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In this paper, we study the effects of parity violation on non-Gaussianities of primordial gravitational

waves in the framework of the Hořava-Lifshitz theory of gravity, in which high-order spatial derivative

operators, including the ones violating parity, generically appear. By calculating the three-point function, we

find that the leading-order contributions to the non-Gaussianities come from the usual second-order derivative

terms, which produce the same bispectrum as that found in general relativity. The contributions from high-

order spatial nth derivative terms are always suppressed by a factor ðH=M�Þn�2ðn � 3Þ, whereH denotes the

inflationary energy and M� the suppression mass scale of the high-order spatial derivative operators of the

theory. Therefore, the next leading-order contributions come from the three-dimensional gravitational Chern-

Simons term. With some reasonable arguments, it is shown that this three-dimensional operator is the only

one that violates the parity and in the meantime has nonvanishing contributions to non-Gaussianities.
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I. INTRODUCTION

Primordial gravitational waves (PGWs), which are
expected to be generated during inflation, have attracted
a great deal of attention recently, as their detections would
be the direct evidence of inflation, and more important the
existence of gravitational waves in the Universe. From the
properties of PGWs, such as their power spectra and
non-Gaussianities, we can extract useful information about
the theory of inflation and gravity. In particular, the PGWs
produce not only the temperature anisotropy, but also a
distinguishable signature in the polarization of the cosmic
microwave background (CMB) [1]. Decomposing the po-
larization into twomodes: one is curl-free, the E-mode, and
the other is divergence-free, the B-mode, one finds that the
B-mode pattern cannot be produced by density fluctua-
tions. Thus, its detection would provide a unique signature
for the existence of PGWs [2].

In addition, PGWs normally produce the TT, EE, BB
and TE spectra of CMB, but the spectra of TB and EB
vanish when the parity of the PGWs is conserved [1].
However, if the theory is chiral, the power spectra of
right-hand and left-hand PGWs can have different ampli-
tudes, and then induce nonvanishing TB and EB correla-
tion in large scales [3]. This provides the opportunity to
directly detect the chiral asymmetry of the theory by ob-
servations [3–5]. Recently, in [6,7] the above-mentioned
problem was addressed in the framework of Hořava-
Lifshitz (HL) theory of gravity [8], in which the Lorentz

symmetry is broken in the ultraviolet (UV), and parity-
violating operators generically appear. In particular, it was
shown that, because of the parity violation and nonadia-
batic evolution of the modes, a large polarization of PGWs
can be produced, and could be well within the range of
detection of the forthcoming CMB observations [7].
The effects of the parity violation on non-Gaussianities

of PGWs were also studied [9,10] in the theory with the
general covariance, and shown that, because of the
symmetry of the pure de Sitter background, the parity
violation from Weyl cubic terms has no contributions to
the non-Gaussianities, although this is no longer true when
the coupling of Weyl cubic terms is time dependent [11]. It
should be noted that in all these studies the symmetry of
the general diffeomorphisms of the underlaid theories
plays a crucial role. On the other hand, in the HL theory
the symmetry is reduced to the foliation-preserving diffeo-
morphisms [8], and the parity-violating operators allowed
by such a symmetry are quite different from those with
the general diffeomorphisms. Thus, it is expected that
in the HL theory some distinguishable features of non-
Gaussianities of PGWs due to these parity-violating op-
erators should exist, which may provide a smoking gun for
the tests of the HL theory in the forthcoming CMB obser-
vations. With these motivations, in this paper we study the
non-Gaussianities of PGWs in the HL theory, and focus
ourselves mainly on the effects of the high-order spatial
operators on the non-Gaussianities of PGWs, especially on
the ones that violate the parity.
The rest of the paper is organized as follows: In Sec. II

we first give a very brief review on the HL theory, and then
restrict ourselves to the model recently proposed in [12,13],
where an extra Uð1Þ symmetry is enforced in the nonpro-
jectable case, in order to eliminate the spin-0 gravitons
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usually appearing in the HL theory. In this section, we also
present the linearized equation of motion of the tensor
perturbations, originally derived in [7]. In Sec. III, from
the cubic action of tensor perturbations, we calculate the
three-point correlation function and obtain the bispectrum
of the PGWs, while in Sec. IV, we plot the shapes of
bispectrum produced by both the second-order derivative
operators and the three-dimensional parity-violating Chern-
Simons one. In Sec. V, we summarize our main results.
There are also two appendices, A and B, in which the cubic
action is given explicitly.

Before processing further, we would like to note that,
although in this paper we restrict ourselves only to the
model of the HL theory proposed recently in [12,13], our
results can be easily generalized to other models, as the
tensor perturbations are quite similar in all of these models
[7,14]. In addition, non-Gaussianities of PGWs in the
framework of the general covariant theory with the project-
ability condition was also studied in [15], and several
remarkable features were found. In particular, it was found
that the terms RijR

ij and (riRjk) (riRjk) exhibit a peak at

the squeezed limit, while the one Ri
jR

j
kR

k
i favors the

equilateral shape when spins of the three tensor fields are
the same, but peaks in between the equilateral and
squeezed limits when spins are mixed, where Rij denotes

the three-dimensional Ricci tensor made of the three-
dimensional metric gij of the leaves t ¼ Constant, and

ri denotes the covariant derivative with respect to gij.

The consistency with the recently released Planck obser-
vations [16] was also discussed. However, in [15] the
parity-violating operators were excluded. Therefore, in
this paper we shall focus mainly on the effects of these
operators on non-Gaussianities, as mentioned above.
Moreover, non-Gaussianities of scalar perturbations were
also studied in the framework of the HL theory, one in the
curvaton scenario [17] and the other in the inflationary
model [18], and some remarkable features were obtained.

II. NONPROJECTABLE GENERAL
COVARIANT HL GRAVITYAND LINEAR

TENSOR PERTURBATIONS

By construction, the HL theory is power-counting
renormalizable [8]. This is achieved by breaking the sym-
metry of the general covariance in the UV, and including
only high-order spatial derivative operators, so that it re-
mains also unitary, a problem that has been faced for a long
time in the quantization of gravity [19]. In the low energy,
low dimensional operators take over, and it is expected that
the Lorentz symmetry is ‘‘accidentally’’ restored [20].
Since Hořava first proposed it in 2009, the theory has
attracted a lot of attention, partially because of various
remarkable features when applied to cosmology [21], and
partially because of some challenging questions, such as
ghosts, instability, and strong coupling. To overcome these

questions, various models have been proposed [20], includ-
ing the ones with an additional local Uð1Þ symmetry
[12,13,22], in which the problems mentioned above can
be avoided by properly choosing the coupling constants
appearing in the theory. Since in all of those models, the
tensor perturbations are almost the same [7,14,15], without
loss of the generality, in this paper we shall work with the
model proposed in [12,13].

A. Action of the nonprojectable general
covariant HL gravity

The fundamental variables in the nonprojectable general
covariant HL gravity proposed in [12,13] are

ðN;Ni; gij; A; ’Þ;
where N and Ni denote, respectively, the lapse func-
tion and shift vector in the Arnowitt-Deser-Misner decom-
positions [23], and A and ’ are, respectively, the Uð1Þ
gauge field and Newtonian prepotential [22]. Then, the
corresponding total action can be cast in the form

S ¼ �2
Z

dtd3x
ffiffiffi
g

p
NðLK �LV þLA þL’ þ ��2LMÞ;

(2.1)

where �2 ¼ 1=ð16�GÞ with G being the Newtonian
constant, LM describes matter fields, and

LK ¼ KijK
ij � �K2; LV ¼ LR

V þLa
V;

LA ¼ A

N
ð2�g � RÞ;

L’ ¼ ’Gijð2Kij þrirj’þ airj’Þ
þ ð1� �Þ½ð�’þ airi’Þ2 þ 2ð�’þ airi’ÞK�
þ 1

3
Ĝijlk½4ðrirj’ÞaðkrlÞ’þ 5ðaðirjÞ’ÞaðkrlÞ’

þ 2ðrði’ÞajÞðkrlÞ’þ 6KijaðlrkÞ’�; (2.2)

with � � r2, and

Kij ¼ 1

2N
ð� _gij þriNj þrjNiÞ; ai ¼ N;i

N
;

aij ¼ rjai; Ĝijlk ¼ gilgjk � gijgkl;

Gij ¼ Rij � 1

2
gijRþ�ggij;

LR
V ¼ �0�

2 þ �1Rþ �2R
2 þ �3RijR

ij

�2
þ �5

�4
CijC

ij;

La
V ¼ ��0aia

i þ 1

�2
½�1ðaiaiÞ2 þ �2ðaiiÞ2

þ �3ðaiaiÞajj þ �4a
ijaij þ �5ðaiaiÞR

þ �6aiajR
ij þ �7Ra

i
i� þ

1

�4
�8ð�aiÞ2: (2.3)

Here R denotes the Ricci scalar, and Cij the Cotton tensor,

defined by
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Cij ¼ eiklffiffiffi
g

p rk

�
Rj
l �

1

4
R�j

l

�
; (2.4)

with e123 ¼ 1, etc. �, �n, �s, and �g are the coupling

constants of the theory. In terms of Rij, we have [13]

CijC
ij ¼ 1

2
R3 � 5

2
RRijR

ij þ 3Ri
jR

j
kR

k
i

þ 3

8
R�Rþ ðriRjkÞðriRjkÞ þ rkG

k; (2.5)

where

Gk ¼ 1

2
RjkrjR� RijrjRik � 3

8
RrkR: (2.6)

It should be noted that in writing the above action, we
have excluded all the terms that violate the parity [12,13].
For our current purpose, we add the fifth- and third-order
spatial derivative operators to the potential LV [7],

�LV ¼ 1

M3�
ð�0KijRij þ�2�

ijkRil�jR
l
kÞ þ

�1!3ð�Þ
M�

þ � � � :

(2.7)

Here the coupling constant �0, �1, �2 are dimensionless
and arbitrary, �ijk ¼ eijk=

ffiffiffi
g

p
is the total antisymmetric

tensor, and !3ð�Þ the three-dimensional gravitational
Chern-Simons term.1 ‘‘� � �’’ denotes the rest of the fifth-
order operators given in Eq. (2.6) of [13]. Since they have
no contributions to tensor perturbations, in this paper we
shall not write them out explicitly. As shown in [7], be-
cause of the additional parity violation terms of Eq. (2.7),
the nonadiabatic evolution of modes lead to a large polar-
ization of PGWs, and it could be well within the detection
of CMB observations, as mentioned above. In this paper,
we investigate their effects on the non-Gaussianities of
PGWs.

B. The linearized tensor perturbations

The general formulas of the linearized tensor perturba-
tions were given in [7], so in the rest of this section we give
a very brief summary of the main results obtained there, in
order to initiate our studies of the non-Gaussianities of
PGWs in the next section. For details, we refer readers to
[7]. Consider a flat Friedmann-Robertson-Walker (FRW)
universe,

N̂ ¼ að	Þ; N̂i ¼ Â ¼ ’̂ ¼ 0;

ĝijdx
idxj ¼ að	Þ2�ijdx

idxj;
(2.8)

where quantities with hats denote the background of the
FRW universe in the coordinates ð	; xiÞ ¼ ð	; x; y; zÞ.
Then, the tensor perturbations are given by

�N¼�Ni¼�A¼�’¼0; �gij¼a2hijð	;xÞ: (2.9)

Assuming that matter fields have no contributions to tensor
perturbations, we find that the quadratic part of the total
action can be cast in the form

Sð2Þg ¼ �2
Z

d	d3x

�
a2

4
ðh0ijÞ2 �

1

4
a2ð@khijÞ2

� �̂3

4M2�
ð@2hijÞ2 � �̂5

4M4�a2
ð@2@khijÞ2

� �1ae
ijk

2M�
ð@lhmi @m@jhlk � @lhim@

l@jh
m
k Þ

� �2e
ijk

4M3�a
@2hilð@2hlkÞ;j �

3�0H
8M�a

ð@khijÞ2
�
; (2.10)

where h0ij � @hij=@	, @
2 � �ij@i@j, H ¼ a0=a, and

�3 �
�
Mpl

2M�

�
2
�̂3; �5 �

�
Mpl

2M�

�
4
�̂5:

To avoid fine-tuning, �n and �̂n are expected to be of the
same order. Then, the field equations for hij read

h00ij þ 2Hh0ij � �2@2hij þ �̂3

a2M2�
@4hij � �̂5

a4M4�
@6hij

þ ei
lk

�
2�1

M�a
þ �2

M3�a3
@2
�
ð@2hjkÞ;l ¼ 0; (2.11)

where �2 � 1þ 3�0H =ð2M3�aÞ.
To study the evolution of hij, we expand it over spatial

Fourier harmonics,

hijð	;xÞ ¼
X

s¼R;L

Z d3k

ð2�Þ3 c
s
kð	Þeik�xPðsÞ

ij ðk̂Þ; (2.12)

where PðsÞ
ij ðk̂Þ are the circular polarization tensors

and satisfy the relations: ikme
rmjPðsÞ

ij ¼ k
sPrðsÞ
i with


R ¼ 1, 
L¼�1, and P�iðsÞ
jP

jðs0Þ
i ¼�ss0 [6]. Define

uskð	Þ ¼ 1
2að	ÞMplc

s
kð	Þ and with the de Sitter back-

ground a ¼ �1=ðH	Þ, we obtain

uskð	Þ00 þ
�
!2

sðk; 	Þ � 2

	2

�
uskð	Þ ¼ 0; (2.13)

where

!2
sðk; 	Þ � �2k2½1� �1


sð���k	Þ þ �2ð���k	Þ2
þ �3


sð���k	Þ3 þ �4ð���k	Þ4�; (2.14)

with �� � H=M� � 1, and

�1 � 2�1

�3
; �2 � �̂3

�4
; �3 � �2

�5
; �4 � �̂5

�6
:

(2.15)

1To take quantum effects into account, it was proposed to
add boundary terms �S3 ¼ P

i�iM
3��i

R
t¼t� d

3x
ffiffiffi
g

p
Oi into the

Einstein-Hilbert action at the moment t ¼ t�, right before the
inflation started [24]. Clearly, one choice ofOi isOi / !ð�Þ. We
thank Jiro Soda for pointing it out to us.
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Following [25,26], we choose the initial conditions at
	 ¼ 	i as

uskð	iÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!sðk;	iÞ

p ; uskð	iÞ0 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!sðk;	iÞ

2

s
: (2.16)

Then, if one assumes that !sðk; 	Þ is slowly varying, i.e.,

Q �
��������!sðk; 	Þ0
!2

sðk; 	Þ
��������� 1; (2.17)

one can approximatively treat!sðk; 	Þ as constant, and get
the approximate solution of the mode function uskð	Þ,

uskð	Þ ’
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!sðk; 	Þ
p �

1� i

!s	

�
e�i

R
!sd	; (2.18)

or

c s
kð	Þ ’ �2

iH

Mpl

1ffiffiffiffiffiffiffiffiffi
2!3

s

p ð1þ i!s	Þe�i
R

!sd	: (2.19)

Promoting c s
kð	Þ to a quantum operator,

c s
kð	Þ ¼ c s

kasðkÞ þ c �s
k a

y
s ðkÞ; (2.20)

one finds that the power spectrum of the tensor perturba-
tions is given by

�2
T � k3ðjc R

k j2 þ jc L
k j2Þ

2�2
’ 2H2

�2M2
pl

; (2.21)

which has the same expression as that given in general

relativity (GR). Here asðkÞ and ays ð�kÞ are annihilation and
creation operators, and their commutation relation is given by

½asðkÞ; ays0 ðk0Þ� ¼ ð2�Þ3�ss0�ðk� k0Þ:
It should be noted that, in our calculations we have

assumed (2.17). This condition implies that the adiabatic
condition is always satisfied (before the modes exit the
horizon), and thus, there is no important modification in the
power spectrum of PGWs. Once this condition is violated, as
shown in [7], some interesting modifications on power spec-
trum and polarization of PGWs become possible. For sim-
plification, in this paper we assume that (2.17) always holds.

III. THE INTERACTION HAMILTONIAN
AND BISPECTRUM

In this section, we turn to the cubic action and the
bispectrum of the tensor perturbations. The cubic action

Sð3Þg is given by Eq. (A1), which can be written in the form

Sð3Þg ¼ �
Z

d	Hintð	Þ: (3.1)

Then the 3-point correlation function can be computed by
employing the in-in formalism [27],

hc s1
k1
ð	Þc s2

k2
ð	Þc s3

k3
ð	Þi

¼ �i
Z 	

	i

d	0h½c s1
k1
ð	Þc s2

k2
ð	Þc s3

k3
ð	Þ; Hintð	0Þ�i; (3.2)

where 	i represents the early time when inflation starts,
and 	 is a time when the bispectrum is evaluated. A good
approximation is to extend the integral into the whole half
axis, 	 2 ð�1; 0Þ. After some simple but very tedious
calculations, it can be shown that the 3-point correlation
function can be rewritten in the form

hc s1
k1
ð0Þc s2

k2
ð0Þc s3

k3
ð0Þi

¼ ið2�Þ3�3ðk1 þ k2 þ k3Þ�2

�
Z 0

�1
a2ð	0Þd	0Fs1s2s3

k1k2k3
ð	0Þ

h
Ws1s2s3

k1k2k3
ð	0Þ

�W
�s1s2s3
k1k2k3

ð	0Þ
i
; (3.3)

where F
s1s2s3
k1k2k3

ð	0Þ is given in Appendix B, and W
s1s2s3
k1k2k3

ð	0Þ
is defined as

Ws1s2s3
k1k2k3

ð	0Þ
� c s1

k1
ð0Þc s2

k2
ð0Þc s3

k3
ð0Þc �s1

k1
ð	0Þc �s2

k2
ð	0Þc �s3

k3
ð	0Þ:

(3.4)

In the de Sitter background, the 3-point correlation
function reduces to

hc s1
k1
ð0Þc s2

k2
ð0Þc s3

k3
ð0Þi

¼ ð2�Þ7�3ðk1 þ k2 þ k3Þ �4
T

23k31k
3
2k

3
3

B
s1s2s3
k1;k2;k3

; (3.5)

where

B
s1s2s3
k1k2k3

� X4
n¼0

�n�
n�FnIn; (3.6)

with �0 ¼ 1, and In is given by

In � Im

�Z 0

�1
d	ð�	Þn�2ei

R
ð!s1

þ!s2
þ!s3

Þd	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k31k

3
2k

3
3

!3
s1!

3
s2!

3
s3

vuut ð1� i!s1	Þð1� i!s2	Þð1� i!s3	Þ
�
:

(3.7)

Usually, the k dependence of the bispectrum receives
contributions from both the interaction Hamiltonian
Hintð	

P
FnÞ and the mode function integration In. For

the former, one can see from (3.6) that the high order
spatial derivative terms do have contributions in bispec-
trum, but are suppressed by the factor ��. Then, the
leading-order contributions come from the two derivative
term F0, which has the same expression as that given in
general relativity.
On the other hand, the mode function integration In in

the current case involved very complicated expression, and
thus it is very hard to perform the integration explicitly. In
general relativity, to minimize the errors, one usually splits
the integrals into three different regions: one outside the
horizon, one around the horizon, and one inside the hori-
zon. The contribution from the last region vanishes due to
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the high-frequency oscillate [28]. A similar conclusion is
also applicable to the current case, because when the high-
order derivative terms dominate, the oscillation becomes
more rapid than that in general relativity. Thus, using the
same arguments, one can safely neglect the effects from the
high-order derivative terms in the last region.

In the first region, the mode is outside the horizon and
the effective mass term �2=	2 in Eq. (2.13) dominates.
Then, in this region the corresponding results are also the
same as those given in general relativity. Therefore, the
effects from the parity-violating operators come only from
the region around the horizon. In this region, although the
k2 term dominates, the high-derivative terms still have
non-negligible contributions. In order to take these effects
into account, we expand the integration in terms of ��.
In particular, to the zeroth order of ��, we have

Im

�
i
Z 0

�1
d	ð�	Þn�2eiðk1þk2þk3Þ	

� ð1þ ik1	Þð1þ ik2	Þð1þ ik3	Þ
�
; (3.8)

which coincides with the mode integration in general
relativity, as expected. Thus, one immediately obtains the
bispectrum of the leading order,

Bs1s2s3
ðGRÞ ðk1; k2; k3Þ

¼
�
�K þ k1k2 þ k1k3 þ k2k3

K
þ k1k2k3

K

�
F0; (3.9)

where K � k1 þ k2 þ k3, and which is precisely the
bispectrum of PGWs given in GR.

Now let us turn to the first order contributions of ��.
Ignoring all the detailed calculations, it can be shown that it
takes the form

Bs1s2s3
ðPVÞ ðk1; k2; k3Þ

¼ ��

2
�1��

�
F1 þ 3

4
ðs1k1 þ s2k2 þ s3k3ÞF0

�
: (3.10)

Since this term is directly proportional to �1, from
Eqs. (2.7) and (2.15) we find that it represents the contri-
butions of the three-dimensional Chern-Simons term.

For operators with dimensions n � 4, their contributions
can be written in the form

�n�2�
X
r

FrIm

�Z 0

�1
d	ð�	Þn�4eiK	fn�r�2ð	Þ

�
; (3.11)

where r ¼ ð0; n� 2Þ, and fn�r�2ðK;	Þ can be expressed
as

fn�r�2ðK;	Þ
� a0 þ a1ði	Þ þ a2ði	Þ2 þ � � � þ an�rþ1ði	Þn�rþ1:

(3.12)

Here ar are functions of k1, k2, k3. In particular, the effects
from fifth-order derivative terms should contribute to
the bispectrum at the order of "3�. But, a careful analysis
over the integration shows that their contributions vanish
identically. This result can be easily generalized to higher
order terms. In fact, for n ¼ 2jþ 1 with j ¼ 2; 3; 4; . . . ,
the bispectrum of PGWs at the order �n�2� always vanishes.
This implies that Bs1s2s3

ðPVÞ ðk1; k2; k3Þ given by Eq. (3.10)

represents the only contribution from parity violation
operators.
In Ref. [10], Soda et al. calculated the bispectrum of

PGWs from the Weyl cubic terms, W3 and ~WW2, and
proved that no contributions from parity violation appear
in the non-Gaussianity of PGWs in pure de Sitter back-
ground. This is consistent with our current results.
However, it must be noted that in their considerations,
the symmetry of the theory is still of the general diffeo-
morphisms. As a result, only the parity-violating termsW3

and ~WW2 are allowed. These terms are both P-odd and
T-odd. Thus, when one calculates the bispectrum, the two
terms produce an integral similar to (3.11) with n� 2 ¼
2j� 1 as an odd number that is greater than two [10,11].
Hence, with the arguments given above, they indeed have
no contributions to the bispectrum of PGWs.
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FIG. 1 (color online). (a) Shape of ðk1k2k3Þ�1Bþþþ
ðGRÞ ðk1; k2; k3Þ.

(b) Shape of ðk1k2k3Þ�1Bþþ�
ðGRÞ ðk1; k2; k3Þ. All are normalized to

unity in the equilateral limit.
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IV. SHAPE OF THE BISPECTRUM

We are now ready to plot the shapes of the
bispectrum. For s1 ¼ s2 ¼ s3 ¼ 1 and s1 ¼ s2 ¼ �s3 ¼
1, we plot the shapes of the bispectrum of the leading
order contributions ðk1k2k3Þ�1B

s1s2s3
ðGRÞ ðk1; k2; k3Þ in Fig. 1.

Because there is no parity violation in the leading
order, we have Bþþþ

ðGRÞ ðk1; k2; k3Þ ¼ B���
ðGRÞ ðk1; k2; k3Þ and

Bþþ�
ðGRÞ ðk1; k2; k3Þ ¼ B��þ

ðGRÞ ðk1; k2; k3Þ. Thus, there are only

two possible configurations, which both peak at the
squeezed limit (k3=k1 ! 0). As pointed out in [29],
the second configuration [Fig. 1(b)] is subdominant,
in comparison with the first one in the equilateral limit
(k1 ’ k2 ’ k3), that is, B

þþ�
ðGRÞ ’ Bþþþ

ðGRÞ =81.
Now we turn to the contributions from the parity-

violating Chern-Simons term. In this case, because of
the violation of the parity, for different spin products
we have four independent configurations. We plot the
shapes of these four configurations in Fig. 2, from which
it can be seen that all the configurations peak in the
squeezed limit [Note that for the (þþ�) and (��� )
cases they peak in the negative direction.] More specifi-
cally, we have Bþþþ

ðPVÞ ðk1; k2; k3Þ ¼ �B���
ðPVÞ ðk1; k2; k3Þ, and

Bþþ�
PV ðk1; k2; k3Þ ¼ �B��þ

ðPVÞ ðk1; k2; k3Þ.

V. CONCLUSIONS AND REMARKS

In this paper, we have investigated the non-Gaussianities
of PGWs generated during the de Sitter expansion of
the Universe in the framework of the HL theory, and paid
particular attention on the effects of the operators that
violate the parity. Because of the restricted foliation-
preserving diffeomorphisms of the theory, the parity-
violating third- and fifth-dimensional operators exist
generically. By calculating the three-point correlation func-
tion of the PGWs, we have shown that the leading-order
contributions still come from the second-order spatial de-
rivative terms, and are the same as those given in general
relativity. The high-order nth spatial derivative terms of the
theory also contribute to the bispectrum, although their
contributions are suppressed by a factor �n�2� .
More remarkably, we have also found that the

three-dimensional gravitational Chern-Simons operator
!ð�Þ is the only one that violates the parity and meantime
has nonvanishing contributions to the non-Gaussianities of
PGWs. In comparison with the contributions of the second-
order operators that produce the same non-Gaussianity as
given in general relativity, its contributions are suppressed
by the factor ��. In addition, operators with odd order
and higher than three have no contributions to the non-
Gaussianities of PGWs.
It should be noted that in obtaining the above results, we

have assumed that the adiabatic condition (2.17) is always
satisfied before the modes exit the horizon. If this condition
fails to hold, the nonadiabatic evolution of the modes
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FIG. 2 (color online). Shapes of ðk1k2k3Þ�1B
s1s2s3
ðPVÞ ðk1; k2; k3Þ

for various spin products: (a) þþþ; (b) þþ�; (c) ��þ;
(d) ���. All are normalized to unity in the equilateral limit.
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becomes possible, and hence the integral history of the
mode function will be dramatically altered. Then, large
non-Gaussianities are expected, although it is still an
open question how one can extract information of PGWs
in this case.
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APPENDIX A: THE CUBIC ACTION OF PGWS

The cubic action for the tensor perturbations can be
written in the form

Sð3Þg ¼ �2
Z

d	d3xa2
�
�2

4
L2 þ �1

aM�
L3 þ �̂3

a2M2�
L4 þ �2

a3M3�
L5 þ �̂5

a4M4�
L6

�
; (A1)

where

L2 ¼ hmk; ijð2hmihkj �hijhmkÞ;

L3 ¼�1

2
eijkð@2hlkÞlhimhlm � eijk

4

�
4hi½m;l�jhlpðhmp;k þh;mpk�hmk;pÞþ hni;lh

l
j;m

�
2

3
hmk;n � 2h;mkn

�
þ 2hnl;ih

l
m;jh

m
k;n

�
;

L4 ¼�1

2
ð@2hijÞm;nhimhjn � 1

2
ð@2hijÞhmn

�
2him;jn �hmn;ij

2
�hij;mn

�
;

L5 ¼ eijk

2

�
�ð@2hilÞhmp

;j

�
hlp;mk �

1

2
hmp;k

l

�
þð@2hil;jÞhmpðhmk;p

l � hlk;mpÞþ 2ð@2hil;jÞhmk;ph
l½p;m� � 1

2
ð@2hil;jÞhlp@2hpk

�

� 1

8
eijkð@2hilÞð@2hmk Þðhlm;j � hlj;m �hjm

;lÞ� 1

4
eijkð@4hkl;jÞhimhlm;

L6 ¼ 3

8
ð@2hijÞð@2hjkÞð@2hki Þþ

1

2

�
ð@4hijÞhmn

�
2him;jn � 1

2
hmn;ij� hij;mn

�
þð@4hij;nmÞhimhjn þ 2ð@2hjkÞ;ilð@2hlkÞhij

�
: (A2)

Then the interaction Hamiltonian is

Hintð	Þ ¼
Z

d3xH intð	; xÞ; H intð	; xÞ ¼ ��2a2
�
�2

4
L2 þ �1

aM�
L3 þ �̂3

a2M2�
L4 þ �2

a3M3�
L5 þ �̂5

a4M4�
L6

�
: (A3)

APPENDIX B: EXPRESSION OF Fs1s2s3
k1k2k3

ð�Þ

F
s1s2s3
k1k2k3

ð	Þ is given by

F
s1s2s3
k1k2k3

ð	Þ ¼ �2F0 þ �1

aM�
F1 þ �̂3

a2M2�
F2 þ �2

a3M3�
F3 þ �̂5

a4M4�
F4 ¼ �2

X4
n¼0

�n�
n�ð�	ÞnFn; (B1)

where the even parity terms are

F0 ¼ Fkðk1s1 þ k2s2 þ k3s3Þ4; F2 ¼ Fkðk1s1 þ k2s2 þ k3s3Þ4�2ðk21 þ k22 þ k23Þ; (B2)

F4 ¼ �4Fkfk81 þ 4k71s1ðk2s2 þ k3s3Þ þ 6k61ðk2s2 þ k3s3Þ2 þ 4k51s1ðk32s2 þ 4k2k
2
3s2 þ 4k22k3s3 þ k33s3Þ

þ k41ð2k42 þ 19k22k
2
3 þ 2k43 þ 16k2k3s2s3ðk22 þ k23ÞÞ þ 2k31s1ð2k52s2 þ 8k42k3s3 þ 9k32k

2
3s2 þ 9k22k

3
3s3

þ 8k2k
4
3s2 þ 2k53s3Þ þ k21½6k62 þ 19k42k

2
3 þ 19k22k

4
3 þ 6k63 þ 2k3s3s2ð8k52 þ 9k32k

2
3 þ 8k2k

4
3Þ�

þ 4k1s1ðk42 þ k22k
2
3 þ k43Þðk2s2 þ k3s3Þ3 þ ðk42 þ k43Þðk2s2 þ k3s3Þ4g; (B3)
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Fk � �ðk1 � k2 � k3Þðk1 þ k2 � k3Þðk1 � k2 þ k3Þðk1 þ k2 þ k3Þ
256k21k

2
2k

2
3

; (B4)

and the odd parity terms are

F1 ¼ ��Fkfk51ð4s1 � 4s2 � 5s3Þ þ k52ð4s2 � 4s3 � 5s1Þ þ k53ð4s3 � 4s1 � 5s2Þ � 2k31k
2
2ðs1 � 5s2 � s3 þ 2s1s2s3Þ

� 2k31k
2
3ðs1 � 4s3 þ 2s1s2s3Þ � 2k32k

2
3ðs2 � 5s3 � s1 þ 2s1s2s3Þ � 2k32k

2
1ðs2 � 4s1 þ 2s1s2s3Þ

� 2k33k
2
1ðs3 � 5s1 � s2 þ 2s1s2s3Þ � 2k33k

2
2ðs3 � 4s2 þ 2s1s2s3Þ þ k41k2ð�3s1 þ 6s2 � 4s3 � 4s1s2s3Þ

þ k41k3ð�6s1 � 5s2 þ 6s3 � 4s1s2s3Þ þ k42k3ð�3s2 þ 6s3 � 4s1 � 4s1s2s3Þ þ k42k1ð�6s2 � 5s3 þ 6s1 � 4s1s2s3Þ
þ k43k1ð�3s3 þ 6s1 � 4s2 � 4s1s2s3Þ þ k43k2ð�6s3 � 5s1 þ 6s2 � 4s1s2s3Þ
þ 2k21k

2
2k3ð5s1 þ 4s2 � 2s3 þ 18s1s2s3Þ þ 2k31k2k3ð�7s1 þ 7s2 þ 7s3 þ 2s1s2s3Þ

þ 2k22k
2
3k1ð5s2 þ 4s3 � 2s1 þ 18s1s2s3Þ þ 2k32k3k1ð�7s2 þ 7s3 þ 7s1 þ 2s1s2s3Þ

þ 2k23k
2
1k2ð5s3 þ 4s1 � 2s2 þ 18s1s2s3Þ þ 2k33k1k2ð�7s3 þ 7s1 þ 7s2 þ 2s1s2s3Þg; (B5)

F3 ¼ �3Fk

2k21k
2
2k

2
3

fk111 k23½2s2� þ k91k2k
3
3½�8s3� þ k91k

2
2k

2
3½5s1 � 8s2 � 2s3� þ k91k

4
3½�4s2� þ k112 k21½2s3� þ k92k3k

3
1½�8s1�

þ k92k
2
3k

2
1½5s2 � 8s3 � 2s1� þ k92k

4
1½�4s3� þ k113 k22½2s1� þ k93k1k

3
2½�8s2� þ k93k

2
1k

2
2½5s3 � 8s1 � 2s2�

þ k93k
4
2½�4s1� þ k81k

2
2k

3
3½8s1s3ðs1 � s3Þ� þ k81k

3
2k

2
3½9þ 8s1ð�s2 þ s3Þ� þ k71k2k

5
3½8s3� þ k71k

6
3½2s2�

þ k82k
2
3k

3
1½8s2s1ðs2 � s1Þ� þ k82k

3
3k

2
1½9þ 8s2ð�s3 þ s1Þ� þ k72k3k

5
1½8s1� þ k72k

6
1½2s3� þ k83k

2
1k

3
2½8s3s2ðs3 � s2Þ�

þ k83k
3
1k

2
2½9þ 8s3ð�s1 þ s2Þ� þ k73k1k

5
2½8s2� þ k73k

6
2½2s1� þ k71k

2
2k

4
3½�5s1 þ 20s2 � 4s3�

þ k71k
4
2k

2
3½2ð�3s1 þ s2 þ 10s3Þ� þ k71k

3
2k

3
3½4s2s3ð3s1 þ 4s2 þ 2s3Þ� þ k72k

2
3k

4
1½�5s2 þ 20s3 � 4s1�

þ k72k
4
3k

2
1½2ð�3s2 þ s3 þ 10s1Þ� þ k72k

3
3k

3
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2
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þ k73k
4
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þ k61k
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3½14s1 � 25s2 � 4s3 þ 8s1s2s3� þ k62k
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5
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1k

2
2½14s3 � 25s1 � 4s2 þ 8s1s2s3� þ k61k

3
2k

4
3½ð2s2Þð1þ 4s1ðs2 þ s3ÞÞ�

þ k61k
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3
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3
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3
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4
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5
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4
1k

3
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5
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3
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5
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3
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3
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5
3k

3
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3
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