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Recent pulsar timing observations by the Parkers Pulsar Timing Array (PPTA) and European Pulsar

Timing Array (EPTA) teams obtained the constraint on the relic gravitational waves at the frequency

f� ¼ 1=yr, which provides the opportunity to constrain H�, the Hubble parameter, when these waves

crossed the horizon during inflation. In this paper, we investigate this constraint by considering the general

scenario for the early Universe: we assume that the effective (average) equation-of-state w before the big

bang nucleosynthesis stage is a free parameter. In the standard hot big-bang scenario with w ¼ 1=3, we

find that the current PPTA result follows a bound H� � 1:15� 10�1mPl, and the EPTA result follows

H� � 6:92� 10�2mPl. We also find that these bounds become much tighter in the nonstandard scenarios

with w> 1=3. When w ¼ 1, the bounds become H� � 5:89� 10�3mPl for the current PPTA and

H� � 3:39� 10�3mPl for the current EPTA. In contrast, in the nonstandard scenario with w ¼ 0, the

bound becomes H� � 7:76mPl for the current PPTA.

DOI: 10.1103/PhysRevD.83.104021 PACS numbers: 04.30.�w, 04.80.Nn, 98.80.Cq

I. INTRODUCTION

A stochastic background of relic gravitational waves,
generated during the early inflationary stage, is a necessity
dictated by general relativity and quantum mechanics
[1–3]. The relic gravitational waves have a wide range
spreading spectra, and their amplitudes depend only on
the Hubble parameter in the inflationary stage, when the
waves crossed the horizon, and the expansion history of
Universe after the waves reentered the horizon. So their
detection provides a direct way to study the physics in the
early Universe in both stages, during and after the inflation.

Recently, there have been several experimental efforts to
constrain the amplitude of relic gravitational waves in the
different frequencies. The current observations of cosmic
microwave background (CMB) radiation by the WMAP
satellite place an interesting bound on the so-called tensor-
to-scalar ratio r � 0:20 [4,5], which is equivalent to the
constraint on the energy density �gwðfÞ of relic gravita-

tional waves at the lowest frequency range f� 10�17 Hz.
Among various direct observations, LIGO S5 has also
experimentally obtained so far the most stringent bound
�gwðfÞ � 6:9� 10�6 around f� 100 Hz [6]. In addition,

there are two bounds on the integration
R
�gwðfÞd lnf &

1:5� 10�5, obtained by the big bang nucleosynthesis
(BBN) observation [7] and the CMB observation [8].
These bounds have been used to constrain the Hubble
parameter (or the potential density of inflaton) in the infla-
tionary stage, when the corresponding waves crossed the
horizon [4,6,9].

The timing studies on the millisecond pulsars provide a
unique way to constrain the amplitude of gravitational
waves in the frequency range f 2 ð10�9; 10�7Þ Hz [10].

Recently, the Parkers Pulsar Timing Array (PPTA) team
and the European Pulsar Timing Array (EPTA) team have
reported their observational results on the stochastic back-
ground of gravitational waves and given the upper limit of
�gwðfÞ at the frequency f ¼ 1=yr [11,12]. In this paper,

we shall infer from these bounds the constraint on H, the
Hubble parameter at the waves’ horizon-crossing time
during inflation. In the calculation, we have considered
a general early cosmological model, i.e., we assume the
effective (average) equation-of-state w before the BBN
stage can be of any value, which includes a wide range
of cosmological scenarios. The derived bound of H would
limit various inflation models.

II. RELIC GRAVITATIONALWAVES IN THE
STANDARD HOT BIG-BANG UNIVERSE

Incorporating the perturbation to the spatially flat
Friedmann-Robertson-Walker (FRW) spacetime, the
metric is

ds2 ¼ a2ð�Þ½d�2 � ð�ij þ hijdx
idxjÞ�; (1)

where a is the scale factor of the universe, and � is the
conformal time, which relates to the cosmic time by
ad� ¼ dt. The perturbation of spacetime hij is a 3� 3

symmetric matrix. The gravitational-wave field is the
tensorial portion of hij, which is transverse-traceless

@ih
ij ¼ 0, �ijhij ¼ 0.

Relic gravitational waves satisfy the linearized evolution
equation [1]:

@�ð ffiffiffiffiffiffiffi�g
p

@�hijÞ ¼ �16�G�ij: (2)

The anisotropic portion �ij is the source term, which can

be given by the relativistic free-streaming gas [13] and the
scalar field in the preheating stage [14]. However, it has*wzhao7@mail.ustc.edu.cn
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been deeply discussed that the relativistic free-streaming
gas can only affect the relic gravitational waves at the
frequency range f 2 ð10�16; 10�10Þ Hz, which could be
detected by the future CMB observations [15]. The gen-
eration of a stochastic background of gravitational waves
in the preheating stage has also been deeply studied (see,
for instance, [14]), where the gravitational radiation was
produced in interactions of classical waves created by
resonant decay of a coherently oscillating field. However,
it was found that the typical frequencies of this kind of
gravitational waves are quite high, i.e., f > 104 Hz. Even
if the model with low energy H � 100 GeV is considered,
the gravitational waves are important only at the frequency
range f� 1 Hz [14], which could be detected by the future
laser interferometer detectors. So, both effects cannot
obviously influence the relic gravitational waves at the
frequency f 2 ð10�9; 10�7Þ Hz. For these reasons, in this
paper we shall ignore the contribution of the external
sources. So the evolution of gravitational waves is only
dependent on the scale factor and its time derivative. It is
convenient to Fourier transform the equation as follows:

hijð�; ~xÞ ¼
Z d3 ~k

ð2�Þ3=2
X

s¼þ;�
½hkð�Þ�ðsÞij c

ðsÞ
~k
ei

~k� ~x þ c:c:�; (3)

where c.c. stands for the complex conjugate term. The
polarization tensors are symmetry, transverse-traceless

ki�ðsÞij ð ~kÞ ¼ 0, �ij�ðsÞij ð ~kÞ ¼ 0, and satisfy the conditions

�ðsÞijð ~kÞ�ðs0Þij ð ~kÞ ¼ 2�ss0 and �ðsÞij ð� ~kÞ ¼ �ðsÞij ð ~kÞ. Since the

relic gravitational waves we will consider are isotropy,
and each polarization state is the same, we have denoted

hðsÞ~k ð�Þ by hkð�Þ, where k ¼ j ~kj is the wave number of the

gravitational waves, which relates to the frequency by
k � 2�f. (The present scale factor is set a0 ¼ 1.) So
Eq. (2) can be rewritten as

h00k þ 2
a0

a
h0k þ k2hk ¼ 0; (4)

where the prime indicates a conformal time derivative
d=d�. For a given wave number k and a given time �,
we can define the transfer function tf as

tfð�; kÞ � hkð�Þ=hkð�iÞ; (5)

where �i is the initial conformal time. This transfer func-
tion can be obtained by solving the evolution equation (4).

The strength of the gravitational waves is characterized
by the gravitational-wave energy spectrum,

�gw � �gw=�0; (6)

where �gw ¼ 1
32�G h _hij _hiji, the critical density is �0 ¼ 3H2

0

8�G ,

and H0 ¼ 100h � km � s�1 �Mpc�1 is the current Hubble
constant. Using Eqs. (3) and (5), the energy density of
gravitational waves can be written as [16]

�gw ¼
Z dk

k

PtðkÞ _t2fð�0; kÞ
32�G

; (7)

where PtðkÞ � 2k3

�2 jhkð�iÞj2 is the so-called primordial

power spectrum of relic gravitational waves. Thus, we
derive that the current energy density of relic gravitational
waves

�gw �
Z

d lnk�gwðkÞ; and �gwðkÞ ¼ PtðkÞ
12H2

0

_t2fð�0; kÞ;
(8)

where the dot indicates a cosmic time derivative d=dt.
Now, let us discuss the terms PtðkÞ and tfð�0; kÞ sepa-

rately. The primordial power spectrum of relic gravita-
tional waves is usually assumed to be power-law as
follows:

PtðkÞ ¼ Atðk�Þ
�
k

k�

�
nt
: (9)

This is a generic prediction of a wide range of scenarios of
the early Universe, including the inflation models. Here,
we should mention that there might be deviations from
power-law if we consider the relic gravitational waves in a
fairly large wave number span. In this paper, as a conser-
vative consideration, we assume this form is held only
when k is very close to the pivot wave number k�. In the
above expression, nt is the spectral index when k ! k�.
(nt ¼ 0 corresponds to the scale-invariant power spec-
trum.) Atðk�Þ is directly related the value of the Hubble
parameter H at time when wavelengths corresponding to
the wave number k� crossed the horizon [1,3,17],

A1=2
t ðk�Þ ¼ 4ffiffiffiffi

�
p H�

mPl

��������k�¼a�H�
; (10)

where mPl � 1=
ffiffiffiffi
G

p
is the Planck mass.

Now, let us turn to the transfer function tf, defined in (5),

which describes the evolution of gravitational waves in the
expanding Universe. From Eq. (4), we find that this transfer
function can be directly derived, so long as the scale factor
as a function of time is given. Actually, the analytical or
numerical forms of tf have been discussed by a number of

authors (see, for instance, [18–21]).
In this paper, we shall use the following analytical

approximation for this transfer function. It has been known
that, during the expansion of the Universe, the mode
function hkð�Þ of the gravitational waves behaves differ-
ently in two regions [18]. When waves are far outside the
horizon, i.e., k 	 aH, the amplitude of hk keeps constant,
and when inside the horizon, i.e., k 
 aH, the amplitude is
damping with the expansion of Universe, i.e., hk / 1=að�Þ.
In the standard hot big-bang cosmological model, we
assume that the inflationary stage is followed by a radiation
dominant stage, and then the matter dominant stage and
the � dominant stage. In this scenario, by numerically
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integrating Eq. (4), one finds that the damping function _tf
can be approximatly described by the following form
[22–25]

_tfð�0; kÞ

¼ �3j2ðk�0Þ
k�0

�m

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:36

�
k

keq

�
þ 2:50

�
k

keq

�
2

s
; (11)

where keq ¼ 0:073�mh
2 Mpc�1 is the wave number cor-

responding the Hubble radius at the time that matter
and radiation have equal energy density, and �0 ¼
1:41� 104 Mpc is the present conformal time. The factor
�m=�� encodes the damping effect due to the recent
accelerating expansion of the Universe [19,22]. In this
damping factor, we have ignored the small effects
of neutrino free-streaming [13] and various phase transi-
tion [21].

We can define a new function

T ðkÞ � _tfð�0; kÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
12H2

0

q
: (12)

So, the current density of relic gravitational waves be-
comes �gwðkÞ ¼ PtðkÞT 2ðkÞ. In this paper, we shall focus

on the wave number k 
 keq. In this range, we have

[22,24–26]

T 2ðkÞ ¼ 15

16

�
�m

��

�
2 1

H2
0�

4
0k

2
eq

; (13)

and a parametrized form for the current density of relic
gravitational waves

�gwðkÞ ¼
�
H�
mPl

�
2
�
k

k�

�
nt
�
15

�

1

H2
0�

4
0k

2
eq

�2
m

�2
�

�
: (14)

For the wave number k ¼ k�, the value of �gwðk�Þ
depends only on the value of H�. So, in this standard
scenario, an observational bound on the �gwðk�Þ corre-

sponds to a bound on the Hubble parameter H�, which will
be shown clearly in Sec. IV.

III. DAMPINGFACTOR IN THEGENERALMODEL
OF THE EARLY UNIVERSE

Although, in the standard hot big-bang universe, a ra-
diation dominant stage is always assumed after the infla-
tionary stage, there is no observational evidence to show
this is held before the BBN stage. Actually, this assumption
can be violated in a number of cases, for example, the
existence of the reheating stage [18] or the existence of
the cosmic phase transition [21]. So, in general, before the
BBN stage, one can assume that the average equation-of-
state of the Universe is w, and the scale factor satisfies a
simple power-law form

a / �1þ�: (15)

The constant � relates to w by � ¼ ð�3wþ 1Þ=ð3wþ 1Þ.
Obviously, when w ¼ 1=3, i.e., � ¼ 0, it returns to the

standard model. However, if the Universe is dominated
by the kinetic energy of inflaton, one has w ¼ 1 and
� ¼ �1=2. On the other hand, for a matter-dominated
era, one has w ¼ 0 and � ¼ 1.
Now, let us discuss the evolution of relic gravitational

waves in this general cosmological model. In principle, it
can be done by directly solving Eq. (4). In this paper, in
order to avoid the complicated numerical calculation, we
give an approximate method as below.
We consider the wave hk with the wave number k, which

crossed the horizon at a ¼ ak and the corresponding
Hubble parameter is Hk. So one has k ¼ akHk=a0.
One knows that, when the waves are in the horizon,
hk / 1=að�Þ, damping with the expansion of the
Universe, and when the waves are out of the horizon,
hk ¼ constant, keeping its initial value. So one can
define a ratio which accounts for the damping of the
gravitational waves,

hkð�0Þ
hkð�iÞ

¼ ak
a0

¼ ak
ab

ab
a0

; (16)

where ab is the scale factor at the temperature of the
Universe being 1 MeV, i.e., the BBN stage.
In the standard model, where � ¼ 0 in (15) is assumed

(i.e., w ¼ 1=3, the radiation-dominant stage), we have

Hk

Hb

¼
�
ab
ak

�
2
; (17)

where Hb is the Hubble parameter in the BBN
stage. Taking into account the relation k ¼ akHk=a0, we
obtain that

hkð�0Þ
hkð�iÞ

¼ ab
a0

�
abHb

a0k

�
: (18)

However, in the general case with � � 0, we assume hk
crossed the horizon at a ¼ ~ak and the corresponding
Hubble parameter is ~Hk. (Note that, in general, ~ak � ak
and ~Hk � Hk, but k ¼ ~ak ~Hk=a0 is still satisfied.) From the
equation in (15), it follows that

~Hk

Hb

¼
�
ab
~ak

�ð2þ�Þ=ð1þ�Þ
:

So, in this general case, we have

hkð�0Þ
hkð�iÞ

¼ ~ak
a0

¼ ab
a0

�
abHb

a0k

�
1þ�

: (19)

Comparing Eqs. (19) and (18), we can define the damp-
ing faction DðkÞ as follows:

DðkÞ �
�
hkð�0Þ
hkð�iÞ

�
general

��
hkð�0Þ
hkð�iÞ

�
standard

(20)

¼
�
abHb

a0H0

�
�
�
H0

k�

�
�
�
k

k�

���
: (21)
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Thus, in this general scenario, the current density of relic
gravitational waves becomes

�gwðkÞ ¼ PtðkÞT 2ðkÞD2ðkÞ; (22)

which satisfies �gwðkÞ / knt�2� when k is close to k�.
Using the formulae in (9), (10), (13), and (21), and sub-
stituting the cosmological parameters (h ¼ 0:702, TCMB ¼
0:276 K, �� ¼ 0:725, �m ¼ 0:275, and zeq ¼ 3454) [4],

we get the following simple result:

log 10�gwðk�Þ ¼ 1:25� 13:48

3wþ 1
þ 2log10

�
H�
mPl

�
; (23)

where k� � 2�f�, and f� ¼ 1=yr is used. In Sec. IV, we
shall compare this with the observational results.

IV. CONSTRAINT BY THE PULSAR
TIMING OBSERVATIONS

Pulsar timing observations provide a unique opportunity
to study the gravitational waves at the frequency range f 2
ð10�9; 10�7Þ Hz. In 2006, Jenet et al. analyzed the PPTA
data and archival Arecibo data for several millisecond
pulsars. By focusing on the gravitational waves with the
wave number k� (where k� ¼ 2�f� and f� ¼ 1=yr), and
assuming the density of gravitational waves satisfies
�gwðkÞ ¼ k2þ2� at around k� k�, the authors obtained

the 2	 upper limit on �gwðk�Þ as a function of � [11],

which has been shown in Fig. 1 (solid line 1). This figure
shows that �gwðk�Þ � 4:05� 10�8 when � ¼ �1.

However, this upper bound increases to be 1:98� 10�6

when � ¼ 0.
Recently, this upper limit has been updated. In [12], the

authors have used the current data from the EPTA to
determine an upper limit on the stochastic gravitational-
wave background as a function of the spectral slope �. The
1	 and 2	 bounds are shown in Fig. 1 ([blue] lines 2 and
3), which are slightly lower than those in the PPTA case for
any given �.

It is interesting that, in [11], the authors have also
investigated the possible upper limit (or a definitive detec-
tion) of the stochastic background of gravitational waves
by using the potential completed PPTA data-sets (20 pul-
sars with an rms timing residual of 100 ns over 5 years). We
have also plotted this potential upper limit in Fig. 1 ([red]
dotted line 4).

Now, let us compare these observations with the ana-
lytical formulae of relic gravitational waves in Sec. III. In
order to compare, it is necessary to relate the parameter �
with the theoretical models. In Sec. III, Eq. (22) shows
that �gwðkÞ / knt�2�, where � ¼ ð�3wþ 1Þ=ð3wþ 1Þ.
Comparing this with the assumed form �gwðkÞ / k2þ2�,

we get the interesting relation

� ¼ nt
2
� 2

3wþ 1
: (24)

This relation shows that, in the standard hot big-bang
scenario with w ¼ 1=3, and the scale-invariant primordial
power spectrum with nt ¼ 0, we have � ¼ �1. In this
case, let us use the bounds of gravitational waves to con-
strain the Hubble parameter H� in the inflationary stage.
Taking into account the formula in Eq. (23) and using
w ¼ 1=3, we obtain the 2	 upper limit of H�, i.e.,
H� � 1:15� 10�1mPl for the current PPTA case,
H� � 6:92� 10�2mPl for the current EPTA case, and the
future PPTA is expected to give H� � 7:94� 10�3mPl.
These results are listed in Table I.
Although the inflation models always predict the nearly

same Hubble parameter throughout the inflationary stage,
it is necessary to constrain H, the Hubble parameter, at
quite different stages of inflation, which encodes the evo-
lution information of inflaton. Here, let us compare the
bound ofH inferred from pulsar timing with those obtained
in CMB observations and LIGO observations. The recent

FIG. 1 (color online). The upper limit of�gwðk�Þ as a function
of the parameter �. The black solid line line 1 is for the current
PPTA 2	 result [11]; the [blue] solid line 2 is for the
current EPTA 2	 result [12]; the [blue] dashed line 3 is for
the current EPTA 1	 result [12]; and the [red] dotted line 4 is for
the future PPTA 2	 result [11].

TABLE I. The 2	 upper limit of the quantity H�=mPl inferred
from various pulsar timing observations. In this table, we have
assumed nt ¼ 0.

Current PPTA Current EPTA Future PPTA

w ¼ 0 7.76 1.41

w ¼ 1=3 1:15� 10�1 6:92� 10�2 7:94� 10�3

w ¼ 1 5:89� 10�3 3:39� 10�3 3:55� 10�4

w ! 1 3:16� 10�4 1:20� 10�4 1:41� 10�5

WEN ZHAO PHYSICAL REVIEW D 83, 104021 (2011)

104021-4



CMB observations by the WMAP satellite provide the
constraint on the tensor-to-scalar ratio r � 0:20 [4],
which is equivalent to the bound of H=mPl � 6:92�
10�6, where H is the Hubble parameter of inflation when
the waves with frequency f ¼ 1:94� 10�17 Hz crossed
the horizon. The recent LIGO 5S reported so far the
tightest constraint �gwðfÞ � 6:9� 10�6 on relic gravita-

tional waves at the frequency f ’ 100 Hz [6], which cor-
responds to H=mPl � 1:46. Comparing these results, we
find that the current and the potential future pulsar timing
constraints on H are quite tighter than that of LIGO, but
much looser than the CMB constraint.

Now, let us relax the assumptions of the early Universe.
We assume only nt ¼ 0, which is approximately held in a
wide range of inflation models. So, we can constrain the
Hubble parameterH� in a wide range ofw by the following
inequality:

log 10

�
H�
mPl

�
� 1

2
ðUð�Þ � 6:74�� 1:25Þ; (25)

where Uð�Þ is the upper limit of �gwðk�Þ based on the

pulsar timing observations, which is a function of the
parameter �. [In this case, � relates to w by the relation
� ¼ �2=ð3wþ 1Þ.]. The bounds of H� as functions of �
(left panel) and w (right panel) are shown in Fig. 2. These
bounds in three special cases with w ¼ 0 (i.e., � ¼ �2),
w ¼ 1 (i.e., � ¼ �1=2) and w ! 1 (i.e., � ¼ 0) are also
listed in Table I. Clearly, we find that a larger w corre-
sponds to a tighter bound ofH�. Especially in the limit case
with w ! 1, the current EPTA gives the constraint
H� � 1:20� 10�4mPl, and the future PPTA is expected
to give a bound of H� � 1:41� 10�5mPl.

In the end, let us discuss the most general case with free
parameters nt and w. In this case, the inequality (25)
becomes the constraint on the physical parameters nt and
H� as follows:

log 10

�
H�
mPl

�
� 1:69nt � 1

2
ðUð�Þ � 6:74�� 1:25Þ: (26)

Here, we should remember that � relates to the physical
parameters by Eq. (24). The spectra index nt influences the
bound of H� mainly by slightly changing the correspond-
ing relation between � and w. In Fig. 3, we calculate the

FIG. 3 (color online). The upper limit of the Hubble parameter
H� as a function of the average equation-of-state w, where we
have considered three cases with nt ¼ �0:5, 0, 0.5. The three
upper black lines are for the current PPTA 2	 result, and the
three lower [red] lines are for the future PPTA 2	 result.

FIG. 2 (color online). The upper limit of the Hubble parameter H� as a function of the parameter � (left panel) and the average
equation-of-state w (right panel), where we have assumed nt ¼ 0. In both panels, the black solid line lines 1 are for the current PPTA
2	 result; the [blue] solid lines 2 are for the current EPTA 2	 result; the [blue] dashed lines 3 are for the current EPTA 1	 result, and
the [red] dotted lines 4 are for the future PPTA 2	 result.
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upper bound of H� in two special cases with nt ¼ 0:5 and
nt ¼ �0:5, and compare them with those in the case of
nt ¼ 0. This figure shows that the parameter nt only
slightly affects the bound of H�, and a larger nt follows a
looser bound of H�. For example, the current PPTA ob-
servations follow H� � 1:82� 10�1mPl at the case with
nt ¼ 0:5 andw ¼ 0, which is only 1.6 times larger than the

bound H� � 1:14� 10�1mPl at the case with nt ¼ 0 and
w ¼ 0.
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