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In this paper, we investigate the quintessence models with an oscillating equation of state (EOS) and its potentials.

From the constructed potentials, which have an EOS of ωφ = ω0 + ω1 sin z, we find that they are all the oscillating

functions of the field φ, and the oscillating amplitudes decrease (or increase) with φ. From the evolutive equation of the

field φ, we find that this is caused by the expansion of the universe. This also makes it very difficult to build a model

whose EOS oscillates forever. However one can build a model with EOS oscillating for a certain period of time. Then

we discuss three quintessence models, which are the combinations of the invert power law functions and the oscillating

functions of the field φ. We find that they all follow the oscillating EOS.
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1. Introduction

Recent observations on the Type Ia Supernova

(SNIa),[1−4] Cosmic Microwave Background Radiation

(CMB)[5,6] and Large Scale Structure (LSS)[7,8] all

suggest that the universe mainly comprises dark en-

ergy (73%), dark matter (23%) and baryon matter

(4%). How to understand the physical essence of the

dark energy is an important issue, which has an EOS

of ω < −1/3 and leads to the recent accelerating ex-

pansion of the universe. Several scenarios have been

put forward as a possible explanation of it. A posi-

tive cosmological constant is the simplest candidate,

however it needs extreme fine tuning to account for

the observations. As an alternative to the cosmologi-

cal constant, a number of dynamic models have been

proposed.[9−24] Among them, the quintessence is the

most natural model,[25−29] in which the dark energy is

described by a scalar field φ with Lagrangian density

Lφ = φ̇2/2 − V (φ). These models can naturally give

the EOSs with −1 ≤ ωφ ≤ 1. Usually, one discusses

these models with monotonic potential functions, i.e.

the models with the exponential potentials and in-

verse power law potentials. These models have some

interesting characters: for example, some models have

late-time attractor solutions with ωφ < 0,[30−32] and

some have the track solutions, which can naturally an-

swer the cosmic ‘coincidence problem’.[33,34] Recently,

a number of authors have considered the dark energy

with an oscillating EOS separately in the quintessence

models,[35] quintom models,[36−41] ideal-liquid mod-

els and scalar-tensor dark energy models.[42] They

have pointed out that this kind of dark energy may

naturally answer the ‘coincidence problem’ and ‘fine-

tuning problem’. And in some models, it is natural

to relate the very early inflation to the recent accel-

erating expansion. The most interesting is that these

models are likely to be marginally suggested by some

observations.[43−45]

In this paper, we will mainly discuss the

quintessence models with an oscillating EOS. First,

we construct the potentials from the parametrization

ωφ = ω0 + ω1 sin z. We find that these potentials are

all the oscillating functions and the oscillating ampli-

tudes increase (decrease) with the field φ. This char-

acter can be analysed from the evolution equation of

φ. This suggests the way to build the potential func-

tions which can follow an oscillating EOS. Then we

discuss three kinds of potentials, which are the com-

binations of the invert power law functions and the

oscillating functions, and find that they indeed give

an oscillating EOS.

The rest of this paper is organized as follows:

in Section 2, using a parametrized EOS ωφ = ω0 +

ω1 sin z, we build its corresponding potentials, and

investigate the general characters of these potentials

by discussing the kinetic equation of the quintessence

field; then we build three kinds of models, and dis-
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cuss the evolutions of their potentials, EOS and en-

ergy densities in Section 3; finally we draw some con-

clusions in Section 4.

We use the units of ~ = c = 1 and adopt the met-

ric convention as (+,−,−,−) throughout this paper.

2. Construction of the potentials

First, we study the general characters of the po-

tentials, which can follow an oscillating EOS. We note

that many periodic or nonmonotonic potentials have

been put forward for dark energy, but rarely give rise

to a periodic ωφ(z). As a well-studied example, the po-

tential for a pseudo-Nambu Goldstone boson (PNGB)

field[46−49] can be written as V (φ) = V0[cos(φ/f)+1],

clearly periodic, where f is a (an axion) symmetry

energy scale. However, unless the field has already

rolled through the minimum, the relation ωφ(z) is

monotonic and indeed can well described by a usual

form of ωφ(a) = ω0 + ω1(1 − a). Then what kind

of potentials can naturally give rise to the oscillat-

ing EOS? In Ref.[35], the authors have taken for

example a quintessence model, which has a poten-

tial V (φ) = V0 exp(−λφ
√

8πG)[1 + A sin(νφ
√

8πG)],

where λ, A and ν are all the constant numbers. They

have found that this model can indeed give an os-

cillating EOS with the appropriate parameters cho-

sen. In this section, we study the general characters of

these models by constructing potential functions from

a parametrized oscillating EOS. This method has been

given by Guo et al in Ref.[50–52], First, we give a brief

review of this method.

The Lagrangian density of the quintessence is

Lφ =
1

2
φ̇2 − V (φ), (1)

and the pressure, energy density and EOS are

pφ =
1

2
φ̇2 − V (φ), ρφ =

1

2
φ̇2 + V (φ), (2)

ωφ ≡ pφ

ρφ
=

φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
(3)

respectively. When the energy is converted from ki-

netic energy into potential energy, the value of ωφ

is descending, and on the contrary, when the energy

is converted from potential energy into kinetic en-

ergy, the value of ωφ is ascending. So the evolution

of ωφ reflects the energy conversion relation of the

quintessence field. This suggests that it is impossible

to acquire an oscillating EOS from the monotonic po-

tentials, where the quintessence fields trend to run to

the minimum of their potentials.

Consider the Flat–Robertson–Walker (FRW) uni-

verse, which is dominated by the non-relativistic mat-

ter and a spatially homogeneous quintessence field φ.

From the expressions of the pressure and energy den-

sity of the quintessence field, we have

V (φ) =
1

2
(1 − ωφ)ρφ, (4)

1

2
φ̇2 =

1

2
(1 + ωφ)ρφ. (5)

These two equations relate the potential V and field φ

to the only function ρφ. So the main task below is to

build the function form ρφ(z) from the parametrized

EOS. This can be realized by the energy conservation

equation of the quintessence field

ρ̇φ + 3H(ρφ + pφ) = 0, (6)

where H is the Hubble parameter, which yields

ρφ(z) = ρφ0 exp

[

3

∫ z

0

(1 + ωφ)d ln(1 + z)

]

≡ ρφ0E(z), (7)

where z is the redshift which is given by 1 + z = a0/a

and subscript 0 denotes the value of a quantity at the

redshift z = 0 (present). In terms of ωφ(z), the po-

tential can be written as a function of the redshift z

as follows:

V (φ(z)) =
1

2
(1 − ωφ)ρφ0E(z). (8)

With the help of the Friedmann equation

H2 =
κ2

3
(ρm + ρφ), (9)

where κ2 = 8πG and ρm is the matter density, one

can have

Ṽ (φ) =
1

2
(1 − ωφ)E(z), (10)

dφ̃

dz
= ∓

√
3

1

(1 + z)

[

(1 + ω)E(z)

r0(1 + z)3 + E(z)

]1/2

, (11)

where we have defined the dimensionless quantities φ̃

and Ṽ as

φ̃ ≡ κφ, Ṽ ≡ V/ρφ0, (12)

and r0 ≡ Ωm0/Ωφ0 that is the energy density ratio of

matter to quintessence at the present time. The upper

(lower) sign in Eq.(11) is taken if φ̇ > 0(φ̇ < 0). These
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two equations relate the quintessence potential V (φ)

to the equation of state function ωφ(z). Given an effec-

tive equation of state function ωφ(z), the construction

of equations (10) and (11) allows us to construct the

quintessence potential V (φ).

Here we consider a most general oscillating EOS

ωφ = ω0 + ω1 sin z, (13)

where |ω0| + |ω1| ≤ 1 must be satisfied for a

quintessence field. We choose the cosmological pa-

rameters as Ωφ0 = 0.7, and Ωm0 = 0.3. For the initial

condition, we choose two different sets of parameters:

case 1 with ω0 = −0.7, ω1 = 0.2 and φ̃0 = 1.0; case

2 with ω0 = −0.4, ω1 = 0.5 and φ̃0 = 1.0. We plot

them in Fig.1.

Fig.1. The parametrized EOS ωφ(z) = ω0 + ω1 sin z.

But how is the ‘∓’ sign fixed in Eq.(11)? We

choose the initial condition with dφ̃0/dz < 0, on the

assumption that the variation of this sign from ‘−′

to ‘+′ exists. And then on the transformation point,

for the continuous evolution of the field φ we have

φ̇ = dφ̃/dz = 0, which follows that ωφ = −1 on

this condition. Since ωφ > −1 is always satisfied in

these two models that we are considering, there is no

transformation of the sign in Eq.(11). So the negative

sign holds at all times. In Fig.2, we have plotted the

evolution of the potentials of the quintessence mod-

els with a redshift, and in Fig.3, we have plotted the

constructed potentials. From these figures, one finds

that although the potential functions are oscillatory,

their amplitudes vary with field. The field always runs

from the potential with higher amplitudes to that with

lower ones.

Fig.2. The evolution of the potentials of the quintessence

models with redshift z.

Fig.3. Constructed potential functions.

Now we analyse these strange potential forms.

The evolution equation of the quintessence field is

φ̈ + 3Hφ̇ + V,φ = 0, (14)

where V,φ denotes dV/dφ. This equation can be

rewritten as

φ̈ + V,φ = −3Hφ̇. (15)

If the term on the right-hand side is zero valued, this

equation turns into an equation which describes the

motion of field φ in the potential V (φ) in the flat

space-time. The term on the right-hand side of this

equation is the effect of the expansion of the universe.

In order to show clearly its effect on the field, we con-

sider the simplest condition under which V (φ) is a

constant, if the term on the right-hand side is equal

to zero, we obtain that φ̈ = 0, and φ̇ keeps constant,

which is the free motion of the field. But if the term

on the right-hand side exists, we obtain its solution

|φ̇| ∝ e
R

−3Hdt, the speed of the field rapidly decreases
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with time. So the effect of the cosmic expansion is

a kind of resistance to the field, and this force is di-

rectly proportional to the speed of the field φ̇. In order

to overcome this resistance force and keep the kinetic

energy unequal to zero, the field must roll from the

region with higher amplitudes to that with lower am-

plitudes. This is the reason why the potential has so

strange a form as shown in Figs.2 and 3. Since the

field is always running to a relatively smaller value of

its potential and the potential cannot be smaller than

zero, it is very difficult to build the potential with

EOS which oscillates forever if there is no extreme

fine-tuning.

3. Three quintessence models

From the previous section, we find the general

characters of the potentials which can follow the os-

cillating EOS. According to these characters, one can

find that the potential given in Ref.[35] indeed sat-

isfies this condition. However in that reference, the

authors have found that a weak fine-tuning exists in

the model for the constraint from the big-bang nucle-

osynthesis (BBN) observation. And also this model

can obviously change the CMB anisotropy power spec-

trum, compared with the standard Λ cold dark mat-

ter (ΛCDM) model. These are because the oscilla-

tion of EOS exists at the radiation-dominant stage in

that model. Here we build other three kinds of poten-

tial functions, which also can generate the oscillating

EOSs. First we simplify the evolution equations of the

quintessence field. Introduce the following dimension-

less variables:

x ≡ κφ̇√
6H

, y ≡ κ
√

V√
3H

,

z ≡ κ
√

ρm√
3H

and u ≡
√

6

κφ
, (16)

then the evolution equations of the matter and

quintessence will be rewritten as[30−32]

x′ = 3x(x2 + z2/2 − 1) − f(y, u), (17)

y′ = 3y(x2 + z2/2) + f(y, u)x/y, (18)

z′ = 3z(x2 + z2/2 − 1/2), (19)

u′ = −xu2, (20)

where a prime denotes the derivative with respect to

the so-called e-folding time N ≡ ln a, and the func-

tion f(y, u) =
κV,φ√
6H2

, which has the different forms

for different potential functions. In this section, we

mainly discuss three simple models, which have the

similar potentials to those in Fig.3:

Model 1: V (φ) = V0(κφ)−2[cos(φ/φc) + 2] with κφc = 0.1 and

f(y, u) = −uy2 − 5
√

6y2 sin(10
√

6/u)/[cos(10
√

6/u) + 2]; (21)

Model 2: V (φ) = V0(κφ)−1[cos(φ/φc) + 2] with κφc = 0.1 and

f(y, u) = −uy2/2 − 5
√

6y2 sin(10
√

6/u)/[cos(10
√

6/u) + 2]; (22)

Model 3: V (φ) = V0[(κφ)−1 + cos(φ/φc) + 1] with κφc = 0.1 and

f(y, u) = −3y2[u2/6 + 10 sin(10
√

6/u)]/[u +
√

6 +
√

6 cos(10
√

6/u)]. (23)

These models have been shown in Fig.4, which are

all the combinations of the invert power law function

and the PNGB field. And V (φ) > 0 is satisfied at all

times. When φ/φc ≪ 1, they are like the invert power

law potential with n = −1 (or −2), and they begin

to oscillate when φ > φc. The oscillating amplitudes

decrease at all times for the first two potentials, and

for the last potential, the oscillating amplitudes are

nearly constant at φ ≫ φc. It is interesting that these

potentials can be regarded as the invert power law po-

tential 3V0(κφ)−1 (3V0(κφ)−2, V0[(κφ)−1 + 2]) with

an oscillating amendatory term at φ > φc. Here we

choose the initial condition (present values) κφ0 = 0.6,

ωφ0 = −0.9, Ωφ0 = 0.7 and Ωm0 = 0.3. So at the early

stage, the potential functions of the quintessence are

monotonic functions, the EOSs are not oscillating at
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the early (radiation-dominant) stage, which naturally

overcomes the shortcoming of the model in Ref.[35].

Fig.4. Three kinds of quintessence models.

In Figs.5 and 6, we plot the evolution of EOS and

field φ in the region ln(a/a0) = [0, 4]. The solid lines

are for the model with the first potential, whose EOS

has a relatively steady oscillating amplitude. This

is for the amplitude in which its potential function

rapidly decreases with φ. When the field φ rolls down

to its valley, it has enough kinetic energy to climb up

to its adjacent hill and then rolls down again. In each

period of its potential, when the field rolls down, the

kinetic energy increases, and the potential energy de-

creases, which makes its EOS raised; on the contrary,

when the field climbs up, the kinetic energy decreases,

and the potential energy increases, which makes its

EOS damped. The minimum value of its EOS never

reaches −1, which is because the kinetic energy of the

field is never zero valued. This process continues un-

til ln(a/a0) ≃ 1.7 (κφ ≃ 2.2), when the field reaches

a state with φ̇ = 0 (ωφ = −1) and has to roll back

down to the former valley (φ̇ < 0). These can be seen

clearly in Fig.6. After this state, the EOS will rapidly

run to a steady state with ωφ = −1.

However all these are different between models 2

and 3, which are described with dashed and dotted

lines in these figures respectively. When the fields roll

down to the valley with κφ ≃ 1, they try to climb up

to their first hills, but they cannot climb up to the

peaks for the large values of their potential functions.

When the fields reach a state with φ̇ = 0 (the corre-

sponding EOSs have ωφ = −1), they have to roll back

down to this valley again. This process lasts until the

kinetic energy becomes negligible, and the fields stay

at the valley with ωφ = −1. The evolution of these

fields can be seen clearly in Fig.6.

Fig.5. The evolution of the EOS of the quintessence mod-

els.

Fig.6. The evolution of field φ of the quintessence models.

In Fig.7, we plot the evolution of Ωφ in the uni-

verse. Although the quintessence is predominant in

the universe finally, the values of Ωφ are oscillatory

at the evolution stage for all these three quintessence

models, which are determined by the evolution of ωφ.

When ωφ > 0, the values of Ωφ will decrease, and

when ωφ < 0, the values of Ωφ will increase.

Fig.7. The evolution of the energy density Ωφ of the

quintessence models.
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4. Conclusions

An understanding of the physical essence of the

dark energy is one of the most important missions

for modern cosmology. The most effective way is to

detect its EOS and the running behaviour by the ob-

servations on SNIa, CMB, LSS and so on. There are

mild evidences to show that the EOS of the dark en-

ergy is an oscillating function, which makes it difficult

to build the dark energy models. For the quintessence

field dark energy models, it is obvious that this EOS

cannot be realized from the monotonic potentials.

However, for a simple oscillating potential, it is still

difficult to realize.

In this paper, we have discussed the general fea-

tures of the potentials which can follow an oscillating

EOS by constructing the potentials from an oscillat-

ing EOS, and found that they are oscillating func-

tions. However, the oscillating amplitudes increase

(decrease) with the field φ. And also the field must

roll from the region with larger amplitudes to that

with smaller amplitudes if the EOS is oscillating. The

potentials of this kind are not very difficult to sat-

isfy. However, since the field must roll down to the

region with smaller amplitudes if the EOS is oscil-

lating, and also the constraint of V (φ) ≥ 0 must be

satisfied at all times, which make it very different to

build the quintessence with an oscillating (forever)

EOS. In this paper, we have studied three kinds of

models: V (φ) = V0(κφ)−2[cos(φ/φc) + 2], V (φ) =

V0(κφ)−1[cos(φ/φc) + 2] and V (φ) = V0[(κφ)−1 +

cos(φ/φc) + 1]. They all comprise the invert power

law functions and the oscillating functions, and can

indeed follow the oscillating EOS. However, this oscil-

lating behaviour can be maintained only for a finite

period of time in all these three models.
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