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Abstract Both the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck
missions have reported an extremely cold spot (CS) centered at Galactic coordinate
(l = 209◦, b = −57◦) in the cosmic microwave background map. We study the lo-
cal non-Gaussianity of the CS by defining local Minkowski functionals. We find that
the third Minkowski functional ν2 is quite sensitive to the non-Gaussianity caused by
the CS. Compared with random Gaussian simulations, the WMAP CS deviates from
Gaussianity at more than a 99% confidence level with a scale of R ∼ 10◦. Meanwhile,
we find that cosmic texture provides an excellent explanation for these anomalies re-
lated to the WMAP CS, which could be further tested by future polarization data.

Key words: cosmology: cosmic microwave background

1 INTRODUCTION

Soon after the release of observations from NASA’s Wilkinson Microwave Anisotropy Probe
(WMAP) satellite on the cosmic microwave background (CMB) temperature and polarization
anisotropies, some anomalies in the CMB field have been reported, including the low quadrupole,
an alignment of the quadrupole and octupole, the lack of a large-scale correlation, the CMB parity
asymmetry and so on (see Bennett et al. 2011 for a review). Meanwhile, nearly all the anomalies
have been confirmed by recently released Planck data (Planck Collaboration et al. 2013), and have
attracted much attention. These anomalies may imply there are some unsolved systematical errors,
contaminations in the CMB observations or new physics in the early Universe.

The non-Gaussian cold spot (CS) in the CMB temperature anisotropy field was first reported in
Vielva et al. (2004), and confirmed by many authors (Cruz et al. 2007a, 2005; Cayón et al. 2005;
Naselsky et al. 2010; Zhang & Huterer 2010; Vielva 2010). The CMB CS is centered at Galactic
coordinate (l = 209◦, b = −57◦) and has a characteristic scale of about 10◦. The temperature of the
CS is nearly 4σ colder than the average CMB temperature, which is independent of different detec-
tors or different frequency channels on the WMAP satellite (Vielva et al. 2004; Cruz et al. 2005).
Although physics related to the CMB CS remains mysterious, various alternative explanations for
this CS have been proposed, such as the possible Sunyaev-Zeldovich effect (Cruz et al. 2008), a su-
pervoid in the Universe (Inoue & Silk 2006, 2007; Inoue 2012), possible foregrounds or systematics
(Cruz et al. 2006) or the cosmological origin (Cruz et al. 2007b, 2008). Due to the fact that nearly all
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the explanations of the CS are related to local characteristics in the CMB field, studies on the local
properties of the CS are necessary. In previous work (Zhao 2013), we have studied local departures
of the WMAP CS from Gaussianity by the temperature in terms of its mean, variance, skewness
and kurtosis. We found excesses in the local variance and skewness at large scales with R > 5◦,
which imply that the WMAP CS is a large-scale non-Gaussian structure, rather than a combination
of some small structures. In this paper, we shall focus on the same topic by using different local
statistics. We introduce the local Minkowski functionals (MFs), and apply them to WMAP data, in
particular the WMAP CS. Comparing with random Gaussian simulations, we find that for statistics
based on MF ν2, the WMAP CS significantly deviates from Gaussianity at a large scale, especially
at the scale R ∼ 10◦. Meanwhile, similar to Zhao (2013), we find that these local non-Gaussianities
in the WMAP CS can be excellently explained by a cosmic texture. If we subtract this texture from
WMAP data, we find that all these anomalies associated with MFs disappear. So, our local analysis
of the CS in this paper also strongly supports the cosmic texture explanation.

The outline of this paper is as follows. In Section 2, we introduce the WMAP data, which will
be used in the analysis. In Section 3, we define the local MFs and apply them to WMAP data. In
Section 4, we summarize the main results of this paper.

2 THE CMB DATA

In our analysis, we shall use the WMAP data including the NILC5 map and the 7-year WMAP
internal linear combination (ILC7) map, which have the same resolution parameter Nside = 512.
The ILC7 map is constructed by smoothing all five WMAP frequency-band maps to a common
resolution of one degree, and then combining them by the inverse of their noise level. Based on the
5-year WMAP data, in Delabrouille et al. (2009) the authors constructed a higher resolution CMB
internal linear combination map, i.e. “NILC5” map, which is an implementation of a constrained
linear combination of WMAP channels with minimum error variance on a frame of spheres called
needlets.

The same as in previous work (Zhao 2013), in order to simulate the NILC5 map, the effective
noise level and effective beam window function given in Delabrouille et al. (2009) are adopted, but
for the ILC7 simulations, we ignore all noises and smooth the simulated map to a resolution of one
degree. In all the random Gaussian simulations, we assume that the temperature fluctuations and
noises follow a Gaussian distribution, and do not consider any effect due to the residual foreground
contaminations. Throughout this paper, we assume a ΛCDM Universe with background parameters
(Komatsu et al. 2011) 100Ωbh2 = 2.255, Ωch

2 = 0.1126, ΩΛ = 0.725, τ = 0.088, ∆2
R(k0) =

2.430× 10−9 and ns = 0.968 at k0 = 0.002 Mpc−1.

3 APPLYING LOCAL MINKOWSKI FUNCTIONALS TO WMAP DATA

3.1 Minkowski Functionals

MFs characterize the morphological properties of convex, compact sets in an n-dimensional space.
On the 2-dimensional spherical surface S2, any morphological property can be expanded as a lin-
ear combination of three MFs, which represent the area, circumference and integrated geodesic
curvature of an excursion set (Schmalzing & Gorski 1998). For a given threshold ν, it is conve-
nient to define the excursion set Qν and its boundary ∂Qν of a smooth scalar field u as follows:
Qν =

{
x ∈ S2|u(x) > ν

}
and ∂Qν =

{
x ∈ S2|u(x) = ν

}
. Then, the MFs v0, v1 and v2 can be

written as (Schmalzing & Gorski 1998),

v0(ν) :=
∫

Qν

da

4π
, v1 :=

∫

∂Qν

d`

16π
, v2 :=

∫

∂Qν

d` κ

8π2
, (1)
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where da and d` denote the surface element of S2 and the line element along ∂Qν , respectively, and
κ is the geodesic curvature. Given a pixelated map with field u(xi), these MFs can be numerically
calculated by the formulae (Schmalzing & Gorski 1998; Lim & Simon 2012)

vi(ν) =
1

Npix

Npix∑

k=1

Ii(ν, xk), (i = 0, 1, 2), (2)

where

I0(ν, xk) := Θ(u− ν),

I1(ν, xk) :=
δ(u− ν)

4
U1(xk),

I2(ν, xk) :=
δ(u− ν)

2π
U2(xk), (3)

U1(xk) :=
√

u2
;θ + u2

;φ,

U2(xk) :=
2u;θu;φu;θφ − u2

;θu;φφ − u2
;φu;θθ

u2
;θ + u2

;φ

.

Note that u;i denotes the covariant differentiation of u with respect to coordinate i. The delta function
in these formulae can be numerically approximated through a discretization of threshold space in
bins of width ∆ν by the Heaviside step function δN (x) = (∆ν)−1[Θ(x + ∆ν/2)−Θ(x−∆ν/2)].
The expectation values of three MFs for a Gaussian random field are also derived in Tomita (1986),
which have been explicitly expressed in equations (14) and (15) in Schmalzing & Gorski (1998).

These MFs have been applied by cosmologists to look for deviations from Gaussianity in the
perturbations of the CMB (Winitzki & Kosowsky 1998; Schmalzing & Gorski 1998; Novikov et al.
1999; Eriksen et al. 2004; Hikage et al. 2006, 2008, 2009; Hikage & Matsubara 2012; Komatsu et al.
2009; Matsubara 2010). In particular in Lim & Simon (2012), the authors used the MFs to probe the
cold/hot disk-like structure in the CMB. However, they found these statistics are dominated by noise
for the WMAP CS. For a single WMAP or map with the resolution of Planck, the method can only
detect the highly prominent disk, i.e. an extremely cold or hot disk with a rather large area. These
can be easily understood as follows: since the MFs are constructed on the global sky, the local non-
Gaussianity of the cold/hot spot over a relatively small scale has been so diluted that it is too small
to detect.

3.2 Local Minkowski Functionals

To study the local properties of the WMAP CS, similar to previous works (Bernui & Rebouças 2009,
2010, 2012; Zhao 2013), in this paper we will define the local MFs in terms of statistics describing
the CMB field. For a given full-sky WMAP data with Nside = 512 (ILC7 or NILC5), we smooth
them using a Gaussian filter with a smoothing scale of θs, since MFs are sensitive to the smoothing
scale of a density field and therefore we can obtain a variety of information from density fields by
using different smoothing levels. In this paper, we focus on both ILC fields smoothed by six different
smoothing scales: 10′, 20′, 30′, 40′, 50′ and 60′. Then, we can construct the corresponding full-sky
maps, U1(xk) and U2(xk), defined in Equation (3), where u is the corresponding ILC temperature
anisotropy map.

Now, we can define the local MFs. Let Ω(θj , φj ;R) be a spherical cap with aperture spanning R
degrees, centered at (θj , φj). The local MFs vi(ν) (i = 0, 1, 2) in this cap can be calculated by using
Equation (2), which are denoted as vj

i (ν;R) in the rest of this paper. However, here the summation
is only carried out for pixels inside the cap Ω(θj , φj ;R). Note that in our calculation, the binning
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range of threshold ν is set to be –3.0 to 3.0 with 24 equally spaced bins of ν/σ (σ is the standard
deviation of the u-field in this cap) per each MF. In order to quantify the same kind of MFs by a
single quantity, following Hikage et al. (2009), for each i (the type of MF) and {j, R} (the cap) we
can define the associated χ2 as follows

χ2 =
∑

αα′

[
vj

i (να;R)− vth
i (να;R)

]
Σ−1

αα′ ×
[
vj

i (να′ ;R)− vth
i (να′ ;R)

]
, (4)

where α and α′ denote the number of threshold values used for binning. vth
i (ν;R) is the theoreti-

cal value of vj
i (ν;R), which is independent of the superscript j. Σ is the corresponding covariance

matrix. Although in principle the theoretical values vth
i (ν;R) for the random Gaussian field can be

calculated by the analytical formulae (Tomita 1986; Schmalzing & Gorski 1998), there are system-
atical differences compared with numerical results from the threshold used for binning, the effect of
pixelization, a survey mask or other numerical artifacts (Lim & Simon 2012). To avoid this problem,
in general, one should replace theoretical value vth

i (ν;R) by the quantity 〈vi(ν;R)〉 (Schmalzing
& Gorski 1998; Hikage et al. 2009; Lim & Simon 2012), where 〈vi(ν;R)〉 is the ensemble average
of the random simulations. Fortunately, in our case, the local Minkowski functionals are defined
around some single pixel j. Thus, the values of vj

i (ν;R) with different j indices are equivalent to
the quantity vj

i (ν;R) (for the fixed j) in different simulations. So in this paper, we replace the the-
oretical value vth

i (ν;R) by the quantity 〈vi(ν;R)〉, which is the average value of all vj
i (ν;R) with

|bj | > 30◦. The covariance matrix Σ can also be numerically calculated by these quantities vj
i (ν;R)

as follows

Σαα′ =
1
nj

∑

j

[
vj

i (να;R)− 〈vi(να;R)〉
][

vj
i (να′ ;R)− 〈vi(να′ ;R)〉

]
, (5)

where nj is the number of pixels in the region |bj | > 30◦, and the summation is also only carried
out for the same region. Here, we should emphasize that, in the ILC7 and NILC5 maps, nearly
all residuals from various contaminations are around the Galactic plane with b ∼ 0◦. In order to
remove the effect of these contaminations, in our calculation for the quantities χ2, 〈vi(ν;R)〉 and
Σαα′ , the Galactic plane with |bj | < 30◦ has been masked.1 Hereafter, we denote this χ2 quantity
as Xj

i (R). Clearly, the values Xj
i (R) obtained in this way for each cap can be viewed as a measure

of non-Gaussianity in the direction of the center of the cap (θj , φj). For a given aperture R, we
scan the celestial sphere with evenly distributed spherical caps, and build the X0(R)-, X1(R)- and
X2(R)-maps. In our analysis, we have chosen the locations of centroids of spots to be the pixels at
a resolution of Nside = 64. By choosing different R values, one can study the local properties of the
CMB field at different scales.

The same as the V (R)-map (or S(R)-, K(R)-maps) defined in Zhao (2013), here we also find
that Xj

i (R) is always maximized at the edge of the circles, rather than at the center of the circles. To
overcome this problem and localize the non-Gaussian sources, we define the average quantities

X̄j
i (R) :=

1
Npix

Npix∑

j=1

Xj
i (R), (i = 0, 1, 2), (6)

where Npix is again the number of pixels in the jth cap.

1 Note that, for the WMAP V-band or W-band maps, we always have to apply complicated masks (such as the KQ75y7
mask) to exclude various contaminations caused by effects of foreground and dust. Thus, there is no way to define the quantity
〈vi(ν; R)〉, and the related quantity χ2 defined in Equation (4). This is the reason why we cannot apply this method to the
WMAP V-band or W-band maps.
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Fig. 1 X̄0(R) maps (upper), X̄1(R) maps (middle) and X̄2(R) maps (lower) for ILC7 data with
θs = 60′ smoothing. In the left panels, we have used R = 2◦, in the middle panels R = 5◦ is chosen
and in the right panels R = 10◦.

We apply this method to the ILC7 data by choosing R = 2◦ and θs = 60′. The X̄i maps are
presented in Figure 1 (left panels), which clearly show that these local statistics, in particular the
third MF v2, are very sensitive to the foreground residuals and various point sources. The Galactic
plane is clearly presented, which is the non-Gaussian area caused by the foreground residuals in the
ILC7 map. In addition, two important point sources at (l = 209.5◦, b = −20.1◦) and (l = 184.9◦,
b = −5.98◦), as well as several small ones, are also clearly found in the X̄i maps. So, we expect
these local statistics with small R values can be used to identify the point sources and foreground
residuals, which will be discussed in a separate paper. If we choose R = 5◦, from the middle panels
in Figure 1 we find similar results, except for some non-Gaussianities in small point sources, which
have been diluted for this case with larger R. In the right panels, we have chosen R = 10◦, where
the significant non-Gaussianities around the WMAP CS are clearly shown in all three maps.

Let us turn to the NILC5 map, which has a much higher resolution than ILC7. We first study
the effect of different levels of smoothing. By adopting R = 2◦, in Figure 2 we plot the X̄i maps
for θs = 10′ (left panels) and θs = 40′ (right panels). Interestingly enough for the case of lower
smoothing, from the middle left and lower left panels we find a clear structure arising from Nobs,
i.e. the effective observations of WMAP for each pixel. We find a smaller Nobs, which arises from
a smaller pixel-noise variance, corresponds to a larger X̄j

i . So, these two local MF statistics can
also be used to search for the morphology of the pixel-noise variance, which has been hidden in
the temperature anisotropy map. We leave this as future work. Here, in order to reduce their effect,
we should choose a larger smoothing parameter θs as shown in the right panels in Figure 2, where
we find the morphology of the pixel-noise variance disappears. However, the non-Gaussianity in the
Galactic plane is still there, due to the heavy contamination caused by foreground residuals.
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Fig. 2 X̄0(R) maps (upper), X̄1(R) maps (middle) and X̄2(R) maps (lower) from the NILC5 data
with R = 2◦. In the left panels, the NILC5 map is smoothed by θs = 10′, and in the right panels,
θs = 40′ smoothing is applied.

Fig. 3 X̄0(R) maps (upper), X̄1(R) maps (middle) and X̄2(R) maps (lower) from the NILC5 data
with θs = 60′ smoothing. In the left panels we have used R = 2◦, in the middle panels R = 5◦ is
chosen and in the right panel, R = 10◦.
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Choosing a common smoothing parameter θs = 60′, in Figure 3 we plot the X̄i maps for
R = 2◦ (left), R = 5◦ (middle) and R = 10◦ (right). By comparing with those in Figure 1, we find
that although several non-Gaussian point sources and foreground residuals in the Galactic plane are
still there, NILC5 is much cleaner than ILC7, as claimed in Delabrouille et al. (2009). Meanwhile,
we find that the non-Gaussianities around the WMAP CS are quite significant in the panels with
R = 10◦, which will be quantified in the next subsection.

3.3 Local Properties of the WMAP Cold Spot

Now, let us focus on the local properties of the WMAP CS by comparing with simulations that use
Gaussian random distributions. Throughout this section, we only consider the maps which have been
smoothed by θs = 60′ to exclude the small-scale contaminations.

Firstly, we compare the WMAP CS with spots at the same position (l = 209◦, b = −57◦) in the
random simulations. For a given X̄i(R) map (i = 0, 1, 2) derived from WMAP data, the values of
X̄i(R) centered at the CS are calculated for the scales of R = 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦, 9◦, 10◦, 11◦,
12◦, 13◦, 14◦and 15◦. The statistics for ILC7 maps are displayed in Figure 4. We compare them with
1000 Gaussian simulations. For each simulated sample, we select the spot at (l = 209◦, b = −57◦)
and derive the corresponding X̄i(R) maps. Then for each i and R, we study the distribution of
1000 X̄i(R) values, and construct confidence intervals for the statistics. The 68%, 95% and 99%
confidence intervals are illustrated in Figure 4. From this figure, we find that for the X̄0(R) statistics,
the WMAP CS is consistent with the simulations. However, for the X̄1(R) and X̄2(R) statistics with
R > 6◦, the WMAP CS deviates from simulation at more than the 99% confidence level. For the
NILC5 case, we have also obtained similar results. These show that as anticipated, the WMAP CS is
not a normal spot. The deviations at large scales imply that the WMAP CS seems to be a nontrivial
large-scale structure, rather than a combination of some small non-Gaussian structures (for instance,
point sources or foreground residuals, which always accompany non-Gaussianities at small scales),
which is consistent with the conclusion in Zhao (2013).

Secondly, we compare the WMAP CS with the coldest spots in the Gaussian simulations. For
every simulated map with Nside = 512, we search for the coldest spot and derive the corresponding
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Fig. 4 Three statistics for the spots at (l = 209◦, b = −57◦). Confidence regions obtained from
1000 Monte Carlo simulations are shown for 68% (dark central region, red online), 95% (lighter
middle region, yellow online) and 99% (lightest outer region, green online) levels, compared to the
mean (solid blue line). The observed statistics for the WMAP ILC7 map are shown by solid dots
(black online).
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Fig. 5 Three statistics for the coldest spots. Confidence regions obtained from 1000 Monte Carlo
simulations are shown for 68% (dark central region, red online), 95% (lighter middle region, yellow
online) and 99% (lightest outer region, green online) levels, compared to the mean (solid blue line).
The observed statistics for the WMAP ILC7 map are shown by the solid dots (black online).

X̄i(R) maps by the same calculations used for WMAP data. Then for each i and R, we study
the distribution of 1000 X̄i(R) values, and construct confidence intervals for the statistics. The
68%, 95% and 99% confidence intervals are illustrated in Figure 5. We find that for the MF ν0,
the WMAP CS is the coldest spot that follows a Gaussion distribution at all scales when comparing
with simulations. For ν1 with R > 7◦, the WMAP CS only deviates from Gaussianity at the 68%
confidence level. However, for the MF ν2 with R > 7◦, the deviation is quite significant (i.e. at more
than the 95% level). In particular, for ν2 at the scale R = 10◦ ∼ 11◦, the deviations are more than at
the 99% confidence level. Also, in the NILC5 case, similar deviations for these statistics have also
been derived. So, we conclude that compared with the coldest spots in simulations, the WMAP CS
significantly deviates from Gaussianity for MF ν2 at the scale R ∼ 10◦. However, at smaller scales
of R < 6◦, the deviations do not exist. These support that the WMAP CS seems to have a large-scale
non-Gaussian structure.

In Cruz et al. (2007b, 2008), the authors found that the cosmic texture, rather than other ex-
planations, provides an excellent interpretation for the WMAP CS, which has also been strongly
supported by studying local departures from Gaussinity by temperature in terms of the mean, vari-
ance, skewness and kurtosis in our previous work (Zhao 2013). Here we shall test if local anomalies
associated with the WMAP CS found in MFs are consistent with the interpretation using cosmic
texture. The profile for the CMB temperature fluctuation caused by a collapsing cosmic texture is

∆T

T
= ε/

√
1 + 4

(
ϑ

ϑc

)2

for ϑ ≤ ϑ∗ and
∆T

T
=

ε

2
e
− 1

2ϑ2
c
(ϑ2+ϑ2

∗) for ϑ > ϑ∗,

where ϑ is the angle from the center. ε is the amplitude parameter and ϑc is the scale parameter.
ϑ∗ =

√
3/2ϑc. The best-fit texture parameters were obtained in Cruz et al. (2007b), ε = −7.3×10−5

and ϑc = 4.9◦, which are adopted in our analysis. We subtract this cosmic texture structure from
the ILC7 and NILC5 maps. Then, we repeat the analyses above by using these subtracted ILC maps.
The corresponding results are presented in Figure 6 for ILC7 and Figure 7 for NILC5, where we
find that the WMAP CS becomes quite normal, i.e. it becomes excellently consistent with normal
spots in Gaussian simulations for any MF at any scale. So, we obtain the following conclusion: The
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Fig. 6 Same as Fig. 4, but here the cosmic texture structure has been subtracted from the WMAP
ILC7 map.
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Fig. 7 Same as Fig. 6, but here the WMAP ILC7 map is replaced by the NILC5 map.

local analysis of the WMAP CS by using local MF statistics strongly supports the explanation using
cosmic texture.

4 CONCLUSIONS

Since the release of WMAP data, much attention has been paid to studying the non-Gaussian CS at
Galactic coordinate (l = 209◦, b = −57◦), which might be produced by various small-scale contam-
inations, such as point sources or foregrounds, a supervoid in the Universe, or some phase transition
in the early Universe. In this paper, in order to identify the WMAP CS and discriminate various ex-
planations, we study the local properties of the CS by introducing the local MFs as related statistics.
We find that compared with random Gaussian simulations, the WMAP CS definitely deviates from
normal spots in simulations. In particular, it also deviates from the coldest spots in Gaussian sam-
ples at more than the 99% confidence level with a scale of R ∼ 10◦. All these support the fact that
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the WMAP CS is a large-scale non-Gaussian structure. Meanwhile, we find that the cosmic texture,
which has a characteristic scale of about 10◦ and is claimed to be the most promising explanation of
the CS by many authors, can excellently account for these anomalies in the local statistics. Hence,
our analysis supports the explanation using cosmic texture for the WMAP CS.
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