262)
and (263)].

Expanding this function around y = 0 leads to explicit expressions for the 9rst few values of Sp.
They can be written as functions of successive logarithmic derivatives of the variance,

Bp ≡ dplog "2(R)
dlogp R

; (280)

and read

S3 =
34
7

+ B1 ; (281)

S4 =
60 712
1323

+
62 B1

3
+

7 B2
1

3
+

2 B2

3
; (282)

S5 =
200 575 880

305 613
+

1 847 200 B1

3969
+

6940 B2
1

63
+

235 B3
1

27

+
1490 B2

63
+

50 B1 B2

9
+

10 B3

27
; (283)

S6 =
351 903 409 720

27810783
+

3 769 596 070 B1

305613
+

17 907 475 B2
1

3969

+
138 730 B3

1

189
+

1210 B4
1

27
+

3 078 965 B2

3969
+

23 680 B1 B2

63

+
410 B2

1 B2

9
+

35 B2
2

9
+

3790 B3

189
+

130 B1 B3

27
+

5 B4

27

... (284)

For a power-law spectrum, these coeQcients depend only on spectral index n, through B1 =−(n+ 3)
and Bi = 0 for i¿ 2. They are plotted as functions of n in Fig. 26. They all appear to be decreasing
functions of n. The above predictions were compared against numerical experiments, as illustrated
in Fig. 27 for CDM. The agreement between theory and measurements is close to perfect as long
as the variance is below unity. It is quite remarkable to see that the validity domain of PT results
does not deteriorate signi9cantly when the cumulant order increases.

5.5. One-loop corrections to one-point moments

We now consider results that include the dependence of Sp parameters on the variance. Due to the
complexity of these calculations, only few exact results are known, but there are useful approximate
results from the spherical collapse model.
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Fig. 26. The predicted Sp parameters for power-law spectra as functions of the spectral index. The results are shown for
top-hat 9lter except for the dashed line which corresponds to the skewness for a Gaussian 9lter.

Fig. 27. The Sp parameters for 36p6 7. Comparisons between theoretical predictions and results from numerical
simulations (from [28]) ("8 is the linear variance in a sphere of radius 8h−1 Mpc).

5.5.1. Exact results
To get loop corrections for the one-point density moments, it is necessary to expand both the

second moment and the higher-order moments with respect to the linear variance "L,
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Table 6
Tree-level and one-loop corrections predicted by various non-linear approximations

Moment expansions s2;4 S3;0 S3;2 S4;0 S4;2

FFA, unsmoothed 0.43 3 1 16 15.0
LPA, unsmoothed 0.72 3.40 2.12 21.22 37.12
ZA, unsmoothed 1.27 4 4.69 30.22 98.51
Exact PT, unsmoothed 1.82 4.86 9.80 45.89 —
Exact PT, top-hat smoothing, n = −2 0.88 3.86 3.18 27.56 —
Exact PT, Gaussian smoothing, n = −2 0.88 4.02 3.83 30.4 —

"2 = "2
L +

∞∑
n=3

s2; n"n
L (285)

and

Sp("L) = Sp;0 +
∞∑
n=1

SL
p;n"

n
L : (286)

Note that for Gaussian initial conditions, the contributions with n odd vanish. The Sp parameters
can also be expanded with respect to the non-linear variance,

Sp(") = Sp;0 +
∞∑
n=1

Sp;n"n ; (287)

and it is easy to see that Sp;2 = SL
p;2, Sp;4 = SL

p;4 − SL
p;2s2;4, etc. for Gaussian initial conditions.

Table 6 shows the results of one-loop corrections in various approximations to the dynamics described
in Section 2.8 (frozen Jow approximation, FFA; linear potential approximation, LPA; and ZA), and
exact PT [557]. These results, however, ignore the e=ects of smoothing which, as is known from
tree-level results, are signi9cant.

Taking into account smoothing e=ects in the exact PT framework has only been done numerically
for the case n = −2, where the one-loop bispectrum yields a closed form [559]. The resulting
one-loop coeQcients are shown in Table 6 as well, for top-hat and Gaussian smoothing. When
n¿− 1, one-loop corrections to S3 diverge, as for the power spectrum and bispectrum.

5.5.2. The spherical collapse model approximation
Given the complexity of loop calculations, approximate expressions have been looked for. The

so-called spherical collapse (SC) model prescription [222] provides a nice and elegant way for
getting approximate loop corrections for the local cumulants. 38

This model consists in assuming that shear contributions in the equations of motion in Lagrangian
space can be neglected, which implies that density Juctuations grow locally according to spherical
collapse dynamics. In this case, the cumulants can be obtained by a simple non-linear transformation

38 Another prescription, which turns out to be not as accurate, is given in [534].
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Table 7
Values for the higher-order perturbative contributions in the SC model for the unsmoothed (n = −3) and smoothed
(n = −2;−1; 0) density 9elds, for a top-hat 9lter and a power-law power spectrum. When known exact one-loop results
are quoted in brackets. More details can be found in [222]

SC Unsmoothed Smoothed

n = −3 n = −2 n = −1 n = 0

s2;4 1.44 [1.82] 0.61 [0.88] 0.40 [∞] 0.79 [∞]
s2;6 3.21 0.34 0.05 0.68

S3;0 4.86 3.86 2.86 1.86
SL

3;2 10.08 [9.80] 3.21 [3.18] 0.59 [∞] −0:02 [∞]
SL

3;4 47.94 3.80 0.07 0.06
S4;0 45.89 27.56 13.89 4.89
SL

4;2 267.72 63.56 7.39 −0:16
SL

4;4 2037.2 138.43 1.99 0.31

of the local Lagrangian density contrast �,

� = (1 + G�(−�lin))〈[1 + G�(−�lin)]−1〉L − 1 ; (288)

expressed in terms of the linear density contrast �lin assumed to obey Gaussian statistics. Note that
the ensemble average in Eq. (288) is computed in Lagrangian space. 39 Given the fact that the usual
ensemble average in Eulerian space is related to the Lagrangian one through 〈X 〉L ≡ 〈(1+�)X 〉, the
normalization factor 〈[1+G�(�lin)]−1〉L is required to obey the constraint that 〈(1+�)−1〉L =〈1〉E =1.

For Gaussian initial conditions, the SC model reproduces the tree-level results. Its interest comes
from the fact that estimates of loop corrections can be obtained by pursuing relatively simple calcula-
tions to the required order. In addition, as we shall see in the next section, it allows a straightforward
extension to non-Gaussian initial conditions. The smoothing e=ects, as shown from calculations exact
up to tree level, introduce further complications but can be taken into account by simply changing
the vertex generating function G� in Eq. (288) to the one found in Eq. (279). Rigorously, this
equation is valid only at tree level: its extension to loop corrections in the SC model can hardly be
justi9ed, 40 but turns out to be a good approximation.

When comparisons are possible, the SC model is seen to provide predictions that are in good
agreement with exact PT results (see Table 7), in particular for the Sp parameters. Indeed, for
the variance (or cumulants), the SC prescription does not work as well (see e.g. Fig. 28). The
reason for this is tidal contributions, which are neglected in the SC approximation and lead to the
previrialization e=ects discussed for the exact PT case in Section 4.2.1. Tidal e=ects tend to cancel
for Sp because of the ratios of cumulants involved. In the SC prescription no divergences are found
for n¿− 1, thus the interpretation of those remains unresolved.

When tested against numerical simulations, the SC model provides a good account of the departure
from tree-level results as illustrated in Fig. 28 for CDM models (see also Fig. 37).

39 Which means that all matter elements are equally weighted, instead of volume elements.
40 In the SC model, the kernels in the Jacobian of the mapping from Lagrangian to Eulerian space present no angular

dependence, and this is actually incompatible with the commutation property in Eq. (275).
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Fig. 28. Non-linear evolution of the variance (left panels) and of the skewness parameter S3 (right panels) from 10
realizations of Jat CDM N -body simulations. Two models are considered, �CDM with 	m + 	� = 1 and # = 0:2, and
SCDM with 	m = 1 and #= 0:5, where # is the shape parameter of the power spectrum [201]. In the left panels, symbols
show the ratio of the non-linear to the linear variance as a function of smoothing radius. The value of # is indicated in
the panels, while "2

8 stands for the linear variance in a sphere of radius 8h−1 Mpc. The SC model predictions are shown
as a short-dashed line while one-loop PT predictions are shown as a solid line. The arrows indicate where "l = 0:5. In
the right panels, the output times correspond to "8 = 0:5 (top) and "8 = 0:7 (bottom). Squares and triangles correspond
to measurements in # = 0:2 and 0.5 simulations, respectively. Each case is compared to the corresponding PT tree-level
predictions (solid lines) and SC model (long-dashed). From [222].

5.6. Evolution from non-Gaussian initial conditions

We now discuss the e=ects of non-Gaussian initial conditions on the evolution of smoothed mo-
ments of the density 9eld. As pointed out in Section 4.4, this is a complicated subject due to the
in9nite number of possible non-Gaussian initial conditions. For this reason, there are few general
results, and only some particular models have been worked out in detail. Early work concentrated on
numerical simulation studies [464,684,139] of models with positive and negative primordial skew-
ness and comparison with observations. In addition, a number of studies considered the evolution
of higher-order moments from non-Gaussian initial conditions given by cosmic strings [146,9] and
texture models [252] using numerical simulations. Recently, measurements of higher-order moments
in numerical simulations with �2

N initial conditions with N degrees of freedom were given in [689].
General properties of one-point moments evolved from non-Gaussian initial conditions were con-

sidered using PT in [238,333,124,255,195]. To illustrate the main ideas, let us write the PT expression
for the 9rst one-point moments:

〈�2〉 = 〈�2
1〉 + [2〈�1�2〉] + 〈�2

2〉 + 2〈�1�3〉 + O("5) ; (289)

〈�3〉 = [〈�3
1〉] + 3〈�2

1�2〉 + [3〈�2
2�1〉 + 3〈�2

1�3〉] + O("6) ; (290)

〈�4〉 = 〈�4
1〉 + [4〈�3

1�2〉] + 6〈�2
1�

2
2〉 + 4〈�3

1�3〉 + O("7) ; (291)
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where we simply use the PT expansion �=�1 +�2 + · · · : Square brackets denote terms which scale
as odd powers of �1, and thus vanish for Gaussian initial conditions. A 9rst general remark one
can make is that these additional terms give to non-Gaussian initial conditions a di=erent scaling
than for the Gaussian case [238,124]. In addition, the other terms in the skewness have contribution
from non-Gaussian initial conditions as well; this does not modify the scaling of these terms but
it can signi9cantly change the amplitude. When dealing with non-Gaussian initial conditions, the
time dependence and scale dependence must be considered separately. To illustrate this, consider
the evolution of the Sp parameters as a function of smoothing scale R and redshift z, assuming for
simplicity 	m = 1 [so that the growth factor is a(z) = (1 + z)−1], at largest scales where linear PT
applies we have

Sp(R; z) ∼ (1 + z)p−2SI
p(R) : (292)

For dimensional scaling models, where the initial conditions satisfy SI
p(R) ∼ ["I(R)]2−p, this implies

Sp(R; z) ∼ ["I(R; z)]2−p; that is, the Sp parameters scale as inverse powers of the variance at
all times. Note, however, that Eq. (292) is more general, it implies that irrespective of scaling
considerations, in non-Gaussian models the Sp parameters should be an increasing function of
redshift; this can be used to constrain primordial non-Gaussianity from observations. 41 However,
we caution that, as mentioned in Section 4.4, all these arguments are valid if the non-Gaussian
Juctuations were generated at early times, and their sources are not active during structure formation.

At what scale does the approximation of linear perturbation theory, Eq. (292), break down? The
answer to this question is, of course, signi9cantly model dependent, but it is very important in order
to constraint primordial non-Gaussianity. Indeed, we can write the second and third moments from
Eqs. (182) and (183):

"2(R) = "2
I (R) + 2

∫
d3kW 2(kR)

∫
d3qF2(k + q;−q)BI(k; q) ; (293)

〈�3(R)〉= 〈�3
I (R)〉 + 〈�3

G(R)〉 +
∫

d3k1

∫
d3k2 W (k1R)W (k2R)W (k12R)

×
∫

d3qF2(k1 + k2 − q; q)PI
4(k1; k2; k1 + k2 − q; q) ; (294)

where k12 ≡ |k1 + k2|, BI and PI
4 denote the initial bispectrum and trispectrum, respectively, and

the subscript “G” denotes the usual contribution to the third moment due to gravity from Gaussian
initial conditions. Therefore, as discussed in Section 4.4 for the bispectrum, corrections to the linear
evolution of S3 depend on the relative magnitude of the initial bispectrum and trispectrum compared
to the usual gravitationally induced skewness.

This model dependence can be parametrized in a very useful way under the additional assumption
of spherical symmetry. In the spherical collapse model, it is possible to work out entirely the
perturbation expansion for one-point moments from non-Gaussian initial conditions, but the solutions
are not exact as discussed further below. 42 Consider non-Gaussian initial conditions with dimensional

41 Such a method is potentially extremely powerful, as galaxy biasing would tend if anything to actually decrease the
Sp parameters with z, as bias tends to become larger in the past, see e.g. [635] and discussion in Section 8.

42 Some additional results have been recently obtained for the PDF from speci9c type of non-Gaussian initial conditions,
see [662].
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scaling. To take into account non-Gaussian terms, one has to rewrite Eq. (286) as

Sp("L) =
−1∑

n=−p+2

SL
p;n "

n
L + Sp;0 +

∞∑
n=1

SL
p;n "

n
L ; (295)

where "L = "I is given by linear theory as in Eq. (293). The 9rst non-vanishing perturbative con-
tributions to the variance, skewness and kurtosis read [255]

s2;3 = [1
3S

G
3 − 1]B3 ;

s2;4 = 3 − 4
3 SG

3 − 5
18 (SG
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S3;0 = SG
3 − 2 [1

3S
G
3 − 1]B2

3 + [1
2S

G
3 − 1]B4 ;
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4 ]B6 : (296)

Here the non-Gaussianity in the initial conditions is characterized via the dimensionless scaling
amplitudes

Bp ≡ 〈�p
I 〉c

"p
I

: (297)

For non-Gaussian initial conditions seeded by topological defects such as textures [655,252] or cosmic
strings [146,9], Bp is expected to be of order unity. 43 For reference, Table 8 lists these results for

43 For cosmic strings, this statement is valid if the scale considered is suQciently large, R& 1:5(	mh2)−1 Mpc, see [9]
for details.
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Table 8
Values of the higher-order perturbative contributions in the SC model from non-Gaussian initial conditions with BJ = 1
for the unsmoothed (n=−3) and smoothed (n=−2;−1; 0) density 9elds for a top-hat window and a power-law spectrum

SC Unsmoothed Smoothed
BJ = 1

n = −3 n = −2 n = −1 n = 0

s2;3 0.62 0.29 −0:05 −0:38
s2;4 1.87 0.74 0.44 0.98
s2;5 3.36 0.60 −0:05 −1:05

S3;0 5.05 4.21 3.38 2.55
SL

3;1 7.26 3.91 1.55 0.19
SL

3;2 23.53 7.37 1.18 0.20

SL
4;−1 19.81 16.14 12.48 8.81

S4;0 85.88 52.84 28.31 12.27
SL

4;1 332.51 128.51 32.83 2.70

Bp = 1 and power-law initial spectra as a function of spectral index n. In this case it is clear that
non-linear corrections to the linear result, Eq. (292), can be very important even at large scales.
Even more so, �2 initial conditions (with spectral index such that it reproduces observations) have
B3 ≈ 2:5 and B4 ≈ 10 [514,689]; therefore, non-linear corrections are particularly strong [255,565].

When compared to exact PT calculations or to measurements in numerical simulations, the SC
model is seen to provide quite accurate predictions. This is illustrated in Fig. 29 for the skewness
and kurtosis in texture models [255]. These parameters evolve slowly from non-Gaussian initial con-
ditions toward the (Gaussian) gravitational predictions. However, even at present time, a systematic
shift can be observed in Fig. 29 between the Gaussian and the non-Gaussian case, well described
by the SC predictions taken at appropriate order. The main signature of non-Gaussianity remains
at the largest scales, where the Sp parameters show a sharp increase: this is the scaling regime of
Eq. (292) where observations can best constrain non-Gaussianity [594,195]. This is explicitly illus-
trated in Section 8.

5.7. Transients from initial conditions

The standard procedure in numerical simulations is to set up the initial perturbations, assumed
to be Gaussian, by using the ZA [705]. This gives a useful prescription to perturb the positions of
particles from some initial homogeneous pattern (commonly a grid or a “glass” [688]) and assign
them velocities according to the growing mode in linear perturbation theory. In this way, one can
generate Juctuations with any desired power spectrum and then numerically evolve them forward in
time to the present epoch.

Although the ZA correctly reproduces the linear growing modes of density and velocity pertur-
bations, non-linear correlations are known to be inaccurate when compared to the exact dynamics
[274,355,46,116,356], see also Table 7. This implies that it may take a non-negligible amount of
time for the exact dynamics to establish the correct statistical properties of density and velocity
9elds. This transient behavior a=ects in greater extent statistical quantities which are sensitive to
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Fig. 29. The skewness and kurtosis, S3 and S4, for texture-like non-Gaussian models. The triangles show the initial
conditions ("8 = 0:1), which are 9tted well by the dimensional scaling, S3 = B3=" and S4 = B4="2 with B3 = B4 � 0:5,
shown as the upper dotted line. Squares show S3 and S4 for a later output corresponding to "8 = 1:0. The SC predictions
for the "8 = 1 output are shown as short-dashed (including the second-order contribution) and long-dashed line (including
the third-order). The continuous line shows the corresponding tree-level PT prediction for Gaussian initial conditions. The
lower dotted lines correspond to the linear theory prediction. In the right panel the dot long-dashed line displays the SC
prediction including the fourth-order perturbative contribution. From [255].

phase correlations of density and velocity 9elds; by contrast, the two-point function, variance and
power spectrum of density Juctuations at large scales can be described by linear perturbation theory,
and are thus una=ected by the incorrect higher-order correlations imposed by the initial conditions.

In Section 2.4.6 we presented the solutions involving the full time dependence from arbitrary
initial conditions [561]. Again, we assume 	m = 1 for simplicity. The recursion relations for PT
kernels including transients result from using the following ansatz in Eq. (86).

D(n)
a (k; z) =

∫
d3k1 · · ·

∫
d3kn [�D]nF

(n)
a (k1; : : : ; kn; z)�1(k1) · · · �1(kn) ; (298)

where a = 1; 2, z ≡ ln a(�) with a(�) the scale factor, and the nth-order solutions for density and
velocity 9elds are components of the vector Db, i.e. D(n)

1 ≡ �n, D(n)
2 ≡ �n. In Eq. (298), [�D]n ≡

�D(k − k1 − · · · − kn).
The kernels F

(n)
a now depend on time and reduce to the standard ones when transients die out,

that is F
(n)
1 → Fn, F

(n)
2 → Gn when z → ∞. Also, Eq. (298) incorporates in a convenient way

initial conditions, i.e. at z = 0, F(n)
a = I

(n)
a , where the kernels I

(n)
a describe the initial correlations

imposed at the start of the simulation. For the ZA we have

I
(n)
1 = FZA

n ; I
(n)
2 = GZA

n : (299)

Although most existing initial conditions codes use the ZA prescription to set up their initial condi-
tions, there is another prescription to set initial velocities suggested in [199], which avoids the high
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initial velocities that result from the use of ZA because of small-scale density Juctuations approach-
ing unity when starting a simulation at low redshifts. This procedure corresponds to recalculating the
velocities from the gravitational potential due to the perturbed particle positions, obtained by solving
again Poisson equation after particles have been displaced according to the ZA. Linear PT is then
applied to the density 9eld to obtain the velocities, which implies instead that the initial velocity
9eld is such that the divergence 9eld T(x) ≡ �(x)=(−fH) has the same higher-order correlations
as the ZA density perturbations. In this case

I
(n)
1 = FZA

n ; I
(n)
2 = FZA

n : (300)

The recursion relations for F
(n)
a , which solve the non-linear dynamics at arbitrary order in PT, can

be obtained by substituting Eq. (298) into Eq. (86), which yields [561]

F(n)
a (k1; : : : ; kn; z) = e−nzgab(z)I

(n)
b (k1; : : : ; kn)

+
n−1∑
m=1

∫ z

0
ds en(s−z)gab(z − s)Bbcd(k(m); k(n−m))

×F(m)
c (k1; : : : ; km; s)F(n−m)

d (km+1; : : : ; kn; s) ; (301)

where we have assumed the summation convention over repeated indices, which run between 1 and
2. Eq. (301) reduces to the standard recursion relations for Gaussian initial conditions (I(n)

a = 0
for n¿ 1) when transients are neglected, i.e. the time dependence of F

(n)
a is neglected and the

lower limit of integration is replaced by s = −∞. Also, it is easy to check from Eq. (301) that if
I

(n)
a = (Fn; Gn), then F

(n)
a = (Fn; Gn), as it should be. Note that PT kernels in Eq. (301) are no

longer a separable function of wave vectors and time.
From the recursion relations given by Eq. (301), it is possible to 9nd the recursion relations for the

smoothed vertices .n and /n as functions of scale factor a and smoothing scale R, and therefore infer
the values of the cumulants as functions of the Bp’s [Eq. (280)] as in Section 5.4, but with additional
dependence with the scale factor. For the skewness parameters, one 9nds in the Einstein–de Sitter
case

S3(a) =
[4 + B1]

a
+
{

34
7

+ B1

}
− B1 + 26

5

a
+

12
35a7=2 (302)

=
34
7

+ B1 − 6
5a

+
12

35a7=2 ; (303)

T3(a) = − [2 + B1]
a

−
{

26
7

+ B1

}
+

B1 + 16
5

a
+

18
35a7=2 (304)

= −26
7

− B1 +
6
5a

+
18

35a7=2 ; (305)
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Fig. 30. The ratio of the tree-level Sp parameters at scale factor a to their asymptotic exact dynamics value for scale-free
initial spectra with spectral indices n =−1; 0. From top to bottom p = 3; : : : ; 8. The values at a = 1 represent those set by
the ZA initial conditions.

where we have assumed ZA initial velocities. On the other hand, for initial velocities set from
perturbed particle positions, we have

S3(a) =
[4 + B1]

a
+
{

34
7

+ B1

}
− B1 + 22

5

a
− 16

35a7=2 (306)

=
34
7

+ B1 − 2
5a

− 16
35a7=2 ; (307)

T3(a) = − [4 + B1]
a

−
{

26
7

+ B1

}
+

B1 + 22
5

a
− 24

35a7=2 (308)

= −26
7

− B1 +
2
5a

− 24
35a7=2 : (309)

For 	m �= 1, these expressions are approximately valid upon replacing the scale factor a by the linear
growth factor D1(�). The 9rst term in square brackets in Eqs. (302) and (304) represents the initial
skewness given by the ZA (e.g. [46]), which decays with the expansion as a−1, as expected from
the discussion on non-Gaussian initial conditions in the previous section. The second and remaining
terms in Eqs. (302) and (304) represent the asymptotic exact values (in between braces) and the
transient induced by the exact dynamics respectively; their sum vanishes at a = 1 where the only
correlations are those imposed by the initial conditions. Similar results to these are obtained for
higher-order moments, we refer the reader to [561] for explicit expressions. Note that for scale-free
initial conditions, the transient contributions to Sp and Tp break self-similarity. Transients turn out
to be somewhat less important for velocities set from perturbed particle positions, than in the ZA
prescription, as in this case higher-order correlations are closer to those in the exact dynamics.

Fig. 30 illustrates these results for the skewness and higher-order Sp parameters as functions of
scale factor a for di=erent spectral indices, assuming that velocities are set as in the ZA. The plots
show the ratio of Sp(a) to its “true” asymptotic value predicted by PT, Sp(∞), for 36p6 8. The
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Fig. 31. Symbols show the ratio of the Sp parameters for di=erent scale factor a (simulation began at a = 1) measured in
SCDM numerical simulations [28] to their asymptotic tree-level exact dynamics value as a function of smoothing scale R.
Symbols represent a= 1 (
); a= 1:66 (4), a= 2:75 ( ) and a= 4:2 ( ). Error bars denote the variance of measurements
in 10 realizations. Solid lines correspond to the predictions of transients in tree-level PT, expected to be valid at large
scales.

values at a = 1 correspond to the ratio of ZA to exact dynamics Sp’s, which becomes smaller as
either p or n increases. For the skewness, it takes as much as a= 6 for n= 0 to achieve 10% of the
asymptotic exact PT value, whereas spectra with more large-scale power, where the ZA works better,
require less expansion factors to yield the same accuracy. As p increases, however, the transients
become worse and at p = 8 an expansion by a factor a = 40 is required for n = 0 to achieve 10%
accuracy in S8. This suggests that the tails of the PDF could be quite a=ected by transients from
initial conditions.

Fig. 31 presents a comparison of the perturbative predictions for transients in Sp parameters with
the standard CDM numerical simulations measurements of [28]. In this case, initial velocities are set
as in [199] rather than using the ZA. The error bars in the measurements correspond to the variance
over 10 realizations. If there were no transients and no other sources of systematic uncertainties, all
the curves would approach unity at large scales, where tree-level PT applies. Unfortunately, there
are other sources of systematic uncertainties which prevents a clean test of the transients predictions
from PT, as we now brieJy discuss, but more details will be given in Section 6.12.

The di=erent symbols correspond to di=erent outputs of the simulation: open triangles denote initial
conditions (a=1; "8 =0:24), solid triangles (a=1:66; "8 =0:40), open squares (a=2:75; "8 =0:66)
and solid squares (a = 4:2; "8 = 1:0). For the initial conditions measurements (open triangles) there
is some disagreement with the ZA predictions, especially at small scales, due to discreteness e=ects,
which have not been corrected for. The initial particle arrangement is a grid; therefore, the Poisson
model commonly used to correct for discreteness is not necessarily a good approximation (see [28]
for further discussion of this point and Section 6.12.2). The second output time (solid triangles)
is perhaps the best for testing the predictions of transients: discreteness corrections become much
smaller due to evolution away from the initial conditions, and the system has not yet evolved long
enough so that 9nite volume corrections are important (see also Section 6.12.1). For S3 we see
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excellent agreement with the predictions of Eq. (307), with a small excess at small scales due to
non-linear evolution away from the tree-level prediction. For p¿ 3 the numerical results show a
similar behavior with increased deviation at small scales due to non-linear evolution, as expected. For
the last two outputs we see a further increase of non-linear e=ects at small scales, then a reasonable
agreement with the transients predictions, and lastly a decrease of the numerical results compared
to the PT predictions at large scales due to 9nite volume e=ects, which increase with "8; R and p
[147,28,150,472].

5.8. The density PDF

Up to now, we have given exhaustive results on the local density moments. In the following we
show how these results can be used to reconstruct the one-point density PDFs [44].

5.8.1. Reconstruction of the PDF from the generating function
We use here the relation between the probability distribution function and the generating function

’(y), Eq. (142). To be able to use such a relation one needs a supplementary non-trivial hypothesis.
Indeed ’(y) is a priori " dependent through every Sp parameter. We assume here that we have

’(y; ") → ’(y) when " → 0 ; (310)

in a uniform way as suggested by numerical simulation results on Sp. No proof has, however, been
given of such a property. It has even been challenged recently by calculations presented in [661,663],
which suggest that ’(y; ") is not analytic at y → 0− for 9nite values of ". That would a=ect results
presented below (in particular, the shape of the large density tails). In the following, we will ignore
these subtleties and assume that, when the variance is small enough, it is legitimate to compute the
density PDF from

p(�) d� =
∫ +i∞

−i∞
dy

2�i"2 exp
[
−’(y)

"2 +
y�
"2

]
d� ; (311)

where ’(y) is given by system (262), (263) by analytic continuation from the point ’(0) = 0.
From this equation numerous results can be obtained. The di=erent forms of p(�) have been

described in detail in [16,17]. Taking advantage of the approximation "�1 one can apply the
saddle-point approximation to get

p(�) d� =
d�

−G′
�(�)

[
1 − �G′′

� (�)=G′
�(�)

2�"2

]1=2

exp
(
− �2

2"2

)
; G�(�) = � : (312)

This solution is valid when �6 �c where �c is the value of the density contrast for which 1 =
�G′′

� (�)=G′
�(�). Here function G�(�) is equal to GL

� (�) or GE
� (�) whether one works in Lagrangian

space or Eulerian space while taking smoothing into account (Section 5.4.3).
When � is larger than �c, the saddle-point approximation is no longer valid. The shape of p(�)

is then determined by the behavior of ’(y) near its singularity on the real axis,

’(y) � ’s + rs(y − ys) − as(y − ys)3=2 ; (313)
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Table 9
Parameters of the singularity (313) for di=erent values of the spectral index n (there is no singularity for n¿ 0)

n �c ys rs as ’s

−3 0.656 −0:184 1.66 1.84 −0:030
−2:5 0.804 −0:213 1.80 2.21 −0:041
−2 1.034 −0:253 2.03 2.81 −0:058
−1:5 1.44 −0:310 2.44 3.93 −0:093
−1 2.344 −0:401 3.34 6.68 −0:172
−0:5 5.632 −0:574 6.63 18.94 −0:434

and we have

p(�) d� =
3 as"
4
√
�

(1 + �− rs)−5=2 exp[ − |ys|�="2 + |’s|="2] d� : (314)

Table 9 gives the parameters describing the singularity corresponding to di=erent values of the
spectral index, for the PDF of the smoothed density 9eld in Eulerian space. 44 One sees that
the shape of the cut-o= is very di=erent from that of a Gaussian distribution. This shape is due
to the analytic properties of the generating function ’(y) on the real axis. We explicitly assume
here that Eq. (310) is valid, in particular that the position of the 9rst singularity is at 9nite distance
from the origin when " is 9nite. It has been pointed out in [663] that Eq. (263) admits a second
branch for ys ¡y¡ 0 which cannot be ignored in the computation of the density PDF for 9nite
values of ". In practice its e=ect is modest. It, however, a=ects the analytical properties of ’(y)
and therefore the shape of the large density tail, Eq. (314).

Numerically, it is always possible to integrate Eq. (311) without using the saddle-point approxima-
tion. It is then useful to take advantage of the weak 	m and 	� dependence of the vertex generating
function. In particular, one can use

GL
� (�) =

(
1 +

2 �
3

)−3=2

− 1 ; (315)

which is the exact result for the spherical collapse dynamics when 	m → 0, 	� = 0. This leads to
slight over-estimation of the low-order vertex [in this case S3 = 5 − (n + 3), for instance] but the
power-law behavior at large � is correctly reproduced. For this GL

� and for a power-law spectrum, �
can be explicitly written in terms of GE

� . It is interesting to note that for n=0 there is no singularity,
the saddle-point approximation reduces to Eq. (312) and the Eulerian PDF of the smoothed density
9eld reads

pn=0(�) d� =
√

(1 + �)−5=3 + (1 + �)−7=3

×exp
[
−9((1 + �)2=3 − 1)2

8(1 + �)1=3"2

]
d�√
�"

: (316)

One can also obtain the PDF from the SC model using the local Lagrangian mapping [256,554]. The
PDFs that are obtained are in good agreement with the results of numerical simulations. In Fig. 32,

44 The case n = −3 corresponds as well to the PDF in Lagrangian space or to the unsmoothed case.
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Fig. 32. Comparison between predictions of tree-level PT with results of N -body simulations in the standard CDM model
[predictions were calculated assuming Eq. (315)]. From [44].

Fig. 33. Variation of the position of the critical (linear) value for the density contrast as a function of 	m for open
cosmologies.

PT predictions for di=erent smoothing scales are compared to measurements in a P3M simulation for
the standard CDM model. The predicted shape for the PDF (computed from the measured variance
and known linear spectral index) is in remarkable agreement with the N -body results.

5.8.2. Dependence on cosmological parameters
The dependence of the shape of the PDF on cosmological parameters is entirely contained in

the spherical collapse dynamics when the density 9eld is expressed in terms of the linear density
contrast. It can be examined, for instance, in terms of the position of the critical density contrast,
�c. The variation of �c with cosmology is rather modest as shown in Fig. 33 for 	� = 0. This result
applies also to the overall shape of G� (see [44,45]), for which the dependence on cosmological
parameters remains extremely weak, at percent level. This extends what has been found explicitly
for the S3 and S4 parameters.
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5.8.3. The PDF in the Zel’dovich approximation
For approximate dynamics such as ZA, the previous construction can also be done. It follows

exactly the same scheme and the tree-order cumulant generating function can be obtained through
the ZA spherical collapse dynamics [471,49]. 45 It is given by

GZA
� =

(
1 − �

3

)−3
: (317)

One could then compute the Laplace inverse transform of the cumulant generating function to get
the one-point density PDF. As in the previous case, this result is not exact in the sense that it is
based on the leading order result for the cumulants.

In the case of the ZA, it is actually possible to do an a priori much more accurate calculation
with a direct approach. Indeed, the local density contrast neglecting 9ltering e=ects is given by the
inverse Jacobian of the deformation tensor, Eq. (93), and the joint PDF of the eigenvalues can then
be explicitly calculated [190]:

p(A1; A2; A3) =
55=2 × 27

8�"6 (A3 − A1)(A3 − A2)(A2 − A1)

×exp
{[

−3(A1 + A2 + A3)2 −15
2

(A1A2 + A1A3 + A2A3)
]/

"2

}
; (318)

where we have assumed that A1 ¡A2 ¡A3. From this, it is possible to compute the shape of the
one-point density PDF [382,49],

p(�) =
9 53=2

4�Ns(1 + �)3 "4

∫ ∞

3=(1+�)3
ds e−(s−3)2=2"2

×(1 + e−6s="2
)(e−>2

1=2"
2

+ e>2
2=2"

2 − e>2
3=2"

2
) ; (319)

>n(s) ≡ s51=2

(
1
2

+ cos
[

2
3

(n− 1)� +
1
3

arccos
(

54
s3(1 + �)3 − 1

)])
; (320)

where Ns is the mean number of streams; Ns = 1 in the single-stream regime.
The above prediction for the PDF is however of limited value because, in the absence of smooth-

ing, there is an accumulation of density values at in9nity. This is due to the fact that there is always
a 9nite probability of forming caustics (where the Jacobian vanishes). An unfortunate consequence
of this is that the moments of this distribution are always in9nite! This does not, however, contradict
the results given in Section 5.5 as shown in [49]: when a cut-o= is applied to the large-density tail,
the moments remain 9nite, and behave as expected from the PT calculations. This has been explicitly
veri9ed up to one-loop order [557].

45 Extension to other non-linear approximations discussed in Section 2.8 is considered as well in [471]. In addition,
recent works have focussed on the PDF generated by second-order PT [644,682]; however, these neglect the e=ects of
smoothing.
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5.9. Two-dimensional dynamics

The case of gravitational instability in two spatial dimensions (2D) might be viewed as quite
academic. It is, however, worth investigating for di=erent reasons: (i) it is a good illustration of the
general method; (ii) numerical simulations in 2D dynamics can be done with a much larger dynamical
range than in 3D; and, perhaps most importantly, (iii) the 2D results turn out to be of direct use to
study statistical properties of the projected density (Section 7.2), relevant for observations of angular
clustering and weak gravitational lensing.

The dynamics we are interested in corresponds actually to density Juctuations embedded in a 3D
space but which are uniform along one direction. The general equations of motion are left unchanged;
here, we consider again only the Einstein–de Sitter case.

Let us review the di=erent stages of the calculation [48]. For the naked vertices, without smoothing
e=ects, the only change introduced is due to the cos2(k1; k2) factor that in 2D averages to 1

2 instead
of 1

3 . The resulting recursion relations between the vertices .n and /n then read

.n =
n−1∑
m=1

(
n
m

)
/m

(2n + 3)(n− 1)
[(2n + 1).n−m + /n−m] ; (321)

/n =
n−1∑
m=1

(
n
m

)
/m

(2n + 3)(n− 1)
[3.n−m + n/n−m] ; (322)

instead of Eqs. (50) and (51). No simple solution for the generating function of .n; G2D
� (�), is

known although it again corresponds to the equation describing the “spherical” collapse in 2D. 46 It
can, however, be shown that G2D

� (�) − 1 ∼ �−(
√

13−1)=2 when � → ∞, and the expression

G2D
� (�) =

(
1 +

�
.

)−. − 1 with . =

√
13 − 1

2
(323)

provides a good 9t. More precisely one can rigorously calculate the expansion of G�(�) near � = 0
and it reads

G2D
� (�) = −� + 12

14 �2 − 29
42 �3 + 79

147 �4 − 2085
5096 �5 + · · · : (324)

The resulting values for the S2D
p parameters when smoothing is neglected are S2D

3 = 36
7 , S2D

4 = 2540
49 ,

S2D
5 =793, S2D

6 =13 370. When 9ltering is taken into account the vertex generating function becomes 47

GE
� (�) = G2D

� (�[1 + GE
� (�)]−2−n) (325)

for a power-law spectrum of index n. This leads to [48]

S2D
3 =

36
7

− 3(n + 2)
2

; (326)

S2D
4 =

2540
49

− 33(n + 2) +
21(n + 2)2

4
; (327)

46 To our knowledge there is no closed analytical solution for the 2D spherical collapse.
47 In 2D dynamics if P(k) ∼ kn, then "(R) ˙ R−(n+2).
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Table 10
Parameters of the singularity, Eq. (313), for the 2D case. There is no singularity for n¿ 0

n ys ’s rs as

−2 −0:172 −0:197 1.60 −1:72
−1:5 −0:212 −0:252 1.81 −2:25
−1 −0:277 −0:350 2.23 −3:41
−0:5 −0:403 −0:581 3.55 −7:73

S2D
5 =

271 960
343

− 38 900(n + 2)
49

+
3705(n + 2)2

14
− 235(n + 2)3

8
; (328)

S2D
6 =

510 882 660
31 213

− 7 721 415 (n + 2)
343

+
2 272 395(n + 2)2

196

− 74 205(n + 2)3

28
+

1815(n + 2)4

8
: (329)

Obviously, these results can also be obtained from a direct perturbative calculation using the geo-
metrical properties of the 2D top-hat window function given in Appendix C. The position and shape
of the singularity are also changed in 2D dynamics. In Table 10 we give the parameters of the
singularity in ’(y).

5.10. The velocity divergence PDF

So far our description has been focussed on the density 9eld. The structure of the equations for
the velocity divergence is the same as for the local density. We brieJy account here for the results
that have been obtained at tree level for the velocity divergence [44]. Loop corrections with exact
PT are discussed in e.g. [557]. Note that the SC model approximation described in Section 5.5.2
does not do as well as for the density contrast, due to tidal contributions, 48 but can provide again
approximate loop corrections for the cumulants while still giving exact tree-level results [223].

5.10.1. The velocity divergence cumulants hierarchy
In what follows, we assume that the velocity divergence is expressed in units of the conformal

expansion rate, H= aH . For convenience, we de9ne the vertex generating function for the velocity
divergence as

Gv(�) ≡ −f(	m;	�)
∑
p¿1

/p
(−�)p

p!
≡
∑
p¿1

/̀p
(−�)p

p!
: (330)

This de9nition corresponds to slightly di=erent vertices from those given by Eq. (49):

/̀p ≡ 〈� (n)[�(1)]p〉c=〈[�(1)]2〉p : (331)

48 Velocities are more a=ected by previrialization e=ects, as shown in Fig. 12.
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When the 9ltering e=ect is not taken into account, the vertex generating function can be obtained
from that of the density 9eld. From the continuity equation we have [43]

G�(a; �) = −
[
a

d
da

G�(a; �) + f(	m;	�)�
d
d�

G�(a; �)
]

[1 + G�(a; �)]−1 : (332)

One can use the fact that function G�(a; �) is nearly insensitive to the values of 	m and 	� to obtain
a simpli9ed form for the function G�(a; �),

G�(�) ≈ −f(	m;	�)�
d
d�

GL
� (�)=[1 + GL

� (�)] ; (333)

so that G�(�) ≈ f(	m;	�)�(1 + 2�=3)−1 if approximation in Eq. (315) is used. This, in fact, fully
justi9es the de9nition of the vertices /p which are seen to be almost independent of the cosmological
parameters, as already discussed in Section 2.4.3.

From now on, we use again for clarity the Lagrangian and Eulerian superscripts, in particular
GL

� ≡ G�, GL
� ≡ G�. Including 9ltering e=ects requires taking into account the mapping from

Lagrangian to Eulerian space, as explained in Section 5.4.3. As a consequence of this we have

GE
� (�) = GL

�

[
�
"([1 + GE

� (�)]1=3R)
"(R)

]
; (334)

which amounts to say that the velocity divergence should be calculated at the correct mass scale. This
remapping does not further complicate the dependence on cosmological parameters: GE

� (�)=f(	m;	�)
remains independent of (	m;	�) to a very good accuracy.

It is possible to derive the cumulants Tp from the implicit equation (334), relying on the usual
relations given in Section 5.4.1 between the cumulants and what would be the genuine intrinsic
velocity divergence vertices, /intr

p ≡ 〈� (n)[� (1)]p〉c;E=〈[� (1)]2〉pE that are straightforwardly related to
/̀E
p through /intr

p = /̀E
p[ − f(	m;	�)]−p. The corresponding vertex generating function, Gintr

� (�), is
given by Gintr

� (�) =GE
� [−f(	m;	�)�] together with Eqs. (260), (226) and (263), and replacing Sp

with Tp and G� with Gintr
� can be used to compute the velocity divergence cumulant parameters. For

an Einstein–de Sitter universe, the 9rst two read

T3(	m = 1; 	� = 0) = −
(

26
7

+ B1

)
; (335)

T4(	m = 1; 	� = 0) =
12 088

441
+

338B1

21
+

7B2
1

3
+

2B2

3
; (336)

...

where the parameters Bp are given by Eq. (280). Furthermore, the dependence on cosmological
parameters is straightforwardly given by 49

Tp(	m;	�) ≈ 1
f(	m;	�)(p−2) Tp(	m = 1; 	� = 0) ; (337)

which implies a relatively strong 	m dependence for the shape of p(�) as we now discuss.

49 To be compared, for example, to the more accurate result given for T3 in Eq. (245).
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5.10.2. The shape of the PDF
The above line of arguments provides a general rule for the dependence of the PDF on cosmo-

logical parameters:

p[f(	m;	�); �; "�] d� ≈ p
[
1;

�
f(	m;	�)

;
"�

f(	m;	�)

]
d�

f(	m;	�)
: (338)

Otherwise, the PDF can be calculated exactly the same way as for the density contrast.
The case n=−1 is worth further investigations since it is then possible to derive a closed form that

9ts extremely well the exact numerical integration, as for the PDF of � for n=0. This approximation
is based on the approximate form in Eq. (315) for the function GL

� . With n = −1 it leads to

GE; n=−1
� (�) =

[
− �

3
+
(

1 +
�2

9

)]3

− 1 : (339)

One can then show that

GE; n=−1
� (�) = f(	m;	�)

[
�
(

1 +
�2

9

)1=2

− �2

3

]
: (340)

The calculation of the PDF of the velocity divergence from the saddle-point approximation [e.g.
Eq. (312)] then leads to the expression

p(�) d� =
([2U − 1]=U1=2 + [A− 1]=A1=2)−3=2

U3=4(2�)1=2"�
exp
[
− � 2

2A"2
�

]
d� (341)

with

U = 1 +
� 2

9Af(	m;	�)2 ; A = 1 − 2�
3f(	m;	�)

; (342)

where � is expressed in units of the conformal expansion rate, H.

5.10.3. Comparison with N -body simulations
Measurements in numerical simulations turn out to be much more non-trivial for the velocity 9eld

than for the density 9eld. The reason is that in N -body simulations, the density 9eld is traced by a
Poisson realization. Although it suQces to count points, in grid cells for instance, to get the 9ltered
density, 50 the velocity 9eld is only known in a non-uniform way where particles happen to be.
Therefore, simple averages of velocities do not lead to good estimations of the statistical properties
one is interested in, especially when the number density of particles is small.

For this purpose, speci9c methods have been developed to deal with velocity 9eld statistics [52].
The idea is to use tessellations to obtain a continuous description of the velocity 9eld; two alternative
prescriptions have been proposed. One makes use of the Voronoi tessellation; in this case the velocity
is assumed to be uniform within each Voronoi cell, in other words, the local velocity at any space
point is the one of the closest particle. The second method makes use of the Delaunay tessellation.
In this case the local velocity is assumed to vary linearly within each Delaunay tetrahedron (such
ensemble of tetrahedra forms a unique partition of space); the local velocity is then de9ned by a
linear combination of its closest neighbors, see [52,54] for details.

50 Corrected for discreteness e=ects using factorial moments as discussed in Section 6.7.
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Fig. 34. The PDF of the velocity divergence for two di=erent values of 	m (	m = 1, left panel and 	m = 0:2, right panel).
The dotted lines correspond to the approximate analytic 9t [Eq. (341)] and the solid lines to the theoretical predictions
obtained from a direct numerical integration of the inverse Laplace transform with n=−0:7. In the right panel the dashed
line is the prediction for 	m = 1 and the same "� ≈ 0:4. From [54].

These methods have been applied to results of numerical simulations [54,387]. Comparisons be-
tween theoretical predictions, in particular form (341), and the measurements are shown in Fig. 34.
The simulation used here is a PM simulation with a scale-free spectrum with n=−1. The prediction,
Eq. (341), gives a good account of the shape of the divergence PDF, especially in the tails. The
detailed behavior of the PDF near its maximum requires a more exact computation. We obtained
it here by an exact inverse Laplace computation using Eq. (315) for the density vertex generating
function [and Eq. (333)] to get the velocity vertices. Because this expression does not accurately
predict the low-order cumulants 51 the integration has been made with n =−0:7, instead of n =−1,
to compensate for this problem. The agreement with simulations is quite remarkable.

5.11. The velocity–density relation

PT also allows one to consider multivariate PDFs such as the joint distribution of the local density
contrast and the local divergence �. An example of such PDF is shown in Fig. 35. It illustrates, in
particular, the fact that the local density and local divergence do not follow in general a one-to-one
correspondence, as it would be the case in linear perturbation theory. Deviations from this regime
induce not only a nonlinear relation between � and �, i.e. a bending in the �–� relation, but also a
signi9cant scatter.

In general, the statistical properties of these two 9elds can be studied through their joint cumulants,
〈�p� q〉c. Similar to cases involving only one variable, it is possible to compute such quantities at

51 For example, T3 = 4 − (n + 3) instead of T3 = 26
7 − (n + 3).



F. Bernardeau et al. / Physics Reports 367 (2002) 1–248 101

leading order, or at next to leading order (involving loop corrections) in PT. One can de9ne the
parameters Upq as

〈�p� q〉c = Upq〈�2〉p+q−1 ; (343)

where � is expressed in units of the conformal expansion rate, H. The Upq’s are 9nite (and non-zero)
at large scales for Gaussian initial conditions and can be easily computed at tree order. Their
calculation follows a tree construction from the vertices .p and /q. For instance, one obtains

U11 = .1/̀1 = /̀1 = −f(	m;	�) ;

U21 = 2.2/̀1 + /̀2 ;

U31 = 3.3/̀1 + /̀3 + 6.2
2/̀1 + 6.2/̀2 ;

U22 = 2.3/̀2
1 + 2/̀3/̀1 + 8.2/̀2/̀1 + 2.2

2/̀
2
1 + 2/̀2

2 ;

with /̀p ≡ −f(	m;	�)/p.
These expressions are straightforward when the smoothing e=ects are not taken into account. They

are still true otherwise, but they rely on the fact that the same mapping applies to the density and
the velocity divergence. More generally, it is possible to derive explicitly the generating function of
the joint cumulants. The demonstration is presented in Appendix B.2.

An interesting application of these results is the computation of the joint density–velocity PDF.
Assuming that the leading order contributions to cumulants provide a reliable description, we have

p(�; �) d� d� =
∫ +i∞

−i∞
dy1

2�i

∫ +i∞

−i∞
dy2

2�i
exp
[
�y1

"2 +
�y2

"2 − ’(y1; y2)
"2

]
;

’(y1; y2) = y1G�(�) + y2G�(�) − 1
2
y1�

d
d�

G�(�) − 1
2
y2�

d
d�

G�(�) ;

� = −y1
d
d�

G�(�) − y2
d
d�

G�(�) ; (344)

where "2 is the variance of the density 9eld.
As a consequence of this relation one can compute constrained averages such as the expectation

value of � under the constraint that the local density is known, 〈�〉�. For a vanishing variance (that
is, at tree level) the result turns out to be extremely simple and reads [42]

〈�〉� = G�(�) with G�(�) = � : (345)

This relation can obviously be inverted to get 〈�〉�. It is interesting to note that this result is not
quantitatively changed when top-hat smoothing e=ects are taken into account (nor it depends on the
shape of the power spectrum), which is not true anymore with Gaussian smoothing [125].
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Table 11
The coeQcients a1; : : : ; a3 and r1; : : : ; r3 as functions of the spectral index n for scale-free power spectra and Gaussian
smoothing. Results are given at leading order, except for a1 and r1 for which one-loop corrections are included when
available (correction is in9nite for n¿− 1)

Index n a1 a2 a3 r1 r2 r3

−3:0 — 0.190 −0:0101 1 + 0:3"2 −0:190 0.0826
−2:5 — 0.192 −0:00935 1 + 0:202"2 −0:192 0.0822
−2:0 1 − 0:172"2

� 0.196 −0:00548 1 + 0:077"2 −0:196 0.0821
−1:5 1 + 0:187"2

� 0.203 −0:000127 1 − 0:296"2 −0:203 0.0822
−1:0 1 + [∞] 0.213 0.00713 1 + [∞] −0:213 0.0835
−0:5 1 + [∞] 0.227 0.0165 1 + [∞] −0:227 0.0865

0 1 + [∞] 0.246 0.0279 1 + [∞] −0:246 0.0928
0.5 1 + [∞] 0.270 0.0408 1 + [∞] −0:270 0.1051
1.0 1 + [∞] 0.301 0.0532 1 + [∞] −0:301 0.1283

A more pedestrian approach should be used when the variance is not negligible:

〈�〉� = a0 + a1 � + a2 � 2 + a3 � 3 + · · · ; (346)

〈�〉� = r0 + r1 � + r2 �2 + r3 �3 + · · · : (347)

Computations should be made order by order and it becomes inevitable to introduce next-to-leading
order corrections, i.e. loop corrections.

The coeQcients a0; : : : ; a3 and r0; : : : ; r3 have been computed explicitly up to third order in PT
[125,127,56]. It is to be noted that at leading order one has a0 = −a2 "2

� and r0 = −r2 "2 to ensure
that the global ensemble averages of � and � vanish. Note also that the third order PT results for
a1 and r1 involve a loop correction that diverges for n¿− 1. The known results are given in Table
11 for the Einstein–de Sitter case and Gaussian smoothing.

The 	m dependence of these coeQcients can be explicitly derived. For instance, the coeQcient r2

can be expressed in terms of the skewness of the two 9elds (at leading order only), which leads
to r2 = f(	m;	�)(S3 + f(	m;	�)T3)=6. For a top-hat 9lter, r2 is always given by f(	m;	�) 4=21
and, for a Gaussian window it varies slightly with the power-spectrum index but shows a similarly
strong f(	m;	�) (and therefore 	m) dependence. Comparisons with numerical simulations have
demonstrated the accuracy and robustness of these predictions (except for the loop terms) [56,387].

Such results are of obvious observational interest since one can, in principle, measure the value of
	m from velocity–density comparisons, see [179]. In particular, a detailed analysis of the curvature
in the �–� relation (through a2 or r2) would provide a way to break the degeneracy between biasing
parameters (Section 7.1) and 	m [128,56]. 52 Moreover, these results can be extended to take into
account redshift distortion e=ects (Section 7.4) as described in [129]. The main practical issue is that
current velocity surveys are not suQciently large to provide accurate density–velocity comparisons
going beyond linear PT.

52 The scatter in this relation seen in Fig. 35 can be reduced by including also o=-diagonal components of the velocity
deformation tensor [273,429,126].
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Fig. 35. Example of a joint PDF of the density and the velocity divergence. The color is in logarithmic scale, the smoothing
scale is 15 Mpc=h, the spectrum is scale free with n = −1:5 and "8 ≡ 1, see [56] for details.

It is 9nally worth noting that these investigations are also useful for detailed analysis of the
Lyman-= forest [483].

5.12. The two-point density PDF

Perturbation theory can obviously be applied to any combination of the density taken at di=erent
locations. In particular, for sound cosmic error computations (see Section 6), the bivariate density
distribution is an important quantity that has been investigated in some detail.

The object of this section is to present the exact results that have been obtained at tree level
for the two-point density cumulants [51]. We consider the joint densities at positions x1 and x2

and we are interested in computing the cumulants 〈�p(x1)�q(x2)〉c where the 9eld is supposed to
be 9ltered at a given scale R. In general, such cumulants are expected to have quite complicated
expressions, depending on both the smoothing length R and the distance |x1−x2|. We make here the
approximation that the distance between the two points is large compared to the smoothing scale.
In other words, we neglect short-distance e=ects.

Let us de9ne the parameters Cpq:

Cpq =
〈�p(x1)�q(x2)〉c

〈�(x1)�(x2)〉 〈�2〉p+q−2 : (348)

Because of the tree structure of the correlation hierarchy, we expect the coeQcients Cpq to be 9nite
in both the large-distance limit and at leading order in the variance. This expresses the fact that
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Fig. 36. Structure of the coeQcient Cpq in large separation limit: Cpq is given by the sum of all possible trees joining p
points in 9rst cell to q points in the second with only one crossing line. The sums can be done separately on each side
leading to Cpq = Cp1 Cq1.

among all the diagrams that connect the two cells, the ones that involve only one line between the
cells are expected to be dominant in cases when 〈�(x1)�(x2)〉�〈�2〉.

The next remarkable property is directly due to the tree structure of the high-order correlation
functions. The coeQcients Cpq are dimensionless quantities that correspond to some geometrical
averages of trees. It is quite easy to realize (see Fig. 36) that such averages can be factorized into
two parts, corresponding to the end points of the line joining the two cells. In other words, one
should have

Cpq = Cp1Cq1 : (349)

This factorization property is speci9c to tree structures. It was encountered originally in previous
work in the fully non-linear regime [40]. It has speci9c consequences on the behavior of the two-point
density PDF, namely we expect that

p[�(x1); �(x2)] = p[�(x1)]p[�(x2)](1 + b[�(x1)]〈�(x1)�(x2)〉b[�(x2)]) : (350)

The joint density PDF is thus entirely determined by the shape of the “bias” function, b(�). 53

The general computation of the Cp1 series is not straightforward, although the tree structure of
the cumulants is indicative of a solution. Indeed the generating function  (y) of Cp1,

 (y) =
∞∑
p=1

Cp1
yn

p!
; (351)

corresponds to the generating function of the diagrams with one external line. For exact trees this
would be �(y). However, the Lagrangian to Eulerian mapping a=ects the relation between ’(y) and
�(y) and this should be taken into account. We give here the 9nal expression of  (y), derived in
detail in [51]:

 (y) = �(y)
"(R)

"(R[1 + GE
� ]1=3)

; (352)

where �(y) is the solution of implicit equation (263). A formal expansion of  (y) with respect to
y gives the explicit form of the 9rst few coeQcients Cp1. They can be expressed in terms of the
successive logarithmic derivatives of the variance, Bi [Eq. (280)]:

C21 =
68
21

+
B1

3
; (353)

53 The interpretation of this function as a bias function is discussed in Section 7.1.2.
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C31 =
11 710

441
+

61
7

B1 +
2
3
B2

1 +
B2

3
; (354)

C4 1 =
107 906 224

305 613
+

90 452B1

441
+

116B2
1

3
+

7B3
1

3
+

758B2

63

+
20B1B2

9
+

2B3

9
: (355)

These numbers provide a set of correlators that describe the joint density distribution in the weakly
non-linear regime. They generalize the result found initially in [231] for C21. Numerical investigations
(e.g. [51]) have shown that the large separation approximation is very accurate even when the cells
are quite close to each other.

For a comparison of the above results with N -body simulations and the spherical collapse model
see [263].

5.13. Extended perturbation theories

The range of validity of perturbation theory results suggests that they provide, on a sole phe-
nomenological basis, a robust model for describing the correlation hierarchy in all regimes. In the
extended perturbation theory (EPT) ansatz, the Sp’s are assumed to be given by Eqs. (281)–(284)
with B1 ≡ −(n + 3) and Bi = 0; i¿ 2, where n = np(") is an adjustable parameter inferred from the
measured value of Sp as a function of the measured variance "2:

Sp[n = np(")] ≡ Smeasured
p (") : (356)

As observed in [151], for scale-free initial conditions, the function np(") does not depend on cumu-
lant order p to a very good approximation:

np(") � ne= (") (357)

in any regime, from very small 54 value of " to a very large value of ". A simple form has been
proposed to account for these results [151]:

ne= = n + (nnonlinear − n)
x�

x� + x−� ;

x = exp[log10("2="2
0)] ; (358)

where ne= is varying from the value of the initial power spectrum index, n, to a value corresponding
to the stable clustering regime, nnonlinear. The location and the width of the transition between these
two regimes depend on the initial power spectrum index and are described respectively by "0 and
�. Values of the parameters involved in Eq. (358) are listed in Table 12 for n ranging from −2 to
1. These values can be approximately obtained by the following 9tting formulae valid for n. −1:

nnonlinear(n) � 3
(n− 1)
(3 + n)

; (359)

54 Of course, in this regime ne= = n, where n is the linear spectral index.
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Table 12
Parameters used in 9t (358)

n nnonlinear n−nonlinear n+
nonlinear "0 �

−2 −9:5 −12:4 −7:22 1.6 1.4
−1 −3 −3:8 −2:24 1.4 1.2
0 −1:2 −1:6 −0:86 1.25 0.6
+1 −0:85 −1:17 −0:57 0.7 0.3

Fig. 37. The cumulants Sp in the �CDM model as functions of P� ≡ "2, for p = 3; 4 and 5 (with respectively triangles,
squares and pentagons) compared to tree order PT predictions assuming a local power spectrum (dots), taking into account
spectral index variation, i.e. corrections Bp, p¿ 2 in Eqs. (281)–(284) (long dashes on right panel), EPT where ne= is
inferred from the measured S3 (short dashes) and one-loop perturbation theory predictions based on the spherical model
(dots–long dashes on left panel). From [153].

�(n) � 0:8 − 0:3n ; (360)

log10 "
2
0(n) � 0:2 − 0:1n : (361)

Eq. (359) is in good agreement with measurements of the bispectrum [234] in N -body simulations as
well as predictions from HEPT (Section 4.5.6). For a realistic, scale-dependent spectral index (such
as CDM models), the situation becomes slightly more complicated since Eq. (357) is in principle
not valid anymore, at least in the weakly non-linear regime, due to the Bp corrections in Eqs. (281)
–(284), which should be taken into account. However, these corrections are in practice quite small
[44,28,153] and can be neglected in a 9rst approximation as illustrated in the right panel of Fig. 37.
Then, Eq. (357) extends as well to non-scale-free spectra such as CDM models [151,153,629] (see
Fig. 37).

It is even possible to use scale-free power spectra results, Eq. (358), with appropriate choice of n
in Eqs. (359)–(361), n=−B1(R)−3 obtained from the linear variance computed at smoothing scale
R, to obtain an approximate 9t of function ne= (") [151]. It is worth noting as well that EPT is a good
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approximation for the Sp’s measured in 2D galaxy catalogs, with ne= varying from approximately
−2 to −5 depending on the angular scale considered [622].

This description can be extended to the joint moments [623], giving the so-called E2PT framework
[630,153]. This provides a reasonable description of the joint cumulants in the non-linear regime,
but not as accurate as EPT for one-point cumulants [153]. However, a 9rst application suggests that
this is in disagreement with observations [623].

Both EPT and E2PT provide useful ways of describing higher-order statistics as functions of
a single parameter ne= and can be used for estimating cosmic errors on statistics measured in
galaxy catalogs as discussed in the next section. However, except in the weakly non-linear regime,
these prescriptions lack any rigorous theoretical background, although some elements toward their
justi9cation can be found in HEPT (see Section 4.5.6).

6. From theory to observations: estimators and errors

6.1. Introduction

This section focuses on issues regarding accurate estimation of clustering statistics in large-scale
galaxy surveys and their uncertainties, in order to properly constraint theories against observa-
tions. We also consider applications to measurements in N -body simulations, as brieJy described in
Section 6.12.

In many respects, the theory of estimators of large-scale structure statistics was triggered in the
1970s and the early 1980s by Peebles and his collaborators. In a series of seminal works, starting
with a fundamental paper [500], these authors developed the statistical theory of the two-point
correlation function in real and Fourier space, in two- and three-dimensional catalogs, including
estimates of the cosmic errors and the cosmic bias (formulated as an integral constraint problem),
followed soon by investigations on higher-order statistics. They used several estimators, including
count-in-cell statistics. These results are summarized in [508].

Since then, and particularly in the 1990s, a number of techniques were put forward to allow a
more precise testing of cosmological theories against observations. These include:

• Detailed studies of two-point and higher-order correlation function estimators.
• Accurate estimation of errors going beyond the simple (and often severe underestimate) Poisson

error bars, to include 9nite-volume e=ects, survey geometry and non-Gaussian contributions due
to non-linear evolution.

• The treatment of covariance between measurements at di=erent scales. In order to properly test
theoretical predictions, this is equally important to an accurate treatment of errors, which are just
the diagonal elements of the covariance matrix. Neglecting o=-diagonal elements can lead to a
substantial overestimate of the constraining power of observations (see e.g. Section 8).

• Implementation of techniques for data compression, error decorrelation and likelihood analysis for
cosmological parameters estimation.

It is clear that the upcoming large-scale galaxy surveys such as 2dFGRS and SDSS will certainly
have to rely heavily on these new developments to extract all the information encoded by galaxy
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clustering to constrain cosmological parameters, primordial non-Gaussianity and galaxy formation
models. In addition to standard second-order statistics such as the power spectrum or the two-point
correlation function, our review focuses on higher-order statistics for several reasons:

• As detailed in previous sections, non-linear evolution leads to deviations from Gaussianity, so
two-point statistics are not enough to characterize large-scale structure. They do not contain all
the information available to constrain cosmological theories. 55

• The additional information encoded by higher-order statistics can be used, for example, to constrain
galaxy biasing (Section 7.1), primordial non-Gaussianity (Sections 4.4 and 5.6) and break degen-
eracies present in measurements of two-point statistics, e.g. those obtained from measurements
of the redshift-space power spectrum (Section 7.4). PT provides a framework for accomplishing
this. 56

• The signi9cant improvement in accuracy for higher-order statistics measurements expected in
upcoming large-scale surveys, see e.g. Fig. 40.

Needless is to say that measurements in galaxy catalogs are subject to a number of statistical and
systematic uncertainties, that must be properly addressed before comparing to theoretical predictions,
succinctly:

(i) Instrumental biases and obscuration: There are technical limitations due to the telescopes and
the instruments attached to it. For example, in spectroscopic surveys using multi9ber devices
such as the SDSS, close pairs of galaxies are not perfectly sampled unless several passes of
the same part of the sky are done (e.g. see [74]). This can a=ect the measurement of clustering
statistics, in particular higher-order correlations. Also, the sky is contaminated by sources (such
as stars), dust extinction from our galaxy, etc.

(ii) Dynamical biases and segregation: Unfortunately, it is not always possible to measure directly
quantities of dynamical interest: in three-dimensional catalogs, the estimated object positions
are contaminated by peculiar velocities of galaxies. In 2D catalogs, the e=ects of projection of
the galaxy distribution along the line of sight must be taken into account. Furthermore, galaxy
catalogs sample the visible matter, whose distribution is in principle di=erent from that of the
matter. The resulting galaxy bias might depend on environment, galaxy type and brightness.
Objects selected at di=erent distances from the observer do not necessarily have the same
properties: e.g. in magnitude-limited catalogs, the deeper objects are intrinsically brighter. One
consequence in that case is that the number density of galaxies decreases with distance and
thus corrections for this are required unless using volume-limited catalogs.

(iii) Statistical biases and errors: The 9nite nature of the sample induces uncertainties and systematic
e=ects on the measurements, denoted below as cosmic bias and cosmic error. These cannot
be avoided (although it is possible to estimate corrections in some cases), only reduced by
increasing the size of the catalog and optimizing its geometry.

55 For example, although one could construct a matter linear power spectrum that evolves non-linearly into the observed
galaxy power spectrum (see Fig. 51), it is not possible to match at the same time the higher-order correlations at small
scales (see Fig. 54). This implies non-trivial galaxy biasing in the non-linear regime, as we discuss in detail in Sections
8.2.4 and 8.2.5.

56 A quantitative estimate of how much information is added by considering higher-order statistics is presented in [645].
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In this section, we concentrate mainly on point (iii). Dynamical biases mentioned in point (ii) will
be addressed in the next section. These e=ects can also be taken into account in the formalism,
by simply replacing the values of the statistics intervening in the equations giving cosmic errors
and cross-correlations with the “distorted” ones, as we shall implicitly assume in the rest of this
section. 57 Segregation e=ects and incompleteness due to instrument biases, obscuration or to selection
in magnitude will be partly discussed here through weighted estimators, and in Section 8 when
relevant.

This section is organized as follows. In Section 6.2, we discuss the basic concepts of cosmic bias,
cosmic error and the covariance matrix. Before entering into technical details, it is important to
discuss the fundamental assumptions implicit in any measurement in a galaxy catalog, namely the fair
sample hypothesis [500] and the local Poisson approximation. This is done in Section 6.3, where
basic concepts on count-in-cell statistics and discreteness e=ect corrections are introduced to illustrate
the ideas. In Section 6.4, we study the most widely used statistic, the two-point correlation function,
with particular attention to the Landy and Szalay estimator [393] introduced in Section 6.4.1. The
corresponding cosmic errors and biases are given and discussed in several regimes. Section 6.5 is
similar to Section 6.4, but treats the Fourier counterpart of �, the power spectrum. Generalization to
higher-order statistics is discussed in Section 6.6.

Section 6.7 focuses on the count-in-cell distribution function, which probes the density 9eld
smoothed with a top-hat window. In that case, a full analytic theory for estimators and corre-
sponding cosmic errors and biases is available. Section 6.8 discusses multivariate counts-in-cells
statistics. In Section 6.9 we introduce the notion of optimal weighting: each galaxy or fraction
of space can be given a speci9c statistical weight chosen to minimize the cosmic error. Section
6.10 deals with cross-correlations and the shape of the cosmic distribution function and discusses
the validity of the Gaussian approximation, useful for maximum likelihood analysis. Section 6.11
reinvestigates the search for optimal estimators in a general framework in order to give account
of recent developments. In particular, error decorrelation and the discrete Karhunen–LoOeve trans-
forms are discussed. Finally, Section 6.12 discusses the particular case of measurements in N -body
simulations.

In what follows, we assume we have a D-dimensional galaxy catalog D of volume V and con-
taining Ng objects, with Ng�1, corresponding to an average number density Png = Ng=V . Similarly,
we de9ne a pure random catalog R of same geometry and same number of objects. 58 Despite the
fact that we use three-dimensional notations (D= 3) most of the results below are valid as well for
angular surveys except when speci9ed otherwise. Simply, �(r) has to be replaced with w(�), QN

with qN , etc.

57 Of course, this step can be non-trivial. Measurements in galaxy catalogs (Section 8) and in N -body simulations sug-
gest that in the non-linear regime the hierarchical model is generally a good approximation (e.g. [87,234,147,150,472]),
but it can fail to describe 9ne statistical properties (e.g. for the power spectrum covariance matrix [564,296]). In the
weakly non-linear regime, PT results including redshift distortions (Section 7.4), projection along the line of sight
(Section 7.2) and biasing (Section 7.1) can help to compute the quantities determining cosmic errors, biases and
cross-correlations. In addition to the hierarchical model, extensions of PT to the non-linear regime, such as EPT, E2PT
(Section 5.13) and HEPT (Section 4.5.6), coupled with a realistic description of galaxy biasing can be used to estimate the
errors.

58 Note that R stands as well for a smoothing scale, but the meaning of R will be easily determined by the context.
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6.2. Basic concepts

6.2.1. Cosmic bias and cosmic error
In order to proceed we need to introduce some new notation. If A is a statistic, its estimator will

be designated by Â. The probability Y(Â) of measuring the value Â in a galaxy catalog (given a
theory) will be called the cosmic distribution function. The ensemble average of Â (the average
over a large number of virtual realizations of the galaxy catalog) is

〈Â〉 =
∫

dÂY(Â) : (362)

Due to their non-linear nature many estimators (such as ratios) are biased, i.e. their ensemble average
is not equal to the real value A: the cosmic bias (to distinguish it from the bias between the galaxy
distribution and the matter distribution)

bA =
〈Â〉 − A

A
(363)

does not vanish, except when the size of the catalog becomes in9nite (if the estimator is properly
normalized).

A good estimator should have minimum cosmic bias. It should as well minimize the cosmic error,
which is usually obtained by calculating the variance of the function Y:

(ZA)2 = 〈(�Â)2〉 =
∫

(�Â)2Y(Â) dÂ (364)

with

�Â ≡ Â− 〈Â〉 : (365)

The cosmic error is most useful when the function Y(Â) is Gaussian. If this is not the case, full
knowledge of the shape of the cosmic distribution function, including its skewness, is necessary to
interpret correctly the measurements. 59

6.2.2. The covariance matrix
As for correlation functions, a simple generalization of the concept of variance is that of covariance

between two di=erent quantities. This can be, for example, between two estimators Â and B̂,

Cov(Â; B̂) = 〈�Â �B̂〉 =
∫

�Â �B̂Y(Â; B̂) dÂ dB̂ ; (366)

or simply between estimates of the same quantity at di=erent scales; say, for the power spectrum,
the covariance matrix between estimates of the power at ki and kj reads

CP
ij ≡ 〈P̂(ki)P̂(kj)〉 − 〈P̂(ki)〉〈P̂(kj)〉 ; (367)

where P̂(ki) is the estimator of the power spectrum at a band power centered about ki.
In general, testing theoretical predictions against observations requires knowledge of the joint

covariance matrix for all the estimators (e.g. power spectrum, bispectrum) at all scales considered.
We will consider some examples below in Sections 6.4.4, 6.5.4 and 6.10.2.

59 For example, it could be very desirable to impose in this case that a good estimator should have minimum skewness
[610].
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The cosmic error and the cosmic bias can be roughly separated into three contributions [621] if
the scale R (or separation) considered is small enough compared to the typical survey size L, or
equivalently, if the volume v ≡ vR ≡ (4=3)�R3 is small compared to the survey volume V :

(i) Finite volume eLects: They are due to the fact that we can have access to only a 9nite number
of structures of a given size in surveys (whether they are 2D or 3D surveys), in particular the
mean density itself is not always well determined. These e=ects are roughly proportional to the
average of the two-point correlation function over the survey, P�(L). They are usually designated
by “cosmic variance”.

(ii) Edge eLects: They are related to the geometry of the catalog. In general, estimators give less
weight to galaxies near the edge than those far away from the boundaries. As we shall see later,
edge e=ects can be partly corrected for, at least for N -point correlation functions. At leading
order in v=V , they are proportional to roughly �v=V . Note that even 2D surveys cannot avoid
edge e=ects because of the need to mask out portions of the sky due to galaxy obscuration, bright
stars, etc. Edge e=ects vanish only for N -body simulations with periodic boundary conditions.

(iii) Discreteness eLects: One usually assumes that the observed galaxy distribution is a discrete,
local Poisson representation of an underlying smooth 9eld whose statistical properties one wants
to extract. This discrete nature has to be taken into account with appropriate corrections, not only
to the mean of a given statistic but also to the error. Discreteness errors, which are proportional
to 1=Ng at some power where Ng is the number of objects in the catalog, become negligible
for large enough Ng.

The above separation into three contributions is convenient but somewhat arti9cial since all the e=ects
are correlated with each other. For example, there are edge-discreteness e=ects and edge-9nite-volume
e=ects [624]. At next to leading order in R=L, there is a supplementary edge-e=ect contribution
proportional to the perimeter of the survey, which is most important when the geometry of the
survey is complex, and dominant when R=L ≈ 1 [537,154].

6.3. Fair sample hypothesis and local Poisson approximation

6.3.1. The fair sample hypothesis
A stochastic 9eld is called ergodic if all information about its multi-point probability distributions

(or its moments) can be obtained from a single realization of the 9eld. For example, Gaussian 9elds
with continuous power spectrum are ergodic [3].

The fair sample hypothesis [500] states that the 9nite part of the universe accessible to observa-
tions is a fair sample of the whole, which is represented by a statistically homogeneous and isotropic
(as de9ned in Section 3.2.1) ergodic 9eld. Together with the ergodic assumption, the fair sample
hypothesis states that well-separated parts of the (observable) universe are independent realizations
of the same physical process and that there are enough of such independent samples to obtain all
the information about its probability distributions (e.g. [508,61]). Under the fair sample hypothesis,
ensemble averages can be replaced with spatial averages. In the simplest inJationary models leading
to Gaussian primordial Juctuations, the fair sample hypothesis holds, but special cases can be en-
countered in models of universe with non-trivial global topological properties (see e.g. [389]) where
apparently well-separated parts of the universe may be identical.
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6.3.2. Poisson realization of a continuous Feld
In general, statistical properties of the density 9eld are measured in a discrete set of points,

composed e.g. of galaxies or N -body particles. It is natural to assume that such point distributions
result from a Poisson realization of an underlying continuous 9eld. This means that the probability
of 9nding N points in a volume v at location r is given by PPoisson

N [ Pngv(1+�(r))], where PPoisson
N ( PN )

is the probability of 9nding N objects in a Poisson process with expectation number PN = Pngv,

PPoisson
N ( PN ) ≡

PNN

N !
e− PN ; (368)

�(r) is the overall density contrast within the volume and Png is the average number density of the
random process. It implies that the count probability distribution function, hereafter CPDF, de9ned
as the probability PN of 9nding N galaxies in a cell of size R and volume v thrown at random in
the catalog can be expressed through the convolution,

PN =
∫ +∞

−1
d�p(�)PPoisson

N [ PN (1 + �)] ; (369)

where the average number of objects per cells, PN , reads

PN =
∑
N

NPN : (370)

In the continuous limit, PN → ∞, the CPDF of course tends to the PDF of the underlying density
9eld

PN → P[ PN (1 + �)]
PN

: (371)

It is worth at this point to mention the void probability function, P0, which can be de9ned in discrete
samples only. From Eqs. (369) and (368), it reads

P0 =
∫ +∞

−1
d�p(�) exp[ − PN (1 + �)] ; (372)

which can be expressed in terms of the cumulant generating function [687,16,619] (see Section 3.3),

P0 = exp[ − PN + C(− PN )] = exp

[ ∞∑
n=1

(− PN )n

n!
〈�n〉c

]
: (373)

This property was used in practice to obtain directly the cumulant generating function from the void
probability function (e.g. [445,205,92]), relying on the local Poisson approximation.

Obviously, the validity of the local Poisson approximation is questionable. A simple argument
against it is that galaxies have an extended size which de9nes zones of mutual exclusion and
suggests that at very small scales, galaxies do not follow a local Poisson process because they must
be anti-correlated. One way to bypass this problem is of course to choose the elementary volume
such that it has a suQciently large size, say ‘& a few tens of kpc. One might still argue that
short-range physical processes depending on environment might inJuence small-scale statistics in
such a way that it might be impossible to 9nd a reasonably small-scale ‘ for which the Poisson
process is valid. Also, the galaxy distribution might keep memory of initial Juctuations of the density
9eld, even at small, non-linear scales, particularly in underdense regions which do not experience
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shell-crossing and violent relaxation. If, for example, these initial conditions were locally fractal up
to some very small scale, obviously the local Poisson approximation would break down. Note, on
the other hand, that sparse sampling strategies [361] which were used to build a number of galaxy
catalogs, make the samples “closer” to Poisson.

It is generally assumed that the observed galaxy distribution follows the local Poisson approxima-
tion. To our knowledge there exists no direct rigorous check of the validity of this statement, but
it is supported indirectly, for example by the fact that the measured count probability distribution
function (CPDF, see Section 6.7) in galaxy catalogs compares well with models relying on the local
Poisson approximation (see, e.g. [92]).

In N -body simulations, the local Poisson assumption is in general very good. 60 However, this
depends on the statistic considered and there are some requirements on the degree of evolution of
the system into the non-linear regime, as discussed in Section 6.12.2.

Under the assumption of local Poisson approximation, it is possible to derive the correlation
functions of the discrete realization in terms of the underlying continuous one. In particular, from
Eq. (369) the moment generating function of the discrete realization, Mdisc, is related to that of
the continuous 9eld, M (Section 3.3.3), by Mdisc(t) = M(t)[exp(t) − 1]. This leads to the standard
expressions for moments and spectra of discrete realizations in terms of continuous ones, e.g. see
[396,508,233,619,247,434]. Here we give the 9rst few low-order moments:

〈�2
n〉 =

1
PN

+ P�2 ; (374)

〈�3
n〉 =

1
PN 2 + 3

P�2

PN
+ P�3 ; (375)

where �n ≡ (N − PN )= PN denotes the discrete number density contrast. In Section 6.7, which discusses
in more detail count-in-cells statistics, we shall see that there exists an elegant way of correcting for
discreteness e=ects using factorial moments.

Similarly, for the power spectrum and bispectrum,

〈�n(k1)�n(k2)〉 =
[

1
Ng

+ P(k1)
]
�D(k12) ; (376)

〈�n(k1)�n(k2)�n(k3)〉 =

[
1
N 2

g
+

1
Ng

(P1 + P2 + P3) + B123

]
�D(k123) ; (377)

where Pi ≡ P(ki), B123 ≡ B(k1; k2; k3), k12 = k1 + k2 and k123 = k1 + k2 + k3.

6.4. The two-point correlation function

In this section, we present the traditional estimators of the two-point correlation function based
on pairs counting. 61 We assume that the catalog under consideration is statistically homogeneous.

60 Except when dealing with the clustering of dark matter halos; in this case exclusion e=ects can lead to sub-Poisson
sampling, see e.g. [599].

61 For a review on existing estimators, see, e.g. [372,525].
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Optimal weighting and correction for selection e=ects will be treated in Section 6.9. More elaborate
estimates taking into account cross-correlations between bins will be discussed in Section 6.10.

6.4.1. Estimators
In practice, due to the discrete nature of the studied sample, the function � [Eq. (115)] is not

measured at separation exactly equal to r but rather one must choose a bin, e.g. [r; r + Zr[. More
generally, the quantity measured is

1
G∞

p V 2∞

∫
V∞

dDr1 dDr2T(r1; r2)�(r12) ; (378)

where the function T(r1; r2) is symmetric in its arguments (e.g. [624]). In what follows, we assume
that the function T is invariant under translations and rotations, T(r1; r2) = T(r), r = r12 = |r1 − r2|,
is unity on a domain of values of r, for example in the interval [r; r + Zr[ and vanishes otherwise.
The values where T is non-zero de9ne a “bin” which we call T as well. We assume that �(r)
is suQciently smooth and that the bin and the normalization, G∞

p , are such that Eq. (378) would
reduce with a good accuracy to �(r) in a survey of very large volume V∞.

Practical calculation of the two-point correlation function relies on the fact that it can be de9ned
in terms of the excess probability over random �P of 9nding two galaxies separated by a distance
(or an angle) r [as discussed already in Section 3, Eq. (127)]

�P = Pn2
g[1 + �(r)]�V1 �V2 ; (379)

where �V1 and �V2 are volume (surface) elements and Png is the average number density of objects.
Let DD be the number of pairs of galaxies in the galaxy catalog belonging to the bin T and

RR de9ned likewise but in a random (Poisson distributed) catalog with same geometry and same
number of objects, Nr = Ng. They read

DD =
∫
r1 �=r2

dDr1 dDr2 T(r1; r2)ng(r1)ng(r2) ; (380)

RR =
∫
r1 �=r2

dDr1 dDr2 T(r1; r2)nr(r1)nr(r2) ; (381)

where ng and nr are local number density 9elds respectively in the galaxy catalog and the random
catalog:

ng =
Ng∑
j=1

�D(x− xj) ; (382)

where xj are the galaxy positions and likewise for nr. It is easy to derive from Eq. (379) a simple
estimator commonly used in the literature [503]:

�̂(r) =
DD
RR

− 1 : (383)

Various alternatives have been proposed to improve the estimator given by Eq. (383), in particular
to reduce the cosmic bias induced by edge e=ects at large separations. Detailed studies [373] suggest
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that the best of them is the Landy and Szalay (LS) estimator [393] 62

�̂(r) =
DD − 2DR + RR

RR
; (384)

where DR is the number of pairs selected as previously but the 9rst object belongs to the galaxy
sample and the second one to the random sample

DR =
∫
r1 �=r2

dDr1 dDr2T(r1; r2)ng(r1) nr(r2) : (385)

The LS estimator, which formally can be written (D1 − R1)(D2 − R2)=R1R2 corresponds to the
“intuitive” procedure of 9rst calculating overdensities and then expectation values; this has the ob-
vious generalization to higher-order correlation functions [624], see Section 6.6 for more details.

Note that the calculations of DR and RR can be arbitrarily improved by arbitrarily increasing Nr
and applying the appropriate corrections to DR and RR, i.e. multiplying DR and RR by the ratio
Ng=Nr and Ng(Ng − 1)=[Nr(Nr − 1)] respectively, to preserve normalization. Actually, DR and RR
can be computed numerically as integrals with a di=erent method than generating a random catalog,
the latter being equivalent to Monte-Carlo simulation. It amounts to replace DR and RR by DF and
FF with

DF = Png

∫
r1 �=r2

dDr1 dDr2 T(r1; r2)ng(r1) ; (386)

FF = Pn2
g

∫
r1 �=r2

dDr1 dDr2 T(r1; r2) : (387)

In that case, the actual measurements are performed on pixelized data.
The LS estimator is theoretically optimal with respect to both cosmic bias and cosmic error at

least in the weak correlation limit [393]; numerical studies [373] show moreover that for practical
purposes it is better than any other known estimators based on pair counting, among which one can
mention (DD−DR)=RR [311], the popular DD=DR− 1 [172,68] and DDRR=(DR)2 − 1 [291] which
are actually almost as good as LS [373]. In Section 6.8 we shall mention other ways of measuring
�(r) and higher-order correlation functions, based on multiple counts-in-cells.

Finally, it is worth mentioning a few eQcient methods used to measure �(r), which apply to any
of the estimators discussed in this section. The brute force approach is indeed rather slow since it
scales typically as O(N 2

g ). To improve the speed of the calculation, one often interpolates the sample
onto a grid and creates a linked list where each object points to a neighbor belonging to the same
grid site. For separations smaller than the grid step, A, this method scales roughly as O(NgNcell),
where Ncell is the typical number of objects per grid cell. This approach is however limited by the
step of the grid: measuring the correlation function at scales large compared to A is rather ineQcient
and can become prohibitive. Increasing A makes Ncell larger and for too large A, the method is slow
again.

Another scheme relies on a double walk in a quad-tree or a oct-tree according to the dimension
of the survey (a hierarchical decomposition of space in cubes=squares and subcubes=subsquares

62 See however [525] for a more reserved point of view.
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[461]). This approach is potentially powerful, since it scales as O(N 3=2
g ) according to its authors

[461]. It is also possible to rely on FFTs or fast harmonic transforms at large scales [636], but
it requires appropriate treatment of the Fourier coeQcients to make sure that the quantity 9nally
measured corresponds to the estimator of interest, e.g. the LS estimator (see [636] for a practical
implementation in harmonic space).

6.4.2. Cosmic bias and integral constraint of the LS estimator
The full calculation of the cosmic bias and the cosmic error of the LS estimator was done by

Landy and Szalay [393] in the weak correlation limit and by Bernstein [59] for the general case but
neglecting edge e=ects, r�L, where L is the smallest size of the survey. 63 At leading order in r=L
and assuming that the density variance at the scale of the survey is small, the cosmic bias reads

b� �
(

3 − 1
�

)
P�(L) − 2

�̀3

�
− 1

2N 2
g
; r=L; | P�(L)|;

∣∣∣∣∣
P�(L)
�

∣∣∣∣∣�1 ; (388)

where

P�(L) =
1
V 2

∫
dDr1 dDr2 �(r) (389)

is the average of the correlation function over the survey volume (or area). The quantity �̀3 is de9ned
as

�̀3 =
1

GpV 3

∫
dDr1 dDr2 dDr3 T(r12) �3(r1; r2; r3) ; (390)

where Gp is the form factor de9ned in [393] as

Gp =
1
V 2

∫
dDr1 dD r2 T(r12) ; (391)

i.e. the probability of 9nding a pair included in the survey in bin T. When r=L is small enough it
is simply given by Gp � 4�r2Zr=V (for a bin T = [r; r + Zr[). Assuming the hierarchical model,
Eq. (214), we get �̀3 � 2Q3 � P�(L) and the cosmic bias simpli9es to

b� �
(

3 − 4Q3 − 1
�

)
P�(L) − 1

2N 2
g
; r=L; | P�(L)|;

∣∣∣∣∣
P�(L)
�

∣∣∣∣∣�1 : (392)

In the weak correlation limit, it simply reduces to [393]

b� � − P�(L)
�

; |�|; | P�(L)|�1 : (393)

The LS estimator, although designed to minimize both the cosmic error and the cosmic bias and
thus quite insensitive to edge e=ects and discreteness e=ects, is still a=ected by 9nite-volume e=ects,
proportional to P�(L) (indeed the latter cannot be reduced without prior assumptions about clustering
at scales larger than those probed by the survey, as discussed below). The corresponding cosmic

63 It is however important to notice a subtle di=erence between the two approaches: Landy and Szalay use conditional
averages with 9xed number of galaxies in the catalog Ng, while Ng is kept random in Bernstein’s approach. This di=erence
is analyzed in Section 6.10.
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bias is negative, of small amplitude in the highly non-linear regime, but becomes signi9cant when
the separation r becomes comparable to the survey size. In this regime, where �(r) is expected to be
much smaller than unity, Eq. (393) is generally valid: the correct value of � is obtained by adding
an unknown constant to the measured value. This corresponds to the so-called integral constraint
problem [502,508]. Physically, it arises in a 9nite survey because one is estimating the mean density
and Juctuations about it from the same sample, and thus the Juctuation must vanish at the survey
scale. In other words, one cannot estimate correlations at the survey scale since there is only one
sample available of that size.

This bias cannot be a priori corrected for unless a priori assumptions are made on the shape of
the two-point correlation function at scales larger than those probed by the survey. One can, for
instance, decide to model the two-point correlation as a power law and do a joint determination of
all parameters [502]. We will come back to this problem when discussing the case of the power
spectrum, where other corrections have been suggested, see Section 6.5.2.

6.4.3. Cosmic error of the LS estimator
The general computation of the cosmic error for such estimator is quite involved and has been

derived in the literature in various cases. For instance, the covariance of DD − 2DF + FF between
two bins Ta and Tb reads [500,291,634]

Cov(DD − 2DF + FF) = Pn4
g

∫
dDr1 dDr2 dDr3 dDr4 Ta(r1; r2)Tb(r3; r4)

×[�4(r1; r2; r3; r4) + �(r1; r3)�(r2; r4) + �(r1; r4)�(r2; r3)]

+ 4 Pn3
g

∫
dDr1 dDr2 dDr3 Ta(r1; r2)Tb(r1; r3)[�(r2; r3) + �3(r1; r2; r3)]

+ 2 Pn2
g

∫
dDr1 dDr2 Ta(r1; r2)Tb(r1; r2)[1 + �(r1; r2)] : (394)

This is a general expression, i.e. it applies to the two-point correlation function as well as the
power spectrum, or any pairwise statistics of the density 9eld, depending on the choice of the
binning function T. It does not, however, take into account the possible cosmic Juctuations of
the denominator in the LS estimator. This latter e=ect is more cumbersome to compute because one
has to deal with moments of the inverse density. This is possible if one assumes that Juctuations
are small. This leads to the cosmic covariance derived in [59] for the LS estimator. We give here
a simpli9ed expression of the diagonal term, the cosmic error:(

Z�
�

)2

� 2
�2

�2 + 4(1 − 2Q3 + Q4) P�(L) +
4
Ng

[
�ring(1 + 2Q3�)

�2 + Q3 − 1
]

+
2
N 2

g

[(
1
Gp

− 1
)

1 + �
�2 − 1

�
− 1
]
; r=L; | P�(L)|; | P�(L)=�|�1 ; (395)

where �2 is the average of the square of the two-point correlation function over the survey volume,

�2 =
1

G2
p V 4

∫
dDr1 · · · dDr4 T(r12)T(r34) �2(r13) �2(r24) ; (396)
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and �ring is the average of the two-point correlation function for pairs inside the shell of radius r
and thickness Zr,

�ring =
1

GtV 3

∫
dDr1 dDr2 dDr3 T(r12)T(r13)�(r23) : (397)

We have introduced the new geometrical factor Gt given by [393]

Gt =
1
V 3

∫
dDr1 dDr2 dDr3 T(r12)T(r13) ; (398)

i.e. Gt is the probability, given one point, of 9nding two others in bin T, for example the interval
[r; r + Zr[. As pointed out in [59], �ring & �, but

�ring � � (399)

is a good approximation. In Eq. (395), a degenerate hierarchical model (Section 4.5.5) has been
assumed to simplify the results. A more general expression can be found in [59] (see also [291,634]).

The 9nite volume errors are given by a term in �2 and one proportional to P�(L). It is interesting
to compare which two contributions. For a power-law spectrum of index n, �2=�2 scales like (r=L)D

whereas P�(L) scales like (r0=L)−(D+n) if r0 is the correlation length (�(r0) ≡ 1). Therefore, in the
quasi-linear regime for which r�r0 and for surveys with a large number of objects, the 9rst term is
likely to dominate (this is the case typically for wide angular surveys), whereas for surveys which
probe deeply into the non-linear regime, the other terms are more likely to dominate.

The discreteness error is given by the term in 1=Ng which vanishes for a randomized purely
Poisson catalog. The intrinsic Poisson error is encoded in the term in (1=Ng)2. This estimate of the
cosmic error neglects however edge e=ects that become signi9cant at scales comparable to the size
of the survey. In this latter regime, correlations are expected to be weak, and from [393] one 9nds
that the cosmic error is dominated by edge-discreteness e=ects [624]:(

Z�
�

)2

� 2
N 2

g�2

[
1
Gp

− 2
Gt

G2
p

+ 1

]
; |�|; | P�(L)|�1 : (400)

One can note that when r=L is small enough, the term in square brackets is roughly equal to 1=Gp
[as in Eq. (395)], that is the fraction of pairs available in the survey. This is obviously the dominant
contribution of the error when the bin size Zr is very small. This pure Poisson contribution can
generally be computed exactly given the geometry of the survey.

Expressions (395) and (400) can be used to estimate the full cosmic error. This method however
requires prior assumptions about the hierarchical model parameters Q3 and Q4 and for the integral
of the two-point correlation function over the survey volume, P�(L). For this reason, the Gaussian
limit is often used to compute errors (that is the contribution of �2, e.g. [410]), but this might be a
bad approximation when �& 1 as we discussed above. 64

6.4.4. The covariance matrix
As discussed above, Eq. (394) gives the cosmic covariance matrix of the two-point correlation

function assuming that Png is perfectly determined, while the calculation of Bernstein [59], for which

64 Fig. 38, extracted from [564], illustrates that for the power spectrum.
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we gave a simpli9ed expression of the diagonal terms, takes into account possible Juctuations in
Png. We refer the reader to [59] for the full expression of C� which is rather cumbersome.

Interestingly, the pure Poisson contribution vanishes for non-overlapping bins in Eq. (394). A
simpli9ed formula can be obtained in the Gaussian limit where non-Gaussian and discreteness con-
tributions can be neglected,

C�(ra; rb) = 〈�̂2(ra)�̂2(rb)〉 − 〈�̂2(ra)〉〈�̂2(rb)〉

=
2

Gp(ra)Gp(rb)V 4

∫
dDr1 · · · dDr4 Ta(r12)Tb(r34) �2(r13) �2(r24) ; (401)

in particular, C�(r; r) = �2 [Eq. (396)]. This expression can be conveniently expressed in terms of
the power spectrum. It reads, for D = 3,

C�(ra; rb) =
(2�)5

V

∫
k2dk [P(k)]2 J1=2(kra) J1=2(krb) ; (402)

where J1=2 is a Bessel function. A similar expression has been derived for 2D 9elds [204],

Cw(�a; �b) = 〈ŵ2(�a)ŵ2(�b)〉 − 〈ŵ2(�a)〉〈ŵ2(�b)〉

=
2 (2�)3

A	

∫ ∞

0
k d k[P(k)]2J0(k�a)J0(k�b) ; (403)

where A	 is the area of the survey, w2(�) represents the angular two-point function and ŵ2 its
estimator.

Note that as the volume=area of the survey increases, the diagonal terms in Eq. (401) do not, in
general, become dominant compared to the o=-diagonal ones. This is because correlation function
measurements are statistically correlated, even in the Gaussian limit, unlike binned power spectrum
measurements, e.g. see Section 6.5.4.

6.4.5. Recipes for error calculations
The issue of cosmic error computation is recurrent in cosmological surveys and the previous

computations clearly show that this is a complex issue. Various recipes have been proposed in
the literature. A particularly popular one is the bootstrap method [24]. We stress that bootstrap
resampling is not suited for correlation function measurements. Indeed, as shown explicitly in [597],
such method does not lead, in general, to a reliable estimate of the cosmic error [525,373].

Another popular and elementary way of estimating the errors consists in dividing the catalog
into a number of smaller subsamples of same volume and compute the dispersion in the measure-
ments corresponding to each subsample (e.g. [249]). This method is not free of bias and generally
overestimates the errors, since the obtained dispersion is an estimator of the cosmic error on the
subsamples and not the parent catalog. Recent studies on error estimation [572,704] also suggest that
the Jackknife method, which is a variant of the subsample method where the ith sample is obtained
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by removing the ith subsample, gives a very good estimate of the cosmic error on the two-point
correlation function. Unlike the subsample method, it does not lead to overestimation of the cosmic
error at large scales. 65

Of course, methods such as Jackknife and subsamples cannot lead to an accurate estimation
of 9nite-volume errors at the scale of the survey since only one realization of such a volume is
available to the observer. This can only be achieved through a detailed computation of the cosmic
errors [Eqs. (395) and (400)] with prior assumptions about the behavior of statistics involved at
scales comparable to the survey size, or else numerically by constructing multiple realizations of the
survey, e.g. mock catalogs relying on N -body simulations or simpli9ed versions thereof (e.g. [571]).
On the other hand, methods that use the actual data are very useful to assess systematic errors, by
comparing to other external estimates such as those just mentioned.

6.5. The power spectrum

The power spectrum P(k) is simply the Fourier transform of the two-point correlation function
(see Section 3.2.2), and therefore it is formally subject to the same e=ects. In fact, a common
theoretical framework can be set up for �(r) and P(k) in order to 9nd the best estimators (e.g.
[293,294,624]). In practice, however, power spectrum measurements have been undertaken mostly
in linear or weakly non-linear scales which are subject to edge e=ects, diQcult to correct for.
In this section, we introduce simple (unweighted) estimators and discuss the biases and cosmic
error introduced by the 9niteness of the survey. The techniques developed to measure P(k) are
numerous and sometimes very elaborate (a good review can be found in [648]), but most of them rely
on the assumption that the underlying statistics is Gaussian. In this section we prefer to keep the
statistical framework general and thus restrict ourselves to traditional estimators. More sophisticated
methods, using spatial weighting and cross-correlations between bins, will be discussed in Sections
6.9 and 6.11.

6.5.1. Simple estimators
For convenience, in 9nite surveys the adopted normalization convention for the Fourier transforms

and the power spectra is often di=erent. This is the reason why in this subsection, we also adopt
following convention:

Ã(k) =
1
V

∫
V

dDx e−ik·x A(x) ; (404)

where Ã(k) are the Fourier modes of A(x) and V is the survey volume (and to recover the con-
vention used in Eq. (36), one can simply use the formal correspondence V ↔ (2�)D). The power
spectrum is de9ned as the Fourier transform of the two-point correlation function. It di=ers thus by
a V=(2�)D normalization factor compared to the adopted normalization in the other sections. The
higher-order spectra are de9ned similarly from the higher-order correlation functions in such a way
that the functional relation between spectra is preserved [e.g. the coeQcients Q̃ in Eq. (154) are left
unchanged].

65 An alternative to these methods has been suggested by Hamilton [291], in which many realizations from a given
sample are generated by e=ectively varying the pair-weighting function.
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As shown in previous sections, estimating the correlation function consists in counting pairs in
bins, both in the galaxy catalog and in random realizations with the same survey geometry. This
procedure can be generalized to the measurement of the power spectrum (e.g. [212]) for which the
binning function T de9ned in Section 6.4.2 is now di=erent. For one single mode the straightforward
choice would be (e.g. [624]) T(r1; r2) = (eik·(r1−r2) + eik·(r2−r1))=2. Actual estimation of the power is
made over a k bin de9ned for instance so that the magnitude of wave vectors belong to a given
interval [k; k + Zk[. It means that the function T to use actually reads

T(r1; r2) = 〈eik·(r1−r2)〉T ≡ 1
Vk

∫
|k′|∈[k; k+Zk[

dDk′eik′·(r1−r2) ; (405)

where Vk is the volume of the bin in k space. Note that for a rectangular-shaped survey with periodic
boundaries modes are discrete and the number of modes in Vk is

Nk =
V Vk

(2�)D
: (406)

In the following we assume that Vk is large enough to encompass a suQcient number of modes to
make any measurement possible. With this expression of T the quantities DD, DR, RR, DF and
FF de9ned in (380)–(387) where T is replaced by Eq. (405) can be used to estimate the power
spectrum [624].

Traditionally, the estimate of the power spectrum is done in the following way: the density contrast
is Fourier transformed directly (e.g. [500,492,679,215,489]):

�̂k =
1
V

∫ [
ng(r)

Png
− 1
]

eik·xdDx =
1
Ng

Ng∑
j=1

eik·xj −Wk ; (407)

where Wk is the Fourier transform of the window function of the survey,

Wk =
1
V

∫
eik·x dDx : (408)

The power spectrum estimator is then given by

P̂(k) = 〈|�̂k|2〉T − 1
Ng

; (409)

where 〈· · ·〉T stands for summation in the k bin [e.g. Eq. (405)], which can also be written as

P̂(k) =
1
N 2

g
(DD − 2DF + FF) : (410)

Note that the correction for shot noise contribution is automatically taken into account by the exclu-
sion r1 �= r2 in the integral DD. One can see that this is analogous to LS estimator (384) in Fourier
space [624].

6.5.2. Cosmic bias and integral constraint
As for the two-point correlation function, it is possible to show that the estimator in Eq. (410)

is biased [500,492], at least due to 9nite volume e=ects. Again this is generally described as the
integral constraint problem.
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The expressions for the cosmic bias can be directly inferred from Eqs. (388) and (393). More
speci9cally, at large, weakly non-linear scales, where the Gaussian limit is a good approximation,
the cosmic bias reads [492]

bP̂(k) � −P∗(0)
〈|Wk|2〉T
〈P∗(k)〉T : (411)

The quantity P∗ is the true power spectrum convolved with the Fourier transform of the window
function of the survey:

P∗(k) = P(k) ∗ |Wk|2 : (412)

Note that P∗(0) is nothing but P�(L) [Eq. (389)].
At smaller scales, in the regime k�1=L, the cosmic bias reads

bP̂(k) � P∗(0)
[
3 − 〈|Wk|2〉T

〈P(k)〉T

]
− 2〈B∗(k;−k; 0)〉T

〈P(k)〉T ; (413)

where B∗ is the bispectrum (convolved with the Fourier transform of the survey window).
In general, the cosmic bias is approximated by the white noise value in the Gaussian limit [489]

bP̂(k) � −〈|Wk|2〉T = −FF=N 2
g ; (414)

and the corresponding correction is applied to estimator (410).
An interesting approach to correct for the cosmic bias takes advantage of the Gaussian limit

expression, Eq. (411). Since the bias is proportional to the Fourier transform of the window of
the survey, construction of a tailored window such that Wk = 0 for each mode k of interest makes
Eq. (411) vanish [215,648]. However, one must keep in mind that this procedure is approximate;
even in the Gaussian limit there are higher-order corrections to the result in Eq. (411) which are
not proportional to Wk. 66

6.5.3. The cosmic error
The calculation of the cosmic error on the power spectrum is formally equivalent to that of the

two-point correlation function. However, existing results assume that the average number density of
galaxies in the universe is an external parameter, i.e. the ensemble average 〈[�P̂(k)]2〉 is calculated
with Ng 9xed in Eq. (410).

In the limit when k�1=L, where L is the smallest size of the survey, for the power spectrum
Eq. (394) reads[

ZP̂(k)
P(k)

]2

� 2
Nk

+
PT (k; k)

[P(k)]2 +
4
Ng

[
1

Nk P(k)
+

PB(k; k)
[P(k)]2

]

+
2
N 2

g

[
1

Nk [P(k)]2 +
PP(k; k)

[P(k)]2

]
(415)

66 The cosmic bias in this expression comes in fact from the uncertainty in the mean density Png from the numerator in
� = (ng − Png)= Png; uncertainties from the denominator lead to additional contributions, see e.g. [328].
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with

PT (ki; kj)≡ 〈T (k1;−k1; k2;−k2)〉Tki ;Tkj

≡
∫
|k1|∈[ki ; ki+Zki[

dDk1

Vki

∫
|k2|∈[kj ; kj+Zkj[

dDk2

Vkj
T (k1;−k1; k2;−k2) ; (416)

PB(ki; kj) ≡ 〈B(k1; k2;−k1 − k2)〉Tki ;Tkj
; (417)

PP(ki; kj) ≡ 1
2
〈P(k1 + k2) + P(k1 − k2)〉Tki ;Tkj

: (418)

This result assumes that the true power spectrum is suQciently smooth and the bin in k space thin
enough that 〈P(k)〉Tk � P(k), 〈P(k)2〉Tk � [P(k)]2. The continuous limit Ng → ∞ of Eq. (415) was
computed in [564], and the Gaussian limit, B = T = 0 in [212].

From the calculations of [564], one gets

PT (k; k) � 232
441 [P(k)]3 (419)

in the regime where PT applies, and

PT (k; k) � (8Q4; a + 4Q4; b)[P(k)]3 ; (420)

if the hierarchical model applies (Section 4.5.5) [564,296]. Similar calculations can be done to
evaluate PB(k; k) and PP(k; k).

One must emphasize [452,564] again the fact that the Gaussian limit, traditionally used to com-
pute errors and optimal weighting (see Section 6.9), is invalid when k & knl, where knl is the
transition scale to the non-linear regime de9ned from the power spectrum, 4�k3

nlP(knl) ≡ 1. This is
clearly illustrated by top panel of Fig. 38. It compares the measured cosmic error obtained from
the dispersion over 20 PM simulations of SCDM with the Gaussian limit [564]. This shows that
the Gaussian limit underestimates the cosmic error, increasingly with k=knl. Note, however, that the
correction brought by Eq. (419) is rather small. As a result, the regime where the Gaussian limit is
a reasonable approximation for estimating the cosmic error extends up to values of k=knl of order
of a few. This is unfortunately not true for the full cosmic covariance matrix CP

ij ≡ Cov(Pki ; Pkj),
which deviates from the Gaussian predictions (vanishing non-diagonal terms) as soon as k � knl
[452,564], as we now discuss.

6.5.4. The covariance matrix
The covariance of the power spectrum, Eq. (367), can be easily written beyond the Gaussian

approximation neglecting shot noise and the window of the survey [452,564], 67

CP
ij =

2P2(ki)
Nki

�ij + PT (ki; kj) ; (421)

where �ij is a Kronecker delta and PT is the bin-averaged trispectrum (416).

67 See e.g. [293] for expressions including shot noise.
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Fig. 38. The top panel shows the measured cosmic error on the power spectrum normalized by the Gaussian variance,
obtained from the dispersion over 20 PM simulations of SCDM. The dashed line shows the predictions of PT, and the solid
line the hierarchical scaling. The bottom panel shows the fractional error in the band-power estimates. This fractional error
scales with the size of the survey or simulation box, the results in the 9gure correspond to a volume V0 =(100 h−1 Mpc)3.
Results for other volumes can be obtained by scaling by (V0=V )1=2. The vertical line on the x-axis indicates the non-linear
scale. The width of shells in k space is Zk = 2�=100 h=Mpc.

The 9rst term in Eq. (421) is the Gaussian contribution. In the Gaussian limit, each Fourier mode
is an independent Gaussian random variable. The power estimates of di=erent bands are therefore
uncorrelated, and the covariance is simply given by 2=Nki where Nki =2 is the number of independent
Gaussian variables. The second term in Eq. (421) arises because of non-Gaussianity, which generally
introduces correlations between di=erent Fourier modes, and hence it is not diagonal in general.

Both terms in the covariance matrix in Eq. (421) are inversely proportional to V for a 9xed bin
size (recall that with the adopted convention P(k) scales like 1=V and T like 1=V 3). But while
the Gaussian contribution decreases when Nk increases, the non-Gaussian term remains constant.
Therefore, when the covariance matrix is dominated by the non-Gaussian contribution, the only way
to reduce the variance of the power spectrum is to increase the volume of the survey instead of
averaging over more Fourier modes.

The importance of the non-Gaussian contribution to the cross-correlation between band powers
was studied with numerical simulations in [452,564], in particular Meiksin and White [452] show
in detail that the correlations induced by non-linearities are not negligible even at scales k . knl,
in agreement with PT predictions [564]. In the non-linear regime, as expected, the cross-correlations
are very strong; indeed, the cross-correlation coeQcient rij ≡ Cij=

√
CiiCjj is very close to unity.
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Predictions for rij from the hierarchical ansatz using HEPT amplitudes (see Section 4.5.6) are in
reasonable agreement with simulations [564], although at large separations (ki�kj) there are signif-
icant deviations [564,296].

An eQcient (although approximate) numerical approach to computing the covariance matrix of the
power spectrum is presented in [571], using a combination of 2LPT at large scales, and knowledge
about dark matter halos at small scales (see e.g. Sections 7.1.3 and 7.1.4), which also allows to take
into account the e=ects of redshift distortions and galaxy biasing.

6.6. Generalization to higher-order correlation functions

Higher-order statistics such as correlation functions in real and Fourier space were not studied in
as much detail as the power spectrum and the two-point correlation function. In particular, there is
no accurate analytic estimate of the cosmic bias and error on such statistics, 68 although a general
formalism (relying on a statistical framework set up by Ripley [537]) which we summarize below
was recently developed by Szapudi and collaborators [624,633,634].

The LS estimator presented in Section 6.4.1 for the two-point correlation function, 〈�1�2〉, can be
formally written as (D1 − R1)(D2 − R2)=R1R2. As suggested in [624], a simple generalization for a
statistic of order N , for example the unconnected N -point correlation function, fN ≡ 〈�1 · · · �N 〉, is
simply (D1 − R1)(D2 − R2) · · · (DN − RN )=R1 · · ·RN . More exactly, [Szapudi and Szalay [624] and
Szapudi [634]] de9ne symbolically an estimator DpRq with p + q = N for a function T symmetric
in its arguments,

DpRq =
∑

T(x1; : : : ; xp; y1; : : : ; yq) (422)

where xi �= xj ∈D and yi �= yj ∈R are objects positions in the galaxy catalog and the random catalog,
respectively. The generalized LS estimator reads

f̂ N =
1
S

∑
i

(
N
i

)
(−1)N−i

(
D
Png

)i ( R
Pnr

)N−i

; (423)

where the normalization number S is given by

S ≡
∫

T(x1; : : : ; xN ) dDx1 · · · dDxN : (424)

If Png is determined with arbitrary accuracy estimator (423) is unbiased, optimally edge corrected in
the weak-correlation limit [624]. For practical measurements, however, Png is determined from the
catalog itself, and the integral constraint problem arises again, as described in Section 6.4.3.

The cosmic covariance of f̂ N assuming that ng is perfectly determined was given in [634],

Cov(fN1 ; fN2)≡ 〈f̂ N1 ;af̂ N2 ;b〉 − 〈f̂ N1 ;a〉〈f̂ N2 ;b〉

=
1
S2

∑
i; j

(
N1

i

)(
N2

j

)
(−1)i+j[E(i; j; N1; N2)

−S0{fi(1; : : : ; i)fj(N1 + 1; : : : ; N1 + j)}] (425)

68 See however the attempt in [458] about estimating the error on �3 in various approximations.
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with

E(p1; p2; N1; N2)≡
〈(

D
Png

)p1
(

R
Pnr

)N1−p1
(

D
Png

)p2
(

R
Pnr

)N2−p2
〉

=
∑

i

(
p1

i

)(
p2

i

)
i! Pn−i

g Si{fN1+p1+p2−i} ; (426)

where the operator Si is de9ned by

Sk{g}≡
∫

dDx1 · · · dDxN1+N2−kTa(1; : : : ; N1)Tb(1; : : : ; k; N1 + 1; : : : ; N1 + N2 − k)

g(1; : : : ; p1; N1 + 1; : : : ; N1 + p2 − k) ; (427)

and the convention that ( k
l ) is non-zero only for k¿ 0, l¿ 0 and k¿ l. In these equations we have

used the short-hand notations, 1 = x1; : : : ; i = xi, etc., and g should be viewed as fi(1; : : : ; i)fj(N1 +
1; : : : ; N1 + j) in Eq. (427) to compute the S0 term in Eq. (425).

Eq. (425) assumes that the random catalog contains a very large number of objects, Pnr → ∞, i.e.
does not take into account errors brought by the 9niteness of Nr (see [634] for more details). Using
a computer algebra package, one can derive from this formalism Eq. (394). Similar but cumbersome
expression for the three-point correlation function can be found in [634].

Note, as suggested in [624], that this formalism can be applied to Fourier space, i.e. to the
power spectrum (see [636] for a practical implementation of estimator f̂2 in harmonic space) and
to the bispectrum. It can also be theoretically applied to one-point distribution functions, such as
count-in-cells, studied below, but it was not done so far. Therefore, we shall instead present results
relying on a more traditional approach in the next section.

Note that for the bispectrum, some work has been done in computing its covariance matrix and
cosmic bias in particular cases. In [434], the bispectrum covariance matrix is estimated including
shot-noise terms and beyond the Gaussian approximation 69 by using second-order Eulerian PT. 70

A numerical calculation of the bispectrum covariance matrix and the cosmic bias expected for IRAS
surveys is presented in [566] using 2LPT. 71

6.7. One-point distributions: counts-in-cells

6.7.1. DeFnitions
The count probability distribution function (CPDF) was introduced in Section 6.3.2. Here we give

more de9nitions on count-in-cells statistics, such as factorial moments and their relation to cumulants
and the CPDF in terms of generating functions. Some additional information can be found as well
in Appendix E.

69 Estimation of the cosmic error in the Gaussian approximation is given in [234,560].
70 This is, however, only approximate since a consistent calculation of the connected six-point function requires up to

9fth-order Eulerian PT, a quite complicated calculation.
71 This is also not a consistent calculation of non-Gaussian terms in the covariance matrix; however, 2LPT does include

signi9cant contributions to any order in Eulerian PT, and comparison for one-point moments suggests 2LPT is a very
good approximation [561].



F. Bernardeau et al. / Physics Reports 367 (2002) 1–248 127

Following the presentation in Section 6.3.2, we discuss in more detail here an elegant way of
correcting for discreteness e=ects, which makes use of the factorial moments. These are de9ned as
follows:

Fk ≡ 〈(N )k〉 = 〈N (N − 1) · · · (N − k + 1)〉 =
∑
N

(N )kPN : (428)

Note thus that PN = F1. We have

Fk = PNk〈(1 + �)k〉 ; (429)

so Fk= PNk estimates directly the moment of order k of the underlying (smoothed) density 9eld.
The generating function of the counts

P(t) ≡
∑
N

tNPN (430)

is related to the moment generating function through

M( PNt) = P(t + 1) : (431)

Factorial moments thus verify

Fk =
(
9
9t

)k
P(t + 1)

∣∣∣∣∣
t=0

: (432)

It is easy to 9nd, using Eq. (141), the following useful recursion [619] relating factorial moments
to quantities of physical interest, Sp,

Sp =
P�2Fp

Np
c

− 1
p

p−1∑
q=1

(
p
q

)
(p− q)Sp−qFq

Nq
c

; (433)

where Nc is the typical number of object in a cell in overdense regions, Nc ≡ PN P�2.

6.7.2. Estimators
In practice, the measurement of the CPDF and its factorial moments is very simple. It consists of

throwing C cells at random in the catalog and computing

P̂
C
N =

1
C

C∑
i=1

�Ni;N ; (434)

where �N;M is the Kronecker delta function and Ni denotes the number of objects in cell “i”.
Similarly, the estimator for the factorial moment of order k is

F̂
C
k =

1
C

C∑
i=1

(Ni)k (435)

or can be derived directly from P̂
C
N using Eq. (428). Estimators (434) and (435) are unbiased.

However, if one uses relation (433) to compute cumulants from factorial moments, i.e.

P̂� =
F̂2

F̂
2
1

− 1 ; (436)
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Ŝ3 =
F̂1(F̂3 − 3F̂1F̂2 + 2F̂

3
1)

(F̂2 − F̂
2
1)2

; (437)

Ŝ4 =
F̂

2
1(F̂4 − 4F̂3F̂1 − 3F̂

2
2 + 12F̂2F̂

2
1 − 6F̂

4
1)

(F̂2 − F̂
2
1)3

; (438)

the corresponding estimators are biased because non-linear combinations of estimators are generally
biased (e.g. [328,630]).

To reduce the bias and the errors on direct measurements of cumulants from Eqs. (436)–(438) it
is possible to use some prior information, for example by assuming that the PDF of the underlying
density 9eld is given by the Edgeworth expansion, Eq. (144), convolved with a Poisson distribution
to take into account discreteness, Eq. (369). This procedure was actually applied to the IRAS 1:2Jy
galaxy catalog [377]. The advantage of such a method is that it can be less sensitive to 9nite-volume
e=ects by using the shape of the PDF near its peak (since 9nite-volume e=ects mainly a=ect the
tails). One disadvantage is that the validity of the Edgeworth expansion is quite restricted, even
in the weakly non-linear regime (see, e.g. [356]). In particular, the PDF is not positive de9nite.
Convolution with the Poisson distribution to account for discreteness alleviates this problem for
the sparse IRAS surveys [377]; however, for applications to the next generation of galaxy surveys
this will likely not be the case. Another diQculty of this approach is that error estimation is not
straightforward. On the other hand, the idea of using prior information on the shape of the PDF to
estimate moments is certainly worth pursuing with a more detailed modeling of the density PDF.

6.7.3. Error propagation: cosmic bias vs. cosmic error
We now review the theory of error propagation in a general setting for functions of correlated ran-

dom variables, following the treatment in [630]. 72 This theory was actually behind the calculation of
the errors on the two-point correlation function in Section 6.4. Since the calculations are necessarily
technical, we only present computations of the cosmic bias and error on non-linear estimators such
as those given by Eqs. (436)–(438).

Let us suppose that we measure a quantity f(x̂), where x̂ is a vector of unbiased estimators,
such as the factorial moments, and that the measurement of x̂ is suQciently close to the ensemble
average 〈x̂〉 = x. Then f can be expanded around the mean value

f(x̂) = f(x) +
∑
k

9f
9xk

�x̂k +
1
2

∑
k;l

92f
9xk9xl

�x̂k�x̂l + O(�x3) ; (439)

where xk is the kth component of x̂ and

�x̂k = x̂k − xk : (440)

After ensemble average of Eq. (439) one obtains

〈f〉 = f(x) +
1
2

∑
k;l

92f
9xk9xl

〈�x̂k�x̂l〉 + O(�x3) : (441)

72 For a di=erent approach, based on an expansion in terms of the variance at the scale of the survey see [328].
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To second order the cosmic bias [Eq. (363)] thus reads

bf � 1
2f(x)

92f
9xk9xl

〈�x̂k�x̂l〉 : (442)

Similarly, the covariance between two functions f and g is

Cov(f; g) = 〈�f̂�ĝ〉 =
∑
k;l

9f
9xk

9g
9xl

〈�x̂k�x̂l〉 + O(�x3) : (443)

In particular, the relative cosmic error is given by

"f ≡ Zf
〈f〉 =

√
Cov(f;f)=〈f〉 : (444)

It is important to notice the following point, from Eqs. (442) and (443):

bf ∼ O("2
f) : (445)

The range of applicability of this perturbative theory of error propagation is 〈�x̂k�x̂l〉=xkxk�1: errors
and cross-correlations of the vector x̂ must be weak. In this regime the cosmic bias is always smaller
than the relative cosmic error, except for accidental cancellations in Eq. (442) (in that case, the
next order would be needed in the expansion). When the cosmic bias becomes large the expansion
in Eq. (439) breaks down; in this case, numerical simulations show that the cosmic bias can be
larger than the relative cosmic error [328].

6.7.4. Cosmic error and cross-correlations of factorial moments
According to the above formalism, the knowledge of errors and cross-correlations on a complete set

of unbiased estimators, such as the factorial moments, Fk , k =1; : : : ;∞, or count-in-cells themselves,
PN , allows the calculation of the cosmic error (or cross-correlations) on any counts-in-cells statistics.
The general theoretical framework for computing the cosmic error on factorial moments can be found
in [621,630]. 73 Here we review the main results.

First, it is important to notice that there is a source of error due to the 9niteness of the number
of cells C used in Eqs. (434) and (435). This source of error, which is estimated in [621], can
be rendered arbitrarily small by taking very large number of sampling cells, C, or by using an
algorithm equivalent to in9nite sampling, C → ∞ as proposed in [625]. Measurements are often
done using C � V=v, i.e. the number of cells necessary to cover the sample, which is not a good
idea. Indeed, such small number of sampling cells does not, in general, extract all the statistically
signiFcant information from the catalog, except in some particular regimes in the Poisson limit. The
best way to measure count-in-cells statistics is thus to do as massive oversampling as possible 74

and estimate the cosmic error independently, as explained below. Similarly, when measuring the
two-point correlation function using a Poisson sample R to estimate RR and DR, in order to avoid
adding noise to the measurements, the random catalog R should have as many objects as possible.
Having that in mind, we shall assume from now that C is very large.

73 See the earlier work in [149] for detailed calculations of the void probability function cosmic error.
74 This is because missing clusters cores, which occupy a very small fraction of the volume, leads to underestimation

of higher-order moments.
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The error-generating function is de9ned as follows

E(x; y) =
∑
N;M

[〈P̂N P̂M 〉 − 〈P̂N 〉〈P̂M 〉] ; (446)

where the ensemble average 〈· · ·〉 denotes the average over a large number of realizations of the
catalog with same geometry and same underlying statistics. Then, the cosmic covariance on factorial
moments and count-in-cells reads

 k;l ≡ Cov(Fk; Fl) =
(
9
9x

)k ( 9
9y

)y
E(x + 1; y + 1)

∣∣∣∣∣
x=y=0

; (447)

Cov(PN ; PM ) =
(
9
9x

)N ( 9
9y

)M
E(x; y)

∣∣∣∣∣
x=y=0

: (448)

The error generating function can be written in terms of bivariate distributions

E(x; y) =
1

V̂
2

∫
V̂

dDr1 dDr2 [P(x; y) −P(x)P(y)] : (449)

In this equation, V̂ is the volume covered by cells included in the catalog and P(x; y) is the
generating function of bicounts PN;M for cells separated by a distance |r1 − r2| (see also Section
6.8):

P(x; y) ≡
∑
N;M

xNyMPN;M : (450)

The calculation of the function E(x; y), detailed in Appendix F, is simpli9ed by separating the
integral in Eq. (449) into two components, Eoverlap(x; y) and Edisjoint(x; y), according to whether
cells overlap or not.

At leading order in v=V ,  k;l has three contributions

 k;l =  F
k; l +  E

k; l +  D
k; l ; (451)

where  F
k; l,  

E
k; l and  D

k; l are the 9nite volume, edge and discreteness e=ect contributions, respectively.
From [621,630], the 9rst few terms in the three-dimensional case are listed in Appendix F.

The 9nite-volume error comes from the disjoint cells contribution in the error generating function.
The corresponding relative error, or cross-correlation,  F

k; l=(FkFl) does not depend on the number of
objects in the catalog, and is proportional to the integral of the two-point correlation function over
the survey volume:

P�(L̂) ≡ 1

V̂

∫
r12¿2R

dDr1 dDr2 �(r12) : (452)

The edge e=ect term,  E
k; l=(FkFl), is the contribution remaining from overlapping cells in the contin-

uous limit, PN → ∞. It does not depend on the number of objects in the catalog and is proportional
to P�v=V . A pure Poisson sample does not have edge e=ect error at leading order in v=V , in agreement
with intuition. The discreteness e=ect error,  D

k; l=(FkFl), is the contribution from overlapping cells
which depends on PN and thus disappears in the continuous limit. As discussed in the introduction
of this section, the separation between these three contributions is useful but somewhat arbitrary.
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For example, Eq. (452) actually contains some edge e=ects through the constrain r12¿ 2R, as shown
in Appendix F.

Furthermore, if next to leading order contributions in v=V are considered, the corresponding cor-
rection is proportional to the contour of the survey, 9V [537,154]. Each contribution,  X

k; l=(FkFl),
X = F, E or D contains a term proportional to 9V . This correction is an edge correction, leading to
terms such as edge-9nite-volume and edge-discreteness contributions in our nomenclature.

It is important to emphasize that the expressions given in Appendix F are of direct practical
use 75 for estimating errors on factorial moments or on cumulants (Section 6.7.5) using the theory
of propagation of errors explained above (e.g. [319,632,635] for applications to actual measurements
in real galaxy catalogs). Similar to Eq. (395), a careful examination of these expressions shows
that prior knowledge of the shape of the two-point correlation function � [namely, P� and P�(L̂)] and
higher-order statistics, Sp and Cp q up to some value of p and q is necessary to compute  k;l. To es-
timate cumulants P� and Sp, one can simply use the values directly measured in the catalog or other
existing estimates (e.g. [249,622]), as well as existing 9tting formulae for P� ([289,493,335,494],
see Section 4.5.4) and PT, EPT ([151], see Section 5.13) or HEPT ([563], see Section 4.5.6)
for Sp. To compute P�(L̂), it is necessary to make assumptions about the cosmological model. The
cumulant correlators Cpq can be estimated directly from the catalog or from various models
which further simplify the calculations (e.g. [41,619,630]). These models can be particular cases
of the hierarchical model, Eq. (214), or can rely on PT results (Section 5.12) or extensions such as
E2PT (Section 5.13).

Among the models tested, the best known so far is E2PT as illustrated in Fig. 39. In this 9gure,
taken from [153], the cosmic error on factorial moments is measured from the dispersion over
4096 subsamples of size L = 125h−1 Mpc, extracted from a �CDM simulation of size 2000h−1 Mpc
involving 10003 particles [206]. The accuracy of theoretical predictions is quite good, especially at
large, weakly non-linear scales. At small scales, all the models tend to overestimate the magnitude
of the errors, including E2PT, but the disagreement between theory and measurements is at most
a factor two approximately. This discrepancy suggests that details of the dynamics still need to
be understood in order to describe appropriately multivariate distribution functions in the highly
non-linear regime.

6.7.5. Cosmic error and cosmic bias of cumulants
Using the results in Sections 6.7.3 and 6.7.4 it is possible to compute the cosmic bias and the

cosmic error on estimators (436)–(438) (see also [328]). It would be too cumbersome to put all the
results here, but getting analytic expressions similar to what was obtained for  k;l is very easy with
standard mathematical packages. For example, simple algebraic calculations give for the cosmic bias

b P� =
F2

P� PN 2

(
3 11

PN 2 − 2 12

PNF2

)
; (453)

bS3 = b P�3
− 3b P� −

2 23

F2F3
+

3 22

F2
2

; (454)

75 They have been implemented in the publically available FORCE package [630].
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Fig. 39. The relative cosmic error on factorial moments measured as a function of scale [153], obtained from the dispersion
over a large ensemble of subsamples extracted from one of the Hubble volume simulations [206], as explained in the text.
The dotted, dashed, long dashed, dot–long dashed curves correspond respectively to theoretical predictions based on two
particular cases of the hierarchical model, namely SS and BeS, E2PT and PT. The SS model [619] assumes QNM =QN+M

with the de9nition in Eq. (F.24). The BeS model [41] is more complicated, but obeys QNM = QN1QM1, as in the E2PT
framework, described in Section 5.13. The PT results are shown only in the weakly non-linear regime, P�. 1.

with

b P�3
=

F3

P�3

PN 3
(

6 11

PN 2 − 3 13

PNF3

)
− 3

F2

P�3F2
1

(
3 11

PN 2 − 2 12

PNF2

)
: (455)

Similarly, the cosmic errors read

"2
� �

1
PN 6

(
4F2

2 11 − 4 PNF2 21 + PN 2 22

)
; (456)

"2
S3
� 1

PN 12 P�
6
S2

3

[(2 PN 3F2 − 6 PNF2
2 + 3 PN 2F3 + F2F3)2 11

+ 2 PN (−2 PN 6F2 + 12 PN 4F2
2 − 18 PN 2F3

2 − 3 PN 5F3
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Fig. 40. Comparison of the cosmic errors for the factorial and connected moments expected in the SDSS [630]. Standard
CDM is assumed for the two-point correlation function and E2PT with ne= =−2:5 for higher-order statistics. Solid, dotted,
dash, and long dash lines correspond to orders 1,2,3, and 4, respectively. Of each pair of curves with the same line-types
the one turning up on large scales relates to the cumulant. Note that the perturbative approach used to compute the cosmic
error on the cumulants fails at large scales, explaining the right stopping point of the long dash curve for S4.

+ 4 PN 3F2F3 + 15 PNF2
2F3 − 6 PN 2F2

3 − 2F2F2
3 ) 12

+ 2 PN 3 P�(2 PN 3F2 − 6 PNF2
2 + 3 PN 2F3 + F2F3) 13

+ PN 2( PN 3 − 3 PNF2 + 2F3)2 22

+ 2 PN 4 P�( PN 3 − 3 PNF2 + 2F3) 23 + PN 6 P�
2
 33] : (457)

It is interesting to compare the results obtained for P� to what was derived for function �(r). For
example, replacing  kl and Fk with their value as functions of PN and cumulants leads to the following
result for the cosmic bias in the 3D case [630]:

b P� �
(

0:04 − 1
P�

)
v
PNV

+
(

16:5 − 7:6S3 − 0:53
P�

) P�v
V

+
(

3 − 2C1 2 − 1
P�

)
P�(L̂) : (458)

In this equation, valid in the perturbative regime (|b P�|�" P��1) and at leading order in v=V one
can recognize in the 9rst, second and third terms the discreteness, edge and 9nite-volume e=ect
contributions, respectively. As expected, the last line is very similar to Eq. (392). Note that the
discreteness e=ect term is rather small and can be neglected in most realistic situations, in agreement
with Eq. (392). An alternative calculation of b P� can be found in [328] with similar conclusions.

Fig. 40 displays the cosmic error as a function of scale for factorial moments and cumulants
expected in the SDSS. It illustrates how these di=erent estimators perform and shows that the relative
error on the cumulants P�; S3 and S4 is expected to be smaller by 3%, 5% and 15%, respectively, in
the scale range 1–10h−1 Mpc [630].
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6.8. Multivariate count-in-cells

The generalization of count-in-cells to the multivariate case is quite straightforward. Here we focus
on bivariate statistics, which were used to compute the cosmic error on count-in-cells estimators in
Section 6.7.4.

For a pair of cells at position r1 and r2 separated by distance r = |r1 − r2|, factorial moment
correlators [620] are de9ned as

Wkl(r12) ≡ Fkl − FkFl

PNk+l ; (459)

Wk0 ≡ Fk0

PNk ≡ Fk

PNk ; (460)

where the joint factorial moment is given by

Fkl(r12) ≡ 〈(N )k(N )l〉 : (461)

As with factorial moments, Fkl estimates joint moments of the smoothed density 9eld:

Fkl(r12) = PNk+l〈[1 + �(r1)]k[1 + �(r2)]l〉 : (462)

The joint factorial moments and thus the factorial moment correlators can be easily related to the
quantities of physical interest, namely the two-point density normalized cumulants—also designed
by cumulant correlators [623], Cpq [Eq. (348)]. Indeed, as for the monovariate case, one can write

Fkl =
(
9
9x

)k ( 9
9y

)l
P(x + 1; y + 1)

∣∣∣∣∣
x=y=0

; (463)

M( PNx; PNy) = exp[C(x; y)] = P(x + 1; y + 1) ; (464)

where P(x; y) is the generating function for bicounts de9ned previously in Eq. (450), M(x; y) =
〈exp[x�(r1)+y�(r2)]〉 is the moment generating function (Section 3.3.3) and C(x; y) is the two-point
density cumulant generating function [Eq. (138)]. For example, the 9rst few cumulant correlators
are [623]

C12
P�� = W12 − 2� ; (465)

C13
P�
2
� = W13 − 3W12 − 3W20 + 6� ; (466)

C22
P�
2
� = W22 − 4W12 + 4�− 2�2 ; (467)

with � ≡ �(r12). We have used the approximation W11 � �, valid when r12�R.
An unbiased estimator for the joint factorial moment Fkl analogous to Eq. (435) is simply, for a

set of P pairs of cells in the catalog separated by distance r and thrown at random (with random
direction),

F̂
P
kl(r) =

1
2P

∑
pairs (i; j)

[(Ni)k(Nj)l + (Ni)l(Nj)k] : (468)
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A possible (biased) estimator for the factorial moments correlators is then, for the same set of cells,

WP
kl =

F̂
P
kl − F̂

P
k0F̂

P
l0

[F̂
P
10]k+l

(469)

with the de9nition

F̂
P
k0 ≡

1
2P

∑
pairs (i; j)

[(Ni)k + (Ni)l] : (470)

At this point, it is interesting to notice again that W11 can be used directly as an estimator of
the two-point correlation function, if the cell size R is small compared to the separation r (e.g.
[503,275]). In that case, the averages are done on sets of pairs of cells in a bin T as de9ned in
Section 6.4.1.

Further generalization to higher-order multivariate statistics is trivial. For example, W111 can be
used to estimate the three-point correlation function (e.g. [275]), W1111 to estimate the four-point
correlation function (e.g. [226]) and so on.

6.9. Optimal weighting

To optimize the measurements of N -point statistics, the data can be given a varying spatial weight
!(r1; : : : ; rN ) symmetric in its arguments and properly normalized. Furthermore, in realistic redshift
surveys, the average number density of galaxies changes with distance r from the observer:

Png(r) = Png2(r) ; (471)

where 2(r)6 1 is the selection function. Now, the estimators de9ned so far are valid only for
statistically homogeneous catalogs, i.e. with constant Png(r). One way to avoid this problem is to
use volume-limited catalogs. This method consists in extracting from the parent catalog, subsamples
of depth Ri such that the apparent magnitude of objects in these catalogs at distance r =Ri from the
observer would be larger than the magnitude limit. Such a selection criterion renders the number
density of galaxies in the subsamples independent of distance at the price of a signi9cant information
loss. 76 In order to be able to extract all the information from the catalog, it is however possible to
correct the estimators for the spatial variation of Png(r). Moreover, the signal to noise can be further
improved by appropriate choice of the weight function !.

The generalization of Eq. (422) reads

DpRq =
∑ !(x1; : : : ; xp; y1; : : : ; yq)

2(x1) · · ·2(xp)2(y1) · · ·2(yq)
T(x1; : : : ; xp; y1; : : : ; yq) : (472)

(We assume that same selection e=ects are applied to the random catalog R.) Note that the weight
could be included in the bin function T, but we prefer to separate the idea of spatial weighting from
the idea of binning. In principle, the binning can change slightly the nature of the measured statistic
A in AT �=A. Of course, up to now we have assumed that the binned quantity is always close to the
quantity of interest, AT � A, but this condition is not absolutely necessary: the binning function T
can be chosen arbitrarily and determined a priori. Then the statistic of interest becomes AT instead

76 However, a number of volume-limited samples can be constructed from the parent catalog to compensate for this.
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of the original A. For example, count-in-cells represent a particular choice of the binning function.
On the other hand, the spatial weight should not bring any change, i.e. the weighted quantity, should
be, after ensemble average, equal to the real value (or at least, very close to it): 〈ÂT;!〉 = AT.

The optimal weight by de9nition minimizes the cosmic error. In what follows, we assume that
Png and 2(r) are externally determined with very good accuracy. As a result the cosmic error for
N -point statistics is given by Eq. (425), with the obvious correction to the functional Si with
the weights and selection function. The optimal weight can then be found by solving an integral
equation for the function ! [291,293,152]. There are several methods to solve this equation, for
example by pixelizing the data, thus transforming the integral into a sum. In this way, solving the
integral equation corresponds to inverting a matrix. We shall come back to that in the end of this
section and in Section 6.11.2.

Otherwise, it has been shown that within the following approximations,

(1) the considered N -uplets occupy a region R small enough compared to the size of the catalog
that variations of function 2 in the vicinity of a N -uplet are negligible, 2(r1) � · · · � 2(rN );

(2) edge e=ects are insigni9cant;
(3) the function ! depends only on position r of the region R, i.e. the variations of ! within R

are negligible;

the function !(r) that gives the optimal weight for the two-point function (but it is likely to be the
case for the higher-order functions) appears to be a functional of the selection function only [291].

Within this simplifying framework, 77 the solution for the optimal weight is very simple [291,152]

!(r) ˙ 1="2(r) ; (473)

where "(r) is the relative cosmic error on the considered statistics in a statistically homogeneous
catalog with same geometry and same underlying statistics as the studied one, but with a number of
objects such that its number density is Png2(r). This result actually applies as well to Fourier space
(at least for the power spectrum [212]) and to counts-in-cells statistics [152].

To 9nd the optimal weight, one has to make assumptions about the higher-order statistics in order
to compute the cosmic error since the latter depends on up to the 2kth order for estimators of
kth-order statistics. To simplify the calculation of "(r), the Gaussian limit is often assumed. This
is valid only in the weakly non-linear regime and leads to the following weight for the two-point
correlation function, commonly used in the literature [410,291,462,196,293]:

!(r) ˙
1

[1= Png(r) + J (r)]2 ; (474)

where

J (r) =
∫
r′6r

dDr′ �(r′) : (475)

77 Hamilton [293,294] developed a general formalism for optimizing the measurement of the two-point correlation func-
tion in real and Fourier space, relying on the covariance matrix of the statistic 〈�(ri)�(rj)〉, which would correspond to the
binning function T(r1; r2)=�D(r1)�D(r2). He proposed a way of computing the optimal sampling weight without requiring
these simplifying assumptions.
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In Fourier space the result is [212]

!(r) ˙
1

[1=V Png(r) + P(k)]2 ; (476)

a result that can be easily guessed from Eq. (415). This equation is valid for {k;Zk}�1=L, where
L is the size of the catalog in the smallest direction and Zk is the width of the considered bin.

Note that the function !(r) is of pairwise nature. It corresponds to weighting the data with

ng(r) → ng(r)
√

!(r) : (477)

Now, we turn to a more detailed discussion of optimal weighting in count-in-cell statistics. The
problem of 9nding the optimal sampling weight was studied in [152]. Similar to Eq. (472), the
weighted factorial moment estimator reads

F̂
C
k =

1
C

C∑
i=1

(Ni)k !(ri)
[2R(ri)]k

; (478)

where 2R(r) is the average of the selection function over a cell.
To simplify the writing of the cosmic error as a function of the sampling weight, the variations

of the function ! and of the selection function are assumed to be negligible within the cells, which
is equivalent to points (1) and (3) above. Then the relative cosmic error "Fk [!;2] = (ZF̂k =Fk)2 is

"2
Fk

[!;2] = "2
F[!] + "2

E[!] + "2
D[!;2] ; (479)

where the 9nite volume, edge e=ect and discreteness contributions read, respectively,

"2
F[!] =

"2
F

P�(L̂)V̂

∫
V̂

d3r1 d3r2 !(r1)!(r2)�(r12) ; (480)

"2
E[!] =

"2
E

V̂

∫
V̂

d3r!(r) ; (481)

"2
D[!;2] =

1

V̂

∫
V̂

d3r!2(r)"2
D(r) : (482)

In these equations, there are terms such as "2
F = "2

F[1] or "2
E = "2

E[1]. They correspond to the 9nite
volume and edge e=ect errors in the case of homogeneous sampling weight. They do not depend
on the number density and are given by analytical expressions in Appendix F. The term "2

D(r) is
similar, but there is a supplementary r dependence because the average count PN is proportional to
the selection function 2.

Using Lagrange multipliers, it is easy to write the following integral equation which determines
the optimal weight [152]:

"2
F

P�(L̂)V̂

∫
V̂

d3u!(u)�(|r− u|) + ["2
E + "2

D(r)]!(r) + A = 0 : (483)
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The constant A is determined by appropriate normalization of the weight function

1

V̂

∫
V̂

d3r!(r) = 1 : (484)

The solution of this integral equation can be found numerically. However, approximation (473) was
found to be excellent, i.e. almost perfectly minimizes the cosmic error [152].

Using the leading order theory of propagation of errors in Section 6.7.3, it is easy to see that
these calculations apply as well to the variance and the cumulants, provided that errors are small
enough: in Eqs. (436)–(438), F̂k would be computed with Eq. (478), using the sampling weight
minimizing the cosmic error of the cumulant of interest.

This result shows as well that for a statistically homogeneous catalog, a weight unity !=1 is very
close to optimal in most practical cases for count-in-cell statistics. This statement, of course, is not
necessarily true for N -point correlation functions, particularly if the catalog presents a complicated
geometry. In that case, the use of a weight might help to correct for edge e=ects at large scales,
although the LS estimator and its generalization to higher order perform already well in this respect
with a uniform weight. For traditional counts-in-cells estimators, the 9nite extension of the cells
prevents from correcting for edge e=ects. This is actually the main weakness of these statistics
compared to the N -point correlation functions, and often the latter are preferred to the former,
particularly when the geometry of the catalog is complicated by the presence of numerous masks
which reduce considerably the range of scales available to counts-in-cells.

Finally, it is worth noting the following point: the optimal weight is actually diQcult to compute
because it requires knowledge of statistics of order l6 2k for an estimator of order k. Therefore,
the Gaussian limit, given by Eqs. (474) and (476) for functions �(r) and P(k), respectively, was
widely used in the literature. However, this is rigorously valid only in the weakly non-linear regime
where the shot noise error is likely to be negligible, implying a simple, uniform weight to be nearly
optimal, unless the catalog is very diluted. Discreteness errors are less of a concern with modern
surveys under construction, such as the 2dFGRS or the SDSS.

Furthermore, it was noticed in [152] that the traditional volume-limited sample method does al-
most as good as a single optimized measurement extracting all the information from the catalog,
if the depth of the subsample, Ri, is chosen such that for the scale considered signal to noise is
approximately maximal. Of course, estimating the cosmic error is still a problem, but the advantage
of the volume-limited approach is that prior determination of the selection function is not necessary,
which simpli9es considerably the analysis.

6.10. Cosmic distribution function and cross-correlations

6.10.1. Cosmic distribution function and likelihood
For a set of (possibly biased) estimators, f̂ = {f̂ k}k=1;K , let us de9ne the covariance matrix as

Ckl = Cov{f̂ k ; f̂ l}. The extra-diagonal terms can be correlations between a given estimator (e.g. of
the power spectrum) at di=erent scales (as in Section 6.5.4), between di=erent estimators at the same
scale (e.g. factorial moments, see Section 6.10.2), or in general di=erent estimators at di=erent scales.
Knowledge of these cross-correlations can in fact help to better constrain theories with observations
because they bring more information on the shape of the cosmic distribution function.
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As mentioned in Section 6.2, the cosmic distribution function Y is the probability distribution
for an estimator given a theory (or class of theories parametrized in some convenient form), i.e.
Y=Y(f̂ |theory) is the probability of measuring f̂ in a 9nite galaxy catalog given a theory. Knowledge
of Y(f̂ |theory) allows one to extract constraint on cosmological parameters from the data through
maximum likelihood analysis, where the likelihood function is given by the cosmic distribution
function thought as a function of the parameters that characterize the theory (with f̂ replaced in
terms of the observed data).

In particular, if the cosmic distribution function Y is Gaussian, it is entirely determined once the
covariance matrix C is known:

Y(f̂ |C; f ; b) =
1√

(2�)K |C|exp

[
−1

2

∑
k;l

�f̂ kC
−1
kl �f̂ l

]
; (485)

where C−1 and |C| are, respectively, the inverse and the determinant of the covariance matrix, f is
the true value of the statistics in question (f =〈f̂〉 for unbiased estimators) and b a vector accounting
for possible cosmic bias. Both C and f (and b if non-zero) are calculated from theoretical predictions
as a function of cosmological parameters.

It is very important to note that the Gaussian assumption for Y is, in general, di=erent from
assuming that the density 9eld is Gaussian unless the estimator f̂ corresponds to the density con-
trast. 78 For this reason, Eq. (485) is not necessarily a good approximation for estimators that are
not linear in the density contrast even if the underlying statistic of the density 9eld is Gaussian. We
shall come back to this point in Section 6.10.3.

Why is it useful to take as f non-linear functions of the density contrast? The problem is that the
assumption of Gaussianity for the density 9eld itself is very restrictive to deal with galaxy clustering:
it does not include information on higher-order moments which arise due to e.g. non-linear evolution,
non-linear galaxy bias or primordial non-Gaussianity. Since there is no general expression for the
multi-point PDF of the density 9eld which describes its non-Gaussian shape, 79 one must resort to a
di=erent approach. The key idea is that taking f to be a statistic 80 of the density 9eld, it is possible
to work in a totally di=erent regime. Indeed, when the cosmic error is suQciently small, there must
be many independent contributions to f̂ so that, by the central limit theorem, its cosmic distribution
function should approach Gaussianity. 81 On the other hand, the cosmic error becomes large when
probing large scales, where there are not many independent samples; in this case, assumption of a
Gaussian density 9eld plus the non-linear transformation involved in f̂ leads to a useful guess about
the asymptotic behavior of Y. In practice, the speci9c shape of Y must be computed for a given set
of theories, and the limit of validity of the asymptotic forms discussed above should be carefully
checked, as discussed further in Section 6.10.3.

The remainder of this section is organized as follows. In Section 6.10.2 we discuss about correla-
tions between di=erent statistics. As an example, we show how knowledge of the number of objects

78 In this case Y is proportional to the density PDF.
79 The Edgeworth expansion, Eq. (144), in principle provides a way to accomplish this [5]. In practice, however, its

regime of validity is very restricted.
80 These are non-linear functions of the data, e.g. the power spectrum is quadratic.
81 Note that, in contrast to the PDF of the density 9eld, this limit is usually approached at small scales, we shall discuss

examples below in Section 6.10.3.
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in a galaxy catalog can be used to reduce the error bar on the measurement of the two-point corre-
lation function. Then, in Section 6.10.3, we address the problem of non-Gaussianity of the cosmic
distribution function.

6.10.2. Cross-correlations between diLerent statistics
An important kind of cross-correlation is given by that between statistics of di=erent kind. For

example, the calculation leading to Eq. (400) is a conditional average with the constraint that the
average number density is equal to the observed one:

(Z�̂| Png)2 ≡ 〈�̂2| Png〉 − 〈�̂| Png〉2 (486)

=

∫
�2Y(�; Png) d�∫
Y(�; Png) d�

−
[∫

�Y(�; Png) d�∫
Y(�; Png) d�

]2

: (487)

The knowledge of this supplementary information decreases the expected error on the measurement
of �(r) and provides better constraints on the models. The calculation of Bernstein leading to Eq.
(395) does not make use of the fact that Png can be measured separately:

(Z�̂)2 = 〈�̂2〉 − 〈�̂〉2 (488)

=
∫

�2Y(�; Png) d� d Png −
[∫

�Y(�; Png) d� d Png

]2

(489)

and therefore slightly overestimates the error on �(r) as emphasized in [393]. For example, if the
function Y is Gaussian, we have

(Z�̂| Png)2 = (Z�̂)2[1 − �2
�; Png

] ; (490)

where the correlation coeQcient �AB is de9ned for estimators Â and B̂ as

�AB ≡ 〈(Â− 〈Â〉)(B̂− 〈B̂〉)〉
ZÂZB̂

: (491)

From this simple result, we see that joint measurement of (theoretically) more correlated or anti-
correlated statistics brings better constraints on the underlying theory.

In [630] and as described in Section 6.7.4, cross-correlations between factorial moments are com-
puted analytically at 9xed scale. From the theory of propagation of errors, it is straightforward to
compute cross-correlations between other count-in-cells statistics of physical interest, such as aver-
age count PN , variance P� and cumulants Sp. Theoretical calculations and measurements in numerical
simulations [630,153] show that, for realistic galaxy catalogs such as the SDSS, PN and P� are not,
in general, strongly correlated, and similarly for correlations between PN and higher-order statistics.
Interestingly, P� and S3 are not very strongly correlated, but S3 and S4 are. Actually, in general and
as expected, the degree of correlation between two statistics of orders k and l decreases with |k− l|.

6.10.3. Validity of the Gaussian approximation
We now discuss the validity of the Gaussian approximation, Eq. (485), for the cosmic distribution

function. To illustrate the point, we take two examples, the 9rst one about count-in-cells statistics,
the second one about the power spectrum and bispectrum.
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Exhaustive measurements in one of the Hubble volume simulations [631] show that for count-in-cell
statistics, Y(Â) is approximately Gaussian if ZÂ=A. 0:2. Therefore, at least for count-in-cells, Gaus-
sianity is warranted only if the errors are small enough. When the cosmic errors become signi9cant,
the cosmic distribution function becomes increasingly skewed, developing a tail at large values of

Â [631]. This result applies to most counts-in-cells estimators (P̂N ; F̂k ; P̂�; Ŝp). One consequence
is that the most likely value is below the average, resulting in an eLective cosmic bias, even for
unbiased statistics such as factorial moments: typically, the measurement of a statistic Â in a 9nite
catalog is likely to underestimate the real value, except in some rare case where it will overestimate
it by a larger amount. 82 To take into account the asymmetry in the shape, it was proposed in [631]
to use a generalized version of the lognormal distribution, which describes very well the shape of
function Y(Â) for a single statistic, as illustrated in Fig. 41:

Y(Â) =
s

ZA[s(Â− A)=ZA + 1]
√

2�7
exp

(
−{ln[s(Â− A)=ZA + 1] + 7=2}2

27

)
; (492)

7 = ln(1 + s2) ; (493)

where s is an adjustable parameter. It is 9xed by the requirement that the analytical function,
Eq. (492), have identical average, variance and skewness S3 = 3 + s2, as the measured Y(Â).

However, the generalization of Eq. (492) to multivariate cosmic distribution functions is not easy,
although feasible at least in some restricted cases (e.g. see [585]). An alternate approach would
employ a multivariate Edgeworth expansion [5].

Since the Gaussianity of the cosmic distribution function mainly depends on the variance of
the statistic under consideration, it is expected that for surveys where errors are not negligible,
Gaussianity is not a good approximation. Fig. 42 illustrates this for IRAS surveys in the case
of the power spectrum and bispectrum [565], as a function of normalized variables, �A=ZA ≡
(Â − A)=〈(Â − A)2〉1=2. For the bispectrum, this choice of variable makes the cosmic distribution
function approximately independent of scale and con9guration.

The left panel of Fig. 42 shows the power spectrum cosmic distribution function as a function of
scale, from least to most non-Gaussian, scales are k=kf=1–10, k=kf=11–20, k=kf=21–30, k=kf=31–
40, where kf = 0:005 h=Mpc. As expected, non-Gaussianity is signi9cant at large scales, as there are
only a few independent modes (due to the 9nite volume of the survey), and thus the power spectrum
PDF is chi-squared distributed. As smaller scales are considered, averaging over more modes leads
to a more Gaussian distribution, although the convergence is slow since the contributing modes are
strongly correlated due to shot noise.

The right panel in Fig. 42 shows a similar plot for the bispectrum. In sparsely sampled surveys
such as QDOT, deviation from Gaussianity can be very signi9cant. In a large volume-limited sample
of 600 Mpc=h radius with many galaxies (dotted curve), Gaussianity becomes an excellent approx-
imation, as expected. The cosmic distribution function for �2 initial conditions was also calculated
in [565]; in this case, non-Gaussianity is signi9cant even for large-volume surveys, and thus must
be taken into consideration in order to properly constrain primordial non-Gaussianity [567,211].

82 This is, of course, analogous to non-Gaussianity in the density PDF. Positive skewness means that the most likely
value is to underestimate the mean, see Eq. (230). To compensate for this there is a rare tail at large values compared
to the mean, see e.g. Fig. 20.
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Fig. 41. The cosmic distribution function of measurements Y( P̂�) (upper line of panels), Y(Ŝ3) (middle line of panels)
and Y(Ŝ4) (lower line of panels) measured from a distribution of subsamples extracted from a Hubble volume simulation
(see end of Section 6.7.4 for more details). The scale of the measurements, either R = 1; 7:8 or 62:5h−1 Mpc, is indicated
on each panel. The solid, dotted and dash curves correspond to the Gaussian, lognormal and generalized lognormal
[Eq. (492)] distributions, respectively. With the choice of the coordinate system, the magnitude of the cosmic error does
not appear directly, but is reJected indirectly by the amount of skewness of the lognormal distribution.
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Fig. 42. Left panel: Power spectrum cosmic distribution function in an IRAS 1.2Jy-like survey as a function of scale
in logarithmic scale, smooth solid line denotes a Gaussian distribution. From least to most non-Gaussian, scales are
k=kf =1–10, k=kf =11–20, k=kf =21–30, k=kf =31–40, where kf =0:005 h=Mpc. Right panel: Cosmic distribution function
of �Q=ZQ ≡ (Q − PQ)=ZQ for di=erent surveys in models with Gaussian initial conditions: second-order Lagrangian
PT with 2563 objects in a volume of 600 Mpc=h radius (dotted), IRAS 1.2Jy (solid), IRAS 2Jy (dashed), IRAS QDOT
(long-dashed). The smooth solid curve is a Gaussian distribution.

6.11. Optimal techniques for Gaussian random Felds

Up to now, we have restricted our discussion to a particular subset of estimators used commonly
in the literature, which apply equally well to two-point and higher-order statistics. To give account
of recent developments, we now reinvestigate the search for optimal estimators in the framework
of Gaussian random 9elds. That is, the cosmic distribution function, with estimators f̂ that will be
taken as density contrasts (measured in pixels or their equivalent in some space of functions, such
as spherical harmonics), will be assumed to be Gaussian. As discussed above, this approach is only
justi9able to obtain estimates of the power spectrum (or two-point correlation function) at the largest
scales, where Gaussianity becomes a good approximation.

First we recall basic mathematical results about minimum variance and maximum likelihood es-
timators (Section 6.11.1). In Section 6.11.2, we discuss optimal weighting for two-point statistics
taking into account the full covariance matrix (compare to Section 6.9), and in Section 6.11.3 we
brieJy address techniques for obtaining uncorrelated estimates of the power spectrum, comparing
with results discussed in previous sections when relevant. Finally, we brieJy describe the Karhunen–
LoOeve transform, useful for compressing large amounts of data expected in current and forthcoming
surveys (Section 6.11.4).

6.11.1. Maximum likelihood estimates
The basic results given here are well known in statistical theory [610,690]. For more details

and applications to optimal measurements of the power spectrum in cosmological data sets see e.g.
[646,647,80,293].
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Let us assume that we have at our disposal some data x̂, say, a vector of dimension N with
the cosmic distribution function Y(x̂), which is Gaussian and can be expressed explicitly as a
function of x̂ and a set of unknown parameters f , which we aim to estimate, given our data. When
thought as a function of the parameters f ; Y(f) is usually known as the likelihood function. 83 The
corresponding estimators, f̂ = (f̂ 1; : : : ; f̂ K); K6N , are sought in the space of functions of the data
x̂. The problem of 9nding an optimal estimator f̂ can be formally approached at least in two ways,
the 9rst one consisting in minimizing the cosmic error on f̂ , the second one consisting in maximizing
the likelihood.

We restrict ourselves to unbiased estimators,

〈f̂〉 ≡
∫

dN x̂Y(x̂|f)f̂(x̂) = f : (494)

The search for the 9rst kind of optimal estimator, already discussed in Section 6.9, consists in
minimizing the cosmic error

 2fk = 〈(f̂ k − fk)2〉 ; (495)

given constraint (494). It is useful at this point to assume that the likelihood function is suQciently
smooth and to introduce the so-called Fisher information matrix

Fkl ≡
〈
92[ − log Y(f)]

9fk9fl

〈
9log Y(f)
9fk

9log Y(f)
9fl

〉
: (496)

Let us assume that the matrices F and the covariance matrix C de9ned by Ckl ≡ Cov(fk; fl) =
〈�f̂ k �f̂ l〉 are positive de9nite. From the Cauchy–Schwarz inequality one gets the so-called Cramêr–
Rao inequality

(Zfk)2Fkk ¿ 1 (497)

so that the inverse of the Fisher matrix can be thought as the minimum errors that one can achieve.
Through a change of variable this inequality can be generalized in

(at · C · a)(bt · F · b)¿ (at · b)2 ; (498)

where a and b are two sets of constants. It implies

|C|¿ 1
|F| : (499)

An estimator f̂ which obeys the equality in Eq. (498) or (499) is called minimum variance bound
(MVB). This can happen if and only if the estimator f̂ can be expressed as a linear function of the
derivative of log-likelihood function with respect to the parameters:(

9log Y
9f

)t

· b = g(f)(f̂ − f)t · a ; (500)

where the constant of proportionality g(f) might depend on the parameters but not on the data x̂. As
a result, for an arbitrary choice of the parameters f , minimum variance unbiased estimators are not

83 Therefore, the assumption of a Gaussian density 9eld means Y(x̂) as a function of x̂ is Gaussian, whereas in the
limit that a large number of uncorrelated data contribute, Y(f) becomes Gaussian.
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necessarily MVB. The second way of seeking an optimal estimator consists in maximizing directly
the likelihood function in the space of parameters, f → f̂ . The goal is to 9nd f̂ML such that

Y(x̂)|f=f̂ML(x̂)¿Y(x̂)|f (501)

for any possible value of f . A practical, suQcient but not necessary condition is given by the solution
of the two sets of equations

9log Y
9f = 0 ; (502)

92log Y
9fk9fl

¡ 0 : (503)

The solution of Eq. (501), if it exists, does not lead necessarily to an unbiased estimator nor
a minimum variance estimator. But if by chance the obtained ML estimator is unbiased, then it
minimizes the cosmic error. Moreover, if there is an MVB unbiased estimator, it is given by the
ML method. Note that in the limit that large number of uncorrelated data contributes, the cosmic
distribution function tends to a Gaussian and the ML estimator is asymptotically unbiased and MVB.
In that regime, the cosmic cross-correlation matrix of the ML estimator is very well approximated
by the inverse of the Fisher information matrix

Ckl = Cov(fk; fl) = 〈�f̂ k�f̂ l〉 � (F−1)k; l : (504)

On the other hand, from the Gaussian assumption for Y(x̂), it follows that the ML estimator for the
power spectrum [P̂(k=) ≡ f̂ =] is the solution of

f̂ = =
1
2
F−1

=>
9Cij

9f>
[C−1]ik[C

−1]jl(�k�l − Nkl) (505)

(where �k denotes the density contrast at rk) for which the estimate is equal to the prior, f̂ = f . That
is, in order to obtain the ML estimator, one starts with some prior power spectrum f , then 9nds
the estimate f̂ , puts this back into the prior, and iterates until convergence. In Eq. (505), the Fisher
matrix is obtained from Eq. (496),

F=> =
1
2
9Cij

9f=
[C−1]ik[C

−1]jl
9Ckl

9f>
; (506)

the covariance matrix Cij = �ij + Nij contains a term due to clustering (given by the two-point
correlation function at separation |ri−rj|; �ij), and a shot noise term Nij ≡ Pni�D(ri−rj). Applications
of the ML estimator to measurements of the 2D galaxy power spectrum was recently done for the
APM [203] and EDSGC [331] surveys (see Section 8.2.2).

6.11.2. Quadratic estimators
In reality it is in general diQcult to express explicitly the likelihood function in terms of the

parameters. In addition, even if we restrict to the case where the parameters are given by the power
spectrum as a function of scale as discussed in the previous section, one must iterate numerically
to obtain the ML estimates, and their probability distribution also must be computed numerically
in order to provide error bars. 84 As a result, a useful approach is to seek an optimal estimator,

84 However, see [81] for an analytic approximation in the case of the 2D power spectrum using an o=set lognormal.
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unbiased and having minimum variance, by restricting the optimization to a subspace of estimators,
as discussed in Section 6.9. Of course, this method is not restricted to the assumption of Gaussianity,
provided that the variance is calculated including non-Gaussian contributions. It turns out there is
an elegant solution to the problem [293,296], which in its exact form is unfortunately diQcult to
implement in practice, but it does illustrate the connection to ML estimate (505) in the Gaussian
limit, and also provides a generalization of the standard optimal weighting results, Eqs. (474) and
(476), to include non-Gaussian (and non-diagonal) elements of the covariance matrix.

Since the power spectrum is by de9nition a quadratic quantity in the overdensities, it is natural
to restrict the search to quadratic functions of the data. In this framework, the unbiased estimator 85

of the power spectrum having minimum variance reads [293,296]

f̂ = = F−1
=>
9Cij

9f>
[C̃

−1
]ijkl(�k�l − N̂ kl) ; (507)

where the variance is given by Eq. (504) and the Fisher matrix by Eq. (506) replacing 1
2 [C−1]ik[C

−1]jl
with [C̃

−1
]ijkl, where

C̃ijkl = 〈(�i�j − N̂ ij − �ij)(�k�l − N̂ kl − �kl)〉 (508)

is the (shot noise subtracted) power spectrum covariance matrix. Here N̂ ij denotes the “actual”
shot noise, meaning that the self-pairs contributions to �ij are not included, see [296] for details.

In the Gaussian limit, [C̃
−1

]ijkl → 1
2 [C−1]ik[C

−1]jl (symmetrized over indices k and l) and the
minimum variance estimator, Eq. (507), reduces to ML estimator, Eq. (505), assuming iteration to
convergence is carried out as discussed above. If the iteration is not done, the estimator remains
quadratic in the data, and it corresponds to using Eq. (505) with a 9xed prior; this should be already
a good approximation to the full ML estimator, otherwise it would indicate that the result depends
sensitively on the prior and thus there is no signi9cant information coming from the data. The use of
such quadratic estimators in the Gaussian limit to measure the galaxy power spectrum is discussed
in detail in [648], see also [647,646,80]. Extension to minimum variance cubic estimators for the
angular bispectrum in the Gaussian limit is considered in [307,245].

Note that, the full minimum variance estimator involves inverting a rank 4 matrix, a very de-
manding computational task, which however simpli9es signi9cantly in the Gaussian limit where C̃
factorizes. Another case in which the result becomes simpler is the so-called FKP limit [212], where
the selection function Png(r) can be taken as locally constant, compared to the scale under consid-
eration. This becomes a good approximation at scales much smaller than the characteristic size of
the survey, which for present surveys is where non-Gaussian contributions become important, so it
is a useful approximation. In this case the minimum variance pair weighting for a pair ij is only
a function of the separation = of the pair, not their position or orientation, since Pni and Pnj are as-
sumed to be constants locally. As a result, the power spectrum covariance matrix can be written in
terms of a two by two reduced covariance matrix, which although not diagonal due to non-Gaussian
contributions, becomes so in the Gaussian limit, leading to the standard result, Eq. (476). We refer
the reader to [296] for more details.

85 This is assuming that the mean density is perfectly known.
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6.11.3. Uncorrelated error bars
Clearly, minimum variance estimates can be deceptive if correlations between them are substantial.

Ideally one would like to obtain not only an optimal estimator (with minimum error bars), but also
estimates which are uncorrelated (with diagonal covariance matrix), like in the case of the power
spectrum of a Gaussian 9eld in the in9nite volume limit. Once the optimal (or best possible) estimator
f̂ is found, it is possible to work in a representation where the cosmic covariance matrix C becomes
diagonal,

C ·�j = Aj�j ; (509)

where the eigenvectors �j form an orthonormal basis. A new set of estimators can be de9ned as

ĝ ≡ �−1 · f̂ ; (510)

which are statistically orthogonal

〈�ĝi�ĝj〉 = Ai�ij = �t
i · C ·�i�ij : (511)

These new estimators can in principle be completely di=erent from the original set, but if by chance
the diagonal terms of C are dominant, then we have ĝ � f̂ . In fact, if one takes the example of the
two-point correlation function (or higher order) in case the galaxy number density is known, using
the new estimator ĝ is equivalent to changing the binning function T de9ned previously to a more
complicated form. Among those estimators which are uncorrelated, it is however important to 9nd
the set ĝ such that the equivalent binning function is positive and compact in Fourier space and
〈ĝ〉 � f , in order to keep the interpretation of the power in this new representation as giving the
power centered about some well-de9ned scale [294,296].

The above line of thoughts can in fact be pushed even further by applying the so-called “pre-
whitening” technique to f̂ : if f̂ is decomposed in terms of signal plus noise, pre-whitening basically
consists in multiplying f̂ by a function h such that the noise becomes white or constant. If the
noise is uncorrelated, this method allows one to diagonalize simultaneously the covariance matrix
of the signal and the noise. When non-Gaussian contributions to the power spectrum covariance
matrix are included, however, such a diagonalization is not possible anymore. However, in the FKP
approximation, as described in the previous section, it was shown that an approximate diagonalization
(where two of the contributions coming from two- and four-point functions are exactly diagonal,
whereas the third coming from the three-point function is not) works extremely well, at least when
non-Gaussianity is modeled by the hierarchical ansatz [296]. The quantity whose covariance matrix
has these properties corresponds to the so-called pre-whitened power spectrum, which is most easily
written in real space [296]:

�̂(r) → 2�̂(r)
1 + [1 + �(r)]1=2 : (512)

Note that in the linear regime, �̂(k) reduces to the linear power spectrum; however, unlike the
non-linear power spectrum, �̂(k) has almost diagonal cosmic covariance matrix even for non-linear
modes. More details on the theory and applications to observations can be found in e.g. [296,297]
and [298,487,299], respectively.
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6.11.4. Data compression and the Karhunen–Lo7eve transform
A problem faced with modern surveys such as the 2dFGRS and SDSS, is that the data set x̂

becomes quite large for “brute force” application of estimation techniques. Before statistical treatment
of the data as discussed in the previous sections, it might be necessary to 9nd a way to reduce their
size, but keeping as much information as possible. The (discrete) Karhunen–LoOeve transform (KL)
provides a fairly simple method to do that (see e.g. [680,646] and references therein for more
technical details and e.g. [487,443] for practical applications to observations). Basically, the idea
is to work in the space of eigenvectors �j of the cross-correlation matrix M ≡ 〈�x̂ · �x̂t〉, i.e. to
diagonalize the cosmic covariance matrix of the data,

M ·�j = Aj�j ; (513)

where the matrix D is unitary, �−1 = �t. A new set of data, ŷ, can be de9ned

ŷ ≡ �t · x̂ ; (514)

which is statistically orthogonal

〈�ŷ i�ŷ j〉 = Ai�ij = t�i ·M ·�j�ij : (515)

The idea is to sort the new data from highest to lowest value of Ai. Data compression will consist
in ignoring data ŷ i with Ai lower than some threshold.

An interesting particular case of the KL transform is when the data can be decomposed in signal
plus noise uncorrelated with each other [79]:

x̂ = ŝ + n̂ : (516)

The signal and the noise covariance matrices read

S ≡ 〈�ŝ · �ŝt〉; N ≡ 〈�n̂ · �n̂t〉 : (517)

Then, instead of diagonalizing the cosmic covariance matrix of the data, one solves the generalized
eigenvalue problem

S ·�j = AjN ·�j; �t
j ·N ·�j = 1 : (518)

The new data vector given by Eq. (514) is statistically orthogonal and veri9es 86

〈�ŷ i�ŷ j〉 = (1 + Ai)�ij : (519)

One can be easily convinced that this new transform is equivalent to a KL transform applied on the
“prewhitened” data, (Nt)−1=2 · x̂, where

N ≡ (Nt)1=2 ·N1=2 : (520)

The advantage of this rewriting is that the quantity Ai can be now considered as a signal to noise
ratio 1 + Ai = 1 + S=N . Data compression on the prewhitened data makes now full physical sense,
even if the noise is inhomogeneous or correlated.

The KL compression is generally used as a 9rst step to reduce the size of the data set keeping
as much information as possible, which can then be processed by the methods of ML estimation

86 In the approximation that the distribution of x̂ is Gaussian, this also implies statistical independence.



F. Bernardeau et al. / Physics Reports 367 (2002) 1–248 149

or quadratic estimation which otherwise would not be computationally feasible. The 9nal results
should be checked against the number of KL modes kept in the analysis, to show that signi9cant
information has not been discarded. Note that in addition, since the methods generally used after
KL compression assume Gaussianity, one must check as well that modes which probe the weakly
non-linear regime are not included in the analysis to avoid having undesired biases in the 9nal
results.

6.12. Measurements in N -body simulations

Measurements of statistics in N -body simulations are of course subject to the cosmic error problem,
but can be contaminated by other spurious e=ects related to limitations of the numerical approach
used to solve the equations of motion. Transients, related to the way initial conditions are usually set
up were already discussed in Section 5.7. Here, we 9rst consider the cosmic error and the cosmic
bias problems, which in practice are slightly di=erent from the case of galaxy catalogs. Second, we
brieJy mention problems due to N -body relaxation and short-range softening of the gravitational
force.

6.12.1. Cosmic error and cosmic bias in simulations
Here we restrict to the case of N -body simulations of self-gravitating collisionless dark matter.

Most of simulations are done in a cubic box with periodic boundaries. The 9rst important conse-
quence is that the average number density of particles, Png, is perfectly determined.

The second consequence as mentioned earlier is that edge e=ects are inexistent. The only sources
of errors are 9nite volume and shot noise. With the new generation of simulations, discreteness e=ects
are in general quite small except at small scales or if a sparse synthetic catalog of “galaxies” is
extracted from the dark matter distribution. Finite-volume e=ects in simulations have been extensively
studied in [147,149,150]. For these e=ects to be insigni9cant in measured moments or correlation
functions of the density distribution, the simulation box size L has to be large compared to the typical
size of a large cluster, the correlation length R0. Typically it is required that R0 . L=20. Even if
this condition is ful9lled, the sampling scales (or separations) R must be small fractions of the box
size in order to achieve fair measurements, typically R . L=10. Indeed, because of 9nite-volume
e=ects, moments of the density distribution, cumulants and N -point correlation functions tend to be
systematically underestimated, increasingly with scale. This is a consequence of cosmic bias and
eLective bias due to the skewness of the cosmic distribution function, as discussed in Section 6.10.

The estimation of cosmic bias was addressed quantitatively at large scales in [580] using PT
where it was found that although moments can be a=ected by as much as 80% at smoothing scales
one-tenth of the size of the box (for n = −2), the skewness S3 was a=ected by at most 15% at the
same scale. Finite-volume e=ects for velocity statistics are much more severe, as they are typically
dominated by long-wavelength Juctuations, e.g. see [342].

The most obvious consequence of 9nite-volume e=ects is the fact that the high-density tail of the
PDF develops a cuto= due to the 9nite number of particles. A method was proposed in [145,147,149]
and exploited in other works [150,472] to correct the PDF for 9nite-volume e=ects, by smoothing
and extending to in9nity its large-� tail. Another way to bypass 9nite-volume e=ects consists in
doing several simulations and taking the average value (see, e.g. [356,251,28]) of the moments or
cumulants, with the appropriate procedure for cumulants to avoid possible biases. This is however, by
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itself not necessarily suQcient, because in each realization, large-scale Juctuations are still missing
due to the periodic boundaries (e.g. [580]). In other words, doing a number of random realizations
of given size L with periodic boundaries is not equivalent to extracting subsamples of size L from
a very large volume. With many realizations one can reduce arbitrarily the e=ect of the skewness
of the distribution, but not the inJuence of large-scale waves not present due to the 9nite volume
of the simulations.

6.12.2. N -body relaxation and force softening
Due to the discrete nature of numerical simulations, there are some dynamical e=ects owing to

interactions between small number of particles. To reduce these relaxation e=ects it is necessary
to bound forces at small interparticle separation, thus a softening j is introduced as discussed in
Section 2.9. However, this softening does not guarantee the Juid limit. The latter is achieved locally
only when the number of particles in a softening volume jD is large. Typically, the softening
parameter is of order the mean interparticle distance A in low-resolution simulations, or of order
A=20 in high-resolution simulations (Section 2.9). At early stages of simulations, where the particles
are almost homogeneously distributed, relaxation e=ects are thus expected to be signi9cant. Later,
when the system reached a suQcient degree of non-linearity, these e=ects occur only in underdense
regions. 87 It is, therefore, important to wait long enough so that the simulation has reached a stage
where typical non-linear structures contain many particles.

Statistically, this is equivalent to say that the correlation length should be much larger than the
mean interparticle distance, R0�A [150]. This criterion is valid for most statistics but there are
exceptions. For example, it was shown that the void PDF can be contaminated by the initial pattern
of particles (such as a grid) even at late stages [149]. Indeed, underdense regions tend to expand
and to keep the main features of this initial pattern. Another consequence is that the local Poisson
approximation is not valid if this initial pattern presents signi9cant correlations or anticorrelations
(such as a grid or a “glass” [28,688]).

Finally, short-range softening of the forces itself can contaminate the measurement of statistics
at small scales. With a careful choice of the timestep (see, e.g. [199]) the e=ects of the softening
parameter are negligible for scales suQciently large compared to j, a practical criterion being that
the considered scale R veri9es R = =j with = of order a few [150].

7. Applications to observations

7.1. The problem of galaxy biasing

Application to galaxy surveys of the results that have been obtained for the clustering of dark
matter is not trivial, because in principle there is no guarantee that galaxies are faithful tracers of
the dark matter 9eld. In other words, the galaxy distribution may be a biased realization of the
underlying dark matter density 9eld.

87 In fact, in these regions, small but rare groups of particles experiencing strong collisions can be found even at late
stages of the simulations.
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A simpli9ed view of biasing often encountered in the literature is that the two 9elds, galaxy and
matter density 9elds, are simply proportional to each other:

�g(x) = b�(x) : (521)

It implies in particular that the power spectra obey Pg(k)=b2P(k). As long as one considers two-point
statistics this might be a reasonable prescription; however, when one wants to address non-Gaussian
properties, this is no more suQcient: the connection between dark matter Juctuations and galaxies,
or clusters of galaxies, should be given in more detail.

In principle, this relation should be obtained as a prediction of a given cosmological model.
However, although signi9cant progress has been done recently to study galaxy formation from “9rst
principles” via hydrodynamic numerical simulations [122,369,72,498], they still su=er from limited
dynamical range and rely on simpli9ed descriptions of star formation and supernova feedback, which
are poorly understood. This fundamental problem implies that when dealing with galaxies, one must
usually include additional (non-cosmological) parameters to describe the relation between galaxies
and dark matter. These parameters, known generally as bias parameters, must be determined from
the data themselves. In fact, the situation turns out to be more complicated than that: since there is
no generally accepted framework for galaxy biasing yet, one needs to test the parameterization itself
against the data in addition to obtaining the best-9t parameter set.

The complexity of galaxy biasing is reJected in the literature, where many di=erent approaches
have emerged in the last decade or so. In addition to the hydrodynamic simulations, two other major
lines of investigations can be identi9ed in studies of galaxy biasing. The simplest one, involves a
phenomenological mapping from the dark matter density 9eld to galaxies, which is reviewed in the
next section. Another approach, that has become popular in recent years, is to split the problem
of galaxy biasing into two di=erent steps [686]. First, the formation and clustering of dark matter
halos, which can be modeled neglecting non-gravitational e=ects, this is the subject of Sections 7.1.2
and 7.1.3. This step is thought to be suQcient to describe the spatial distribution of galaxy clusters.
The second step, discussed in Section 7.1.4, is the distribution of galaxies within halos, which is
described by a number of simplifying assumptions about the complex non-gravitational physics. It is
generally believed that such processes are likely to be very important in determining the properties
of galaxies while having little e=ects on the formation and clustering of dark matter halos.

Note that observational constraints on biasing (from higher-order correlations) are discussed in
the next section (see Sections 8.2.6 and 8.3.5).

7.1.1. Some general results
The 9rst theoretical approach to galaxy biasing was put forward by Kaiser [360], who showed

that if rich galaxy clusters were rare density peaks in a Gaussian random 9eld, they will be more
strongly clustered than the mass, as observed [503,15]. These calculations were further extended in
[491,21]. In particular, it was found that rare peaks were correlated in such a way that

〈�2
peak〉 = b2

peak〈�2〉 ; (522)

where �peak is the local density contrast in the number density of peaks with a bias parameter

bpeak(.) =
.
"

; (523)
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where " is the variance at the peak scale and . the intrinsic density contrast of the selected peaks in
units of ". These results led to studies of biasing in CDM numerical simulations [173,685], which
indeed showed that massive dark matter halos are more strongly clustered than the mass. However,
numerical simulations also showed later that dark matter halos are not always well identi9ed with
peaks in the linear density 9eld [368].

An alternative description of biasing, which does not rely on the initial density 9eld, is the local
Eulerian bias model. In this case, the assumption is that at scales R large enough compared to those
where non-gravitational physics operates, the smoothed (over scale R) galaxy density at a given
point is a function of the underlying smoothed density 9eld at the same point,

�̂g(x) = F[�̂(x)]; Â(x) ≡
∫
|x′|¡R

d3x′ A(x− x′)W (x′) ; (524)

where W denotes some smoothing 9lter. For large R, where �̂�1, it is possible to perturbatively
expand the function F in Taylor series and compute the galaxy correlation hierarchy [235]. Indeed,
one can write

�̂g =
∞∑
k=0

bk

k!
�̂
k
; (525)

where the linear term b1 corresponds to the standard linear bias factor. In this large-scale limit, such
a local transformation preserves the hierarchical properties of the matter distribution, although the
values of the hierarchical amplitudes may change arbitrarily. In particular [235],

"2
g = b2

1"
2 ;

Sg;3 = b−1
1 (S3 + 3c2) ;

Sg;4 = b−2
1 (S4 + 12c2S3 + 4c3 + 12c2

2) ;

Sg;5 = b−3
1 [S5 + 20c2S4 + 15c2S2

3 + (30c3 + 120c2
2)S3 + 5c4 + 60c2c3 + 60c3

2] ; (526)

where ck ≡ bk=b1. As pointed out in [235], this framework encompasses the model of bias as a sharp
threshold clipping [360,523,21,615], where �g = 1 for �¿." and �g = 0 otherwise. Although it does
not have a series representation around � = 0, such a clipping applied to a Gaussian background
produces a hierarchical result with Sg;p=pp−2 in the limit .�1; "�1. This is the same result as we
obtain from Eq. (526) for an exponential biasing of a Gaussian matter distribution, �g = exp(=�="),
which is equivalent to the sharp threshold when the threshold is large and Juctuations are weak
[21,615]. The exponential bias function has an expansion F =

∑
k(=�=")k =k! and thus bk = bk

1,
independent of = and ". With Sp = 0, the terms induced in Eq. (526) by bk alone also give
Sg;p = pp−2.

As a result of Eq. (526), it is clear that for higher-order correlations, p¿ 2, a linear bias as-
sumption cannot be a consistent approximation even at very large scales, since non-linear biasing
can generate higher-order correlations. To draw any conclusions from the galaxy distribution about
matter correlations of order p, properties of biasing must be included to order p− 1.
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Let us make at this stage a general remark. From Eq. (526) it follows that in the simplest case,
when the bias is linear, a value b1 ¿ 1 reduces the Sp parameters and it may suggest that this changes
how the distribution deviates from a Gaussian (e.g. the galaxy 9eld would be “more Gaussian” than
the underlying density 9eld, given that S3 is smaller). However, this is obviously an incorrect
conclusion, a linear scaling of the density 9eld cannot alter the degree of non-Gaussianity. The
reason is that the actual measure of non-Gaussianity is encoded not by the hierarchical amplitudes
Sp but rather by the dimensionless skewness B3 = S3", kurtosis B4 = S4"2, and so on, which remain
invariant under linear biasing. These dimensionless quantities are indeed what characterize the PDF,
as it clearly appears in an Edgeworth expansion, Eq. (144).

Since Fourier transforms are e=ectively a smoothing operation, similar results to those above hold
for Fourier-space statistics at low wavenumbers. In this regime, the galaxy density power spectrum
Pg(k) is given by

Pg(k) = b2
1P(k) (527)

and the galaxy (reduced) bispectrum obeys [recall Eq. (154)]

Qg(k1; k2; k3) =
1
b1

Q(k1; k2; k3) +
b2

b2
1
: (528)

As discussed in Section 4.1.3, Q given by Eq. (155), is very insensitive to cosmological parameters
and depends mostly on triangle con9guration and the power spectrum spectral index. Since the latter
is not a=ected by bias in the large-scale limit, Eq. (527), it can be measured from the galaxy power
spectrum and used to predict Q(k1; k2; k3) as a function of triangle con9guration. As 9rst proposed
in [224,236], a measurement of Qg as a function of triangle shape can be used to determine 1=b1 and
b2=b2

1. So far, this technique has only been applied to IRAS galaxies [567,211], as will be reviewed
in the next section (see Section 8.3.3). 88

The results above suggest that local biasing does not change the shape of the correlation function
or power spectrum in the large-scale limit, just scaling them by a constant factor b2

1 independent of
scale. This derivation [235] assumes that the smoothing scale is large enough so that �̂�1, but in
fact, it can be shown that this continues to hold in more general situations. For example, an arbitrary
local transformation of a Gaussian 9eld, leads to a bias that cannot be an increasing function of
scale and that becomes constant in the large-scale limit, irrespective of the amplitude of the rms
Juctuations [140]. 89 However, it is easy to show that if the underlying density 9eld is hierarchical
(in the sense that the Cpq parameters in Eq. (348) are independent of scale), a local mapping such
as that in Eq. (524) does lead to a bias independent of scale in the large-scale limit even if �̂�1
[41,553].

Recent studies of galaxy biasing [553,180,72,440] have focused on the fact that Eq. (524) assumes
not only that the bias is local but also deterministic; that is, the galaxy distribution is completely
determined by the underlying mass distribution. In practice, however, it is likely that galaxy formation
depends on other variables besides the density 9eld, and that consequently the relation between �̂g(x)
and �̂(x) is not deterministic but rather stochastic,

�̂g(x) = F[�̂(x)] + C�(x) ; (529)

88 Similar relations to Eqs. (526) and (528) can be obtained for cumulant correlators, see [626].
89 But this is an unrealistic situation since Gaussianity breaks down when the rms Juctuations are larger than unity.
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where the random 9eld C�(x) denotes the scatter in the biasing relation at a given � due to the fact
that �̂(x) does not completely determine �̂g(x). Clearly for an arbitrary scatter, the e=ects of C�(x) on
clustering statistics can be arbitrarily strong. However, under the assumption that the scatter is local,
in the sense that the correlation functions of C�(x) vanish suQciently fast at large separations (i.e.
faster than the correlations in the density 9eld), the deterministic bias results hold for the two-point
correlation function in the large-scale limit [553]. For the power spectrum, on the other hand, in
addition to a constant large-scale bias, stochasticity leads to a constant o=set (given by the rms
scatter) similar to Poisson Juctuations due to shot noise [553,180].

Another interesting aspect of stochasticity was studied in [440], in connection with non-local
biasing. A simple result can be obtained as follows. Suppose that biasing is non-local but linear,
then we can write

�g(x) =
∫

�(x′)K(x− x′) d3x′ ; (530)

where the kernel K speci9es how the galaxy 9eld at position x depends on the density 9eld at
arbitrary locations x′. This convolution of the density 9eld leads to stochasticity in real space, i.e.
the cross-correlation coeQcient r,

r(s) ≡ 〈�(x)�g(x′)〉√
�g(s)�(s)

; (531)

where s ≡ |x − x′|, is not necessarily unity. However, due to the convolution theorem, the cross-
correlation coeQcient in Fourier space will be exactly unity, thus

〈�g(k)�(k′)〉 = �D(k + k′)b(k)P(k) (532)

and

〈�g(k)�g(k′)〉 = �D(k + k′)b2(k)P(k) ; (533)

where the bias b(k) is the Fourier transform of the kernel K . The study in [440] showed, on the other
hand, that the real-space stochasticity (in the sense that r ¡ 1) at large scales was weak for some
class of models. At small scales, however, signi9cant deviations from r ¡ 1 cannot be excluded,
for example due to non-linear couplings in Eq. (530). However, without specifying more about the
details of the biasing scheme, it is very diQcult to go much beyond these results.

Most of the general results discussed so far have been observed in hydrodynamical simulations of
galaxy formation. For example, in [72] it has been obtained that at large scale (R& 15 Mpc=h) the
bias parameter tends to be constant and the cross-correlation coeQcient r reaches unity for oldest
galaxies. The authors stress that the bias shows a substantial scale dependence at smaller scales,
which they attribute to the dependence of galaxy formation on the temperature of the gas (which
governs its ability to cool). In addition, they observe a substantial amount of stochasticity for young
galaxies (r ≈ 0:5), even at large scales. However, these results are in disagreement with observations
of the LCRS survey, where it was found that after correcting for errors in the selection function the
cross-correlation between early and late-type galaxies is r ≈ 0:95 [71].

Another assumption that enters into the local Eulerian biasing model discussed above is that the
galaxy 9eld depends on the underlying density 9eld at the same time. In practice, it is expected that
to some extent the merging and tidal e=ects histories a=ect the 9nal light distribution. This can lead
to non-trivial time evolution of biasing. For instance, as shown in [241], if galaxy formation was
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very active in the past but after some time it becomes subdominant, then in the absence of merging
the galaxy density contrast is expected to follow the continuity equation,

a
9�g

9a + u:∇�g + (1 + �g)∇:u = 0 ; (534)

where u is the peculiar velocity 9eld of the dark matter 9eld: galaxies are simple test particles that
follow the large-scale Jows. Formally this equation can be rewritten as

dlog(1 + �g)
ad�

=
dlog(1 + �)

d�
; (535)

where d=d� is the convective derivative. As a consequence, the galaxy density 9eld is expected to
resemble more and more the density 9eld in terms of correlation properties: both the bias parameters,
bk , and the cross-correlation coeQcient, r, are expected to approach unity, galaxies “de-bias” when
they just follow the gravitational 9eld [482,241,649]. The higher-order moments characterized by
Sp are also expected to get closer to those for the dark matter 9eld. These calculations have been
illustrated in [241,641].

One obvious limitation of these “galaxy conserving” schemes is the assumption that there is no
merging, which is expected to play a central role in hierarchical structure formation. In addition,
ongoing galaxy formation leads to galaxies formed at di=erent redshifts with di=erent “bias at birth”.
Indeed, models based on the continuity equation predict a slower time evolution of bias than observed
in simulations [73,599], i.e. galaxies become unbiased faster than when these e=ects are neglected.

An interesting consequence of Eq. (535) has been unveiled in [119] where they remark that the
solution is

1 + �g(x; z) = [1 + �L
g (q)][1 + �(x; z)] ; (536)

where the galaxy 9eld at the Lagrangian position q is obtained from the linear density 9eld at
q = x − D(q; z) by �L

g (q) =
∑

bL
k =k!�L(q). That is, in this model, the bias is assumed to be local

in Lagrangian space rather than Eulerian space. In this particular case, unlike in peaks biasing
mentioned above, once the galaxy 9eld is identi9ed in the initial conditions, its subsequent evolution
is incorporated by Lagrangian perturbation theory to account for displacement e=ects due to the
gravitational dynamics. In this case, the tree-level bispectrum amplitude becomes [120]

Qg =
1
b1

Q +
bL

2

b2
1

+
4bL

1

7b2
1
× ZQ12Pg(k1)Pg(k2) + cyc:

Pg(k1)Pg(k2) + cyc:
; (537)

where ZQ12 ≡ 1− (k1 ·k2)2=(k1k2)2 and b1 ≡ 1 + bL
0 + bL

1 . Note that the last term in this expression
gives a di=erent prediction than Eq. (528) for the dependence of the galaxy bispectrum as a function
of triangle con9guration that can be tested against observations; application to the PSCz survey
bispectrum [211] suggests that the model in Eq. (528) 9ts better the observations than Eq. (537).

Finally, we should also mention that a number of phenomenological (more complicated) mappings
from dark matter to galaxies have been studied in detail in the literature [431,133,474,38]. The results
are consistent with expectations based on the simpler models discussed in this section.
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7.1.2. Halo clustering in the tree hierarchical model
As mentioned previously, the validity of prescription (524) is subject to the assumption that the

mass density contrast is small. For biasing at small scales this cannot be a valid assumption. Insights
into the functional relation between the halo 9eld and the matter 9eld then demand for a precise
modeling of the matter 9elds. The tree hierarchical model, Eq. (222), has been shown to provide a
solid ground to undertake such an investigation [41,57]. In these papers the connected part of joint
density distribution have been computed for an arbitrary number of cells, pc(�1; : : : ; �p) and showed
to be of the form

pc(�1(x1); : : : ; �p(xp)) =
tp∑

a=1

Qp;a(�1; : : : ; �N )
∑

labelings

p−1∏
edges

�2(xi ; xj) (538)

with

Qp;a(�1; : : : ; �p) = Qip(�i).q(�i) ; (539)

where .q(�) is a function of the local density contrast that depends on the number q of lines it is
connected to in the graph. This form implies, for instance, that

p(�1; �2) = p(�1)p(�2)[1 + �2(x1; x2).1(�1).1(�2)] : (540)

At small scales, when the variance is large, the density contrast of dark matter halos is much larger
than unity, and should be reliably given by a simple threshold condition, �i & �thres. Therefore, the
function .1 describes the halo bias, and higher-order connected (two-point) joint moments follow
directly from this bias function and the two-point correlation function of the mass. In this framework
a number of important properties and results have been derived:

(i) the correlation functions of the halo population follow a tree structure similar to the one of the
matter 9eld in the large separation limit (e.g. when the distances between the halos are much
larger than their size);

(ii) the values of the vertices depend only on the internal properties of the halos, namely on the
reduced variable,

x =
�

P�"2 ; (541)

(iii) all vertices are growing functions of x and have a speci9c large x asymptotic behavior,

.1(x) ≡ b(x) ∼ x ; (542)

.p(x) ∼ bp(x) : (543)

The large x limit that has been found for the high-threshold clipping limit is once again recovered
since we expect in such a model that Sh;p → pp−2 when x → ∞. Property (iii), together with (ii),
also holds for halos in the framework of the Press–Schechter approach, as we shall see in the next
section [see discussion below Eq. (556)].

In addition, it is possible to derive the functions .p(x) in terms of the vertex generating function
9(�). These results read

.p(x) =
∫ i∞

−i∞
dy’(p)(y) exp(xy)=

∫ i∞

−i∞
dy’(y) exp(xy) ; (544)
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Fig. 43. Example of a computation of the S3; S4 and S5 parameters in the tree hierarchical model for dark matter halos
selected with a varying threshold in x, de9ned by Eq. (541). Calculations have been made with the vertex generating
function, 9(�) = (1 − �=U)−U with U = 1:3. For large values of x one explicitly sees the Sp → pp−2 behavior expected in
the high-threshold limit.

Fig. 44. The functions ’(y); ’(1)(y) and ’(2)(y) are the generating functions of trees with respectively 0, 1 and 2 external
lines. For orders above 2 a possible angular dependence with the outgoing lines cannot be excluded.

where the function ’(p)(y) can be expressed in terms of 9 and its derivatives (see [57] for details).
In case of the minimal tree model where all vertices are pure numbers, we have

’(y) = y9(�) + �2=2; �=9′(�) = −y ; (545)

’(1)(y) = �(y) ; (546)

’(2)(y) = − y9′′(�)
1 + y9′′(�)

; (547)

’(3)(y) = − y9′′′(�)
[1 + y9′′(�)]3 ; (548)

...

These results provide potentially a complete model for dark matter halo biasing. The explicit depen-
dence of the skewness and kurtosis parameters has been computed in these hierarchical models in
[57], see Fig. 43.

Although initially undertaken in the strongly non-linear regime, these results a priori extend to
weakly non-linear scales, that is, to scales where halo separations are in the weakly non-linear regime.
Indeed only the tree structure, in a quite general sense (see [48,57] for details), is required to get
these results. In this case the vertex .2(x) might bear a non-trivial angular dependence originating
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from the expression of ’(2)(y), see Fig. 44. There is, therefore a priori no reason to recover the
result in Eq. (528) for the halo bispectrum. The connection, if any, with simple relations such as
Eq. (524) is thus still to be understood. Stochasticity emerging due to non-linear e=ects is in particular
likely to limit the validity of Eq. (524).

7.1.3. Halo clustering in the extended Press–Schechter approach
The results obtained in the previous section correspond to the correlations properties of dense halos

detected in a snapshot of the non-linear density 9eld. This approach does not give any insights into
the merging history of the halos that is likely to be important for the galaxy properties. And because
dark matter halos are highly non-linear objects, their formation and evolution has traditionally been
studied using numerical simulations.

However, a number of analytical models [460,459,119,589], based on the so-called Press–Schechter
(PS) formalism [531] and extensions [78,95,388,370], revealed a good description of the numerical
simulation results.

The PS formalism aims at giving the comoving number density of halos as a function of their
mass m,

m2n(m)
P�

=

√
2y2

�
exp
(
−y2

2

)
dln y
dln m

; (549)

where P� denotes the average density of the universe, and y ≡ �c="(m), with �c ≈ 1:68 the collapse
threshold given by the spherical collapse model and "2(m) is the variance of the linearly extrapolated
density 9eld smoothed at scale R = (3m=4� P�)1=3. The average number of halos in a spherical region
of comoving radius R0 and over-density �0 is

N(m|�0) dm =
m0

m
f("; �c|"0; �0)

d"2

dm
dm ; (550)

where

f("; �c|"0; �0) =
1√
2�

�c − �0

("2 − "2
0)3=2

exp
[
− (�c − �0)2

2("2 − "2
0)

]
(551)

is the fraction of the mass in a region of initial radius R0 and linear over-density �0 that is at present
in halos of mass m [78,95]. The Lagrangian halo density contrast is then [460]

�L
h (m|�0) =

N(m|�0)
n(m)V0

− 1 ; (552)

where V0 = 4�R3
0=3. When R0�R so that "0�" and |�0|��c, this gives

�L
h (m|�0) =

y2 − 1
�c

�0 : (553)

On the other hand, the Eulerian halo density contrast is [460]

�h(m|�0) =
N(m|�0)
n(m)V

− 1 ; (554)

where the volume V = 4�R3=3 is related to the initial volume by R0 = R(1 + �)1=3 with �(�0) =∑∞
m=1 .m�

m
0 given by the spherical collapse model. When considered as a function of �, Eq. (554)
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gives a bias relation similar to Eq. (525) with bias parameters [459]

b1(m) = 1 + j1; b2(m) = 2(1 − .2)j1 + j2 ;

b3(m) = 6(.3 − .2)j1 + 3(1 − 2.2)j2 + j3 ; (555)

with

j1 =
y2 − 1

�c
; j2 =

y2(y2 − 3)
�2

c
; j3 =

y2(y4 − 6y2 + 3)
�3

c
: (556)

This framework has been extended to give halo biasing beyond the spherical collapse approximation,
in particular Catelan et al. [119] discuss the use of the ZA, the frozen-Jow approximation and
second-order Eulerian PT. In addition, Sheth et al. [593] study the e=ects of ellipsoidal collapse on
both the mass function and the biasing of dark matter halos. They show that tidal e=ects change
the threshold condition for collapse to become a function of mass, �c(m), and that the resulting
halo bias and mass function are in better agreement with numerical simulations than the PS ones.
In particular, less massive halos are more strongly clustered than in PS calculations as summarized
by 9tting formulae derived from N -body simulations [350,527], and low (high) mass halos are less
(more) abundant than predicted in PS [590,343].

The higher-order moments for dark matter halos can be calculated from the expansion in Eqs.
(555) and (526), as 9rst done in [459]. For instance, in the rare peak limit b1 ∼ y2=�c�1 and
b2 ∼ b2

1 so that the three-point function obeys the hierarchical model with Q3 = 1 (or equivalently
S3 = 3). This actually extends to any order to give QN = 1, i.e. Sp = pp−2 in this limit [459].

The fact that dark matter halos are spatially exclusive induces non-trivial features on their corre-
lation functions at small scales, which cannot be modeled simply as a biasing factor acting on the
mass correlation functions. In particular, the variance becomes signi9cantly less than the Poisson
value at small scales [460]. A detailed discussion of exclusion e=ects can be found in [589].

7.1.4. Galaxy clustering
Since galaxy formation cannot yet be described from 9rst principles, a number of prescriptions

based on reasonable recipes for approximating the complicated physics have been proposed for
incorporating galaxy formation into numerical simulations of dark matter gravitational clustering
[371,598,134]. These “semi-analytic galaxy formation” schemes can provide detailed predictions for
galaxy properties in hierarchical structure formation models, which can then be compared with
observations.

The basic assumption in the semi-analytic approach is that the distribution of galaxies within
halos can be described by a number of simplifying assumptions regarding gas cooling and feedback
e=ects from supernova. For the purposes of large-scale structure predictions, the main outcome of
this procedure is the number of galaxies that populate a halo of a given mass, Ngal(m). Typically, at
large mass 〈Ngal(m)〉 ∼ m= with =¡ 1, and below some cuto= mass Ngal(m) = 0. The physical basis
for this behavior is that for large masses the gas cooling time becomes larger than the Hubble time,
so galaxy formation is suppressed in large-mass halos (therefore 〈Ngal(m)〉 increases less rapidly
than the mass). On the other hand, in small-mass halos e=ects such as supernova winds can blow
away the gas from halos, also suppressing galaxy formation.

A useful analytical model has been recently developed, generally known as “the halo model”,
which can be easily modi9ed to provide a description of galaxy clustering using knowledge of the
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Ngal(m) relation and the clustering of dark matter halos described in Section 7.1.3. The starting
point is a description of the dark matter distribution in terms of halos with masses, pro9les and
correlations consistent with those obtained in numerical simulations. This is a particular realization
of the formalism 9rst worked out in [552] for general distribution of seed masses, although precursors
which did not include halo–halo correlations were studied long before [477,502,446].

Let um(r) be the pro9le of dark matter halos of mass m (for example, as given in [475,463]),
normalized so that

∫
d3x′ um(x−x′)=1, and n(m) be the mass function, with

∫
n(m)m dm= P� and P� the

mean background density. The power spectrum in this model is written as [587,495,579,419,158,570]

P�2P(k) = (2�)3
∫

n(m)m2 dm|um(k)|2 + (2�)6
∫

um1(k)n(m1)m1 dm1

×
∫

um2(k)n(m2)m2 dm2 P(k;m1; m2) ; (557)

where P(k;m1; m2) represents the power spectrum of halos of mass m1 and m2. The 9rst term denotes
the power spectrum coming from pairs inside the same halo (“1-halo” term), whereas the second
contribution comes from pairs in di=erent halos (“2-halo” term). Similarly, the bispectrum is given by

P�3B123 = (2�)3
∫

n(m)m3 dm
3∏

i=1

um(ki) + (2�)6
∫

um1(k1)n(m1)m1 dm1

×
∫

um2(k2)um2(k3)n(m2)m2
2 dm2 P(k1;m1; m2) + cyc:

+ (2�)9

(
3∏

i=1

∫
umi(ki)n(mi)mi dmi

)
B123(m1; m2; m3) ; (558)

where B123(m1; m2; m3) denotes the bispectrum of halos of mass m1; m2; m3. Again, contributions in
Eq. (558) can be classi9ed according to the spatial location of triplets, from “1-halo” (9rst term)
to “3-halo” (last term). The halo–halo correlations, encoded in P(k;m1; m2), B123(m1; m2; m3) and so
on, are described by non-linear PT plus the halo-biasing prescription discussed in Section 7.1.3, Eq.
(555), plus Eqs. (526)–(528) with mass correlation functions obtained from perturbation theory.

To describe galaxy clustering, one needs to specify the distribution (mean and the higher-order
moments) of the number of galaxies which can inhabit a halo of mass m. This is an output of the
semi-analytic galaxy formation schemes, e.g. [371,36], or some parameterization can be implemented
(see e.g. [570,39,37]) which is used to 9t the clustering statistics. Assuming that galaxies follow the
dark matter pro9le, the galaxy power spectrum reads [579,570]

Pn2
gPg(k) = (2�)3

∫
n(m)〈N 2

gal(m)〉 dm|um(k)|2

+ (2�)6

[∫
um(k)n(m) dmb1(m)〈Ngal(m)〉

]2

PL(k) (559)

and similarly for the bispectrum, where the mean number density of galaxies is

Png =
∫

n(m)〈Ngal(m)〉 dm : (560)
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Thus, knowledge of the number of galaxies per halo moments 〈Nn
gal(m)〉 as a function of halo mass

gives a complete description of the galaxy clustering statistics within this framework. Note that in
the large-scale limit, the galaxy bias parameters reduce to [um(k) → 1]

bi ≈ 1
Png

∫
n(m) dmbi(m)〈Ngal(m)〉 : (561)

Therefore, in this prescription the large-scale bias parameters are not independent, the whole hierarchy
of bi’s is a result of Eqs. (555) for bi(m) and the 〈Ngal(m)〉 relation, which can be described
by only a few parameters. In addition, the higher-order moments 〈Nn

gal(m)〉 with n¿ 1, determine
the small-scale behavior of galaxy correlations; however, relations can be obtained between these
moments and the mean which, if robust to details, 90 means that the parametrization of the mean
relation is the main ingredient of galaxy biasing. In this sense, this framework promises to be a very
powerful way of constraining galaxy biasing.

The weighing introduced by 〈Nn
gal(m)〉 on clustering statistics has many desirable properties. In

particular, the suppression of galaxy formation in high-mass halos leads to a galaxy power spectrum
that displays power-law-like behavior 91 [36,579,495,570] and higher-order correlations show smaller
amplitudes at small scales than their dark matter counterparts [570] (see Fig. 45), as observed in
galaxy catalogs. A very important additional consideration is that this high-mass suppression also
leads to velocity dispersion of galaxies in agreement with galaxy surveys such as LCRS [349].

7.2. Projection eLects

This section is devoted to the particular case of angular surveys. These surveys constitute a large
part of the available data and allow to probe the statistical properties of the cosmic density 9eld
at large scales, as we shall discuss in the next section, and furthermore they do not su=er from
redshift-space distortions. Although they do not really probe new aspects of gravitational dynamics,
the 9ltering scheme deserves a speci9c treatment. It is also worth noting here, as we shall brieJy
discuss in the next section, that this 9ltering directly applies to weak lensing observations that are
now emerging, see e.g. [453] for a review.

In the following we 9rst review the general aspects of projection e=ects, and quickly turn to the
widely used small-angle approximation, where most applications have been done. We then show how
the 3D hierarchical model projects into a 2D hierarchy, where the 3D and 2D hierarchical coeQcients
are simply related. In Sections 7.2.4 and 7.2.5 we go beyond the hierarchical assumption to present
predictions for the projected density in PT. Finally, in Section 7.2.6, we discuss the reconstruction
of the one-point PDF of the projected density.

90 The simplest of such relations assumes Poisson statistics, where 〈Ngal(Ngal−1) · · · (Ngal−j)〉=〈Ngal〉j+1, but it is known
to fail for low-mass halos which have sub-Poisson dispersions [371,36]. A simple 9x assumes a binomial distribution [570],
with two free parameters that reproduce the mean and second moment, and automatically predict the n¿ 2 moments.
However, it is not known yet how well this model does predict the n¿ 2 moments. Other prescriptions are given in
[36,39,37]; in particular, Berlind and Weinberg [39] study in detail the sensitivity of galaxy clustering to the underlying
distribution.

91 In addition, note that a power-law behavior has also been obtained in numerical simulations by selecting “galaxies”
as halos of speci9c circular velocities [141].
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Fig. 45. The Sp parameters for p = 3; 4; 5 (from bottom to top) for dark matter (solid) and galaxies (dot–dashed) as a
function of smoothing scale R. These predictions correspond to those of the halo model, for galaxies they assume that
〈Ngal〉=(m=m0)0:8 for m¿m0=8×1011M�h−1, 〈Ngal〉=(m=m0) for mc ¡m¡m0 and 〈Ngal〉=0 for m¡mc=4×109M�h−1.

7.2.1. The projected density contrast
Let us describe the comoving position x in terms of the radial distance � and angular distance D

so that x = (�;D�). 92 The radial distance is de9ned by 93

d� =
c dz=H0√

	� + (1 − 	m − 	�)(1 + z)2 + 	m(1 + z)3
(562)

with H0 Hubble’s constant 94 and c the speed of light, while the angular distance is de9ned by

D(�) =
c=H0√

1 − 	m − 	�
sinh
(√

1 − 	m − 	�
H0�
c

)
: (563)

In general, for angular surveys, the measured density contrast of galaxy counts at angular direction
� is related to the 3D density contrast through

�2D(�) =
∫

d� �2  (�) �3D(�;D �) ; (564)

where  (�) is the selection function (normalized such that
∫

d� �2  (�) = 1); it is the normalized
probability that a point (galaxy) at a distance � is included in the catalog.

92 See cosmology textbooks, e.g. [511], or the pedagogical summary in [316] for a detailed presentation of these aspects.
93 Note that the 	 parameters refer here to those evaluated at redshift z = 0.
94 Throughout this work we use H0 = 100h km=s=Mpc.
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In practice, the depth of the projection is 9nite due to the rapid decrease of the selection func-
tion  (�) with � at 9nite distance. The selection function  (�) for a sample limited by apparent
magnitudes between m1 and m2 is typically given by

 (D) =  ∗
∫ q2(D)

q1(D)
dq2∗ q= e−q; qi(D) = 10−(5=2)(Mi(D)−M∗); i = 1; 2 (565)

with

Mi(D) = mi − 5 log10 D(1 + z) − 25 ; (566)

where  ∗ is a normalization constant and 2(q)=2∗ q= e−q is the luminosity function, i.e. the number
density of galaxies of a given luminosity. M ∗ and = might be expressed as a function of redshift
z to account for k-corrections and luminosity evolution. When redshift information is available, one
can also rewrite the selection function in terms of the sample redshift number counts N (z) alone.

7.2.2. The small-angle approximation
The cumulants of the projected density can obviously be related to those of the 3D density 9elds.

Formally, they correspond to the ones of the 3D 9eld 9ltered by a conical-shaped window. From
Eq. (564) we obtain

wN (�1; : : : ; �N ) =
∫ N∏

i=1

d�i �2
i  (�i)〈�(�1;D1�1) · · · �(�N ;DN�N )〉c : (567)

The computation of such quantities can be easily carried out in the small-angle approximation. Such
approximation is valid when the transverse distances D|̃�i − �̃| are much smaller than the radial
distances �i. In this case, integral (567) is dominated by con9gurations where �i−�j ∼ Di |̃�i− �̃j| ∼
Dj |̃�i − �̃j|. This allows to make the change of variables �i → ri with �i = �1 + riD1(�i − �1). Then,
since the correlation length (beyond which the multi-point correlation functions are negligible) is
much smaller than the Hubble scale c=H (z) (where H (z) is the Hubble constant at redshift z), the
integral over ri converges over a small distance of the order of D1 |̃�i − �̃1| and expression (567)
can be simpli9ed to read

wN (�1; : : : ; �N ) =
∫

d�1 �2N
1 DN−1 (�1)N

×
∫ ∞

−∞

N∏
i=2

(�i − �1) dri �N [(�1;D1�1); : : : ; (�N ;D1�N )] : (568)

This equation constitutes the small-angle approximation for the correlation functions. If these behave
as power laws, Eq. (568) can be further simpli9ed. For instance, the two-point function is then given
by the Limber equation [402]

w2(�) = � 1−B rB0

∫
d� �4 D1−B  2(�)

∫ ∞

−∞
dr(1 + r2)−B=2 ; (569)

if the 3D correlation function is �2(r) = (r=r0)−B. The fact that the last integral that appears in this
expression converges 95 justi9es the use of the small-angle approximation. It means that the projected

95 It is given by
∫∞
−∞ dr (1 + r2)−B=2 =

√
�#((−1 + B)=2)=#(B=2), which converges for B¿ 1.
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correlation functions are dominated by intrinsic 3D structures, that is, the major contributions come
from 9nite values of ri which corresponds to points that are close together in 3D space.

The small-angle approximation seems to be an excellent approximation both for w2 and for w3

up to � � 2◦. This can be easily checked by numerical integration of a given model for �2 and �3,
see e.g. [508,48,254].

An equivalent way of looking at the small-angle approximation is to write the corresponding
relations in Fourier space. The angular two-point correlation function can be written in terms of the
3D power spectrum as [364]

w2(�) = 2�
∫

d� �4 2(�)
∫

d2k⊥ P(k⊥) eiDk⊥� : (570)

Expression (570) shows that in Fourier space the small-angle approximation consists in neglecting
the radial component of k (to be of the order of the inverse of the depth of the survey) compared
to k⊥ (of the order of the inverse of the transverse size of the survey). Thus, in the small-angle
approximation, the power spectrum of the projected density 9eld is

P2D(l) = 2�
∫

d�
�4 2(�)

D2 P
(

l
D

)
: (571)

This can be easily generalized to higher-order correlations in Fourier space:

〈�2D(l1) · · · �2D(lN )〉c = (2�)N−1�D(l1 + · · · + lN )
∫

d�
�2N N (�)
D2N−2 PN

(
l1
D

; : : : ;
l2
D

)
: (572)

Note that the Fourier-space expression given above assumes in fact not only the small-angle approxi-
mation, but also the Jat-sky approximation which neglects the curvature of the celestial sphere. Gen-
eral expressions for the power spectrum and higher-order correlations beyond the small-angle (and
Jat-sky) approximation can be derived from Eq. (567) by Legendre transforms, see e.g. [242,671].

7.2.3. Projection in the hierarchical model
The inversion of Eq. (568), to relate �N in terms of wN is still not trivial in general because

the projection e=ects mix di=erent scales. As in the case of the two-point correlation function, i.e.
Limber’s equation, it is much easier to obtain a simple relation between 3D and 2D statistics for
models of �N that have simple scale dependence. In the Hierarchical model introduced in Section
4.5.5,

�N (r1; : : : ; rN ) =
tN∑
a=1

QN;a

∑
labelings

N−1∏
edges

�2(rA; rB) ; (573)

and, remarkably, it follows that the projected angular correlations obey a similar relation

wN (�1; : : : ; �N ) =
tN∑
a=1

qN;a

∑
labelings

N−1∏
edges

w2(�A; �B) ; (574)

where qN;a is simply proportional to QN;a. Moreover, the relation between qN;a and QN;a depends
only on the order N and is independent of the particular tree topology. To express qN in terms of
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Table 13
Projection factors for di=erent slopes B and parameters M∗

0 and =0 in the luminosity function

B M∗
0 =0 r3 r4 r5 r6 r7 r8 r9

1.7 −19:8 −1:0 1.19 1.52 2.00 2.71 3.72 5.17 7.25
1.7 −19:3 −1:2 1.21 1.57 2.12 2.93 4.13 5.88 8.44
1.7 −20:3 −0:8 1.18 1.48 1.93 2.56 3.46 4.73 6.51
1.8 −19:8 −1:0 1.20 1.55 2.08 2.85 3.98 5.62 8.00
3.0 −19:8 −1:0 1.54 2.85 5.78 12.4 27.8 63.9 150

QN we can use a power-law model for the two-point correlation: �2(r) = (r=r0)−B. For small angles,
we thus have

qN = rNQN ;

rN =
IN−2
1 IN
IN−1
2

with Ik =
∫ ∞

0
d� �2k Dk−1 k(�)D−B(k−1)(1 + z)−3(k−1) ; (575)

where we have taken into account redshift evolution of the two-point correlation function in the
non-linear regime assuming stable clustering (see Section 4.5.2), �2(r; z) = �2(r)(1 + z)−3. The
integrals Ik are just numerical values that depend on the selection function and B. The values of
 ∗ and 2∗ in Eq. (565) are thus irrelevant for qN . The only relevant parameters in the luminosity
function are M ∗ and =.

The resulting values of rN increase with B and M ∗ and decrease with =, but do not change much
within the uncertainties in the shape of the luminosity function (see Section 56 in [508], and [249]).
This is illustrated in Table 13 where values of rN are plotted for di=erent parameters in the selection
function. In the analysis of the APM, variations of B are only important for very large scales, �¿ 3◦,
where B changes from 1.8 to 3. In this case rN displays a considerable variation and Eq. (575) is
not a good approximation.

As an example we can consider the selection function given by the characteristic “bell shape” in
a magnitude-limited sample:

 (r) ˙ r−b exp[ − r2=D2] ; (576)

where D is related to the e=ective sample depth and b is typically a small number (e.g. for the
APM b � 0:1 and D � 350 Mpc=h). For this selection function and a power law P(k) ˙ kn (e.g.
B = −(n + 3)) we can calculate r3 explicitly.

r3 =
8

3
√

3

(√
27
4

)b
#[3=2 − b=2]#[3=2 − n− 3=2b]

#[3=2 − n=2 − b]2

(
3
2

)n
: (577)

For b = 0 and n = 0 we 9nd r3 = 8=3
√

3 � 1:54, while for b = 0 and n = −1, closer to the APM
case, r3 = 2�=3

√
3 � 1:21, comparable to the values given in [249].
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It is important to note that although rN are una=ected by changes in  , the overall normalization
of Ik can change signi9cantly. Because of this, while the amplitude of �2 is uncertain by 40% for
ZM ∗ = 1:0 and Z= = 0:4, the corresponding uncertainty in r3 is only 2%. This is an excellent
motivation for using the hierarchical ratios qN as measures of clustering.

Note that the above hierarchical prediction could only provide a good approximation to clustering
observations at small scales, where the hierarchical model in Eq. (573) might be a good approxi-
mation (see Sections 4.5.5 and 8.2.4). On larger scales, accurate predictions require projection using
the PT hierarchy, which is di=erent from Eq. (573), as the N -point correlation functions have a
signi9cant shape dependence (see Section 4.1). Despite this ambiguity on how to compare angular
observations to theoretical predictions, note that these two approaches give results that agree within
20% (e.g. see Fig. 47).

7.2.4. The correlation hierarchy for the projected density
We can de9ne the area-averaged angular correlations P!p(�) in terms of the angular correlation

functions wN (�1; : : : ; �N ):

P!p(�) ≡ 1
Ap

∫
A

dA1 · · · dAp wp(�1; : : : ; �p) = 〈�p
2D(�)〉c ; (578)

where A = 2�(1 − cos �) is the solid angle of the cone, dAp = sin �p d�p d’p and �2D(�) is the
density contrast inside the cone. Thus P!p(�) only depends on the size of the cone, �, analogous to
smoothed moments in the 3D case. The use of Eq. (568) leads to

P!p(�) =
1
Ap

∫
d�1 �

3p−1
1  p

1

∫ p∏
i=1

dAi

×
∫ ∞

−∞

p∏
i=2

dri �p[(�1;D1�1); : : : ; (�p;D1�p)] : (579)

One can see that the cumulants of the projected density are thus line-of-sight averages of the density
cumulants in cylindrical window function,

〈�p
proj; �〉c =

∫
d� �2p p(�)〈�p

D�;cyl〉c Lp−1 ; (580)

where �p
D�; cyl is the 9ltered 3D density with a cylindrical 9lter of transverse size D � and depth L.

For instance, written in terms of the power spectrum, the second moment reads

P!2(�) = 2�
∫

d� �4  2(�)
∫

d2k⊥ P(k⊥)W 2
2D(D� k⊥) ; (581)

where W2D is the top-hat 2D window function,

W2D(l�) = 2
J1(l�)
l�

: (582)
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Relation (580) shows that the cumulant hierarchy is preserved. If we de9ne the sp parameters in
angular space,

sp(�) ≡ P!p(�)
[ P!2(�)]p−1 ; (583)

it follows that they are all 9nite and independent of L.
In the weakly non-linear regime, we can compute exactly the hierarchy for the projected density

because the density cumulants for a cylindrical window are those obtained for the 2D dynamics
(see Section 5.9). In case of a power-law spectrum the sp are independent of the 9ltering scale.
The line-of-sight integrations can then be performed explicitly. 96 Using Eq. (580) and the results
of Section 5.9 gives 97

sp = rpS2D
p ; (584)

rp =
Ip−2
1 Ip
Ip−1
2

with Ik =
∫ ∞

0
d� �2k  k(�)D−(n+3)(k−1)D2k−2

1 (z) : (585)

Note that the rp coeQcients are very similar to those in the non-linear case except that the redshift
evolution of the Juctuation is taken here to be given by the linear growth rate. This is actually
relevant only when the redshift under consideration is comparable to unity.

An interesting point is that it may seem inconsistent to use both tree-level PT predictions and the
small-angle approximation, as a priori it is not clear whether their regimes of validity overlap. As
shown in [254] for characteristic depths comparable to APM there is at least a factor of 9ve in scale
where both approximations are consistent, depending on the 3D power spectrum shape. For deeper
surveys, of course, the consistency range is increased, so this is a meaningful approach.

As expected, similar results hold for the hierarchy of correlation functions in the weakly non-linear
regime. The results for the angular three-point function and bispectrum have been studied with most
detail [242,225,101,671]. From Eqs. (571) and (572) and for power-law spectra, it follows that
the con9guration dependence of the bispectrum is conserved by projection, only the amplitude is
changed by the projection factor r3, as in Eq. (585) [275,242,225,101]. However, as soon as the
spectral index changes signi9cantly on scales comparable to those sampled by the selection function,
this simple result does not hold anymore [242]. A number of additional results regarding the shape
dependence of projected correlations include, (i) a study of the dependence on con9guration shape
as a function of depth [81], that also includes redshift-dependent galaxy biasing; (ii) the power of
angular surveys to determine bias parameters from the projected bispectrum in spherical harmonics
[671] and (iii) comparisons of PT predictions and numerical simulations in angular space [225], as
we summarize in the next section.

96 For CDM models a semianalytic result can be obtained for the skewness, see [524] for details.
97 It is important to note that in Eq. (584) the coeQcients S2D

p need to be used and not those corresponding to 3D
top-hat 9ltering as suggested by the tree hierarchical model.
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Fig. 46. Projected leading order PT predictions (solid curves) and N -body results (points with sampling errors) for the
angular three-point amplitude q3(=) at 9xed �12 = �13 = 2

◦
for a survey with the APM selection function. N -body results

correspond to the average and variance of 9ve realizations of the APM-like model (top) and the SCDM model (bottom).
The dashed lines show the corresponding PT predictions for r12 = r13 = 15 Mpc=h projected with the hierarchical model.

Fig. 47. Tree-level PT predictions for the APM-like power spectrum (solid curves) and corresponding N -body results
(points with sampling errors) for the projected smoothed skewness s3(�) as a function of the radius � (in degrees) of the
cells in the sky. The short- and long–dashed line show the hierarchical prediction s3 � r3S3, see text for details.

7.2.5. Comparison with numerical simulations
We now illustrate the results described in the previous section and compare their regime of validity

against numerical simulations.
Fig. 46 shows the angular three-point correlation function for APM-like and SCDM spectrum

projected to the depth of the APM survey, see [225] for more details. As discussed before, the
con9guration dependence of the three-point amplitude is quite sensitive to the shape of the power
spectrum. Both the shape and amplitude of q3(=) predicted by PT (solid curves) are reproduced by
the N -body results (points) even on these moderately small scales. 98 The error bars in the sim-
ulation results are estimated from the variance between 5 maps from di=erent N -body realizations
and have been scaled to 1 − " uncertainties for a single observer. The dashed lines correspond to
the results of the 3D Q3 for r1 = r2 = 15h−1Mpc multiplied by the hierarchical projection factor
in Eq. (575), e.g. q3 = Q3r3. The model seems to work well for small =, but there are signi9cant
deviations for large =, which illustrate that this projection model does not work well, as discussed
above.

98 At the mean depth of the APM, two degrees corresponds to � 15h−1 Mpc.
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In the weakly non-linear regime, the third moment of smoothed angular Juctuations, de9ned in
(579), can be explicitly written in terms of the power spectrum using PT. It is given by

P!3 = 6(2�)2
∫

d� �6 3(�)

[
6
7

(∫
kd kW 2

2D(kD�)P(k)
)2

× 1
2

∫
kd kW 2

2D(kD�)P(k)
∫

k2 dkD�W2D(kD�)W ′
2D(kD�)P(k)

]
; (586)

where W ′
2D is the derivative of the top -hat window W2D de9ned in Eq. (582). Therefore, in case

of a power-law spectrum P(k) ∼ kn, we have [48],

s3 = r3( 36
7 − 3

2 (n + 2)) ; (587)

with r3 given in general by Eq. (585). The coeQcient r3 is found in practice to be of order unity
and to be very weakly dependent on the adopted shape for the selection function.

It is worth to note that the hierarchical model in Section 7.2.3 yields a di=erent prediction for s3

than the above tree-level value. In the hierarchical case, s3 � r3S3 [249,250] with S3 = 34
7 − (n + 3).

For example, for n � −1, the hierarchical model yields s3 � 3:43 while the tree-level prediction
yields s3 � 4:38. This di=erence becomes smaller as we move toward larger n (e.g. larger scales),
being zero at n = 4

7 , but it is signi9cant for the range of scales probed with current observations,
even after taking uncertainties into account.

Fig. 47 compares the predictions for the angular skewness s3 by tree-level PT (solid lines) for
a power spectrum that matches the APM catalogue and the APM measurements (triangles). These
predictions correspond to a numerical integration of PT predictions in Eq. (587) [254]. The dashed
lines show the “naive” hierarchical prediction s3 � r3S3 at the angular scale � � R=D given by the
depth, D, of the survey. The long–dashed line uses a 9xed value of r3 = 1:2, while the dashed line
corresponds to r3 = r3(n) given by Eq. (577) with n = −(3 + B) given by the logarithmic slope of
the variance of the APM-like P(k) at the angular scale � � R=D. These results are compared with
the mean of 20 all sky simulations described in [254] (error bars correspond to the variance in 20
observations). As can be seen in the 9gure, the hierarchical model gives a poor approximation, while
the projected tree-level results match well the simulations for scales �& 1◦, which correspond to the
weakly non-linear regime where �2 . 1. On small scales the discrepancies between the tree-level
results and the simulations are due to 3D non-linear e=ects and also projection: on small scales the
simulations follow the hierarchical model in Eq. (573), rather than the PT predictions, and therefore
s3 � r3S3 gives a good approximation, but S3 should be the non-linear 3D value (for example,
as given by HEPT or EPT, see Sections 4.5.6 and 5.13, respectively). Further comparisons with
numerical simulations for s3 and s4 are presented in Fig. 54 together with observational results.

7.2.6. Reconstructing the PDF of the projected density
It is interesting to note that it is possible to write down a functional relation between the cumulant

generating function de9ned in Eq. (141) for the projected density, ’proj(y), and the one corresponding
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to cylindrical 9ltered cumulants, ’cyl(y) [659,468,58]. This can be done from relation (580) which
straightforwardly leads to

’proj(y) =
∫

d�
X�(�)

’cyl[y�2 (�)b�(�)] (588)

with

X�(�) =
〈�2

D�;cyl〉
〈�2

2D〉
L ; (589)

which can be rewritten in terms of the matter Juctuation power spectrum,

X�(�) =

∫
d2kP(k; z)W 2(kD�)∫

d�′ �′4  2(�′)
∫

d2kP(k; z′)W 2(kD′�)
: (590)

In this expression we have explicitly written the redshift dependence of the power spectrum. In the
case of a power-law spectrum,

P(k; z) = P0(z)
(

k
k0

)n
(591)

and it takes a much simpler form given by

X�(�) =
P0(z)D−n−2∫

d�′ �′4  2(�′)P0(z′)D′−n−2
: (592)

Together with Eq. (588) this result provides the necessary ingredients to reconstruct the one-point
PDF of the projected density with an inverse Laplace transform of ’proj(y). Note that projection
e=ects alter the shape of the singularity in ’(y) though it preserves the large-density exponential
cuto= [659,58]. So far this approach has only been used in the literature to study the reconstruction
of the one-point PDF of the local convergence 9eld in the context of weak lensing observations
[659,468].

We now turn to a brief summary of the basics of weak lensing and its connections to projection
e=ects.

7.3. Weak gravitational lensing

The 9rst theoretical investigations on the possibility of mapping the large-scale structure of the
universe with weak gravitational lensing date back to the early 1990’s [69,70,456,364]. It was then
shown that the number of background galaxies was large enough to serve as tracers of the defor-
mation 9eld induced by the intervening large-scale structures. In this context the observation of a
coherent shear pattern in the orientation of background galaxies is interpreted as due to lensing e=ects
caused by the mass concentration along the line of sight. The potential interest of such observations
has led to further theoretical investigations such as the determination of the dependence of the results
on cosmological parameters [676,53,339,665], and to extensive observational e=orts. The latter have
recently led to the 9rst reliable detections of the so-called “cosmic shear” [666,11,693,365].

Although in nature totally di=erent from galaxy counts, it is worth pointing out that such observa-
tions eventually aim at mapping the line-of-sight mass Juctuations so that techniques developed for
studying galaxy angular catalogues can be applied. Here we brieJy introduce the physics of lensing
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with emphasis on connections to angular clustering. More comprehensive presentations can be found
in [25,453].

7.3.1. The convergence Feld as a projected mass map
The physical mechanism at play in weak lensing surveys is the deJection of photon paths in

gravitational potential 9elds. The deJection angle per unit distance, �=̃=�s, can be obtained from
simple computations of the geodesic equation in the weak 9eld limit. 99 When the metric Juctuations
are purely scalar, the deJection angle reads

�=̃
�s

= −2 ∇̃x
2
c2 ; (593)

where the spatial derivative is taken in a plane that is orthogonal to the photon trajectory.
The direct consequence of this bending is a displacement of the apparent position of the back-

ground objects. This depends on the distance of the source plane, DOS, and on the distance between
the lens plane and the source plane DLS. It is given by

B̃S = B̃ I − 2
c2

DLS

DOS DOL
∇̃B

(∫
ds 2(s; B)

)
; (594)

where B̃ I is the position in the image plane and B̃ S is the position in the source plane. The gradient
is taken here with respect to the angular position (this is why a DOL factor, distance to the lens
plane, appears). The total deJection is obtained by an integration along the line of sight, assuming
the lens is thin compared to its angular distance. Calculations are also usually done in the so-called
Born approximation for which the potential is computed along the unperturbed photon trajectory.

The observable e=ect which is aimed at, however, is the induced deformation of background
objects. Such an e=ect is due to the variations of the displacement 9eld with respect to the apparent
position. These variations induce a change in both size and shape of the background objects which
are encoded in the ampli9cation matrix, A, describing the linear change between the source plane
and the image plane:

A =

(
9BI

i

9BS
j

)
: (595)

Its inverse, A−1, is actually directly calculable in terms of the gravitational potential. It is given by
the derivatives of the displacement with respect to the apparent position

A−1 ≡ 9BS
i

9BI
j

= �ij − 2
DLS

DOSDOL
’;ij ; (596)

where ’ is the projected potential. Usually its components are written as

A−1 =
(

1 − U − B1 −B2

−B2 1 − U + B1

)
; (597)

taking advantage of the fact that it is a symmetric matrix. The components of this matrix are
expressed in terms of the convergence, U (a scalar 9eld) and the shear, B (a pseudo-vector 9eld).

99 See e.g. [457,544] for a comprehensive presentation of these calculations.



172 F. Bernardeau et al. / Physics Reports 367 (2002) 1–248

The key idea for weak lensing observations is then that collection of tiny deformation of back-
ground galaxies can be used to measure the local shear 9eld from which the projected potential, and
therefore the convergence 9eld, can be reconstructed [364]. The latter has a simple cosmological
interpretation: from the trace of Eq. (596) one obtains the convergence 100

U(B) =
3
2
	m

∫
dzs n(zs)

∫
d�

D(�s; �)D(�)
D(�s)

�(�; B)(1 + z) (598)

as the integrated line-of-sight density contrast. In Eq. (598), � is the distance along the line of
sight and D are the angular distances. In this relation sources are assumed to be located at various
redshifts with a distribution n(zs) normalized to unity, and all the distances are expressed in units
of c=H0. Relation (598) is then entirely dimensionless. Note that in general the relation between the
redshift and the distances depends on cosmological parameters, see Eq. (563).

7.3.2. Statistical properties
To gain insight into the expected statistical properties of the convergence 9eld, it is important to

keep in mind that in Eq. (598) the convergence U is not normalized as would be the local projected
density contrast. The projected density contrast is actually given by

�2D(B) =
U
P!

; (599)

where P! is the mean lens eQciency,

P! =
3
2
	m

∫
dzs n(zs)

∫
d�

D(�s; �)D(�)
D(�s)

(1 + z) : (600)

This implies that the skewness of the convergence 9eld is then given by

sU3 =
sproj

3

P!
; (601)

where sproj
3 is the skewness of the projected density contrast given by Eq. (587). As a consequence,

the skewness of U is expected to display a strong 	m dependence. This property has indeed been
found in [53] where it has been shown using PT that

sU3 ≈ 40	−0:75
m (602)

for sources at redshift unity. 101 This result has been subsequently extended to the non-linear regime
[339,326,467,469,666,158], higher-order moments, the bispectrum [158], and to more complex quan-
tities such as the shape of the one-point PDF of the convergence 9eld [658,659,468].

7.3.3. Next to leading order eLects
Contrary to the previous cases, corrections to the previous leading order PT results, e.g.

Eq. (602), do not involve only next to leading order terms due to the non-linear dynamics but
also other couplings that appear speci9cally in the weak lensing context. Let us list and comment
the most signi9cant of them:

100 In these sections, 	m is understood to be at z = 0.
101 For the same reasons that sU3 has a strong 	m dependence, it also depends signi9cantly on the source redshift distri-

bution.
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(i) An exact integration of the lens equations leads to lens–lens coupling and departures from
the Born approximation. This induces extra couplings that have been found to be in all cases
negligible for a source population at redshift of about unity [53,667].

(ii) The source population clustering properties can also induce non-trivial e=ects as described in
[55]. This is due to the fact that the source plane is by itself a random media which introduces
further couplings due to either intrinsic galaxy number Juctuations or due to overlapping of lens
and source populations. These e=ects have been found to be small if the redshift distribution
of the sources is narrow enough [55,284] which might indeed put severe constraints on the
observations.

(iii) The magni9cation e=ect (when U is large, galaxies are enlarged and can thus be more eQciently
detected) could also induce extra couplings. Although it is diQcult to estimate the extent of
such an e=ect, it appears to have only modest e=ects on the high-order statistical properties of
the convergence 9eld [285].

Finally, it is important to note that the 9rst reports of cosmic shear detections have been challenged by
suggestions that part of the signal at small scales might be due to intrinsic galaxy shape correlations
[308,166,121]. This is a point that should be clari9ed by further investigations.

7.3.4. Biasing from weak gravitational lensing
With the arrival of wide surveys dedicated to weak lensing observations, 102 a very powerful new

window to large-scale structure properties is being opened. Weak lensing observations can indeed
be used not only to get statistical properties of the matter density 9eld, but also to map the mass
distribution in the universe. In particular, it becomes possible to explore the galaxy–mass local
relation [664]. Potentially, galaxy formation models, biasing models, can be directly tested by these
observations. It is indeed possible to measure the correlation coeQcient rU of the convergence 9eld
U with the projected density contrast of the (foreground) galaxy �g;2D,

rU =
〈U �g;2D〉√
〈U2〉〈�2

g;2D〉
; (603)

a quantity which, within geometrical factors, is proportional to the r coeQcient de9ned in Eq. (531).
What has been measured so far [315] is however 〈U�g;2D〉=〈�2

g;2D〉, that is, a quantity that roughly
scales like 	mr=b. Pioneering results suggest a scale-independent r=b parameter of about unity for
the favored cosmological model (	m = 0:3, 	� = 0:7) [315]. Such observations are bound to become
common place in the coming years and will provide valuable tests for galaxy formation models.

7.4. Redshift distortions

In order to probe the 3D distribution of galaxies in the universe, galaxy redshifts are routinely used
as an indicator of radial distance from the observer, supplemented by the 2D angular position on the
sky. The Hubble expansion law tells us that the recession velocity of an object is proportional to its
distance from us; however, the observed velocity has also a contribution from peculiar velocities,
which are generated due to the dynamics of clustering and are unrelated to the Hubble expansion

102 See for example, http://terapix.iap.fr/Descart/.

http://terapix.iap.fr/Descart/
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and thus contaminate the distance information. Therefore, the clustering pattern in “redshift space”
is somewhat di=erent from the actual real-space distribution. This is generically known as “redshift
distortions”.

At large scales, the main e=ect of peculiar velocities is due to galaxies infall into clusters. Galaxies
between us and the cluster have their infall velocities added to the Hubble Jow and thus appear
farther away in redshift space, whereas those galaxies falling into the cluster from the far side
have their peculiar velocities subtracted from the Hubble Jow, and thus appear closer to us than
in real space. As a consequence of this, large-scale structures in redshift space appear Jattened or
“squashed” along the line of sight. On the other hand, at small scales (smaller than the typical cluster
size) the main e=ect of peculiar velocities is due to the velocity dispersion from virialization. This
causes an elongation along the line of sight of structures in redshift space relative to those in real
space, the so-called “9nger of God” e=ect (which points to the observer’s location).

7.4.1. The density Feld in redshift space
We now discuss the e=ects of redshift distortions on clustering statistics such as the power spec-

trum, the bispectrum and higher-order moments of the smoothed density 9eld. See the exhaustive
review [295] for details on theoretical description of linear redshift distortions and observational
results. In redshift space, the radial coordinate s of a galaxy is given by its observed radial velocity,
a combination of its Hubble Jow plus “distortions” due to peculiar velocities. Here we restrict to
the “plane-parallel” approximation so that the line of sight is taken as a 9xed direction, denoted by
ẑ. Plane-parallel distortions maintain statistical homogeneity, so Fourier modes are still the natural
basis in redshift space. On the other hand, statistical isotropy is now broken because clustering along
the line of sight is di=erent from that in the perpendicular directions.

However, when the radial character of redshift distortions is taken into account, the picture changes.
Radial distortions respect statistical isotropy (about the observer), but break statistical homogene-
ity (since there is a preferred location, the observer’s position). In this case Fourier modes are
no longer special, in particular, the power spectrum is no longer diagonal [703]. Alternative ap-
proaches to Fourier modes have been suggested in the literature [306,292,616], here we review the
simplest case of plane-parallel distortions where most of the results have been obtained. We should
note that this is not just of academic interest, it has been checked with N -body simulations that
results on monopole averages of di=erent statistics carry over to the radial case with very small
corrections [566].

The mapping from real-space position x to redshift space in the plane-parallel approximation is
given by

s = x− fvz(x)ẑ ; (604)

where f(	m) ≈ 	0:6
m is the logarithmic growth rate of linear perturbations, and v(x) ≡ −u(x)=(Hf),

where u(x) is the peculiar velocity 9eld, and H(�) ≡ (1=a)(da=d�) = Ha is the conformal Hubble
parameter (with FRW scale factor a(�) and conformal time �). The density 9eld in redshift space,
�s(s), is obtained from the real-space density 9eld �(x) by requiring that the redshift-space mapping
conserves mass, i.e.

(1 + �s) d3s = (1 + �) d3x : (605)
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Using the fact that d3s=J (x) d3x, where J (x)= |1−f∇zvz(x)| is the exact Jacobian of the mapping
in the plane-parallel approximation, it yields

�s(s) =
�(x) + 1 − J (x)

J (x)
: (606)

The zeros of the Jacobian describe caustics in redshift space, the locus of points where the density
9eld is apparently in9nite [450]. This surface is characterized in real space by those points which
are undergoing turn-around in the gravitational collapse process, so their peculiar velocities exactly
cancel the di=erential Hubble Jow. In practice, caustics are smoothed out by sub-clustering, see e.g.
the discussion in [330].

An expression for density contrast in redshift space follows from Eq. (606) [562]:

�s(k) =
∫

d3x
(2�)3 e−ik·xeifkzvz(x) [�(x) + f∇zvz(x)] ; (607)

where we assumed here that only points where f∇zvz(x)¡ 1 contribute. The only other approxi-
mation in this expression is the use of the plane-parallel approximation, i.e. this is a fully non-linear
expression. To obtain a perturbative expansion, we expand the second exponential in power series,

�s(k) =
∞∑
n=1

∫
d3k1 · · · d3kn[�D]n[�(k1) + f/2

1�(k1)]
(f/k)n−1

(n− 1)!

×/2

k2
�(k2) · · · /n

kn
�(kn) ; (608)

where [�D]n ≡ �D(k − k1 − · · · − kn), the velocity divergence �(x) ≡ ∇ · v(x) and /i ≡ ki · ẑ=ki is
the cosine of the angle between the line of sight and the wave vector. In linear PT, only the n = 1
term survives, and we recover the well-known formula due to Kaiser [362]:

�s(k) = �(k)(1 + f/2) : (609)

Eq. (608) can be used to obtain the redshift-space density 9eld beyond linear theory. In redshift
space we can write

�s(k; �) =
∞∑
n=1

Dn
1(�)
∫

d3k1 : : :
∫

d3kn [�D]nZn(k1; : : : ; kn) �1(k1) · · · �1(kn) ; (610)

where D1(�) is the density perturbation growth factor in linear theory, and we have assumed that
the nth-order growth factor Dn ˙ Dn

1, which is an excellent approximation (see [560], Appendix
B.3). Since a local deterministic and non-linear bias can be treated in an equal footing as non-linear
dynamics, it is possible to obtain the kernels Zn including biasing and redshift distortions. From Eqs.
(525) and (608)–(610), the redshift-space kernels Zn for the galaxy density 9eld read [669,562] 103

Z1(k) = (b1 + f/2) ; (611)

103 Detailed expressions for the second-order solutions are given in [313] including the (small) dependences on 	m for
the unbiased case.
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Z2(k1; k2) = b1F2(k1; k2) + f/2G2(k1; k2)

+
f/k

2

[
/1

k1
(b1 + f/2

2) +
/2

k2
(b1 + f/2

1)
]

+
b2

2
; (612)

Z3(k1; k2; k3) = b1F
(s)
3 (k1; k2; k3) + f/2G(s)

3 (k1; k2; k3)

+f/k[b1F
(s)
2 (k1; k2) + f/2

12G
(s)
2 (k1; k2)]

/3

k3

+f/k(b1 + f/2
1)

/23

k23
G(s)

2 (k2; k3)

+
(f/k)2

2
(b1 + f/2

1)
/2

k2

/3

k3
+ 3b2F

(s)
2 (k1; k2) +

b3

6
; (613)

where we denote / ≡ k · ẑ=k, with k ≡ k1 + · · ·+ kn, and /i ≡ ki · ẑ=ki. As above, F2 and G2 denote
the second-order kernels for the real-space density and velocity-divergence 9elds, and similarly for
F3 and G3. Note that the third-order kernel Z3 must still be symmetrized over its arguments. One
can similarly obtain the PT kernels Zn in redshift space to arbitrary higher order.

We note that there are two approximations involved in this procedure: one is the mathematical
step of going from Eq. (607) to Eq. (608), which approximates the redshift-space mapping with a
power series; the other is the PT expansion itself (i.e. the expansion of �(k) and �(k) in terms of
linear Juctuations �1(k)). Therefore, one is not guaranteed that the resulting PT in redshift space
will work over the same range of scales as in real space. In fact, in general, PT in redshift space
breaks down at larger scales than in real space, because the redshift-space mapping is only treated
approximately, and it breaks down at larger scales than does the perturbative dynamics. In particular,
a calculation of the one-loop power spectrum in redshift space using Eqs. (611)–(613) does not
give satisfactory results because expanding the exponential in Eq. (607) is a poor approximation.
To extend the leading order calculations, one must treat the redshift-space mapping exactly and only
approximate the dynamics using PT [562]. To date, this program has only been carried out using
the ZA [220,642,301] and second-order Lagrangian PT [565], as we shall discuss below.

7.4.2. The redshift-space power spectrum
The calculation of redshift-space statistics in Fourier space proceeds along the same lines as in the

un-redshifted case. To leading (linear) order, the redshift-space galaxy power spectrum reads [362]

Ps(k) = Pg(k)(1 + >/2)2 =
∞∑
‘=0

a‘P‘(/)Pg(k) ; (614)

where Pg(k) ≡ b2
1P(k) is the real-space galaxy power spectrum, P(k) is the linear mass power

spectrum and > ≡ f=b1 ≈ 	0:6
m =b1. Here P‘(/) denotes the Legendre polynomial of order ‘, and the

multipole coeQcients are [290,131]

a0 ≡ 1 + 2
3 > + 1

5 >2; a2 ≡ 4
3 > + 4

7 >2; a4 ≡ 8
35 >2 ; (615)
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all other multipoles vanish. Eq. (614) is the standard tool for measuring 	m from redshift distortions
of the power spectrum in the linear regime; in particular, the quadrupole-to-monopole ratio RP ≡
a2=a0 should be a constant, independent of wave vector k, as k → 0. Note, however, that in these
expressions 	m appears only through the parameter >, so there is a degeneracy between 	m and
the linear bias factor b1. Eq. (615) assumes deterministic bias, for stochastic bias extensions see
[517,180].

From Eq. (607), we can write a simple expression for the power spectrum in redshift space, Ps(k):

Ps(k) =
∫

d3r
(2�)3 e−ik·r〈eiAZvz [�(x) + f∇zvz(x)][�(x′) + f∇′

zvz(x
′)]〉 ; (616)

where A ≡ fk/, Zvz ≡ vz(x) − vz(x′), r ≡ x − x′. This is a fully non-linear expression, no
approximation has been made except for the plane-parallel approximation. In fact, Eq. (616) is the
Fourier analog of the so-called “streaming model” [508], as modi9ed in [219] to take into account
the density–velocity coupling.

The physical interpretation of this result is as follows. The factors in square brackets denote the
ampli9cation of the power spectrum in redshift space due to infall (and they constitute the only
contribution in linear theory, giving Kaiser’s [362] result). This gives a positive contribution to the
quadrupole (l = 2) and hexacadupole (l = 4) anisotropies. On the other hand, at small scales, as
k increases the exponential factor starts to play a role, decreasing the power due to oscillations
coming from the pairwise velocity along the line of sight. This leads to a decrease in monopole and
quadrupole power with respect to the linear contribution; in particular, the quadrupole changes sign.

In order to describe the non-linear behavior of the redshift-space power spectrum, it has become
popular to resort to a phenomenological model to take into account the velocity dispersion e=ects
[493]. In this case, the non-linear distortions of the power spectrum in redshift space are written
in terms of the linear squashing factor and a suitable damping factor due to the pairwise-velocity
distribution function

Ps(k) = Pg(k)
(1 + >/2)2

[1 + (k/"v)2=2]2 : (617)

Here "v is a free parameter that characterizes the velocity dispersion along the line of sight. This
Lorentzian form of the damping factor is motivated by empirical results showing an exponential
one-particle 104 velocity distribution function [489]; comparison with N -body simulations have shown
it to be a good approximation [132]; however, these type of phenomenological models tend to
approach the linear PT result faster than numerical simulations [301]. In addition, although "v can
be chosen to 9t, say, the quadrupole-to-monopole ratio at some range of scales, the predictions for
the monopole or quadrupole by themselves do not work as well as for their ratio.

Accuracy in describing the shape of the quadrupole-to-monopole ratio as a function of scale is
important since this statistic gives a direct determination of > from clustering in redshift surveys
[290,131,132,302]. An alternative to phenomenological models is to obtain the redshift-space power
spectrum using approximations to the dynamics, as we now discuss.

104 Alternatively, if one assumes the two-particle velocity distribution is exponential, the suppression factor is the square
root of that in Eq. (617), with "v the pairwise velocity dispersion along the line of sight, see e.g. [18]. The observational
results regarding velocity distributions and their interpretation are brieJy discussed in Section 8.3.2.
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In the case of the ZA, it is possible to obtain the redshift-space power spectrum as follows
[220,642]. In the ZA, the density 9eld obeys

1 + �(x) =
∫

d3q �D[x− q −D(q)] ; (618)

where D(q) is the displacement vector at Lagrangian position q. In the plane-parallel approximation,
one can treat redshift distortions in the ZA by noting that it corresponds to amplifying the displace-
ment vector by f ≈ 	0:6

m along the line of sight; that is, the displacement vector in redshift space
is Ds(q) = D(q) + ẑf(D(q) · ẑ). Fourier transforming the corresponding expression to Eq. (618) in
redshift space, the power spectrum gives

P(k) =
∫

d3q exp(ik · q)〈exp(ik · ZD)〉 ; (619)

where ZD = D(q1) −D(q2) and q = q1 − q2. For Gaussian initial conditions, the ZA displacement
is a Gaussian random 9eld, so Eq. (619) can be evaluated in terms of the two-point correlator of
D(q). The results of these calculations show that the ZA leads to a reasonable description of the
quadrupole-to-monopole ratio [220,642] provided that the zero-crossing scale is 9xed to agree with
numerical simulations. In general, the ZA predicts a zero-crossing at wavenumbers larger than found
in N -body simulations [301]. Furthermore, although the shape of the quadrupole-to-monopole ratio
resembles that in the simulations, the monopole and quadrupole do not agree as well as their ratio.
This can be improved by using second-order Lagrangian PT [571], but the calculation cannot be
done analytically anymore, instead one has to resort to numerical realizations of the redshift-space
density 9eld in 2LPT.

7.4.3. The redshift-space bispectrum
Given the second-order PT kernel in redshift space, the leading order (tree level) galaxy bispectrum

in redshift-space reads [313,669,562]

Bs(k1; k2; k3) = 2Z2(k1; k2)Z1(k1)Z1(k2)P(k1)P(k2) + cyc: ; (620)

which can be normalized by the power spectrum monopole to give the reduced bispectrum in redshift
space, Qs,

Qs(k1; k2; k3) ≡ Bs(k1; k2; k3)
a2

0(Pg(k1)Pg(k2) + cyc:)
; (621)

where “cyc.” denotes a sum over permutations of {k1; k2; k3}. Note that Qs is independent of power
spectrum normalization to leading order in PT. Since, to leading order, Qs is a function of triangle
con9guration which separately depends on 	m, b and b2, it allows one in principle to break the
degeneracy between 	m and b present in measurement of the power spectrum multipoles in redshift
space [236,313]. The additional dependence of (the monopole of) Qs on 	m brought by redshift-space
distortions is small, typically about 10% [313]. On the other hand, as expected, the quadrupole of
Qs shows a strong 	m dependence [562].
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Fig. 48. The left panel shows the bispectrum in redshift space for con9gurations with k2 = 2k1 as shown as a function of
the angle � between k1 and k2. The dotted line shows the predictions of second-order Eulerian PT, whereas the solid lines
correspond to 2LPT. Error bars correspond to the average between four realizations. The right panel shows the bispectrum
in redshift space for con9gurations with k2 = 2k1 = 1:04 h=Mpc, i.e. in the non-linear regime. Square symbols denote Q
in real space, whereas triangles denote the redshift-space bispectrum. Also shown are the predictions of PT in real space
(dashed lines), PT in redshift space (PTs, dotted line) and the phenomenological model with "v =5:5 (PT+"v, continuous
line).

Decomposing into Legendre polynomials, Bs eq(/) =
∑∞

‘=0 B
(‘)
s eqP‘(/), the redshift-space-reduced

bispectrum for equilateral con9gurations reads [562]

Q(‘=0)
s eq =

5(2520 + 4410B + 1890> + 2940B > + 378>2 + 441B >2)
98b1(15 + 10> + 3>2)2

+
5(9>3 + 1470b1> + 882b1>2 − 14b1>4)

98b1(15 + 10> + 3>2)2 ; (622)

where B ≡ b2=b1. This result shows that in redshift space, Qs;g �= (Qs+B)=b1 as in Eq. (528), although
it is not a bad approximation [562]. In the absence of bias (b1 = 1, B = 0), Eq. (622) yields

Q(‘=0)
s eq =

5(2520 + 3360f + 1260f2 + 9f3 − 14f4)
98(15 + 10f + 3f2)2 ; (623)

which approaches the real-space result [232] Qeq = 4
7 = 0:57 in the limit f ∼ 	0:6

m → 0. On the other
hand, for f = 	m = 1, we have Q(0)

s eq = 0:464: for these con9gurations, the reduced bispectrum is
suppressed by redshift distortions.

As discussed before for the power spectrum, leading order calculations in redshift space have
a more restricted regime of validity than in real space, due to the rather limited validity of the
perturbative expansion for the redshift-space mapping (instead of the perturbative treatment of the
dynamics). The same situation holds for the bispectrum. The left panel in Fig. 48 shows the reduced
bispectrum Q as a function of angle � between k1 and k2 for con9gurations with k2=2k1=0:21 h=Mpc.
The dotted line shows the predictions of tree-level PT in redshift space, Eq. (621), whereas the
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symbols correspond to N -body simulations of the �CDM model (	m = 0:3, 	� = 0:7, "8 = 0:7) with
error bars obtained from four realizations. The disagreement is most serious at colinear con9gurations.
On the other hand, the solid lines obtained using 2LPT [565] agree very well with the N -body
measurements. Similarly, good agreement is found for equilateral con9gurations. The key in the
2LPT predictions is that the redshift-space mapping is done exactly (by displacing the particles from
real to redshift space in the numerical realizations of the 2LPT density 9eld), rather than expanded
in power series.

At small scales, however, 2LPT breaks down and one must resort to some kind of phenomeno-
logical model to account for the redshift distortions induced by the velocity dispersion of clusters.
For the bispectrum, this reads [562]

Bs(k1; k2; k3) =
BPT

s (k1; k2; k3)
[1 + =2[(k1/1)2 + (k2/2)2 + (k3/3)2]2"2

v=2]2 ; (624)

where BPT
s (k1; k2; k3) is the tree-level redshift-space bispectrum. The assumption is that one can write

the triplet velocity dispersion along the line of sight in terms of the pairwise velocity dispersion
parameter "v and a constant = which reJects the con9guration dependence of the triplet velocity
dispersion. As noted above, "v is determined from simulations solely using the power spectrum
ratio; the parameter = is then 9tted by comparison with the monopole-to-quadrupole ratio of the
equilateral bispectrum measured in the simulations [562]. A somewhat di=erent phenomenological
model can be found in [669]; in addition Matsubara [435] studies using a similar phenomenological
model the e=ects of redshift-space distortions in the non-linear regime for the three-point correlation,
assuming the validity of the hierarchical model in real space.

The right panel in Fig. 48 shows the redshift-space bispectrum at small scales, to show the e=ects
of non-linear redshift distortions. The square symbols denote Q is real space, which approximately
saturates to a constant independent of con9guration. On the other hand, the redshift-space Q shows
a strong con9guration dependence, due to the anisotropy of structures in redshift space caused by
cluster velocity dispersion (9ngers of God). The phenomenological model (with "v = 5:5 and = = 3)
in solid lines does quite a good job at describing the shape dependence of Qs.

Similar studies using numerical simulations have been carried out in terms of the three-point
correlation function, rather than the bispectrum, to assess the validity of the hierarchical model in
the non-linear regime in redshift space [437,614] and to compare with redshift surveys at small
scales [84,267,347]. They obtained analogous results to Fig. 48 for the suppression of Qs for equi-
lateral con9gurations compared to Q at small scales due to velocity dispersion. However, studies
of the con9guration dependence of Qs in the non-linear regime [437,614,347] 9nd no evidence
of the con9guration dependence shown in the right panel in Fig. 48. This is surprising, as visual
inspection of numerical simulations shows clear signs of 9ngers of God; this anisotropy should
be reJected as a con9guration dependence of Qs. More numerical work is needed to resolve this
issue.

7.4.4. The higher-order moments in redshift space
In redshift space, the PT calculation of skewness and higher-order cumulants cannot be done

analytically, unlike the case of real space, but can be done by a simple numerical integration for



F. Bernardeau et al. / Physics Reports 367 (2002) 1–248 181

Fig. 49. The Sp parameters for p=3; 4; 5 (from bottom to top) in redshift space for �CDM with "8 =0:9 as a function of
smoothing scale R. Square symbols denote measurements in real-space N -body simulations, whereas triangles correspond
to redshift-space values, assuming the plane-parallel approximation.

S3 [313]. 105 The e=ects of redshift distortions, however, are very small (of order 10%) for the
skewness and kurtosis.

On the other hand, at small scales the e=ect of non-linear redshift distortions is quite strong; since
non-linear growth is suppressed in redshift space due to cluster velocity dispersion, the skewness and
higher-order moments do not grow much as smaller scales are probed [391,437,614,84,554]. Fig. 49
shows an example for the Sp parameters for top-hat smoothing (p = 3; 4; 5) in the �CDM model;
square symbols denote the real-space values and triangles correspond to redshift-space quantities.
Note the close agreement between real and redshift space at the largest scales, and the suppression
at small scales for the redshift space case. The latter looks almost scale independent; however, one
must keep in mind that correlation functions at small scales should be strongly non-hierarchical, i.e.
depend strongly on con9guration as shown in the right panel in Fig. 48.

7.4.5. Cosmological distortions
Deep galaxy surveys can probe a large volume down to redshifts where the e=ects of a cosmo-

logical constant, or more generally dark energy, become appreciable. A geometrical e=ect, as 9rst
suggested in [4], arises in galaxy clustering measures because the assumption of an incorrect cosmol-
ogy leads to an apparent anisotropy of clustering statistics. In particular, structures appear Jattened
along the line of sight, and thus the power spectrum and correlation functions develop anisotropy,
similar to that caused by redshift distortions [18,438,526,181,442]. The challenge to measure this

105 Using a di=erent approach, Watts and Taylor [682] recently derived a closed form for S3 in redshift space that does
not agree with [313]. This apparent disagreement merits further work.
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e=ect is that redshift distortions are generally larger than cosmological distortions, so a reliable
measure of cosmological distortions requires an accurate treatment of redshift distortions.

Recent work along these lines [444], using the approximation of linear PT and that bias is linear,
scale and time independent, concludes that the best prospects for measuring cosmological distortions
in upcoming surveys is given by the luminous red galaxy (LRG) sample of the SDSS. This sample
of about 100 000 galaxies seems to give a good balance between probing structure down to “high”
redshift (z ∼ 0:5) and having a large enough number density so that shot noise is not a limiting
factor. Analysis of redshift and cosmological distortions gives a joint 3-" uncertainty on 	� and
	m of about 15%, assuming 	� = 0:7 and 	m = 0:3 as the 9ducial model. Other surveys, such as
the quasar samples in 2dFGRS and SDSS, are predicted to give less stringent constraints due to the
sparse sampling [444].

Applications of cosmological distortions to the case of the Lyman-= forest have been proposed in
the literature [329,448]. In this case, the distortions are computed by comparing correlations along
the line of sight to those by cross-correlating line of sights of nearby quasars. These studies conclude
that with only about 25 pairs of quasars at angular separations of . 2′–3′ it is possible to distinguish
an open model from a Jat cosmological constant dominated model (with the same 	m = 0:3) at the
4-" level. These results, however, assume a linear description of redshift distortions. More recent
analysis using numerical simulations [449] suggests that with 13(�=1′)2 pairs at separation less than
�, and including separations ¡ 10′, a measurement to 5% can be made if simulations can predict
the redshift-space anisotropy with 5% accuracy, or to 10% if the anisotropy must be measured from
the data.

Finally, we should mention the e=ect of clustering evolution along the line of sight, due to
observation along the light cone. Estimates of this e=ect show that for wide surveys such as 2dFGRS
and SDSS it amounts to about 10% in the power spectrum and higher-order statistics, while it
becomes signi9cantly larger of course for deep surveys, see e.g. [439,283].

8. Results from galaxy surveys

8.1. Galaxies as cosmological tracers

Following the discovery of galaxies as basic objects in our universe [547,322,323], it became
clear that their spatial distribution was not uniform but clustered in the sky, e.g. [709]. In fact, the
Local Supercluster was recognized early on from 2D maps of the galaxy distribution [184]. The
9rst measurements ever of the angular two-point correlation function w(�), done in the Lick survey
[653], established already one of the basic results of galaxy clustering that at small scales the angular
correlation function w(�) has a power-law dependence in � [see Eq. (625)].

The 9rst systematic study of galaxy clustering was carried out in the 1970s by Peebles and his
collaborators. In a truly groundbreaking 12-paper series [500,303,503,501,504,505,275,575,576,
226,577,227], galaxies were seen for the 9rst time as tracers of the large-scale mass distribution
in the gravitational instability framework. 106 These works con9rmed (and extended) the power-law
behavior of the angular two-point function, established its scaling with apparent magnitude, and

106 For an exhaustive review of this and earlier work see [210,508].
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measured for the 9rst time the angular power spectrum and the three- and four-point functions
which were found to follow the hierarchical scaling wN ∼ wN−1

2 . The theoretical interpretation of
these observations was done in the framework of galaxies that traced the mass distribution in an
Einstein de–Sitter universe. 107

These results, however, relied on visual inspections of poorly calibrated photographic plates, i.e.
with very crude magnitudes (e.g. Zwicky) or galaxy counts (e.g. Lick) estimated by eye, rather than
by some automatic machine. These surveys were the result of adding many di=erent adjacent photo-
graphic plates and the uniformity of calibration was a serious issue, since large-scale gradients can be
caused by varying exposure time, obscuration by our galaxy and atmospheric extinction. These e=ects
are diQcult to disentangle from real clustering, attempts were made to reduce them with smooth-
ing procedures, but this could also result in a removal of real large-scale clustering. More than 20
years after completion of Zwicky and Lick surveys, there were major technological developments in
photographic emulsions, computers and automatic scanning machines, such as the Automatic Plate
Measuring Machine (APM [374]) and COSMOS [421] micro-densitometers. This allowed a bet-
ter calibration of wide-9eld surveys, as measuring machines locate sources on photographic plates
and measure brightness, positions and shape parameters for each source [520,519,582,311,384,604,
533,574].

In the 1980s large number of redshifts and scanning machines gave rise to a second generation of
wide-9eld surveys, with a much better calibration and a 3D view of the universe. 108 The advent of
CCDs revolutionized imaging in astronomy and soon made photographic plate techniques obsolete
for large-scale structure studies. Nowadays, photometric surveys are done with large CCD cameras
involving millions of pixels and can sample comparable number of galaxies. Furthermore, it is
possible with massive multi-9ber or multi-slit spectroscopic techniques to build large redshift surveys
of our nearby universe such as the LCRS [584], the 2dFGRS (e.g. see [142]) or the SDSS (e.g. see
[699]) as well as of the universe at higher redshifts such as in the VIRMOS (e.g. see [398]) and
DEIMOS surveys (e.g. see [177]).

This signi9cant improvement in the quality of surveys and their sampled volume allowed more
accurate statistical tests and therefore constrain better theories of large-scale structure. Stringent
constraints from upper limits to the CMB anisotropy (e.g. [657]), plus theoretical inputs from the
production of light elements (e.g. [696]) and the generation of Juctuations from inJation in the
early universe [602,304,280,20] led to the development of CDM models [509,75] where most of
the matter in the universe is not in the form of baryons. The 3D mapping of large-scale structures
in redshift surveys showed a surprising degree of coherence [378,324,182] which when compared
with theoretical predictions of the standard CDM model (e.g. [173]) led to the framework of biased
galaxy formation, where galaxies are not faithful tracers of the underlying dark matter distribution
(Section 7.1). Subsequent observational challenge from the angular two-point function in the APM
survey [422] and counts in cells in the IRAS survey [200,549] led to the demise of standard CDM

107 In this case self-similarity plus stable clustering leads to hierarchical scaling in the highly non-linear regime, although
it does not explain why hierarchical amplitudes are independent of con9guration, see Section 4.5. These observations were
partially motivated by work on the BBGKY approach to the dynamics of gravitational instability [548] and also generated
a signi9cant theoretical activity that led to much of the development of hierarchical models. For a recent historical account
of these results and a comparison with current views in the framework of biased galaxy formation in CDM models see
[515].

108 For a review of redshift surveys see e.g. [484,268,607,608].
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models in favor of CDM models with more large-scale power, with galaxies still playing the role
of (mildly) biased tracers of the mass distribution (e.g. [174]).

The access to the third dimension also allowed analyses of peculiar velocity statistics through
redshift distortions [362,290] (Section 7.4, see [295] for a recent review) and measurements of
higher-order correlations became more reliable with the hierarchical scaling (Section 4.5.5), �N ∼
QN�N−1

2 , being established by numerous measurements in 3D catalogs [31,246,92,239]. However,
it was not until recently that surveys reached large enough scales to test the weakly non-linear
regime and therefore predictions of PT against observations [224,249,248,250,225,567,211]. This
is an important step forward, as higher-order statistics encode precious additional information that
can be used to break degeneracies present in measurements of two-point statistics, constrain how
well galaxies trace the mass distribution, and study the statistics of primordial Juctuations. It is the
purpose of the present section to review the observational e=orts along these lines.

In this section, we discuss the various results obtained from measurements in galaxy catalogs for
traditional statistics such as N -point correlation functions in real and Fourier space and counts-in-cells
cumulants (thus leaving out many results on the shape of the CPDF itself, including the void prob-
ability function). We do not attempt to provide a comprehensive review of all relevant observations
but rather concentrate on a subsample of them. The choice reJects the connections to PT and thus
there is a strong emphasis on higher-order statistics. In particular, we do not discuss about cosmic
velocity 9elds, except when redshift distortions are a concern. Also, we do not discuss the spatial
distribution of clusters of galaxies since the statistical signi9cance of measurements of higher-order
statistics is still somewhat marginal.

The remainder of this section is mainly divided into two large sections, one concerning angular
surveys (Section 8.2), the other one concerning redshift surveys (Section 8.3). Finally, Section 8.4
reviews ongoing and future surveys.

8.2. Results from angular galaxy surveys

8.2.1. Angular catalogs
We begin our discussion of angular clustering with a brief description of results from the older

generation of catalogs that sets the stage for the more recent results, and then go into a more detailed
description of the current state of the subject. Table 14 lists the main angular catalogs that have
been extensively analyzed. We show the characteristic parameters of the samples used in the relevant
clustering analyses. The information is organized as follows. The second column gives the total area,
	, of the catalog while the fourth column shows its mean depth, D (associated with the limiting
magnitude in the third column). The 9fth column gives the volume in terms of a characteristic
length, DE. The sixth column gives the surface density, ng, which also relates to the mean depth.
The three numbers, 	, D and DE control volume (area) and edge e=ects discussed in Section 6. In
particular, samples with similar volumes can have quite di=erent sampling biases due to edge e=ects
because of di=erences in the shape (angular extent) of the survey. The galaxy number density, ng,
relates to discreteness errors (Section 6), which of course are more signi9cant when the total number
of objects in the catalog is small. Finally, let us note that some of these catalogs were constructed
with di=erent photometric 9lters (typically blue).

The original Zwicky catalog ([710] 1961–1968) contains galaxies to magnitude m¡ 15:7. In the
most angular clustering analyses only galaxies brighter than m = 14:5–15 (with ∼ 2000 gal=sr) and
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Table 14
Angular catalogs

Name Area 	 (sr) Magnitudes Depth D DE No. gal=s Ref.

Zwicky 1:8 mz ¡ 15 70 73 ∼ 7000 [710]
Lick 3:3 m¡ 19 220 280 ∼ 105 [581]
Jagellonian 0:01 m¡ 21 400 74 ∼ 106 [543]
ESO=Uppsala ∼ 1:8 dl ¿ 1′ 60 63 ∼ 2000 [317]
UGC ∼ 1:8 dl ¿ 1′ 70 74 ∼ 2000 [478]

APM 1:3 bJ = 17–20 400 380 ∼ 106 [422]
EDSGC 0:3 bJ = 17–20 400 230 ∼ 106 [144]
IRAS 1.2Jy 9:5 f60 �m ¿ 1:2Jy 80 145 480 [218]
DeepRange 0:005 IAB ¡ 22:5 2000 150 ∼ 108 [530]
SDSS � 3 r′ ¡ 22 1000 1300 ∼ 107 [699]

The 9rst 9ve entries correspond to “old” catalogs (1961–1974) based on counts or magnitude=diameters estimates by
eye and with poor calibration. The survey area 	 is given in steradians, the depth (mean luminosity distance) and e=ective
size DE ≡ (	=4�)1=32D are in Mpc=h. The sign ∼ reJects the fact that di=erent sub-samples have di=erent values for that
quantity.

only in the North galactic cap (	 ∼ 1:8 sr) were used. The mean depth is estimated to be about
50–80 Mpc=h. The base sample used for redshift surveys (see Section 8.3) is a wide survey (	 �
2:7) with about 20 000 galaxy positions (m¡ 15:5) taken from photographic plates with di=erent
calibrations. There have been several studies of systematic errors in Zwicky photometry, showing
an important magnitude scale error (see [257] and references therein), however, it is not clear how
seriously this a=ected the clustering properties.

The Lick catalog ([581] 1967) consists of 1246 plates of 6×6 square degrees. Counts were done
by eye. In the analyses presented by Peebles and collaborators, only 467 plates with |bII|¿ 40◦ were
used. These plates have overlapping regions which were used to reduce the counts to a uniform
limiting magnitude. Calibration was based on matching the surface density of counts, 〈n〉, which
is much less reliable than calibration based on comparing positions and magnitudes of individual
sources. Errors on count estimates were assumed to be independent from cell to cell and to increase
the variance by an additive factor proportional to 〈n〉. In [275], large-scale gradients in the counts
were removed by applying a “smoothing factor” which led to some controversy concerning the
signi9cance of the analysis [265,183,276,277].

The Jagellonian Feld ([543] 1973) consists of a 6 × 6 square degrees area with galaxy counts in
cells of 3:75′ × 3:75′, e.g. in a 98× 98 grid (higher resolution and deeper than in the Lick catalog).
There was no attempt to correct for the lack of uniform optics and plate exposure across the large
9eld of view (e.g. vignetting e=ects). Although this is quite a deep survey, its angular extent is
small and it is clear that it should su=er signi9cantly from the volume and edge e=ects described in
Section 6.

The ESO=Uppsala [317] and UGC [478] catalogs are based on several hundreds of copies of
large (ESO=Palomar) Schmidt plates. Galaxies were found with a limiting visual diameter of about
1′. There is evidence for the selection function to depend on declination, which has to be taken
into account while inverting the angular correlations (e.g. see [345]). Compensation for this e=ect
is likely to produce large-scale artifacts, especially because the sample is relatively small.
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The APM galaxy catalog ([422] 1990) is based on 185 UK IIIA-J Schmidt photographic plates,
each corresponding to 6×6 square degrees on the sky to bJ =20:5 and mean depth of 400 Mpc=h (a
factor of two deeper than the Lick catalog) for b¡−40◦ and �¡−20◦. These 9elds were scanned by
the APM machine [374]. Galaxy and star magnitudes and positions in the overlapping regions (of 1◦=
plate) were used to match all plates to a single calibration=exposure. Because there are calibration
errors for individual galaxies and positions in a plate, a more careful analysis of vignetting and
variable exposure within a plate could be done (as compared to just using the counts). The resulting
matching errors can be used to perform a study of the biases induced in the clustering analysis. In
the results shown here, an equal-area projection pixel map was used with a resolution of 3:5′ × 3:5′
cells.

The EDSGC Survey ([144] 1992) consists of 60 UK IIIA-J Schmidt photographic plates corre-
sponding to 6 × 6 square degrees on the sky to bJ = 20:5 and mean depth of 400 Mpc=h. In fact,
the raw photographic plates are the same in both the APM and EDSGC catalogs, but the later only
includes scans of a fraction (1

3) of the APM plates, in the central part. The EDSGC database was
constructed from COSMOS scans [421], with di=erent calibration and software analyses. Therefore,
these two catalogs can be considered as fairly independent realizations of the systematic errors.

The IRAS 1.2Jy ([606] 1990) is a redshift subsample of the IRAS Point Source Catalog [123]
and is included here because it has also been used to measure angular clustering. This catalog be-
longs to a newer generation of wide-9eld surveys, where magnitudes and positions of objects have
been obtained by automatic measurements. The CfA [324] and SSRS [168] redshift catalogs
have also been used to study angular clustering. More details on redshift samples will be given in
Section 8.3.1.

The Deep Range Catalog ([530] 1998) consists of 256 overlapping CCD images of 16 arcmin
on a side, including 1 arcmin overlap to allow the relative calibration of the entire survey. Images
were taken to IAB ¡ 24 with a total area extending over a contiguous 4 × 4 square degrees region.
The median redshift for the deeper slices used in the clustering analysis, IAB = 22–22:5 is z � 0:75
which corresponds to a depth of approximately 2000h−1 Mpc. The IAB=17–18 slice has z � 0:15,
i.e. a similar depth to the APM catalog. Note the large surface density of this survey. Although this
is quite a deep survey its angular extent is rather small and it su=ers from the volume and edge
e=ects described in Section 6, especially at the brighter end.

The Sloan Digital Sky Survey (SDSS, e.g. see [699]) was still under construction when this
review was written and only preliminary results are known at this stage. These results are discussed
in a separate section, see Section 8.4 for more details.

Smaller, but otherwise quite similar in design to DeepRange, wide mosaic optical catalogs have
been used to study higher-order correlations. For example, the INT-WFC [540] with ∼70 000 galaxies
to R¡ 23:5 over two separated 9elds of 1.01 and 0.74 square degrees. There are a number of such
surveys currently under analyses or in preparation, such as the FIRST radio source survey [33],
the NOAO Deep Wide-Field Survey [340], the Canada–France Deep Fields [447], VIRMOS [398],
DEIMOS [177] or the NRAO VLA Sky Survey [156].

Most of the catalogs described above have magnitude information, allowing one to study subsets
at di=erent limiting magnitudes or depth. This can be used, for instance, to test Limber equation
[Eq. (569)] and the homogeneity of the sample [275,422]. Even with the new generation of better
calibrated surveys, there has been some concerns about variable sensitivity inside individual plates
in the APM and EDSGC catalogs [187] and some questions regarding large-scale gradients in the
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APM survey have been raised [221]. Later analysis checked the APM calibration against external
CCD measurements over 13 000 galaxies from the Las Campanas Deep Redshift Survey showing
an rms error in the range 0.04–0.05 magnitudes [425]. These studies concluded that atmospheric
extinction and obscuration by dust in our galaxy have negligible e=ect on the clustering and also
gave convincing evidence for the lack of systematics errors.

8.2.2. The angular correlation function and power spectrum
The angular two-point correlation function in early surveys was estimated from the Zwicky catalog,

Jagellonian 9eld and Lick survey in [653,503,505,275,272]. For catalogs with pixel maps (counts in
some small cells), such as Lick and Jagellonian, the estimators used were basically factorial moment
correlators as described in Section 6.8, whereas for catalogs with individual galaxy positions (such
as Zwicky) the estimators were based on pair counts as discussed in Section 6.4.1.

The angular two-point function was found to be consistent between the Zwicky, Lick and Jagel-
lonian samples. For a wide range of angular separations, the estimates were well 9tted by a power
law:

w2(�) � � 1−B; B � 1:77 ± 0:04 : (625)

The resulting 3D two-point function, after using Limber’s equation [Eq. (569)] for the deprojection
of a power-law model, gives consistent results for all catalogs with

�2(r) �
(r0

r

)B
; B � 1:8; r0 � 5 ± 0:1h−1 Mpc (626)

for scales between 0:05h−1 Mpc¡r¡ 9h−1 Mpc [505,275]. On the largest scales, corresponding to
r & 10h−1 Mpc, the results are quite uncertain because correlations are small and calibration errors
become relevant. The results in [275] suggested a break in �2(r) for r & 10h−1 Mpc. The position
of this break, however, depends on the smoothing corrections applied to the Lick catalog (which is
the one probing the largest scales) on angles �& 3◦ [276,277].

Several other groups have measured small numbers of Schmidt and 4-m plates to produce galaxy
surveys of a few hundred square degrees down to bJ � 20 and a few square degrees down to bJ � 23
[582,311,384,604,533,574]. Most of these studies also show a power-law behavior with consistent
values and a sharp break at large scales, the location of the latter depending on the size of the
catalog. 109 This sharp break, expected in CDM models, is at least in part caused by 9nite-volume
e=ects, i.e. the integral constraint discussed in e.g. Section 6.4.2. 110 Thus most of these analyses
show uncertain estimations for w2 in the weakly non-linear regime, which is also the case for the
ESO=Uppsala and UGC catalogs [345].

109 More recent studies using CCD cameras 9nd that the power-law form of the small-scale angular correlation function
remains in deep samples with amplitude decreasing with fainter magnitudes [161,539,325,530,447], with indications of a
less steep power law at the faint end, IAB & 23 (e.g. [332,530,447]).

110 It is worth pointing out that the cosmic bias caused by the small volume, the boundary or shot noise in the sample
typically yields lower amplitudes of w2 for the smaller (nearby) samples. This has been noticed by several authors (e.g.
[175], Fig. 3 in [345]) and sometimes interpreted as a real e=ect (see also Fig. 8 in [328]).
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Fig. 50. The two-point angular correlation function w2(�) (squares with error bars), estimated from counts-in-cells and
pair counts in the APM map compared with a power law w2 ∼ �−0:7 (dashed line). Errors are from the dispersion in four
disjoint subsamples within the APM. The lower panel shows the ratio of the values in each zone to the average value in
the whole sample.

The APM catalog has enough area and depth to probe large scales in the weakly non-linear regime.
The 9rst measurements of the angular two-point correlation function [422] led to the discovery of
“extra” large-scale power (corresponding to shape parameter 111 # ∼ 0:2), signi9cantly more than in
the standard CDM model (#= 0:5). This result has been con9rmed by measurement of w2(�) in the
EDSGC catalog [144], and subsequent analyses of the inferred 3D power spectrum from inversion of
the APM angular correlation function [26] and angular power spectrum [27] and inversion from w2(�)
to the 3D two-point function [29] (see Section 8.2.3 for a brief discussion of inversion procedures).
Both APM and EDSGC 9nd more power than the Lick catalog on scales � & 2◦, suggesting that
the Lick data were overcorrected for possible large-scale gradients [422–425].

Fig. 50 shows the two-point angular correlation function w2(�) estimated for �¿ 1◦ from counts in
the pixel maps (i.e. the factorial moment correlator W11, see Section 6.8) and at smaller scales from
galaxy pair counts (using the DD=DR−1 estimator, see Section 6.4.1). A 9t of the two-point angular
correlation with a power law w2 � A� 1−B, for scales �¡ 2◦ gives A � 2:7×10−2 and B � 1:7 (shown
as a dashed line). After inverting the Limber equation, the corresponding 3D two-point correlation
function is in good agreement with Eq. (626), with a slightly Jatter slope B � 1:7. The uncertainty
in the value of the correlation length r0 is controlled mainly by the accuracy in the knowledge of
the selection function in Eq. (569) and by the cosmic errors that we discuss below.

111 The shape parameter when the contribution of baryons is neglected (	b�	m) reads # ≈ 	mh, see e.g. [201,76,21].
However, for currently favored cosmological parameters it is more accurate to use #=exp[−	b(1+

√
2h=	m)]	mh [611].
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The APM data show good match between several disjoint magnitude slices when scaled according
to the Limber equation to the same depth (see Fig. 25 in [425]). The agreement is good up to very
large scales �D& 40h−1 Mpc; this indicates that the APM catalog can be used to explore the weakly
non-linear regime. Similar conclusions apply to the EDSGC catalog (see [144]), which is compared
in terms of w2(�) to APM in [425] (see also [328]): both catalogs agree well for 0:1◦ ¡�¡ 0:5◦.
At larger angular scales, the EDSGC results di=er from APM, essentially because of 9nite volume
and edge e=ects due to its smaller area. More worrisome is that at smaller scales, �¡ 0:1◦ there are
also discrepancies (presumably related to deblending of galaxies in high-density regions, see [627])
which can be quite signi9cant for higher-order moments as we shall discuss in Section 8.2.5.

The errors shown in Fig. 50 are obtained from the scatter among four disjoint subsamples in the
APM, which is often an overestimate of the true cosmic errors at large scales (see end of Section
6.4.3). However, as discussed at length in Section 6, error bars give only a partial view of the real
uncertainties (especially in the case of spatial statistics), since measurements at di=erent scales are
strongly correlated. This is illustrated in the bottom panel of Fig. 50, where the variations of the
measured w2 from subsample to subsample are coherent (and quite signi9cant at the largest scales
where edge e=ects become important). As a result, the values of w2 change mostly in amplitude
and to a lesser extent in slope from zone to zone. These cross-correlations are not negligible and
must be taken into account to properly infer cosmological information since the measurements at
di=erent scales are not statistically independent. Only very recently the e=ect of the covariance
between estimates at di=erent scales was included in the analyses of APM [204,203] and EDSGC
[331] angular clustering, by focusing on large scales and using the Gaussian approximation to the
covariance matrix, similar to Eq. (403). We discuss these results in the next section.

Finally, note that the nearly perfect power-law behavior of the angular correlation function im-
poses non-trivial constraints on models of galaxy clustering. Since in CDM models the dark matter
two-point correlation function is not a power law, this implies that the bias between the galaxy and
mass distribution must be scale dependent in a non-trivial way. The current view (see discussion in
Section 7.1.4) is that this happens because the number of galaxies available in a given dark matter
halo scales with the mass of the halo as a power law with index smaller than unity. In these sce-
narios, the fact that the galaxy two-point function follows a power law is thus a coincidence. Given
the accuracy of the power law behavior (see Fig. 50) this situation is certainly puzzling. It seems
unlikely that such a cancellation can take place to such an accuracy. 112 On the other hand, these
models predict at small scales that galaxy velocity dispersions and Sp parameters are signi9cantly
smaller than for the dark matter, as observed. We shall come back to discuss this in more detail
below.

8.2.3. Inversion from angular to 3D clustering
The cosmological information contained in the angular correlation function of galaxies can be

extracted in basically two di=erent ways. One is to just project theoretical predictions and compare
to observations in angular space. It is also useful to carry out the alternative route of an inversion
procedure from Eq. (570) to recover the 3D power spectrum, and compare to theoretical predictions
in the more familiar 3D space. This has the advantage that it is possible to carry out parameter

112 However, one must keep in mind that features in the spatial correlation function can be signi9cantly washed out due
to projection, as 9rst emphasized in [209].
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estimation on the scales not a=ected by non-linear evolution. 113 To successfully apply this method,
however, one must be able to propagate uncertainties from angular space to 3D space in a reliable
way. Recent work has developed techniques that make this possible.

To go from the angular correlation function to the 3D power spectrum (or two-point function)
requires the inversion of an integral equation with a nearly singular kernel, since undoing the pro-
jection is unstable to features in the 3D correlations that get smoothed out due to projection. The
inverse relation between �2(r) and w2(�) can be written down formally using Mellin transforms
[209,490]; however, in practice this result is diQcult to implement since it involves di=erentia-
tion of noisy quantities. Most inversions from w(�) [26,29,253] and the angular power spectrum
[27] in the APM survey used an iterative deconvolution procedure suggested by Lucy [413] to
solve integral equations. However, although Lucy’s method can provide a stable inversion, it does
not provide a covariance matrix of the recovered 3D power spectrum. Error bars on the recon-
structed 3D power spectrum have been estimated by computing the scatter in the spectra recovered
from four di=erent zones of the APM survey [26,27]; this can only be considered as a crude es-
timate and cannot be used to constrain cosmological parameters in terms of rigorous con9dence
intervals.

A number of methods have emerged in the last couple of years to overcome these limitations.
These techniques involve some way of constraining the smoothness of the 3D power spectrum
to suppress features in it that lead to minimal e=ects on the angular clustering and thus make
the inversion process unstable. A method using a Bayesian prior on the smoothness of the 3D
power spectrum was proposed in [188]. An improved method, based on SVD decomposition [204],
identi9es and discards those modes that lead to instability. Both methods give the covariance matrix
for the estimates of the 3D power spectrum given a covariance matrix of the angular correlations,
which can be done beyond the Gaussian approximation. The resulting 3D covariance matrix shows
signi9cant anti-correlations between neighboring bins [188,204]; this is expected since oscillatory
features in the power spectrum are washed out by projection and thus are not well constrained from
angular clustering data. Another technique based on maximum likelihood methods for performing
the inversion is presented in [203] (see e.g. discussion in Section 6.11). This has the advantage of
being optimal for Gaussian Juctuations; on the other hand, the assumption of Gaussianity means
that errors and their covariances are underestimated at scales a=ected by non-linear evolution where
non-Gaussianity becomes important. Including the covariance matrix of angular correlations showed
that constraints on the recovered large-scale 3D power spectrum of APM galaxies become less
stringent by a factor of two [204,203] compared to some of the previous analyses that assumed a
diagonal covariance matrix.

Fig. 51 displays the APM 3D power spectrum P(k) reconstructed from the angular two-point
correlation function [26,253] inverting Limber’s equation (570) using Lucy’s method. The error bars
are obtained from the dispersion on w2(�) over four zones as shown in Fig. 50 and should thus
be considered as a crude estimate, especially at large scales (see [203] for comparison of errors in
di=erent inversion methods). The solid curve corresponds to a reconstruction of the linear part of

113 In angular space, this distinction is harder to make due to projection, particularly for the two-point correlation function.
For example, for APM, w(�) at � = 1

◦
; 2

◦
; 3

◦
; 5

◦
has contributions from 3D Fourier modes up to k = 1; 0:4; 0:3; 0:2h=Mpc,

respectively [188].
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Fig. 51. The APM 3D power spectrum reconstructed from w2(�). The continuous line shows a linear P(k) reconstruction.
The short- and long–dashed lines show linear CDM models with #=0:2 and 0:5, normalized to the data at k � 0:3h=Mpc.

the spectrum, which can be 9tted by

PAPM
linear(k) � 7 × 105 k

[1 + (k=0:05)2]1:6 (627)

for k ¡ 0:6h=Mpc, and 	m = 1 [30]. This linearization has been obtained assuming no bias between
APM galaxies and dark matter, 114 following the linearization 9rst done in [289] and extended in
[493] based on the mapping from the linear to non-linear power spectrum (see e.g. Section 4.5.4 for
a discussion). Eq. (627) has been obtained by running N -body simulations and agrees well with the
mapping prescription of [335]. Note how non-linear e=ects become important at k ¿ 0:1h=Mpc. 115

As can be seen from Fig. 51, a comparison to CDM models on linear scales (k ¡ 0:3h=Mpc)
favors low values of power spectrum shape parameter #, showing more power on these scales than
the standard CDM model with # = 0:5. Indeed, the most recent analysis including the e=ects of
the covariance matrix discussed above concludes using the deprojected data for k6 0:19h=Mpc that
0:056#6 0:38 to 95% con9dence [203]. 116 Similar results have been obtained from a similar

114 Unfortunately, as shown in [30], this assumption is inconsistent at small scales: the higher-order moments predicted by
evolving the linear spectrum in Eq. (627) are in strong disagreement with the APM measurements at scales R. 10 Mpc=h
(see Fig. 54), indicating that galaxy biasing is operating at non-linear scales. On the other hand, the large-scale correlations
(R¿ 10 Mpc=h) are consistent with no signi9cant biasing, see Section 8.2.6.

115 In fact, it has been demonstrated in [222] that the one-loop PT predictions presented in Section 4.2.2 work very well
for this spectrum on scales where the 9t in Eq. (627) is valid, k ¡ 0:6h=Mpc.

116 In addition, it was shown that galactic extinction, as traced by the maps in [555], had little e=ect on the power
spectrum over the APM area with �¡− 20

◦
.
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recent likelihood analysis of the EDSGC survey angular power spectrum [331]. Fig. 51 suggests that
on very large scales (k ¡ 0:05h=Mpc), the APM data might show an indication of a break in the
power spectrum [253]. From the 9gure, it might seem as if this is a 3-" detection, but as mentioned
above di=erent points are not independent. Analytical studies, using di=erent approximations to
account for the covariance matrix between di=erent band powers, indicate that this might be only a
1-" result [204,203]. 117

The above results on the shape parameter of the power spectrum have been con9rmed by analyses
of redshift catalogues as will be discussed in Section 8.3.2, and will soon be re9ned by measurements
in large ongoing surveys such as the 2dFGRS or the SDSS (Section 8.4).

On smaller scales, a detailed study [260] of the reconstructed 3D two-point correlation function
in the APM [29] shows an inJection point in the shape of �2(r) at the transition to the non-linear
scale r � r0 ∼ 5 Mpc=h, very much as expected from gravitational instability (see Section 4.5.2).

8.2.4. Three-point statistics and higher order
Angular surveys provide at present the best observational constraints on higher-order correlation

functions in the non-linear regime. In most cases, however, a detailed exploration of the di=erent
con9gurations available in three-point and higher-order correlations has not been given, due to lim-
itations in signal to noise. 118 This will have to await the next generation of photometric surveys
(e.g. SDSS [699] and DPOSS [187]).

Table 15 summarizes the measurements achieved in various surveys. As can be seen in the third
column of Table 15, the limited size of surveys means that most of the measurements only probed
the non-linear regime, except those done in the IRAS and APM catalogs. The 9rst measurements
of the three-point angular correlation function w3 in the Jagellonian 9eld [275], Lick and Zwicky
surveys [275] established that at small scales the hierarchical model (see Section 4.5.5) gives a good
description of the data,

w3(�1; �2; �3) = q3[w2(�1)w2(�2) + w2(�2)w2(�3) + w2(�3)w2(�1)] ; (628)

where q3 is a constant of order unity with little dependence on scale or con9guration (within the
large error bars) at the range of scales probed. In addition, the four-point function was found to be
consistent in the Lick and Zwicky catalogs with the hierarchical relation,

w4(1; 2; 3; 4) = ra[w2(1; 2)w2(2; 3)w2(3; 4) + cyc: (12 terms)]

+ rb[w2(1; 2)w2(1; 3)w2(1; 4) + cyc: (4 terms)] ; (629)

where w2(i; j) ≡ w2(�ij) with �ij being the angular separation between points i and j. The amplitudes
ra and rb correspond to the di=erent topologies of the two types of tree diagrams connecting the
four points (see e.g. Fig. 6 and discussion in Section 4.5.5), the so-called snake (ra, 9rst diagram in
Fig. 6) and star diagrams (rb, second diagram in Fig. 6). The overall amplitude of the four-point

117 However, the initial suggestion by [253] for a break in the APM was con9rmed with realistic numerical simulations
which show that a mock galaxy catalog as big as the APM can be used to recover such a break when placed at di=erent
scales (see Figs. 11 and 12 in [253]). The level of signi9cance for this detection was not studied, so these apparently
discrepant analyses require further investigation.

118 In addition, even with the currently available computational power and fast algorithms relying on e.g. KD-tree tech-
niques [461], measuring directly higher-order correlation functions can be very computationally intensive.
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Table 15
The angular three- and four-point amplitudes 3q3 and 16q4 ≡ 12ra + 4rb, at physical scales (in Mpc=h) speci9ed in the
third column by D�. The last 9ve entries correspond to the newer generation of galaxy catalogs (see Table 14). Error
bars should be considered only as rough estimates, see text for discussion

3q3 16q4 D� Sample Year Ref. Estimator

1:9 ± 0:3 — 0.4–1.2 Jagellonian 1975 [505] Cumulant corr.
3:5 ± 0:4 — 0.1–4 Zwicky (-Coma) 1975 [504] Multiplet counts
5:3 ± 0:9 — 0.1–4 Zwicky 1977 [275] Multiplet counts
— 100 ± 18 0.1–2 Zwicky 1978 [226] Multiplet counts
4:7 ± 0:7 — 0.3–10 Lick 1977 [275] Cumulant corr.
— 77 ± 7 0.5–4 Lick 1978 [226] Cumulant corr.
4:8 ± 0:1 40 ± 3 0.3–5 Lick 1992 [618] Cumulant corr.
� 3 — 0.3–5 (k) Lick 1982 [229] Bispectrum
2:7 ± 0:1 — 0.2–2 ESO-Uppsala 1991 [345] Multiplet counts
5:4 ± 0:1 — 0.2–2 UGC 1991 [345] Multiplet counts

3:8 ± 0:3 35 ± 10 4–20 IRAS 1.2Jy 1992 [451] Cumulant corr.
3:5 ± 0:1 31 ± 1 0.5–50 APM (17–20) 1995 [620] Cumulant corr.
3:9 ± 0:6 — 4 APM 1999 [225] Cumulant corr.
2–6 — 4–30 APM 1999 [225] Cumulant corr.
1.5–3 — 0.2–3 LCRS 1998 [347] Multiplet counts
8–3 — 0.5–3 DeepRange 2000 [635] Multiplet counts
2–1 — 3–6 DeepRange 2000 [635] Multiplet counts
5–1 — 0.5–20 SDSS 2001 [261,262] Multiplet counts

Table 16
The reduced skewness and kurtosis from counts-in-cells gin angular space. In most cases, only the mean values over a
range of scales were published. In cases where measurements of the individual sp for each smoothing scale are reported
in the literature, we quote the actual range and the corresponding range of scales. Error bars should be considered only
as rough estimates, see text for discussion

s3 s4 D� Sample Year Ref.

2:9 ± 0:9 12 ± 4 1–8 Zwicky 1984 [583]
2:4 ± 0:4 9:5 ± 2:4 2–20 CfA 1994 [224]
2:2 ± 0:3 8 ± 3 2–20 SSRS 1994 [224]
2:5 ± 0:4 11 ± 3 2–20 IRAS 1.9Jy 1994 [224]
3:8 ± 0:1 33 ± 4 7–30 APM (17–20) 1994 [249]
5:0 ± 0:1 59 ± 3 0.3–2 APM (17–20) 1994 [249]
7–4 170–40 0.1–14 EDSGC 1996 [622]
3:0 ± 0:3 20 ± 5 0.1 APM (17–20) 1998 [627]
6–2 120–10 0.1–6 DeepRange 2000 [635]
5–2 100–20 0.5–20 SDSS 2001 [261,262,637]

function is thus 16q4 ≡ 12ra +4rb, which we quote in Table 15, together with the three-point ampli-
tude 3q3. These are useful to compare with the angular skewness and kurtosis in Table 16 discussed in
Section 8.2.5 because in the hierarchical model sN � NN−2qN to very good accuracy. 119 In addition,

119 And similarly in the 3D case, see [85,249] for accurate estimates of the small corrections to this relation.
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as discussed in Section 7.2.3, the qN coeQcients are very weakly dependent on details of the survey
such as the selection function and its uncertainties, so it is meaningful to compare qN from di=erent
galaxy surveys.

In the 9rst and second columns of Table 15, in addition to the numerical values of q3 and q4,
we quote as well the error on the estimate calculated by the authors. Except when noted otherwise,
error bars were obtained from the dispersion in di=erent zones of the catalog. Since typically the
number of zones used is small (about four in most cases), the estimated errors are very uncertain. 120

In addition, this method obviously cannot estimate the cosmic variance, which can be a substantial
contribution for surveys with small area. Many, if not most, of the di=erences between the various
numerical values given in Table 15 can be explained by statistical Juctuations and systematics due
to the 9niteness of the catalogs [328] (see Section 6 for a detailed discussion of these issues), as
we now brieJy discuss.

The results of q3 in the Zwicky catalog do not seem to be very reliable since the value found in
[504] changed by more than 50% due to the omission of only 14 galaxies in the Coma cluster (see
[275]). Similar e=ects have been found in other samples (e.g. ESO-Uppsala [345]). This sensitivity
reJects that the sample is not large enough to provide a fair estimate of higher-order statistics.
Likewise, the rather low value for q3 found in the Jagellonian sample is likely strongly a=ected by
9nite-volume e=ects due to the small area covered. Similarly, the values obtained from the projected
LCRS in [347] could be partially contaminated by edge e=ects due to the particular geometry of the
catalog (6 strips of 1:5◦×80◦) and perhaps also by sampling biases due to inhomogeneous sampling
around high-density regions. 121

Work has been done as well to study the dependence of q3 on morphological type, but dividing
the data into smaller subsamples tends to produce stronger statistical biases. In the ESO-Uppsala
and UGC catalogs, Jing et al. [345] found that spirals have signi9cantly smaller values of q3. This
could be interpreted through the well-known density–morphology relation [192,529]: spirals avoid
rich clusters and groups, an e=ect that could be more important at smaller scales (this is illustrated
to some extent in Fig. 45). The results for the full sample in the ESO-Uppsala and UGC catalogs
showed good agreement with the hierarchical scaling (note however that error bars quoted in this
case are just due to the dispersion in the 9t to the hierarchical model rather than reJecting sample
variance).

The measurements of the three-point correlation function in the Lick survey did not show any
strong evidence for a dependence of q3 on the shape of the triangle, although a marginal trend
was found that colinear triangles had a higher q3 than isosceles [275]. The three-point statistics was
analyzed in terms of the bispectrum by Fry and Seldner [229], who found the same amplitude for
q3 as in real-space, but some indications of a scale dependence beyond the hierarchical scaling, with
q3 increasing as a function of wavenumber k with a peak corresponding to the angular scale (2:5◦)
of the break in w2(�), and then decreasing again at large k. A later re-analysis of the large-scale
Lick bispectrum [236] showed a marginal indication of dependence on con9guration shape, too small
compared to the one expected in tree-level PT, and thus in principle an indication of a large galaxy

120 However, as discussed in the end of Section 6.4.3 for the two-point correlation function, when the number of sub-
samples is large, this method tends to overestimate the real cosmic errors.

121 Due to the 9xed number of 9bers per 9eld and “9ber collisions”. Using random catalog generation Jing and Borner
[347] checked that these e=ects appeared to be insigni9cant.
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bias [see Eq. (528)]. However, the scales involved were not safely into the weakly non-linear regime
and thus this result is likely the e=ect of non-linear evolution rather than a large galaxy bias [560].

The four-point function measurements in the Lick survey were not able to test the relation in
Eq. (629) in much detail, but assuming Eq. (629) measurements for some speci9c con9gurations
(such as squares and lines) gave a constraint on the amplitudes ra and rb which were then translated
into a constraint on 3D amplitudes by deprojection (see Section 7.2.3), resulting in Ra = 2:5 ± 0:6
and Rb = 4:3 ± 1:2 [226]. These results on the Lick survey were considerably extended in [618]
to higher-order qN ’s up to N = 8 in the context of the degenerate hierarchical model, 122 by using
two-point moment correlators. 123 This con9rmed the hierarchical scaling wN ∼ qNwN−1

2 up to N =8,
at least for these con9gurations, with qN ≈ 1–2. 124

The same technique was applied to the IRAS 1.2Jy survey in [451], verifying the hierarchical
scaling for N = 3; 4 but with qN ’s with N ¿ 4 being consistent with zero, and also to the APM
survey [620] which showed non-zero amplitudes up to N = 6, with a trend of increasing qN as a
function of N , i.e. qN = 1:2; 2; 5:3; 10 for N = 3; 4; 5; 6, unlike the case of the Lick catalog. The APM
survey was later re-analyzed in terms of cumulant correlators [e.g. see Eq. (348)] in [623], showing
hierarchical scaling for N = 4; 5 to within a factor of two. 125 In addition, it showed that at scales
�& 3:5◦ the factorization property predicted by PT, Eq. (349), starts to hold. By measuring 〈�3

1�2〉c
and 〈�2

1�
2
2〉c and assuming the hierarchical model as in Eq. (629) it was possible to constrain (after

deprojection) Ra � 0:8 and Rb � 3:7, in reasonable agreement with the Lick results [226] mentioned
in the previous paragraph. These imply an average q4 � 2:2.

The analysis of the three-point function in the DeepRange survey [635] shows a general agreement
with the hierarchical model with large errors in q3, with a consistent decrease as a function of depth.
Indeed, a 9t to the hierarchical model, Eq. (628), gives q3 =1:76; 1:39; 2:80; 1:00; 0:34; 0:57 for I -band
magnitudes I = 17–18,18–19,19–20,20–21,21–22,22–22.5, respectively. This trend is also present in
the count-in-cells measurements and, if con9rmed in other surveys, has interesting implications for
the evolution of galaxy bias (see Fig. 55). Note that in this work errors were estimated using the
FORCE code [621,152,630], which is based on the full theory of cosmic errors as described in
Section 6.

Some of the analyses above probed the weakly non-linear regime, where the qN ’s are expected
to show a characteristic angular dependence predicted by PT, even after projection from 3D to
angular space [242,225,101]. Measurements of q3 in the Lick catalog showed a marginal indication
that colinear con9gurations are preferred compared to isosceles triangles [275,236] (but see [229]).

122 In this case all amplitudes corresponding to di=erent tree topologies are assumed to have the same amplitude qN , and
thus Ra = Rb, etc., see Section 4.5.5.

123 In the same spirit, it is worth noticing that four-point correlation function estimates for particular con9gurations can be
obtained through measurements of the dispersion of the two-point correlation function over subsamples (or cells) extracted
from the catalog (see [83,230]): this is a natural consequence of the theory of cosmic errors on w2 detailed in Section
6.4.3. This method has the potential defect of being sensitive to possible arti9cial large-scale gradients in the catalog.

124 Note, however, that the errors quoted by the authors come from a 9tting procedure, not sampling variance. For N ¿ 6,
correlations are consistent with zero when using the sampling variance among 12 zones.

125 The scales probed in this case, 0:8
◦
¡�¡ 4:5

◦
, are in the transition to the non-linear regime (1

◦
corresponds to about

7 Mpc=h at the APM depth), so it is not expected to show hierarchical scaling. On the other hand, galaxy biasing might
help make correlations look more hierarchical, as illustrated in Fig. 45 by the suppression in the growth of Sp parameters
as small scales are probed.
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Fig. 52. The angular three-point amplitude q3(=) from PT prediction (thick continuous line) compared with the APM
measurements at �12 = �13 = 2

◦
: closed squares and open circles correspond to the full APM map and to the mean of four

disjoint zones. Other curves show results for each of the zones (from [225]).

Projecting the three-point function in redshift space from the LCRS survey, Jing and Borner [347]
found a marginal enhancement for colinear triangles, but the scales probed (r . 12 Mpc=h) are not
safely in the weakly non-linear regime.

For angular catalogs, the APM survey presents the best available sample to check the angular
dependence of q3 predicted by PT [225]. Figs. 52 and 53 show the measurements of q3(=) in the
APM survey at �12=�13=0:5–4:5◦ estimated by counting pairs and triplets of cells of a given angular
con9guration, see Section 6.8. Closed squares correspond to estimations in the full APM map, while
open circles are the mean of q3 estimated in four disjoint zones. The value of 3q3 � 3:9 ± 0:6 at
= � 0, shown in Table 15, is in agreement with the cumulant correlators estimated (with 4×4 bigger
pixels) in [628]. Furthermore, the average over = is comparable to the values of s3=3 in Table 15
and in particular to the APM and EDSGC estimations [249,451,627].

Fig. 52 shows the results for individual zones in the APM (same as the ones in Fig. 50) for all
triangles with �12=�13=2◦. These estimations of q3 are subject to larger 9nite-volume e=ects, because
each zone is only 1

4 the size of the full APM. 126 As in Fig. 50, there is a strong covariance among
the estimations in di=erent zones, which results in a large uncertainty for the overall amplitude q3.
Because the zones cover a range of galactic latitude, the number of systematic errors in the APM
catalog (star–galaxy separation, obscuration by the galaxy, plate matching errors) might be expected
to vary from zone to zone. No evidence for such systematic variation is found in q3: the scatter
in individual zone values is compatible with the sampling variance observed in N -body simulations
[225]. On larger scales, �& 3◦, the individual zone amplitudes exhibit large variance, and in addition

126 The fact that the average over the four zones (open circles) is not equal to the measurement in the full APM map is
a manifestation of estimator bias [328,630].
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Fig. 53. The projected three-point amplitude q3 in PT (solid curves) and N -body results (open triangles with error bars)
for the APM-like power spectrum are compared with q3 measured in the APM survey (closed squares and open circles,
with same meanings as in Fig. 1). Each panel shows the amplitude at di=erent �12 = �13. In upper right panel, dotted and
dashed curves correspond to PT predictions with b1 = 1; b2 = −0:5 and b1 = 2; b2 = 0, respectively. In the lower left
panel, upper and lower solid curves conservatively bracket the uncertainties in the inferred APM-like power spectrum,
long–dashed curve corresponds to SCDM, and the dotted curve shows the leading order prediction for the �2 non-Gaussian
model.

boundary e=ects come into play. As seen in Fig. 53 at these scales q3 is consistent with zero within
the errors.

The APM results are compared with the values of q3 predicted by PT with the linear APM-like
spectrum in Eq. (627) (solid curves) and with measurements in N -body simulations (open triangles
with error bars) with Gaussian initial conditions corresponding to the same initial spectrum. Since
the APM-like model has, by construction, the same w(�) as the real APM map, it is assumed that
the sampling errors are similar in the APM and in the simulations. This might not be true on the
largest scales, where systematics in both the APM survey and the simulations (periodic boundaries)
are more important.

At scales � & 1◦, the agreement between the APM-like model and the APM survey is quite
good; this corresponds roughly to physical scales r & 7h−1 Mpc, not far from the non-linear scale
(r0 � 5, where �2 � 1). Also note that the q3 predicted in the SCDM model (dashed curve in
lower-left panel of Fig. 53) clearly disagrees with the APM data; this conclusion is independent
of the power spectrum normalization and it is therefore complementary to the evidence presented
by two-point statistics [422,200] (see discussion in Sections 8.2.2 and 8.2.3). At smaller angles,
�. 1◦; q3 in the simulations is larger than in either the real APM or PT (top-left panel in Fig. 53).
The discrepancy between simulations and PT on these relatively small scales is due to non-linear
evolution. The reason for the discrepancy with the real APM is probably an indication of galaxy
biasing at small scales: this will a=ect the inference of the linear power spectrum from the data [30]
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Fig. 54. The angular skewness, s3, and kurtosis, s4, from the APM catalog (9lled triangles and squares) as compared with
PT results (continuous line) and APM-like all-sky N -body simulations (open triangles and squares).

and also suppress higher-order correlations compared to the dark matter [570] (see e.g. Fig. 45 and
discussion in Section 7.1.3).

8.2.5. Skewness, kurtosis and higher-order cumulants
Table 16 shows the results for the skewness (s3) and kurtosis (s4) in several of the angular

catalogs described in Section 8.2.1.
The analysis of the Zwicky sample by Sharp et al. [583] used moments of counts in cells to

estimate the hierarchical amplitudes qN , assuming the degenerate hierarchical model in Section 4.5.5.
Because counts in cells were used, the measurement is closer to s3 than to q3. As noted in Section
8.2.4, the Zwicky catalog has been shown to be sensitive to a few galaxies in the Coma cluster, a
signature that the survey is not large enough to be a fair sample for the estimation of higher-order
moments. Indeed, in [583] it was found that the mean over a four-subsample split changed from
the values in Table 16 to s3 = 4:2 ± 0:9 and s4 = −7 ± 12, a manifestation of the estimation biases
discussed in Section 6.

In [224] angular positions from volume-limited subsamples of redshift catalogs (CfA, SSRS and
IRAS 1.9Jy) were used to estimate the angular moments. 127 Note, for example, how the values for
s3 and s4 in the CfA survey from these smaller samples are lower than in the parent Zwicky sample.
This suggests again that there are signi9cant systematic 9nite-volume e=ects [249,621,328,630].

Fig. 54 shows s3 (9lled triangles) and s4 (9lled squares) measured in the APM survey [249]. The
open 9gures with error bars correspond to the mean of 20 N -body all-sky simulations presented in
[254] with the linear “APM-like” power spectrum in Eq. (627), with 1-" error bars scaled to the size

127 The values in Table 16, from Table 8 in [224], have been multiplied by r3 � 1:2 and r4 � 1:5 for a direct comparison
in angular space.
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of the APM. 128 The continuous line shows the tree-level PT results of [48] numerically integrated
for the APM-like power spectrum, as described in [254]. 129 The uncertainties in the shape of the
power spectrum and the evolution of clustering of APM galaxies are comparable or smaller than the
simulation error bars [250].

As can be seen in Fig. 54, APM measurements are somewhat below the PT predictions or N -body
results at �& 1◦ [48], indicating possibly a slight bias for APM galaxies. But note that this di=erence
is not very signi9cant given the errors and the fact that there is a strong covariance and a signi9cant
negative bias on these scales (see Section 4.1 in [254]). At smaller angles, � . 1◦, the N -body
results are clearly higher than either PT (due to non-linear evolution) or the real APM results (see
also top-left panel in Fig. 53 for the corresponding result for the three-point function). The latter is
likely due to galaxy biasing operating at small scales [30], as discussed in the last section.

Estimation of higher-order moments from the EDSGC [622] up to p = 8 is in good agreement
within the errors with APM on scales �& 0:1◦. On smaller scales, �. 0:1◦, the EDSGC estimates
are signi9cantly larger than the APM values, indicating systematic problems in the deblending of
crowded 9elds [627]. 130 The DeepRange results [635] for the corresponding APM slice (IAB =
17–18) give values of S3 and S4 which are intermediate between the APM and the EDSGC. This is
also the case for the R INT-WFC catalog [540]. At larger scales, on the other hand, they both give
slightly smaller results. This is not a very signi9cant deviation but might indicate that the DeepRange
survey is not large enough at this bright end and it therefore su=ers from the same biases that are
apparent when the APM Sp estimations are split in its 6 × 6 square degree plates. For the fainter
slices the DeepRange results are less subject to volume e=ects and seem to indicate smaller values
of S3 and S4 [635] as a function of depth (see Fig. 55). Finally, we note also that the skewness has
been estimated for radio sources in the FIRST survey [426] (see also [165] for measurements of
the angular correlation function), giving values s3 = 1–9 for a depth corresponding to 1–50 Mpc=h,
approximately.

8.2.6. Constraints on biasing and primordial non-Gaussianity
Galaxy biasing and primordial non-Gaussianity can leave signi9cant imprints in the structure of

the correlation hierarchy, as discussed in detail in Sections 7.1 and 4.4 and 5.6, respectively. These
e=ects are best understood at large scales, where PT applies and simple arguments such as local
galaxy biasing (see e.g. Section 7.1.1) are expected to hold. The APM survey is at present the largest
angular survey probing scales in the weakly non-linear regime, thus most constraints on biasing and
primordial non-Gaussianity from angular clustering have been derived from it. For constraints derived
from galaxy redshift surveys see Section 8.3.5.

The lower-left panel in Fig. 53 shows the linear prediction (dotted lines), corresponding to the
projection of Eq. (186) [514], for �2 initial conditions (see Section 4.4) with the APM-like initial
spectrum [225]. Although the error bars are large and highly correlated, the projected three-point

128 These errors should be considered more realistic than those given in the 9fth and sixth entry in Table 16, which
were derived by combining results at di=erent angular scales assuming they are uncorrelated [249]. These error bars also
correspond roughly to a 2-" con9dence in a single all-sky map: they are twice as large as those in Fig. 47.

129 See e.g. Eq. (587) and Section 7.2.4 for a discussion of projection in the weakly non-linear regime.
130 Measurements in this paper were done with an in9nite oversampling technique [625]. In general, results without

signi9cant oversampling could underestimate Sp (see also [328]) but this does not explain the di=erence with the APM
analysis, where the oversampling was adequate.
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Fig. 55. The solid symbols display s3 measured at 0:04
◦

for six magnitude slices (IAB = 17–18, 18–19, 19–20, 20–21,
21–22, 22–22.5, corresponding to increasing mean redshift) of the DeepRange catalog (from [635]). Each value of s3 is
plotted at the median z of the slice. The shaded band shows the predictions of a model of galaxy bias evolution, see
text for details. The right-shifted error bars for the two faintest measurements include errors due to star=galaxy separation
[635].

function for this model is substantially larger than that of the APM measurements and the corre-
sponding Gaussian model for intermediate =. This may seem only a qualitative comparison, since
as discussed in Section 4.4, non-linear corrections for this model are very signi9cant even at large
scales. However, non-linear corrections lead to even more disagreement with the data: although the
shape dependence resembles that of the Gaussian case, the amplitude of q3 when non-linear correc-
tions are included becomes even larger than the linear result, especially at colinear con9gurations
(see Figure 17).

This is also in agreement with Gaztañaga and Mcahconen [252], who used the deprojected Sp from
the APM survey [249] to constrain non-Gaussian initial conditions from texture topological defects
[655] which, as in the case of the �2 model, also have dimensional scaling �N ∼ BN�

N=2
2 , with

B3 ≈ B4 ≈ 0:5 (see Fig. 29). In this case it was found that N -body simulations of texture-type initial
conditions lead to a signi9cant rise at large scales in the Sp parameters not seen in the APM data,
even when including linear and non-linear (local) bias to match the amplitude of Sp at some scale.

Constraints on a non-local biasing model from the APM Sp parameters were considered in [248].
The model of cooperative galaxy formation [96], where galaxy formation is enhanced by the presence
of nearby galaxies, was suggested to produce a scale-dependent bias to create additional large-scale
power in the standard CDM model and thus match the APM angular correlation function. However,
the e=ect of this scale dependence bias is to imprint a signi9cant scale dependence on the Sp

parameters that is ruled out by the APM measurements (see also Fig. 57).
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The upper right panel in Fig. 53 shows the PT predictions for the APM-like initial power spectrum,
Eq. (627), with linear bias parameter b1 = 2 (dashed curve) and a non-linear (local) bias model [see
e.g. Eq. (525)] with b1 = 1; b2 =−0:5 (dotted curve). Even if the errors are 100% correlated, these
models are in disagreement with the APM data. A more quantitative statement cannot be made about
constraints of bias parameters from the APM higher-order moments since a detailed analysis of the
covariance matrix is required. However, for linear bias the measurements imply that APM galaxies
are unbiased to within 20–30% [225]. These constraints agree well with the biasing constraints
obtained from the inJection point of the reconstructed �2(r) in the APM [260]. On the other hand,
consideration of non-linear biasing can open up a wider range of acceptable linear bias parameters
[224,248,671].

An alternative to wide surveys which probe the weakly non-linear regime at recent times, deep
galaxy surveys can probe the redshift evolution and also reach weakly non-linear scales at high
redshift. Although presently this is not possible due to the small size of current deep surveys, it
will become so in the near future. An early application along these lines is in Fig. 55, which shows
the redshift evolution of s3 for measurements of [635] in the DeepRange catalog at a 9xed angular
scale of 0:04◦. This corresponds to about 0:3h−1 Mpc at z � 0:15 and 1:5h−1 Mpc at z � 0:75, so
the scales involved are in the non-linear regime. 131

The redshift evolution in Fig. 55 is just the opposite of that expected in generic (dimensional)
non-Gaussian models, where the skewness s3 should increase with redshift (see e.g. discussion in
Section 5.6). However, since these scales are in the non-linear regime the predictions based on
PT cannot be safely used, and galaxy biasing can behave in a more complicated way. In any
case, the trend shown in Fig. 55 can be matched by a model, shown in a shaded band, where
S3(z) = S3(0)(1 + z)−0:5 [635], which may indicate that galaxy bias is increasing with redshift, as
expected in standard scenarios of galaxy formation (see discussion in Section 7.1), and contrary to
the evolution expected from strongly non-Gaussian initial conditions. A more quantitative constraint
will have to await the completion of future deep surveys that can probe the weakly non-linear regime.

8.3. Results from redshift galaxy surveys

8.3.1. Redshift catalogs
Redshift surveys map the 3D distribution of galaxies in a large volume, and are thus ideally suited

to use higher-order statistics to probe galaxy biasing and primordial non-Gaussianity. Table 17 shows
a list of the main wide-9eld redshift catalogs. For a more general review on redshift catalogs see
[484,268,607,608].

Redshift surveys require a prede9ned sample of targets to obtain redshifts; therefore, they are
often de9ned from angular surveys where galaxies are detected photometrically. Below we shortly
discuss the main characteristics of the surveys in Table 17, for a brief description of the photometric
parent catalogs see Section 8.2.1.

The Center for Astrophysics survey (hereafter CfA [324]) and the Perseus–Pisces redshift Survey
(PPS [268]) are both based on the Zwicky catalog. The CfA survey, perhaps the most analyzed
redshift survey in the literature, consists of 2417 galaxies with Zwicky magnitudes less than 14.5,

131 Although a 9xed angular scale does not correspond to a 9xed spatial scale as a function of z, the comparison is
meaningful because the measured s3(�) is scale independent (hierarchical) to a good approximation.
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Table 17
Optical and infrared (last four) redshift catalogs. The survey area 	 is given in steradians, the depth and e=ective size
DE ≡ (	=4�)1=32D are in Mpc=h

Name Area 	 (sr) Magnitudes Depth D DE No. gal=s Ref.

CfA 1.8 mZ ¡ 14:5 50 52 ∼ 1000 [324]
SSRS 1.8 D(0)¿ 0:1 50 52 ∼ 1000 [168]
PPS ∼ 1 m¿ 15:5–15 80 70 ∼ 3000 [268]
LCRS 0.02 R¡ 17:8 300 70 1:3 × 106 [584]
Stromlo-APM 1.3 bJ ¡ 17:15 150 140 1400 [411]
Durham=UKST 0.45 bJ ¡ 17 140 90 5500 [535]
2dFGRS 0.6 bJ ¡ 19:5 300 220 ∼ 2:5 × 105 [481]
SDSS � 3 r′ ¡ 18 275 341 ∼ 106 [704]

QDOT 10 f60 �m ¿ 0:6Jy 90 170 245 [200]
IRAS 1.9Jy 9.5 f60 �m ¿ 1:9Jy 60 110 220 [606]
IRAS 1.2Jy 9.5 f60 �m ¿ 1:2Jy 80 145 480 [218]
PSCz 10.5 f60 �m ¿ 0:6Jy 100 188 1470 [550]

covering over 2:67 sr (1:8 sr in the North Galactic cap) with a median redshift corresponding to
3300 km=s. The PPS survey, centered around the Perseus–Pisces supercluster, contains over 3000
galaxies. The Southern Sky Redshift Survey (hereafter SSRS, [168]) is based on the ESO=Uppsala
angular sample, and contains about 2000 galaxies. These surveys su=er from the same calibration
problems as their parent catalogs, but with redshift information they were aimed to represent a fair
sample of the universe. Recent extensions of these surveys to deeper magnitudes (m¡ 15:5, 2000
redshift, D � 80 Mpc=h) are denoted by CfA2 and SSRS2 and have been merged into the Updated
Zwicky Catalog (UZC [208]).

The LCRS [584], consists of redshifts selected from a well-calibrated CCD survey of 6 narrow
1:5◦×80◦ strips in the sky. Although this survey is much deeper and better calibrated than any of the
previous ones, it is also potentially subject to important selection and boundary e=ects: narrow slices,
density-dependent sampling (because of a constant number of 9bers per 9eld) and the exclusion of
galaxies closer than 55′′. All these e=ects tend to underweight clusters and, even if properly corrected,
could introduce important sampling biases in higher-order statistics. 132

The Stromlo-APM redshift survey [411] consists of 1790 galaxies with bJ ¡ 17:15 selected ran-
domly at a rate of 1 in 20 from APM scans in the south Galactic cap. The Durham=UKST galaxy
redshift survey [535] consists of 2500 galaxy redshifts to a limiting apparent magnitude of bJ = 17,
covering a 1500 sq deg area around the south galactic Pole. The galaxies in this survey were selected
from the EDSGC and were sampled, in order of apparent magnitude, at a rate of one galaxy in every
three.

The IRAS Point Source Redshift Catalog (hereafter PSCz [550]) is based on the IRAS Point Source
Catalog (see [123]), with several small additions applied to achieve the best possible uniformity
over the sky. The survey objective was to get a redshift for every IRAS galaxy with 60 �m Jux

132 For example, it is impossible to recover any lost con9guration dependence of correlation functions in the non-linear
regime by a correction procedure, since the correcting weight for lost galaxies would have to decide whether they were
aligned or isotropically distributed.
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f60 ¿ 0:6Jy, over as much of the sky as possible. Sky coverage is about 84% with 15 411 galaxies.
Earlier subsamples of PSCz include the updated QDOT catalog [200], the IRAS 1.9Jy. [606] and the
IRAS 1.2Jy [218] redshift surveys. The QDOT survey chooses at random one in six galaxies from
PSCz, leading to 1824 galaxies with galactic latitude |b|¿ 10◦. The other subsamples are shallower
but denser than QDOT; the 2Jy catalog, complete to a Jux limit f60 ¿ 2Jy. contains 2072 galaxies,
whereas the 1.2Jy. catalog, with f60 ¿ 1:2 contains 4545 galaxies. IRAS galaxies are mostly biased
towards spiral galaxies which tend to undersample rich clusters. Thus IRAS galaxies are both sparser
and a biased sample of the whole galaxy population.

The Sloan Digital Sky Survey (SDSS, see e.g. [699]) and the two-degree 9eld 2dF Galaxy Redshift
Survey (2dFGRS, see [142]) were still under construction when this review was written and only
preliminary results are known at this stage. These results are discussed in Section 8.4.

Other recent redshift surveys for which there is not yet measurements of higher-order statistics
include the Canada–France Redshift survey [401], the Century survey [266], the ESO Slice Project
[673], the Updated Zwicky Catalog [208] and the CNOC2 Field galaxy survey [113].

8.3.2. Two-point statistics
We now brieJy discuss results on two-point statistics from redshift surveys, with emphasis on the

power spectrum. We 9rst address optical surveys and then infrared surveys.
The analysis of the redshift-space correlation function in the CfA survey [172] found that, af-

ter integration over the parallel direction to project out redshift distortions, the resulting two-point
function agreed with that derived from inversion in angular catalogs, Eq. (626), with B � 1:77 and
r0 = 5:4 ± 0:3 Mpc=h, for projected separations rp ¡ 10 Mpc=h. At larger scales, the redshift-space
correlation function estimates become steeper and there was marginal evidence for a zero crossing
at scales larger than about 20 Mpc=h. 133 Modeling the redshift-space correlation function as a con-
volution of the real-space one with an exponential pairwise velocity distribution function 134 with
velocity dispersion "v, Davis and Peebles [172] obtained that "v = 340 ± 40 km=s at rp = 1 Mpc=h,
well below the predictions of CDM models.

These results were extended a decade later with the analysis of the power spectrum in the extension
of the CfA survey to mZ ¡ 15:5. In [679] it was shown that, in agreement with previous results from
the APM survey [422] and IRAS galaxies [200,549], the standard CDM model was inconsistent with
the large-scale power spectrum at the 99% con9dence level. In addition, Park et al. [489] studied
the relation between the real-space and redshift-space power spectrum in CDM simulations, using
Eq. (617), and showed that agreement between the small-scale power spectrum and # = 0:2 CDM
models required a velocity dispersion parameter "v ≈ 450 km=s, somewhat larger than the value
obtained by modeling the two-point function in [172]. A joint analysis of the CfA=PPS power

133 The measured redshift two-point function will be found to be Jatter than the real-space one, with more power on large
scales and less power on smaller scales, as expected from theory (see Section 7.4), with evidence for a larger correlation
length in redshift space, s0 ¿r0, in all CfA, SSRS and IRAS catalogues [239].

134 An exponential form was 9rst suggested in [507] and has since been supported by observations, see e.g. [395] for
a recent method applied in the LCRS survey. The interpretation of this technique, however, rests on the assumption
of a scale-independent velocity dispersion, which seems consistent in LCRS [349], but may not necessarily be true in
general, see e.g. [298,351] for the PSCz survey. Theoretically, exponential distributions arise from summing over Gaussian
distributions, both in the weakly and highly non-linear regimes, see [357] and [586,186], respectively. These results are
also supported by N -body simulations [217,708].
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spectrum gave a best 9t CDM shape parameter #= 0:34±0:1 [31]. Similarly, a joint analysis of the
CfA=SSRS samples in [169] showed a power spectrum consistent with CDM models with # ≈ 0:2
and bias within 20% of unity when normalized to COBE [596,694] CMB Juctuations at the largest
scales. A recent analysis [487] of the redshift-space large-scale (k . 0:3h=Mpc) power spectrum of
the Updated Zwicky catalog [208], which includes CfA2 and SSRS, was done using the quadratic
estimator and decorrelation techniques (see Sections 6.11.2–6.11.4). The measurements in di=erent
subsamples are well 9t by a �CDM model with normalization b1"8 = 1:2–1:4.

The analysis of the LCRS redshift-space power spectrum was done in [403], where they used
Lucy’s method [413] to deconvolve the e=ects of the window of the survey, which are signi9cant
given the nearly two-dimensional geometry. They obtained results which were consistent with pre-
vious analyses of the CfA2 and SSRS surveys. An alternative approach was carried out in [394],
where they estimated the 2D power spectrum, which was found to have a “bump” at k=0:067 Mpc=h
with amplitude a factor of ≈ 1:8 larger than the smooth best 9t # = 0:3 CDM model. This is rem-
iniscent of similar features seen in narrow deep “pencil beams” redshift surveys, e.g. [99]. 135 A
recent linear analysis of the LCRS survey [443] using the KL transform methods (see e.g. Section
6.11.4), parameterized the power spectrum in redshift space by a smooth CDM model, and obtained
a shape parameter # = 0:16 ± 0:10, and a normalization b1"8 = 0:79 ± 0:08.

The two-point correlation function of LCRS galaxies was measured in [654,349], and integrated
along the line of sight to give the projected correlation function in real-space, which was found to
agree with Eq. (626), with B � 1:86 ± 0:04 and r0 = 5:06 ± 0:12 Mpc=h [349]. After modeling the
pairwise velocity distribution function by an exponential with dispersion and mean (infall) velocity,
the inferred pairwise velocity at 1 Mpc=h was found to be "v = 570 ± 80 km=s, substantially higher
compared to other surveys. In fact, another analysis of the LCRS survey in [395] found a pairwise
velocity dispersion of "v = 363 ± 44 km=s, closer to previous estimates. In this case, the deconvo-
lution of the small-scale redshift distortions was done by a Fourier transform technique, assuming
a constant velocity dispersion and no infall [i.e. negligible u12, see Eq. (198)]. At least part of this
disagreement can be traced to the e=ects of infall, as shown in [348]. For other recent methods and
applications to determining the small-scale pairwise velocity dispersion and infall see e.g. [176] and
[359], respectively.

Results from the power spectrum of the Stromlo-APM survey [412,639], the Durham=UKST survey
[318] and the ESO Slice Project [115] are in agreement with previous results from optically selected
galaxies, and show an ampli9cation compared to the power spectrum of IRAS galaxies implying
a relative bias factor bopt=biras ≈ 1:2–1:3. This is reasonable, since IRAS galaxies are selected in
the infrared and are mostly spiral galaxies which, from the observed morphology–density relation
[192,529], tend to avoid clusters. We shall come back to this point when discussing higher-order
statistics.

The 9rst measurements of counts-in-cells in the QDOT survey [200,549] showed that IRAS galax-
ies were more highly clustered at scales of 30–40 Mpc=h compared to the predictions of the standard
CDM model, in agreement with the angular correlation function from APM [422]. The QDOT power
spectrum was later measured in [212] using minimum variance weighting, giving redshift-space val-
ues "8 = 0:87 ± 0:07 and # = 0:19 ± 0:06. Measurement of the power spectrum of the 1.2Jy survey
[215] con9rmed and extended this result, although it showed somewhat less power at large scales

135 See e.g. [363,488] and the recent analysis in [701] for a discussion of the statistical signi9cance of these features.
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Fig. 56. The real-space power spectrum of PSCz galaxies. To the left of the vertical line is the linear measurement of
[299] (points with uncorrelated error bars [297]), while to the right is the non-linear measurement of [298] (points with
correlated error bars). The dashed line corresponds to the Jat �CDM concordance model power spectrum from [650]
with parameters as indicated, non-linearly evolved according to the prescription in [494]. (From [298]).

than QDOT. 136 The measurement of the two-point function in redshift space for the 1.2Jy survey
[216,217] implied a real-space correlation function as in Eq. (626), with B � 1:66 and r0=3:76 Mpc=h
for scales r . 20 Mpc=h, consistent with the fact that IRAS galaxies are less clustered than optically
selected galaxies. In addition, the inferred velocity dispersion at 1 Mpc=h was "v = 317+40

−49 km=s.
Measurements in the PSCz survey are currently the most accurate estimation of clustering of

IRAS galaxies. At large scales, the power spectrum is intermediate between that of QDOT and
1.2Jy surveys, whereas at smaller scales it decreases slightly more steeply [612]. The shape of the
large-scale power spectrum is consistent with # = 0:2 CDM models, although it does not strongly
rule out other models [612,640]. A comparison with the Stromlo-APM survey shows a relative bias
parameter of bStromlo=bPSCz ≈ 1:3 and a correlation coeQcient between optical and IRAS galaxies
of R¿ 0:72 at the 95% con9dence limit on scales of the order of 20 Mpc=h [573]. These results
were considerably extended in [298] to obtain the power spectrum in real-space by measuring
the redshift-space power perpendicular to the line of sight and parameterizing the dependence on
non-perpendicular modes to increase signal to noise. The resulting power spectrum is reproduced in
Fig. 56. It shows a nearly power-law behavior to the smallest scales measured, with no indication of
an inJexion at the non-linear scale, and no sign of turnover at the transition to the stable clustering
regime. Compared to the best-9t CDM model (obtained from a joint analysis with CMB Juctuations
in [650] and shown as a dashed line), the PSCz requires a signi9cant scale-dependent bias.

136 It was later shown that the QDOT measurements were sensitive to a small number of galaxies in the Hercules
supercluster [202,638], which was over-represented in the QDOT sample presumably due to a statistical Juctuation in the
random numbers used to construct the survey.
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Table 18
Some measurements of Q3 in redshift catalogs

3Q3 Scales Sample Year Ref.

2:4 ± 0:2 — CfA 1980 [508] (Eq. (57.9))
2:04 ± 0:15 — [541] 1981 [508]
2:4 ± 0:3 1–2 CfA 1984 [198]
1:8 ± 0:2 1–3 Durham-AAT 1983 [32]
3:9 ± 0:9 1–2 KOSS 1983 [32]
1.5–4.5 1–8 LCRS 1998 [347]

Qeq � 0:5 0.1–1.6 CfA=PPS 1991 [31]
Q3 ≈ 1 0.05–0.2 QDOT 2001 [567]
Qeq � 0:2; Qcol � 0:6 0.05–0.2 IRAS 1.9Jy 2001 [567]
Qeq � 0:4; Qcol � 0:8 0.05–0.2 IRAS 1.2Jy 2001 [567]
Qeq � 0:4; Qcol � 1:4 0.05–0.4 PSCz 2001 [211]

In most cases, only the mean values over a range of scales were published. In cases where measurements of the individual
values for each scale are reported in the literature, we quote the actual range of estimates over the corresponding range
of scales. The top half of the table is in con9guration space, the bottom part in Fourier space. Scales are in Mpc=h and
h=Mpc, respectively. When possible, we give estimates for equilateral (eq) and colinear (col) con9gurations. Error bars
should be considered only as rough estimates, see text for discussion.

Finally, we brieJy mention results on the parameter > ≈ 	0:6=b1 from measurements of the
anisotropy of the power spectrum in redshift space 137 (see Section 7.4.2). These measurements are
complicated by the fact that surveys are not yet large enough to see a clear transition into the linear
regime predictions, Eq. (614). In addition, di=erent methods seem to give somewhat di=erent answers
[295]; however, the average and standard deviation of reported values are [295] >opt =0:52±0:26 and
>iras = 0:77±0:22 for optically selected and IRAS galaxies, respectively, which is roughly consistent
with the relative bias between these two populations. On the other hand, the most recent results
from the PSCz survey 9nd >= 0:39± 0:12 [643], and >= 0:41+0:13

−0:12 [299]. Constraints from the most
recent optically selected surveys are considerably noisier, e.g. Stromlo-APM does not even exclude
> ∼ 1 [412,639], and LCRS is consistent with no distortions at all, >= 0:30±0:39 [443]. Resolution
of these issues will have to await results from the full-volume 2dFGRS and SDSS surveys (see also
Section 8.4).

8.3.3. Three-point statistics
Determination of three-point statistics from redshift surveys has been carried out mostly in the

non-linear regime for optically selected surveys, and mostly in the weakly non-linear regime for
IRAS surveys. Table 18 shows di=erent estimates of the three-point function (top list) and the
bispectrum (bottom list).

As discussed before, the CfA sample covers a small volume to be a fair estimate of higher-order
correlations. Even more so, estimates in the Durham-AAT and KOSS samples are subject to large
estimator biases as they have only a few hundred redshifts. Nonetheless, these results roughly agree

137 For an exhaustive review of these results up to mid-1997 see [295].
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Fig. 57. The redshift-space reduced bispectrum Qeq for equilateral triangles as a function for scale k, for CfA=PPS galaxies
(from [31]). The dashed line shows the PT prediction: Qeq = 4

7 . The other lines show predictions for the cooperative galaxy
formation models, see Section 8.3.5.

with each other, although the values of Q3 are seen to Juctuate signi9cantly. Note that the values
in Table 18 are not directly comparable to those inferred from deprojection of angular catalogs
(Table 15) as they are a=ected by redshift distortions (see e.g. Fig. 48).

The LCRS survey provides the best estimate to date of the three-point function at small scales
[347]. Estimation of Q3 in redshift space and in projected space (by integrating along the line of
sight) showed values lower by a factor of about 2 than �CDM simulations where clusters have
been underweighted by m−0:08, essentially equivalent to assuming that the number of galaxies as
a function of dark matter halo mass m scales as Ngal(m) ∼ m0:9 in the notation of Section 7.1.3.
The authors conclude that the hierarchical model is not a good description of the data, since they
see some residual (small) scale and con9guration dependence. However, as discussed at the end of
Section 7.4.3, one does not expect the hierarchical model to be a good description for correlations
in redshift space since velocity dispersion creates “9ngers of god” along the observer’s direction
[562]. The fact that these are clearly seen by visual inspection of the galaxy distribution ought to
show up in a clear shape dependence of the three-point function: colinear con9gurations should be
signi9cantly ampli9ed (see Fig. 48). Surprisingly, this is not seen in the LCRS measurements [347].

Measurements of the bispectrum (for equilateral con9gurations) in redshift space were 9rst carried
out for the CfA survey and a sample of redshifts in the Pisces–Perseus super-cluster [31]. This was
the 9rst measurement that reached partially into the weakly non-linear regime and compared the
bispectrum for equilateral con9gurations with PT predictions, Qeq = 4

7 . As shown in Fig. 57 the
agreement with PT predictions is very good, even into the non-linear regime. 138 The errors bars
in each bin indicate the variance among di=erent subsamples, three from the CfA and three from
the Perseus–Pisces surveys. This result was interpreted as a support for gravitational instability

138 This is due to accidental cancellations in redshift space. At larger k’s, in the absence of redshift distortions, Qeq(k)
increases, see e.g. Fig. 15. However, velocity dispersion suppresses this rise, resulting in approximately the same value
as in PT [562]. The same is not true for colinear con9gurations, see Fig. 48.
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Fig. 58. The bispectrum Q3 vs. � for the PSCz catalog for triangles with 0:26 k16 0:4 h=Mpc and with two sides of ratio
k2=k1 = 0:4–0.6 separated by angle �. The solid curve shows Q3 in redshift space averaged over many 2LPT realizations
of the �CDM model. Symbols show results from the PSCz survey for bands in k1: (N) k1 = 0:20–0:24 h=Mpc; (�) 0.24
–0.28; (•) 0.28–0.32; (◦) 0.32–0.36; (�) 0.36–0.42. The dashed curve shows the 2LPT prediction for �CDM with the
best-9t bias parameters 1=b = 1:20; b2=b2 = −0:42. Taken from [211].

from Gaussian initial conditions and in disagreement with models of threshold bias [21,344], which
predicted Q3 ∼ 1. The results in Fig. 57 were later used in [224] to constrain models of non-local
bias that had been proposed to give galaxies extra large-scale power in the standard CDM scenario
(see Section 8.3.5 for a discussion). In addition, Baumgart and Fry [31] measured the trispectrum
for randomly generated tetrahedral con9gurations, showing a marginal detection with hierarchical
scaling consistent with Q4 ∼ 1.

Detailed measurements of the bispectrum in the weakly non-linear regime were not done until a
decade later, with the analyses of the IRAS surveys [567,211], which probe a large enough volume of
roughly spherical shape. In [567], measurements were done for the QDOT, 1.9Jy and 1.2Jy surveys.
In order to constrain galaxy bias and primordial non-Gaussianity, a likelihood method that takes into
account the covariance matrix of the bispectrum for di=erent triangles and the non-Gaussian shape of
the likelihood function (see e.g. Fig. 42) was used, developed in [566]. This is essential to recover
accurate estimates of errors on bias parameters and primordial non-Gaussianity without systematic
estimator biases due to the 9nite volume of the survey. 139 The results from QDOT were marginal,
due to the very sparse sampling (one galaxy every six) Q3 was only shown to be of order unity
without any discernible dependence on con9guration. The results from 1.9Jy and 1.2Jy showed a
systematic shape dependence similar to that predicted by gravitational instability.

These results were considerably extended with the analysis of the PSCz bispectrum [211]. Fig. 58
shows the PSCz reduced bispectrum Q3 as a function of the angle � between k1 and k2 for triangles

139 A likelihood analysis for analysis of the bispectrum was 9rst proposed in [434], based on the Gaussian approximation
for the likelihood function and a second-order Eulerian PT calculation of the covariance matrix. Extensions to redshift
space are given in [31].
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Table 19
Some measurements of S3 and S4 in redshift catalogs

S3 S4 Scales Sample Year Ref.

2 ± 1–6 ± 4 — 5–20 QDOT 1991 [549]
1:5 ± 0:5 4:4 ± 3:7 0.1–50 IRAS 1.2Jy 1992 [88,92]
1:9 ± 0:1 4:1 ± 0:6 2–22 CfA 1992 [246]
2:0 ± 0:1 5:0 ± 0:9 2–22 SSRS 1992 [246]
2:1 ± 0:3 7:5 ± 2:1 3–10 IRAS 1.9Jy 1994 [224]
2:4 ± 0:3 13 ± 2 2–10 PPS 1996 [267]
2:8 ± 0:1 6:9 ± 0:7 8–32 IRAS 1.2Jy 1998 [377]
1:8 ± 0:1 5:5 ± 1 1–10 SSRS2 1999 [35]
1:9 ± 0:6 7 ± 4 1–30 PSCz 2000 [632]
1:82 ± 0:21 ∼ 3 12.6 Durham=UKST 2000 [319]
2:24 ± 0:29 ∼ 8 18.2 Stromlo=APM 2000 [319]

In most cases, only the mean values over a range of scales were published. In cases where measurements of the individual
values for each scale are reported in the literature, we quote the actual range of estimates over the corresponding range
of scales. In most cases error bars should be considered only as rough estimates, see text for discussion.

with k1=k2 ≈ 2 and di=erent scales as described in the 9gure caption [211]. The con9guration
dependence predicted by gravitational instability [232,313] (solid lines for an unbiased distribution,
predicted by 2LPT, see e.g. Fig. 48) is clearly seen in the data. This is also the case for all triangles,
not just those shown in Fig. 58, see Fig. 1 in [211].

Implications of these results for galaxy biasing and primordial non-Gaussianity are discussed in
Section 8.3.5.

8.3.4. Skewness, kurtosis and higher-order cumulants
Table 19 shows di=erent estimates for S3 = P�3= P�

2
2 and S4 = P�4= P�

3
2, the ratios of the cumulants

P�N obtained by counts-in-cells. The shape of the cells correspond to top-hat spheres, unless stated
otherwise.

The QDOT results by Saunders et al. [549] were obtained from counts-in-cells with a Gaussian
window. The errors, from a minimum variance scheme, are quite large but they suggest a hierarchical
scaling P�3 � P�

2
2, with a value of S3 consistent with gravity from Gaussian initial conditions, as

argued in [137].
Fig. 59 displays the 1.2Jy IRAS results ([88,92], left panel) and CfA-SSRS results ([246], right

panel). There is a convincing evidence for the hierarchical scaling in P�3 and P�4 (denoted by straight
lines) but the resulting S3 and S4 amplitudes are probably a=ected by sampling biases (see discussion
below). Note that the scaling is preserved well into the non-linear regime, this is in agreement with
expectations from N -body simulations which show that in redshift space the growth of Sp parameters
toward the non-linear regime is suppressed by velocity dispersion from virialized regions ([391,437],
see e.g. Fig. 49).

In their analysis of higher-order moments in the CfA, SSRS and IRAS 1.9 Jy catalogs, Frieman
and Gaztanaga [224] studied the sensitivity of Sp to redshift distortions, by calculating moments in
spherical cells and conical cells. The latter were argued to be less sensitive to the redshift space
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Fig. 59. Values of P�3(R) and P�4(R), as a function of P�2(R) in the IRAS (left, from [92]) and in the CfA and SSRS (right,
from [246]) redshift catalogs. The lines show the best-9t amplitude for the hierarchical scaling P�N = SN P�

N−1
2 .

mapping that acts along the line of sight. 140 They 9nd that although cumulants P�p are sensitive to
the change in cell geometry, the Sp parameters were not.

On the other hand, Ghinaa et al. [267] estimated the third- and fourth-order cumulants using
moments of counts centered in galaxies [84] in the PPS. After a somewhat ad-hoc correction for
virial 9ngers to recover “real space” quantities, they 9nd a variation of S3 and S4 with scale,
compatible with a non-negligible cubic term, e.g. P�3 ∼ S3

P�
2
2 +C3

P�
3
2. Since the scale where the cubic

term becomes important is found to be about 5 Mpc=h, this is perfectly consistent with gravitational
clustering: at these scales loop corrections are expected to increase (the real space) S3 and S4, see
e.g. Figs. 28 and 49.

An alternative method to moments of count-in-cells was proposed by Kim and Strauss [377],
who parameterized the count PDF by an Edgeworth expansion (see Section 3.5) convolved with a
Poisson distribution to take into account discreteness e=ects. This method is only applicable at large
enough scales (and small enough �=") so that the Edgeworth expansion holds; however convolution

140 This is certainly true in the limit of large radial distances. At 9nite size, structures will still look less concentrated in
conical cells than in real space due to velocity dispersion. Note that the conical geometry may introduce a change in �N

since not all N -point con9gurations are weighted equally.



F. Bernardeau et al. / Physics Reports 367 (2002) 1–248 211

with a Poisson distribution helps to regularize the resulting PDF (i.e. it is positive de9nite). 141 The
advantage of this method is that one can obtain the Sp from a likelihood analysis of the shape of the
PDF near its maximum, rather than relying on the tails of the distribution which are sensitive to rare
clusters, as in the moments method. 142 One disadvantage is that error estimation in this framework
is more complicated, although in principle not insurmountable. Results from N -body simulations
show this method to be more reliable at large scales [377] than the standard approach. Application
to the 1.2Jy survey [377] resulted in values for S3 and S4 signi9cantly higher than in previous work
using moments [92], see Table 19.

Measurements of the higher-order moments in the SSRS2 survey were obtained in [35]. Results
for S3 and S4 were shown to be consistent with hierarchical at all scales probed (the error bars quoted
in Table 19 were found by averaging over all scales assuming uncorrelated measurements). A study
of the errors in numerical simulations showed that bootstrap resampling errors were underestimates
by a factor of order two. A re-analysis of the data using the Edgeworth method of [377] showed
that S3 changed upward by a factor of about two to S3 ∼ 3, similar to the change seen in the IRAS
1.2Jy survey.

A recent analysis of the PSCz survey [632], which should be a=ected much less than previous
IRAS surveys by 9nite-volume e=ects, was carried out by using minimum variance estimates of
moments of counts-in-cells in volume-limited subsamples (see Section 6.9). The values of S3 and S4

found, shown in Fig. 60, are consistent within the errors 143 with that of previous IRAS results, in-
cluding those found by deprojection from angular counts [451,92,239] and also (for S3) in agreement
with the amplitude obtained from measurements of the bispectrum [211] (see Fig. 58). They also
found that the measurements of S3 and S4 agreed very well with the predictions of the semi-analytic
galaxy formation model in [36], based on models of spiral galaxies in the framework of �CDM
models.

A similar analysis technique was used in the Stromlo-APM and Durham=UKST surveys [319].
In this case measurements of the skewness are in agreement with those found in shallower redshift
surveys (CfA, IRAS 1.2Jy, SSRS2) but with larger (but more realistic) errors. Comparison with
deprojected values for S3 and S4 obtained from the parents catalogs APM [249] and EDSGC [622]
shows a systematic trend where redshift surveys give systematically smaller values than angular
surveys. The most signi9cant contribution to this apparent discrepancy is likely to be redshift dis-
tortions: as shown in Fig. 49 for scales R. 20 Mpc=h the Sp parameters are suppressed in redshift
space. 144 At scales larger than 20 Mpc=h results from the redshift and parent angular surveys should
agree since redshift distortions do not a=ect the Sp signi9cantly [313]. In this regime, the results
from APM=EDSGC surveys seem systematically higher, although no more than 1" given the large
error bars. In this case other systematic e=ects might be taking place. Deprojection from angular

141 However, for future applications to surveys not as sparse as the IRAS galaxy distribution, such as 2dFGRS and SDSS,
this will not be the case.

142 The peak of the PDF is however sensitive to the largest voids in the sample (see e.g. Fig. 20), which can inJuence
the most likely value of � and thus the Sp derived from such method.

143 One should take into account that errors in previous analyses have been underestimated. The more realistic errors in
[632] were obtained using the FORCE code [621,152,630], which is based on the full theory of cosmic errors as described
in Section 6.

144 This is for dark matter, however at these scales bias should not make a qualitative di=erence. Furthermore, deviations
in galaxy surveys are seen at similar scales [319].
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Fig. 60. The redshift-space skewness S3 and kurtosis S4 as a function of smoothing scale in the PSCz survey [211].

surveys using the hierarchical model rather than the con9guration dependence predicted by PT can
cause an overestimation of the 3D Sp that can be as much as 20% for S3 (see e.g. Fig. 47). In
addition, 9nite-volume e=ects [621,328,630] as discussed in Section 6 can lead to underestimation
of Sp from redshift surveys that are typically sampling a smaller volume. 145

8.3.5. Constraints on biasing and primordial non-Gaussianity
We now review implications of the above results for biasing and primordial non-Gaussianity,

concentrating on higher-order statistics. E=ects of primordial non-Gaussianity on the power spectrum
have been considered in [212,605,612]. The results presented here are complementary to recent
studies of the impact of primordial non-Gaussian models in other aspects of large-scale structure
such as the abundance of massive clusters [538,385,691,522].

Results on the redshift-space bispectrum in the CfA=PPS sample [31] (see Fig. 57) and the
skewness of CfA=SSRS surveys [246] were used in [224] to put constraints on the non-local
(scale-dependent) bias in the cooperative galaxy formation (CGF) model [96] proposed to gen-
erate enough large-scale power in the context of otherwise-standard CDM. This model corresponds
to a (density-dependent) threshold bias model where galaxies form in regions satisfying �¿." −
U�(Rs), where U is the strength of cooperative e=ects and Rs describes the “scale of inJuence” of
non-locality. Fig. 57 shows the predictions of CGF models for (U; Rs) = (0:84; 10h−1Mpc) (dot–
long-dashed), (2:29; 20h−1Mpc) (solid) and (4:48; 30h−1Mpc) (dot–short-dashed), all of which have
similar large-scale power to a # = 0:2 CDM model. Because of the scale dependence induced by

145 These e=ects are thought to be dominant for smaller surveys such as CfA=SSRS, see [328] for a detailed discussion.
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the CGF models, additional linear bias is required to suppress these features, which in turn implies
non-zero non-linear bias to maintain agreement with Q3 ∼ 0:5 and also would be in disagreement
with the normalization implied by the CMB [596]. In addition, this would make the agreement with
the simple prediction of PT from Gaussian initial conditions purely accidental. Similar results follow
from the analysis of the skewness S3, see [224].

As discussed in Section 8.3.3, the detection of the con9guration dependence of the bispectrum in
IRAS surveys (see e.g. Fig. 58) gives a tool to constrain galaxy bias, primordial non-Gaussianity and
break degeneracies present in two-point statistics. Using a maximum likelihood method that takes
into account the non-Gaussianity of the cosmic distribution function and the covariance matrix of the
bispectrum [566], the constraints on local bias parameters from IRAS surveys assuming Gaussian
initial conditions 146 read [567,211]

1
b1

= 1:32+0:36
−0:58;

b2

b2
1

= −0:57+0:45
−0:30 (2Jy:) ; (630)

1
b1

= 1:15+0:39
−0:39;

b2

b2
1

= −0:50+0:31
−0:51 (1:2Jy:) ; (631)

1
b1

= 1:20+0:18
−0:19;

b2

b2
1

= −0:42+0:19
−0:19 (PSCz) ; (632)

with the best-9t model shown as a dashed line in Fig. 58 for the PSCz case. These results for
the linear bias of IRAS galaxies, when coupled with measurements of the power spectrum redshift
distortions, which determine >=	0:6

m =b1 � 0:4±0:12 for the PSCz survey [299,643], allow the break
of the degeneracy between linear bias and 	m, giving 	m = 0:16 ± 0:1.

If bias is local in Lagrangian, rather than Eulerian space, the bispectrum shape depends di=erently
on bias parameters [120], see Eq. (537). Physically this corresponds to galaxies that form depending
exclusively on the initial density 9eld, and then evolved by gravity. Eulerian bias, on the other hand,
corresponds to the other extreme limit where galaxies form depending exclusively on the present
(non-linear) density 9eld. Both limits are undoubtedly simplistic, but analysis of the bispectrum in
the PSCz survey suggests that the Eulerian bias model is more likely than the Lagrangian one [211].

The bispectrum results can also be used to constraint non-Gaussian initial conditions. In this case
one must also take into account the possibility of galaxy biasing, which is more complicated since
the usual formula for Gaussian initial conditions, Eq. (528), is not valid anymore, but it is calculable
in terms of the primordial statistics [565]. Using a �2 model as an example of dimensional scaling
models (where �N ∼ �N=2

2 , see Section 4.4.2), it was shown that the IRAS 1.2Jy bispectrum is
inconsistent with the amplitude and scaling of this type of initial conditions at the 95% level [567].

The PSCz bispectrum provides stronger constraints upon non-Gaussian initial conditions. In [211]
�2
N statistics were considered as a general example of dimensional scaling models. For N=1, this cor-

responds to the predictions of some inJationary models with isocurvature perturbations [531,7,404];
as N → ∞ the model becomes e=ectively Gaussian, and for a 9xed power spectrum (taken to 9t
that of PSCz) the primordial bispectrum obeys QI ˙ N−1=2 [565]. From the PSCz data, it follows

146 In addition, these constraints assume a 9xed linear power spectrum shape given by # = 0:21, in agreement with
power spectrum measurements. See [566,567] for sensitivity of bias parameters on the assumed power spectrum shape.
The dependence of the bispectrum on the assumed 	m is negligible, as 9rst pointed out in [313].
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that N ¿ 49(22) at 68% (95%) CL. Since the primordial dimensionless skewness is B3 = 2:46 for
a �2

1 9eld [514], the PSCz bispectrum constrains B3 ¡ 0:35(0:52). These results are independent of
(local) biasing, and they are obtained by marginalizing over bias parameters [211].

8.4. Recent results from 2dFGRS and SDSS

Looking at the overall picture, clustering statistics have been measured in a wide range of ob-
servational data. The catalogs listed in Tables 14 and 17 cover angular surface densities that are
almost six orders of magnitude apart, solid angles ranging over more than three orders of magnitude,
depths that go from 50–2000h−1 Mpc, and volumes ranging over three orders of magnitude. They
also involve quite di=erent systematics, from photographic plates to satellite missions and di=erent
observational 9lters. Despite these large di=erences, and after carefully correcting for systematic
e=ects, all data on higher-order statistics in the weakly non-linear regime seem to be in good agree-
ment with gravitational instability from Gaussian initial conditions. This provides a remarkable step
forward in our understanding of structure formation and points to gravity as the basic mechanism to
build cosmic structure from small primordial Juctuations generated in the early universe.

Needless to say, the observational results reviewed here, although providing a consistent picture,
have signi9cant limitations. The magnitude of statistical and systematic errors is still rather large
and the range of scales available in the weakly non-linear regime is quite restricted. In the next
few years this is expected to change signi9cantly, with the completion of the new generation of
wide-9eld surveys such as 2dFGRS and SDSS. Here we provide a brief summary of the results that
have been recently reported in the literature from these preliminary samples.

The 2dFGRS has recently publically released their 9rst versions of galaxy and quasars catalogs,
containing 100 000 [142] and 10 000 redshifts [167], respectively. The completed survey is expected
to reach 250 000 galaxies and 25 000 quasars. The parent source catalog is an extended and revised
version of the APM survey [425], with galaxies with magnitudes bJ ¡ 19:45. For a review of the
recent results see [496].

A measurement of the redshift-space two-point correlation function was presented in [497] from
analysis of 141 402 galaxies. Using a phenomenological model similar to that in Eq. (617) with
input real-space power spectrum obtained by deprojection from the APM survey [27], they obtain
a velocity dispersion parameter "v = 385 km=s and, after marginalizing over "v, a best-9t estimate
of > = 0:43 ± 0:07. These results are obtained by considering only the two-point function data for
8h−1 Mpc¡r¡ 25h−1 Mpc.

A preliminary analysis of the redshift-space power spectrum is presented in [518], based on a
sample of 147 024 galaxies. After taking into account the window of the survey, and assuming linear
perturbation theory at scales 0:02 . k . 0:15 h=Mpc, they obtain that models containing baryons
oscillations are marginally (∼ 2") preferred over featureless spectra. Assuming scale invariance
for the primordial power spectrum, their analysis gives 	mh = 0:20 ± 0:03 and a baryon fraction
	b=	m = 0:15± 0:07, in good agreement with recent determinations from measurements of the CMB
power spectrum [476,282]. The most recent analysis [652] of the publically released 100 000 galaxy
sample using KL eigenmodes 9nds however no signi9cant detection of baryonic wiggles, although
their results are consistent with the previous analyses using a larger sample, but less sophisticated
techniques.
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Using a series of volume-limited samples, Norberg et al. [480] present a measurement of the pro-
jected correlation function by integrating the redshift-space two-point function along the line of sight.
The result is well described by a power law in pair separation over the range 0:1h−1 Mpc¡r¡ 10h−1

Mpc, with r0 = 4:9 ± 0:3h−1 Mpc and B = 1:71 ± 0:06, see Eq. (626). Measurements for di=erent
samples spanning a factor of 40 in luminosity show a remarkable little variation in the power-law
slope, with all correlation functions being almost parallel with amplitudes spanning a factor of
about three.

These results have been con9rmed by recent measurements in a preliminary sample of the SDSS
survey [704] containing 29 300 galaxy redshifts. They 9nd a scale-independent luminosity bias for
scales r ¡ 10h−1 Mpc, with di=erent subsamples having nearly parallel projected correlation functions
with power-law slope B ∼ 1:8. For the whole sample, the correlation length is r0 = 6:1± 0:2h−1 Mpc
and the power-law slope B = 1:75 ± 0:03, for scales 0:1h−1 Mpc¡r¡ 16h−1 Mpc. The inferred
velocity dispersion is "v � 600 ± 100 km=s, nearly independent of scale for projected separations
0:15h−1 Mpc¡rp ¡ 5h−1 Mpc.

A series of papers have recently analyzed angular clustering of over a million galaxies in a
rectangular stripe of 2:5◦×90◦ from early SDSS data. The analysis of systematic e=ects and statistical
uncertainties is presented in [572], where the angular correlation function is calculated and the
impacts of several potential systematic errors is evaluated, from star=galaxy separation to the e=ects
of seeing variations and CCD systematics, 9nding all of them to be under control. The Limber
scaling test is performed and is shown to make angular correlation functions corresponding to all
four magnitude bins agree when scaled to the same depth. 147 Analysis of statistical errors includes
calculation of covariance matrices for w2(�) in the four slices using 200 realizations of mock catalogs
constructed using the PTHalos code [571] and also using the subsampling and jackknife methods.

Analysis of the angular correlation function is presented in [157], which is found to be consistent
with results from previous surveys (see also [261]). On scales between 1◦ and 1 arcmin, the corre-
lation functions are well described by a power law with an exponent of about −0:7, in agreement
with Eq. (625). The amplitude of the correlation function within this angular interval decreases with
fainter magnitudes in accordance with previous galaxy surveys. There is a characteristic break in the
correlation functions on scales close to 1–2◦ degrees, showing a somewhat smaller amplitude at large
scales (for the corresponding magnitude slice) than the APM correlation function. On small scales,
less than an arcminute, the SDSS correlation function does not appear to be consistent with the same
power law 9tted to the larger angular scales. This result should however be regarded as preliminary
due to the still limited amount of data (only 1.6% of the 9nal size of the SDSS photometric sample)
and the uncertainties in modeling the covariance matrix of w2(�) obtained from the mock catalogs
described above.

The angular power spectrum P2D(l) is obtained in [651] for large angular scales corresponding to
multiple moments ‘ . 600. The data in all four magnitude bins are shown to be consistent with a
simple �CDM “concordance” model with non-linear evolution (particularly evident for the brightest
galaxies) and linear bias factors of order unity. The results were obtained using KL compression,
quadratic estimators and presented in terms of uncorrelated band powers (Section 6.11). These results,
together with those of the angular correlation function [572,157], are used in [189] to perform an
inversion to obtain the 3D power spectrum, using a variant of the SVD decomposition method of

147 These correspond to r ∗ =18–19,19–20,20–21,21–22, with median redshifts Pz ∼ 0:17; 0:25; 0:35; 0:46 [189].
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[204] 148 with the corresponding covariance matrix computed from the mock catalogs. The resulting
3D power spectrum estimates from both inversions agree with each other and with previous estimates
from the APM survey for 0:03 h=Mpc¡k ¡ 1 h=Mpc. These results are shown to agree with an
alternative method presented in [617], where the projected galaxy distribution is expanded in KL
eigenmodes and the 3D power spectrum parameters recovered are # = 0:188 ± 0:04 and b1"8 =
0:915 ± 0:06.

Preliminary results for the higher-order correlations in the SDSS have been presented in [261,262,
637], including s3, s4, q3 and c12 statistics. In all cases a very good agreement with previous surveys
was found. In particular, at the bright end, the agreement with the APM results is quite remarkable
despite the important di=erences in survey design and calibration. These results con9rm the need for
non-trivial biasing at small scales, as discussed in Sections 8.2.4 and 8.2.5 (see also Fig. 54).

9. Summary and conclusions

As illustrated throughout this work, PT provides a valuable tool to understand and calculate pre-
dictions for the evolution of large-scale structure in the universe. The last decade has witnessed a
substantial activity in this area, with strong interplay with numerical simulations of structure forma-
tion and observations of clustering of galaxies and, more recently, weak gravitational lensing. As
galaxy surveys become larger probing more volume in the weakly non-linear regime, new applica-
tions of PT are likely to Jourish to provide new ways of learning about cosmology, the origin of
primordial Juctuations, and the relation between galaxies and dark matter.

The general framework of these calculations is well established and calculations have been pursued
for a number of observational situations, whether it is for the statistical properties of the local density
contrast, the velocity divergence, for the projected density contrast, redshift measurements or for more
elaborate statistics such as joint density cumulants. All these results provide robust frameworks for
understanding the observations or for reliable error computations. There are, however, a number of
outstanding issues that remain to be addressed in order to improve our understanding of gravitational
instability at large scales:

• Most of the calculations have been done assuming Gaussian initial conditions, except for some
speci9c cases such as �2 models. Although present observations are consistent with Gaussian
initial conditions, deriving quantitative constraints on primordial non-Gaussianity requires some
knowledge or useful parametrization of non-Gaussian initial conditions and how they evolve by
gravity.

• Predictions of PT for velocity 9eld statistics are still in a rudimentary state compared to the case
of the density 9eld. Upcoming velocity surveys will start probing scales where PT predictions can
be used. In addition, robust methods for calculating redshift distortions including the non-linear
e=ects due to the redshift-space mapping are needed to fully extract information from the next
generation of galaxy redshift surveys.

• Another observational context in which a PT approach can be very valuable is the Lyman-= forest
observed in quasar spectra. The statistical properties of these systems should be accessible to

148 See Section 8.2.3 for a brief discussion of inversion procedures and results.
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perturbative methods since most of the absorption lines correspond to modest density contrasts
(from 1 to 10). This is a very promising 9eld for observational cosmology.

• Accurate constraints on cosmological parameters from galaxy surveys require precise models of
the joint likelihood of low- and higher-order statistics including their covariance matrices. To date
this has only been investigated in detail numerically, or analytically in some restricted cases.

In addition, as we probe the transition to the non-linear regime, there are a few technical issues that
need more investigation,

• Most results have been obtained in the tree-level approximation, for which systematic calculations
can be done and the emergence of non-Gaussianity can be characterized in an elegant way. There
is no such systematic framework for loop corrections, and only a few general results are known
in this case. Furthermore, loop corrections are found to be divergent for power-law spectra with
index n¿ − 1, the interpretation of which is still not clear. Although this issue is irrelevant for
realistic spectra such as CDM, its resolution may shed some light into the physics of the non-linear
regime.

• The SC collapse prescription (Section 5.5.2) leads to a good description of Sp parameters in
the transition to the non-linear regime when compared to N -body simulations and exact one-loop
corrections when known. Is it possible to improve on this approximation, or make it more rigorous
in any well-controlled way while maintaining its simplicity?

• The development of HEPT (Section 4.5.6) and EPT (Section 5.13) suggests that there is a deep
connection between gravitational clustering at large and small scales. Is this really so, or is it just
an accident? Why do strongly non-linear clustering amplitudes seem to be so directly related to
initial conditions?

From the observational point of view, the next few years promise to be extremely exciting, with
the completion of 2dFGRS and SDSS and deep surveys that will trace the evolution of large-scale
structure toward high redshift. 149 Observations of the so-called Lyman break galaxies [603] should
soon provide a precious probe of the high-redshift universe, in particular regarding the evolution of
galaxy bias [2,528,110]. Furthermore, weak lensing observations will provide measurements of the
projected mass density that can be directly compared with theoretical predictions. In addition, CMB
satellites and high-resolution experiments will probe scales that overlap with galaxy surveys and thus
provide a consistency check on the framework of the growth of structure.

Outstanding observational issues abound, most of them perhaps related to the way galaxies form
and evolve. One of the most pressing ones, as discussed many times in Section 8, is probably to
have a convincing explanation of why correlation functions scale as power laws at non-linear scales.
The scaling in Figs. 50 and 56 is certainly remarkable and preliminary results from 2dFGRS [280]
and SDSS [704,157] seem already to con9rm and extend these results. In the CDM framework,
however, this simple behavior is thought to be the result of accidental cancellation of the dark
matter non-power-law form by scale-dependent bias due to the way dark matter halos are populated
by galaxies (see discussion in Section 7.1.3). Although this may seem rather adhoc, this model has,
on the other hand, many observable consequences. The same weighting that makes the two-point
function depend as a power law of separation [579,495,570] suppresses the velocity dispersion and

149 See e.g. [130] for a recent assessment of how well upcoming deep surveys will determine correlation functions.
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mean streaming of galaxies [591,592] as observed, see e.g. [349]. In addition, this weighting a=ects
higher-order statistics in the non-linear regime, suppressing them in comparison with their dark
matter counterparts [570] (see Fig. 45) as observed, see e.g. Fig. 54 for a comparison between
dark matter and Sp in the APM survey. There are also complementary indications that galaxies do
not trace the underlying dark matter distribution at small scales from measurements of higher-order
statistics. As discussed in Section 8.2.3, reconstruction of the linear power spectrum from galaxy
surveys leads to signi9cant disagreement of higher-order moments if no biasing is imposed at small
scales, as shown in Fig. 54 for APM galaxies. A promising way to con9rm that the underlying
higher-order statistics of the dark matter are much higher than those of galaxies at small scales is by
measuring higher-order moments in weak gravitational lensing. This will likely be done in the near
future, as weak lensing surveys are already beginning to probe the relation between dark matter and
galaxies [315].

In any case, statistical analysis of future observations are going to decide whether the small-scale
behavior of correlations is dictated by biasing or if a new framework is needed to understand galaxy
clustering at non-linear scales. What seems clear, whatever the outcome, is that the techniques
described here will be a valuable tool to achieve that goal.
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Appendix A. The spherical collapse dynamics

The spherical collapse dynamics can be obtained from the Friedmann equations of the expansion
factor in di=erent cosmologies. It amounts to solve the motion equation for the radius R of a shell
collapsing under its own gravity,

d2R
dt2

= −G
M (¡R)

R2 ; (A.1)

where M (¡R) is the mass encompassed in a radius R. The corresponding density contrast can be
de9ned as

�sc(t) =
M (¡R)
P�4�R3=3

− 1 : (A.2)

Explicit solutions are known for open or closed universes without cosmological constant. The com-
plete derivation of them can be found in [508] where the density contrast is expressed as a function
of time t. We present the results here in a slightly di=erent way by expressing the non-linear density
contrast as a function of the linear density contrast, C (≡ D+(t)�init) [43].
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For an open universe the background evolution is described by parameter  0 so that the current
value of the density parameter is given by

	0 =
2

1 + cosh  0
: (A.3)

Similarly the density Juctuation is characterized by a parameter �. There is a minimal value of
the linear density contrast below which the density Juctuation is still below critical and does not
collapse. This is given by

jmin =
9
2

sinh  0(sinh  0 −  0)
(cosh  0 − 1)2 : (A.4)

As a result, if the linear density contrast j¿ jmin, the evolution of the perturbation density is
given by

�sc(j) =
(

cosh  0 − 1
−cos � + 1

)3( −sin � + �
sinh  0 −  0

)2

− 1 (A.5)

with

j= jmin

[( −sin � + �
sinh  0 −  0

)2=3

+ 1

]
: (A.6)

If j¡ jmin, we have

�sc(j) =
(

cosh  0 − 1
cosh �− 1

)3( sinh �− �
sinh  0 −  0

)2

− 1 (A.7)

with

j= −jmin

[(
sinh �− �

sinh  0 −  0

)2=3

− 1

]
: (A.8)

The Einstein–de Sitter case is recovered when  0 → 0. It implies that jmin → 0. In this case the
solution reads, for j¡ 0,

�sc(j) =
9
2

(sinh �− �)2

(cosh �− 1)3 − 1 ; (A.9)

j= − 3
5 [ 3

4 (sinh �− �)]2=3 ; (A.10)

and for j¿ 0,

�sc(j) =
9
2

(�− sin �)2

(1 − cos �)3 − 1 ; (A.11)

j= 3
5[3

4 (�− sin �)]2=3 : (A.12)
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In the limit 	0 → 0 we have  0 → ∞. It implies that jmin → 3
2 . Moreover, j is 9nite when � is

close to  0 so that

j=
3
2

(
exp �
exp  0

)
− 1; �sc =

exp  0

exp �
; (A.13)

which gives

�sc(j) =
1

(1 − 2j=3)3=2 : (A.14)

The case of a closed universe is obtained by the change of variable  0 → i 0.

Appendix B. Tree summations

In this appendix we present methods for performing tree summations. These calculations have been
developed initially in di=erent contexts (such as polymer physics, see e.g. [185]). In cosmology, these
computation techniques have been introduced in [551] and presented in detail in a more complex
situation in [41].

B.1. For one Feld

The issue we address is the computation of the sum of all tree diagrams (in a speci9c sense given
in the following) connecting an arbitrary number of points. More speci9cally we de9ne ’(y) as
(minus) the sum of all diagrams with the weight (−y)n for diagrams of n points.

For computing the contribution of each order the rule is to build all possible minimal connection
(that means n − 1 connections for n points) and to a=ect the value .p to points connected to
p neighbors. The value of each diagram is then given by the product of the vertices .p it is
composed of.

The function ’(y) then corresponds to the cumulant generating function,

’(y; .1; .2; : : :) = −
∞∑
n=2

(−y)n
∑

trees connecting n points

( ∏
vertices

.p

)
: (B.1)

At the end of the calculation the value of .1 will be unity, but for the time being we assume it is
a free parameter. Then ’ is a function of y and of the vertices .p. We can then de9ne � as

− � =
1
−y

9(−’)
9.1

: (B.2)

Like ’, (−�) is a function of y and of the vertices .p. This corresponds to all the diagrams for
which one external line (connected to a .1 vertex) has been marked away. This is the sum of the
so-called diagrams with one free external line. It is possible to write down an implicit equation
for �,

− � = −y
(
.1 − .2 � + .3

�2

2
+ · · · + .p

(−�)p−1

(p− 1)!
+ · · ·

)
: (B.3)
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This equation expresses the fact that � can be reconstructed in a recursive way (see Fig. 25). Note
the factor (p− 1)! which corresponds to the symmetry factor. If one de9nes the generating function
of the vertices,

9(�) =
∞∑
p=1

.p
(−�)p

p!
; (B.4)

then we have

� = −y
99
9� : (B.5)

To complete the calculation we need to introduce the Legendre transform L(�; .2; : : :) de9ned as

L(y; �; .2; : : :) = ’ + y.1� : (B.6)

It is important to note that L is viewed as a function of � and not of .1. We then have the
remarkable property due to the Legendre transform,

9L
9� =

9’
9.1

9.1

9� + y�
9.1

9� + y.1 = y.1 : (B.7)

From Eq. (B.3) we have

y .1 = �− y
∞∑
p=2

.p
(−�)p−1

(p− 1)!
; (B.8)

which after integrating relation (B.7) implies that

L = c +
�2

2
+ y

∞∑
p=2

.p
(−�)p

p!
= c +

�2

2
+ y9(�) + y.1� ; (B.9)

which leads to (the integration constant c = 0 is such that ’(y) ∼ −y2 at leading order in y)

’(y) = y9(�) − 1
2y�9

′(�) : (B.10)

This equation, with Eq. (B.3), gives the tree generating function expressed as a function of the
vertex generating function 9.

B.2. For two Felds

We can extend the previous results to joint tree summations. It corresponds to either two di=erent
9elds taken at the same position (as the density and the velocity divergence for instance), or to two
9elds taken at di=erent locations. We want to construct the joint generating function, ’(y1; y2), of
the joint cumulants,

’(y1; y2) = −
∑

n;m;n+m¿2

Cnm
(−y1)n

n!
(−y2)m

m!
; (B.11)
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where Cnm is the value of each cumulant. In this case for each diagram there are n vertices of type
1, and m of type 2. They take respectively the value .p and /q if they are connected respectively
to p or q neighbors. Obviously, if the two 9elds are identical the two series identify. Moreover, in
order to account for cell separation, a weight � is put for each line connecting points of di=erent
nature.

The generating function ’ is then a function of y1; y2; �; .1; : : : ; /1; : : : : One can de9ne the two
functions �1 and �2 by

�1 =
1

−y1

9(−’)
9.1

; �2 =
1

−y2

9(−’)
9/1

: (B.12)

It is easy to see that the functions �1 and �2 are given respectively by

�1 = y1

∞∑
p=1

.p
(−�1)p−1

(p− 1)!
+ �y2

∞∑
p=1

/p
(−�2)p−1

(p− 1)!
; (B.13)

�2 = �y1

∞∑
p=1

.p
(−�1)p−1

(p− 1)!
+ y2

∞∑
p=1

/p
(−�2)p−1

(p− 1)!
: (B.14)

This expresses the fact that there is a joint recursion between the two functions. A factor � is
introduced whenever a vertex of a given type is connected to vertex of the other type.

De9ning the Legendre transform as L = ’ + y1�1.1 + y2�2/1, one obtains

9L
9�1

= y1.1;
9L
9�2

= y2/1 : (B.15)

One should then solve the linear system for .1 and /1 given by Eqs. (B.13) and (B.14). One
eventually gets for ’,

’ = y191(�1) + y292(�2) +
1

2(1 − �2)
(�2

1 − 2��1�2 + �2
2) ; (B.16)

where 91 and 92 are, respectively, the generating functions of .p and /p. This result can be rewritten
in a more elegant form,

’(y1; y2) = y191(�1) + y292(�2) − 1
2y1�19′1(�1) − 1

2y2�29′2(�2) : (B.17)

If � is unity, for instance for the computation of the joint density distribution of (�; �), we have

� = �1 = �2 = −y19′(�) − y29′(�2) : (B.18)

B.3. The large separation limit

The other case of interest is when � is small (which means that the correlation function at the
cell separation is much smaller than the average correlation function at the cell size).
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It is then possible to expand ’(y1; y2) at leading order in �. The results read

’(y1; y2) = ’1(y1) + ’2(y2) − �(0)
1 (y1)��(0)

2 (y2) ; (B.19)

where �(0)
1 and �(0)

2 are, respectively, the functions �1 and �2 computed when � = 0.

Appendix C. Geometrical properties of top-hat window functions

In this section we recall the properties of top-hat window function. The derivations are presented
in a systematic way for any dimension of space D. The window function WD in Fourier space is
given by

WD(k) = 2D=2 # (D=2 + 1)
JD=2(k)
kD=2 : (C.1)

We are interested in computing the angle integrals of WD(| Pl1 − Pl2|) times a geometrical function that
can be expressed in terms of Legendre polynomials. In particular we want to compute

∫
dD	WD(| Pl1−

Pl2|)[1− (Pl1 Pl2)2=(l2
1l

2
2)] and

∫
dD	WD(| Pl1 − Pl2|)[1 + Pl1 Pl2=l2

1]. In general, the only angle that intervenes
in the angular integral, dD	, is the relative angle ’ so that dD	=	tot reduces to #(D=2)=(

√
�#[(D−

1)=2])sin(’)D−2 d’, 06’6 �.
In order to complete these calculations, we need the summation theorem (GR, 8.532) for Bessel

function,

J.(| Pl1 − Pl2|)
| Pl1 + Pl2|.

= 2.#(.)
∞∑
k=0

(. + k)
J.+k(l1)

l.1

J.+k(l2)
l.2

C.
k(cos’) ; (C.2)

where C.
k are Gegenbauer polynomials. Note that in the case of . = 0 the previous equation reads

J0(| Pl1 − Pl2|) = J0(l1) J0(l2) + 2
∞∑
k=1

Jk(l1) Jk(l2) cos (k’) : (C.3)

In the following, the only property of interest for the Gegenbauer polynomials is (GR, 7.323)∫ �

0
C.

k(cos’) sin2.(’) d’ = 0 for k¿ 1 ; (C.4)∫ �

0
C.

0(cos’) sin2.(’) d’ =
�#(2. + 1)
22. #2(1 + .)

: (C.5)

As a result we have

#(D=2)√
�#[(D − 1)=2]

∫ �

0
sin(’)D−2 d’WD(| Pl1 − Pl2|)

[
1 − (Pl1 Pl2)2

l2
1l

2
2

]

=
2D #2(D=2)#(D=2 + 1)√

�#[(D − 1)=2]

∞∑
k=0

(
D
2

+ k
)

J.+k(l1)
l.1

J.+k(l2)
l.2

×
∫

sin(’)D d’CD=2
k (cos’) : (C.6)
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The only non-vanishing term of this summation is the one corresponding to k = 0. We 9nally have∫
dD	
	tot

WD(| Pl1 − Pl2|)
[
1 − (Pl1 Pl2)2

l2
1l

2
2

]
=
(

1 − 1
D

)
WD(l1)WD(l2) : (C.7)

This result writes as a kind of commutation rule: the 9ltering can be applied to the wave vectors
separately provided the angular kernel is properly averaged.

The second relation can be obtained from the observation that

l
d
dl

[
JD=2−1(l)
lD=2−1

]
= −JD=2(l)

lD=2 ; (C.8)

JD=2−1(l)
lD=2−1 = l

d
dl

[
JD=2(l)
lD=2

]
+ d

JD=2(l)
lD=2 : (C.9)

The summation theorem applied to JD=2−1(| Pl1 + Pl2|)=| Pl1 + Pl2|D=2−1 leads to∫
dD	
	tot

JD=2−1(| Pl1 + Pl2|)
| Pl1 + Pl2|D=2−1

=
2 (D − 2)

√
�#(−2 + D)

2D=2#((−1 + D)=2)
JD=2−1(l1)

lD=2−1
1

JD=2−1(l2)

lD=2−1
2

: (C.10)

Taking the derivative of this equality with respect to l1 leads to∫
dD	
	tot

WD(| Pl1 − Pl2|)
[
1 −

Pl1 Pl2

l2
1

]
= WD(l1)

[
WD(l2) +

l2

D
d

dl2
WD(l2)

]
: (C.11)

Appendix D. One-loop calculations: dimensional regularization

To obtain the behavior of the one-loop p-point spectra for n¡ − 1, one can use dimensional
regularization (see e.g. [143]) to simplify considerably the calculations. Since we are interested
in the limit where the ultraviolet cuto= kc → ∞, all the integrals run from 0 to ∞, and diver-
gences are regulated by changing the dimensionality d of space: we set d = 3 + j and expand in
j�1. For example, for one-loop bispectrum calculations, we need the following one-loop three-point
integral:

J (.1; .2; .3) ≡
∫

ddq
(q2).1 [(k1 − q)2].2 [(k2 − q)2].3

: (D.1)

When one of the indices vanishes, e.g. .3 = 0, this reduces to the standard formula for dimensional-
regularized two-point integrals [595]

J (.1; .2; 0) =
#(d=2 − .1)#(d=2 − .2)#(.1 + .2 − d=2)

#(.1)#(.2)#(d− .1 − .2)
�d=2kd−2.1−2.2

1 ; (D.2)

which is useful for one-loop power spectrum calculations. The integral J (.1; .2; .3) appears in triangle
diagrams for massless particles in quantum 9eld theory, and can be evaluated for arbitrary values of
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its parameters in terms of hypergeometric functions of two variables. The result is [178]

J (.1; .2; .3) =
�d=2kd−2.123

1

#(.1)#(.2)#(.3)#(d− .123)
× (#(.3)#(.123 − d=2)

×F4(.3; .123 − d=2; 1 + .23 − d=2; 1 + .13 − d=2; x; y)

×#(d=2 − .13)#(d=2 − .23) + yd=2−.13#(.2)#(d=2 − .1)

×F4(.2; d=2 − .1; 1 + .23 − d=2; 1 − .13 + d=2; x; y)

×#(.13 − d=2)#(d=2 − .23) + xd=2−.23#(.1)#(d=2 − .2)

×F4(.1; d=2 − .2; 1 − .23 + d=2; 1 + .13 − d=2; x; y)

×#(d=2 − .13)#(.23 − d=2) + xd=2−.23yd=2−.13#(d=2 − .3)

×F4(d− .123; d=2 − .3; 1 − .23 + d=2; 1 − .13 + d=2; x; y)

×#(d− .123)#(.23 − d=2)#(.13 − d=2)) ; (D.3)

where .123 ≡ .1 +.2 +.3, .ij ≡ .i+.j, x ≡ (k2−k1)2=k2
1 , y ≡ k2

2 =k
2
1 , and F4 is Apell’s hypergeometric

function of two variables, with the series expansion:

F4(a; b; c; d; x; y) =
∞∑
i=0

∞∑
j=0

xiyj

i! j!
(a)i+j(b)i+j

(c)i(d)j
; (D.4)

where (a)i ≡ #(a + i)=#(a) denotes the Pochhammer symbol. When the spectral index is n = −2,
the hypergeometric functions reduce to polynomials in their variables due to the following useful
property for −a a positive integer:

F4(a; b; c; d; x; y) =
−a∑
i=0

−a−i∑
j=0

xjyi

j! i!
(b)i+j

(c)i(d)j

(−1)i+j(−a)!
(−a− i − j)!

: (D.5)

When using expressions such as Eq. (D.3), divergences appear as poles in the gamma functions;
these can be handled by the following expansion (n = 0; 1; 2; : : : and j→ 0),

#(−n + j) =
(−1)n

n!

[
1
j +  (n + 1) +

j
2

(
�2

3
+  2(n + 1) −  ′(n + 1)

)]
; (D.6)

plus terms of order j2 and higher. Here  (x) ≡ d ln#(x)=dx and

 (n + 1) = 1 +
1
2

+ · · · +
1
n
− Be ; (D.7)

 ′(n + 1) =
�2

6
−

n∑
k=1

1
k2 ; (D.8)

with  (1) = −Be = −0:577216 : : : and  ′(1) = �2=6.
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Appendix E. PDF construction from cumulant generating function

In this section we present the mathematical relation between the cumulant generating function
de9ned in Section 3 and the one-point probability distribution function of the local density, and
more generally the counts-in-cells probabilities.

In this presentation we follow the calculations (and most of notations) developed in [16].

E.1. Counts-in-cells and generating functions

Let us consider a cell of volume V placed at random in the 9eld. We denote P(N ) as the
probability that this cell contains N particles. One can de9ne the probability distribution function
P(A) as

P(A) =
∞∑

N=0

AN P(N ) : (E.1)

By construction, the counts-in-cells probabilities P(N ) are obtained by a Taylor expansion of P(A)
around A = 0:

P(N ) =
1
N !

dn

dAnP(A = 0) : (E.2)

Remarkably, the (factorial) moments of this distribution are obtained by a Taylor expansion of P(A)
around A = 1:

P(1) = 1;

d
dA

P(1) = PN;

d2

dA2P(1) = 〈N (N − 1)〉;
...

dp

dApP(1) = 〈N (N − 1) · · · (N − p + 1)〉 : (E.3)

If the 9eld is an underlying Poisson distribution of a continuous 9eld, then the factorial moments,
〈N (N − 1) · · · (N − p + 1)〉, are equal to PNpMp where Mp is the pth moment of the local density
distribution. P(A) can therefore be written in terms of the moment-generating function (see Section
3.3.3), P(A) = M[(A − 1) PN ], which in turn can be written in terms of the cumulant generating
function, C(A− 1):

P(A) = exp(C[(A− 1) PN ]) : (E.4)

When the cumulant generating function is written in terms of the Sp generating function, the
counts-in-cells read

P(N ) =
∮

1
2�i

dA
AN+1 exp

[
−

PN P�(1 − A) + ’( PN P�(1 − A))
P�

]
; (E.5)
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where the integral is made in the complex plane around the singularity A = 0. One can change the
variable to use y = PN P�(1 − A) so that

P(N ) =
−1
PN P�

∮
dy
2�i

(
1 − y

PN P�

)−(N+1)

exp
[
−y + ’(y)

P�

]
: (E.6)

E.2. The continuous limit

The contributing values for y are 9nite so that in the continuous limit A should be close to unity.
As a result one can write(

1 − y
PN P�

)N+1

= exp
[
−(N + 1)log

(
1 − y

PN P�

)]
= exp

[
− N

PN P�
y
]

: (E.7)

It implies that

P(�) d� = −d�
P�

∫ +i∞

−i∞
dy
2�i

exp
[
−y + ’(y)

P�
+

y�
P�

]
: (E.8)

This is the inverse Laplace transform.
It is important to note that the counts-in-cells P(N ) can be recovered by a Poisson convolution

of the continuous distribution. A Poisson distribution is given by

PPoisson(N; PN ) =
PNN

N !
e− PN =

∮
1

2�i
dA

AN+1 exp(− PN (1 − A)) : (E.9)

Then ∫
d�P(�)PPoisson(N; PN�)

= −
∫

d�
P�

∫ +i∞

−i∞
dy
2�i

∮
dA
2�i

1
AN+1 exp

[
−y + ’(y)

P�
+

y�
P�
− PN�(1 − A)

]
: (E.10)

The integration over � leads to �D(y − PN P�(1 − A)), which 9nally implies∫
d�P(�)PPoisson(N; PN�) = P(N ) : (E.11)

This is not surprising since we assumed from the very beginning that any discrete 9eld would be
the Poisson realization of a continuous 9eld.

E.3. Approximate forms for P(�) when P��1

In this section, we review the various approximations that have been used for P(�). It obviously
depends on the regime we are interested in, that is on the amplitude of the density Juctuations P�.

When P� is small, it is possible to apply a saddle-point approximation. This point is de9ned by

�s =
d’(ys)

dy
: (E.12)



228 F. Bernardeau et al. / Physics Reports 367 (2002) 1–248

It leads to

P(�) =
1√

−2� P�’′′(ys)
exp
[
−1

P�
(ys + ’(ys) − ys’′(ys))

]
: (E.13)

In case ’(y) is obtained through a tree summation, as for the weakly non-linear regime, one 9nally
gets formula (312).

Obviously, such a result makes sense only if ’′′(y) is negative. Because of the presence of a
singular point on the real axis this will not be always the case. In practice, it will be true only for
values of the density smaller than a critical value, �c. These values are given in Table 9 for the
results obtained in the quasi-linear regime.

For �¿�c, the shape the saddle-point position is pushed toward the singularity. The behavior of
the PDF will then be dominated by the behavior of ’(y) around this point. Let us write generally
’(y) as

’(y) = ’s + rs(y − ys) + · · · − as(y − ys)!s ; (E.14)

where the expansion around the singular point has been decomposed into its regular part ’s + rs(y−
ys) + · · · and singular part as(y− ys)!s , where ws is a non-integer value (ws = 3

2 in the quasi-linear
theory). In (E.8) the integration path for y will be pushed toward the negative part of the real axis
(y¡ys). It can thus be described by the real variable u varying from 0 to ∞ with

y = ys + ue±i� ; (E.15)

where the sign changes according to whether y is above or under the real axis. Expanding the
singular part in the exponential, one gets

P(�) =
−as

P�
2

∫ ∞

0
du u!s

e±i�(!s−1)

2�i
exp
(
−�− rs

P�
u
)

; (E.16)

which gives

P(�) =
as

#(−!s) P�
2

(
�− rs

P�

)−!s−1

exp
(
−’s

P�
− |ys|�P�

)
(E.17)

taking advantage of the relation #(!s + 1)#(−!s) =−sin(�!s)=�. For the parameters describing the
quasi-linear theory one gets relation (314).

E.4. Approximate forms for P(�) when P��1

Two scaling domains have been found (see [16] for a comprehensive presentation of the scaling
laws). One corresponds to the rather dense regions. It corresponds to cases where ’(y) is always
9nite in (E.8) For large values of P�, it is therefore possible to write

P(�) =
−1
P�
2

∫ +i∞

−i∞
dy
2�i

’(y)exp(xy) with x = �= P� : (E.18)
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One can see that the PDF is a function of x only. Roughly speaking, in this integral, y ∼ 1=x so
that the validity domain of this expression is limited to cases where ’(1=x)� P�. It will be limited
to a regime where

x�( P�=a)1=(1−!) ; (E.19)

if ’(y) behaves like ay1−! at large y.
If x is small, in a regime where ’(y) can be approximated by its power-law asymptotic shape,

the PDF eventually reads

P(�) =
1
P�
2

a(1 − !)
#(!)

x2−! : (E.20)

For large values of x, one recovers the exponential cut-o= found in the previous regime, (E.17),
with further simpli9cations since P��1:

P(�) =
as

#(−!s) P�
2

(
�
P�

)−!s−1

exp(−|ys|�= P�) : (E.21)

The second scaling regime corresponds to the underdense regions. They are described by the asymp-
totic form of ’(y), which implies

P(�) =
−1

P�

∫ +i∞

−i∞
dy
2�i

exp
(
−a

y1−!

P�
+

�y
P�

)
: (E.22)

A simple change of variable, t1−! = y1−! P�=a, shows that it can be written as

P(�) =
−1

P�

(
a
P�

)−1=(1−!) ∫ +i∞

−i∞
dt
2�i

exp(−t1−! + zt) (E.23)

with

z =
�
�v

; �v = P�
(
a
P�

)1=(1−!)

; (E.24)

which can be written

P(�) =
1

��v

∫ ∞

0
du sin[u1−!sin �u]e−zu+u1−! cos �u : (E.25)

For large values of z, the power-law behavior of (E.19) is recovered, and the two regimes overlap.
Small values of z however describe the small-density cut-o=. The expression of the PDF can

be obtained by a saddle-point approximation, and it appears to be a particular case of the results
obtained in Eq. (E.13). Note that the shape of this cut-o= depends only on !,

P(�) =
1
�v

(1 − !)1=2!

√
2�!

z−1=2−1=2! exp[ − !(1 − !)(1−!)=! z(1−!)!] : (E.26)

E.5. Numerical computation of the Laplace inverse transform

The starting point of the numerical computation of the local density PDF from the cumulant
generating function is Eq. (E.8). In case the cumulant generating function can be obtained from
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a vertex generating function G, the latter is the natural variable to use. The technical diQculty is
actually to choose the path to follow in the y or G complex plane. The original path for y runs from
−i∞ to +i∞ along the imaginary axis. But as the functions �(y) or ’(y) are not analytic over the
complex plane (there is at least one singularity on the local axis for y = ys ¡ 0) the crossing point
of the path with the real axis cannot be moved to the left side of ys (otherwise, the PDF would
simply vanish!). Actually the crossing point of the path for the numerical integration is the position
of the saddle point, ysaddle de9ned by

0 = �− 1 − d’(y)
dy

∣∣∣∣
y=ysaddle

: (E.27)

This equation has a solution as long as �¡ 1 + �c and it is then at a point ysaddle ¿ys (see Section
5.8). In the case of �¿ 1 + �c, the crossing point of the integration path is then simply chosen to
be y = ys. The integration path is subsequently built in such a way that �y− 1 − ’(y) is kept real
and negative to avoid unnecessary oscillation of the function to integrate. In practice, the path is
built step by step with an adaptive integration scheme [44,151].

Appendix F. Cosmic errors: expressions for the factorial moments

In this appendix, we 9rst explain how the cosmic error on the factorial moments of count-in-cells
is calculated. We then list the corresponding analytic expression for the cosmic covariance matrix
up to third order in the 3D case.

F.1. Method

From now, to simplify we assume that the cells are spherical (or circular, in two dimensions),
but the results are valid in practice with the obvious appropriate corrections for any compact cell.

The local Poisson assumption allows us to neglect correlations inside the union C∪ of volume
v∪ of two overlapping cells and the non-spherical contribution of C∪. As a result, the generating
function for bicounts in overlapping cells reads [621]

Pover(x; y) = P∪[q(x + y) + pxy] : (F.1)

The generating function P∪(x) is the same as P(x) but for a cell of volume v∪, and

p = [1 − fD(r=R)]=[1 + fD(r=R)]; q = fD(r=R)=[1 + fD(r=R)] ; (F.2)

where fD(r=R) represents the excess of volume (or area) of v∪ compared to vR,

v∪ = vR[1 + fD(r=R)] ; (F.3)

and r is the separation between the two cells. We have f3( ) = (3
4) − ( 1

16) 3, and f2( ) = 1 −
(1=�)[2arccos( =2) −

√
1 −  2=2] in three and two dimensions, respectively.
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The generating function for disjoint cells is Taylor expanded:

Pdisjoint(x; y) � P(x)P(y)[1 + R(x; y)] + O(�= P�
2
) (F.4)

with

R(x; y) = �
∞∑

M=1;N=1

(x − 1)M (y − 1)N
SNM

N !M !
PNN+M P�

N+M−2
: (F.5)

It is then easy to calculate cross-correlations on factorial moments, Zk; l, by computing the double
integral in Eq. (449) after applying partial derivatives in Eq. (447), with the further assumption that
the two-point correlation function is well approximated by a power law of index −B � −1:8 for
r6 2R. 150

F.2. Analytic results

The cosmic errors for the factorial moments as discussed in Section 6.7.4, Eq. (451), are now
detailed here, up to third order (in the 3D case):

 F
11 = PN 2 P�(L̂) ; (F.6)

 E
11 = 5:508 PN 2 P�

v
V

; (F.7)

 D
11 = PN

v
V

; (F.8)

 F
22 = 4 PN 4 P�(L̂) (1 + 2 P�Q12 + P�

2
Q22) ; (F.9)

 E
22 = PN 4 P�

v
V

(17:05 + 3:417 P� + 45:67 P�Q3 + 42:24 P�
2
Q4) ; (F.10)

 D
22 = PN 2 v

V
(0:648 + 4 PN + 0:502 P� + 8:871 PN P� + 6:598 PN 2 P�

2
Q3) ; (F.11)

 F
33 = 9 PN 6 P�(L̂) (1 + 2 P� + P�

2
+ 4 P�Q12 + 4 P�

2
Q12 + 6 P�

2
Q13

+ 6 P�
3
Q13 + 4 P�

2
Q22 + 12 P�

3
Q23 + 9 P�

4
Q33) ; (F.12)

 E
33 = PN 6 P�

v
V

(34:62 + 99:26 P� + 39:60 P�
2

+ 180:3 P�Q3 + 331:1 P�
2
Q3

+ 93:50 P�
3
Q2

3 + 633:5 P�
2
Q4 + 441:3 P�

3
Q4

+ 1379 P�
3
Q5 + 1668 P�

4
Q6) ; (F.13)

 D
33 = PN 3 v

V
(0:879 + 5:829 PN + 9 PN 2 + 2:116 P� + 27:13 PN P�

+ 66:53 PN 2 P� + 10:59 PN P�
2

+ 74:23 PN 2 P�
2

+ 1:709 P�
2
Q3

150 The results do not depend signi9cantly on the value of B [621].
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+ 42:37 PN P�
2
Q3 + 148:5 PN 2 P�

2
Q3 + 111:2 PN 2 P�

3
Q3

+ 44:40 PN P�
3
Q4 + 296:4 PN 2 P�

3
Q4 + 349:3 PN 2 P�

4
Q5) : (F.14)

The cosmic cross-correlations read

 F
12 = 2 PN 3 P�(L̂)(1 + P�Q12) ; (F.15)

 E
12 = PN 3 P�

v
V

(8:525 + 11:42 P�Q3) ; (F.16)

 D
12 = PN 2 v

V
(2:0 + 1:478 P�) ; (F.17)

 F
13 = 3 PN 4 P�(L̂)(1 + P� + 2 P�Q12 + 3 P�

2
Q13) ; (F.18)

 E
13 = PN 4 P�

v
V

(9:05 + 11:42 P� + 21:67 P�Q3 + 42:24 P�
2
Q4) ; (F.19)

 D
13 = PN 3 v

V
(3:0 + 6:653 P� + 4:949 P�

2
Q3) ; (F.20)

 F
23 = 6 PN 5 P�(L̂)(1 + P� + 3 P�Q12 + 3 P�

2
Q13 + P�

2
Q12 + 2 P�

2
Q22 + 3 P�

3
Q23) ; (F.21)

 E
23 = PN 5 P�

v
V

(23:08 + 33:09 P� + 90:17 P�Q3 + 55:19 P�
2
Q3 + 211:2 P�

2
Q4 + 229:9 P�

3
Q5) ; (F.22)

 D
23 = PN 3 v

V
(1:943 + 6 PN + 4:522 P� + 26:61 PN P� + 9:898 PN P�

2

+ 3:531 P�
2
Q3 + 39:59 PN P�

2
Q3 + 39:53 PN P�

3
Q4) : (F.23)

Note that the 9nite-volume e=ect terms  F
pq would be the same in the 2D case. In the above

equations, P�(L̂) is the integral of the two-point correlation function over the survey volume [Eq.
(452)] and

QN ≡ SN

NN−2 ; QNM ≡ CNM

NN−1MM−1 : (F.24)

Note that these QN and QNM are slightly di=erent from what was de9ned in Eqs. (150) and (214).
They are also often used in the literature instead of Sp or Cpq.

An accurate approximation for P�(L̂) is [153,154]

P�(L̂) � 1

V̂
2

∫
V̂

dDr1 dDr2 �(r12) − 1

V̂

∫
r62R

dDr �(r) : (F.25)

This actually means that, rigorously, the 9nite-volume error as we de9ned it here actually contains
an edge e=ect term. For practical calculations, however, the following approximation generally works
quite well:

P�(L̂) � P�(L) ; (F.26)

where P�(L) was de9ned in Eq. (389).
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[255] E. Gaztañaga, P. Fosalba, Mon. Not. R. Astron. Soc. 301 (1998) 524–534.
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[449] P. McDonald, astro-ph=0108064, 2001.
[450] C. McGill, Mon. Not. R. Astron. Soc. 242 (1990) 428–438.
[451] A. Meiksin, I. Szapudi, A. Szalay, Astrophys. J. 394 (1992) 87–90.
[452] A. Meiksin, M. White, Mon. Not. R. Astron. Soc. 308 (1999) 1179–1184.
[453] Y. Mellier, Annu. Rev. Astron. Astrophys. 37 (1999) 127–189.
[454] A.L. Melott, Mon. Not. R. Astron. Soc. 202 (1983) 595–604.
[455] A.L. Melott, T. Buchert, A.G. Wei>, Astron. Astrophys. 294 (1995) 345–365.
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