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The prospect of detecting relic gravitational waves, through their imprint in the cosmic microwave

background radiation, provides an excellent opportunity to study the very early Universe. In the simplest

viable theoretical models the relic gravitational wave background is characterized by two parameters, the

tensor-to-scalar ratio r and the tensor spectral index nt. In this paper, we analyze the potential joint

constraints on these two parameters, r and nt, using the data from the upcoming cosmic microwave

background radiation experiments. Introducing the notion of the best-pivot multipole ‘�t , we find that at

this pivot multipole the parameters r and nt are uncorrelated, and have the smallest variances. We derive

the analytical formulas for the best-pivot multipole number ‘�t , and the variances of the parameters r and

nt. We verify these analytical calculations using numerical simulation methods, and find agreement to

within 20%. The analytical results provide a simple way to estimate the detection ability for the relic

gravitational waves by the future observations of the cosmic microwave background radiation.
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I. INTRODUCTION

Detection of relic gravitational waves (RGWs) can be
arguably considered one of the most important challenges
for current and future cosmic microwave background ra-
diation (CMB) experiments [1–5]. The RGWs are pro-
duced in the early Universe due to the superadiabatic
amplification of zero point quantum fluctuations of the
gravitational field [6]. For this reason, the RGWs carry
invaluable information about the early history of our
Universe that is inaccessible to any other medium (see
review [7] for detailed discussion).

A whole range of scenarios of the early Universe, in-
cluding the inflationary models, generically predict a RGW
background with a power-law primordial power spectra
[6,8–13]. In fact, the existence of RGWs is a consequence
of quite general assumptions. Essentially, their existence
relies only on the validity of general relativity and basic
principles of quantum field theory [6]. The RGW back-
grounds are conventionally characterized by two parame-
ters, the so-called tensor-to-scalar ratio r and the
primordial power spectral index of RGWs nt (explained
in detail below).

The RGWs leave well understood imprints on the an-
isotropies in temperature and polarization of CMB [14–
19]. More specifically, RGWs produce a specific pattern of
polarization in the CMB known as the B-mode polarization
[15]. Moreover, RGWs produce a negative cross correla-
tion between the temperature and polarization known as
the TE correlation [18,20–22] (see also [23,24]). The
theoretical analysis of these imprints along with the data

from CMB experiments allows one to place constraints on
the parameters r and nt describing the RGW background.
The current CMB experiments are yet to detect a definite

signature of RGWs. It is hoped that, in the near future, with
the launch of the Planck satellite [1] together with a host of
ground-based [3] and balloon-borne [4] CMB experiments
as well as the proposed satellite mission CMBPol [5], we
shall be able to detect a definite signature of the RGW
background. In light of this prospect, it is important to be
able to effectively constrain the parameters r and nt. A
number of papers have discussed the current and potential
constraint on the tensor-to-scalar ratio r [25]. However,
most of these works either ignore the constraint on the
spectral index nt, or make simplifying assumptions about
its value. One of the common simplifying assumptions is
the so-called ‘‘consistency relation’’ nt ¼ �r=8 [26,27]. It
should be noted that the consistency relation is valid only
in the simplest models of inflation, namely, the single-field
slow-roll inflationary model [26–28]. For a detailed critical
discussion of inflationary predictions and data analysis
based on these predictions see [29]. In order to keep our
discussion sufficiently general we shall not use this con-
sistency relation in our analysis.
The constraints on the parameters r and nt, characteriz-

ing the RGW background, will give us a direct glimpse into
the physical conditions in the early Universe. In particular,
they will allow us to place a constraint on the Hubble
parameter of the early Universe [30], which in the case
of inflationary models would correspond to the constraints
on the energy scale of inflation [26]. More specifically, the
amplitude of the RGW power spectrum at a particular
wavelength, characterized by r and nt, determines the
Hubble parameter at the time when the particular wave-
length left the horizon. Thus, the determination of r and nt
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would give a direct measurement of the time evolution of
the early Universe, and provide an observational tool to
distinguish between the various inflationary-type models.
In addition, the spectral index nt has a special character if
the RGW background is generated in a primordial
Hagedorn phase of string cosmology [31] or inflation in
the loop quantum gravity [32], so the determination of nt
provides an observational way to test or rule out these
models.

In this paper we shall analyze the joint constraints on
two parameters r and nt that would be feasible with the
analysis of the data from the upcoming CMB experiments.
In general, there will be a nonvanishing correlation be-
tween parameters r and nt [5,33]. As will be explained in
the following sections, the definitions of r and nt depend on
a reference scale characterized by a multipole number ‘0,
which may be chosen arbitrarily. We shall show that with
an appropriate choice of this multipole number, which we
shall call the best multipole number ‘�t (following the
terminology of [34]), the parameters r and nt become
uncorrelated and have the smallest possible variances.
We shall derive approximate analytical expressions for
the variances and the correlation coefficients, followed
by an analytical calculation of the pivot multipole ‘�t .
Using the Markov chain Monte Carlo (MCMC) simulation
methods, we shall verify our analytical results and evaluate
the expected constraints for realistic CMB experiments.

The outline of the paper is as follows. In Sec. II we shall
introduce and explain the notations for the power spectra of
gravitational waves, density perturbations and various
CMB anisotropy fields and briefly explain how they are
calculated. Furthermore, in this section we shall explicitly
state the simplifying assumptions that we shall be using
throughout the paper, and explain the limits of their appli-
cability. Following this, in Sec. III, we shall calculate
analytically the expected variances and the correlation
associated with the parameters r and nt. We shall show
the existence of the best-pivot multipole scale ‘�t for which
the variances of the corresponding r and nt are minimal
and the correlation between them vanishes. In Sec. IV we
shall confirm our analytical results using numerical calcu-
lations. Finally, Sec. V is dedicated to a brief discussion
and conclusions.

II. POWER SPECTRA OF COSMOLOGICAL
PERTURBATIONS AND CMB FIELDS

The main contribution to the observed temperature and
polarization anisotropies of the CMB comes from two
types of the cosmological perturbations, density perturba-
tions (also known as the scalar perturbations) and RGWs
(also known as the tensor perturbations) [10,11,14,15].
These perturbations are generally characterized by their
primordial power spectra. These power spectra are usually
assumed to be power laws, which is a generic prediction of
a wide range of scenarios of the early Universe, including

the inflationary models. In general there might be devia-
tions from a power law, which can be parametrized in
terms of the running of the spectral index (see for example
[27]), but we shall not consider this possibility in the
current paper. Thus, the power spectra of the perturbation
fields have the form

PRðkÞ ¼ Asðk0Þ
�
k

k0

�
ns�1

; (1)

PhðkÞ ¼ Atðk0Þ
�
k

k0

�
nt
; (2)

for density perturbations and the RGWs, respectively. In
the above expression k0 is an arbitrarily chosen pivot wave
number, ns is the primordial power spectral index for
density perturbations, and nt is the primordial power spec-
tral index for RGWs. Asðk0Þ and Atðk0Þ are normalization
coefficients determining the absolute value of the primor-
dial power spectra at the pivot wave number k0. The
choices of ns ¼ 1 and nt ¼ 0 correspond to the scale-
invariant power spectra for density perturbations and gravi-
tational waves, respectively. The quantity PRðkÞ is the
primordial power spectrum of the curvature perturbation
R in the comoving gauge, i.e. PRðkÞ ¼ k3hjRkj2i=2�2

(see [35] for a detailed exposition). The quantity PhðkÞ is
the primordial power spectrum of RGWs and gives the
mean-square value of the gravitational field perturbations,
in a logarithmic interval of the wave number k, at some
initial epoch when the wavelengths of interest are well
outside the horizon.
The relative contribution of density perturbations and

gravitational waves is described by the so-called tensor-to-
scalar ratio r defined as follows:

rðk0Þ � Atðk0Þ
Asðk0Þ : (3)

Note that, in defining the tensor-to-scalar ratio r, we have
not used any inflationary formulas which relate r with the
physical conditions during inflation and the slow-roll pa-
rameters (see for example [26]). Thus, our definition de-
pends only on the power spectral amplitudes of density
perturbations and RGWs, and does not assume a particular
generating mechanism for these cosmological
perturbations.
Assuming that the amplitude of density perturbations

Asðk0Þ is known, taking into account the definitions (2) and
(3), the power spectrum of the RGW field may be com-
pletely characterized by tensor-to-scalar ratio r and the
spectral index nt. The RGW amplitude Atðk0Þ ¼
rðk0ÞAsðk0Þ provides us with direct information on the
Hubble parameter of the very early Universe [30]. More
specifically, this amplitude is directly related to the value of
the Hubble parameter H at a time when wavelengths
corresponding to the wave number k0 crossed the horizon
[6,8,9,30,36]
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A1=2
t ðk0Þ ¼

ffiffiffi
2

p
Mpl

H

�

��������k0=a¼H
;

where Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the reduced Planck mass.

It is important to point out that, for spectral indices
different from the invariant case (i.e. when ns � 1 and
nt � 0), the definition of the tensor-to-scalar ratio depends
on the pivot wave number k0. If we adopt different pivot
wave number k1, the tensor-to-scalar ratio at this new pivot
wave number rðk1Þ is related to original ratio rðk0Þ through
the following relation [which follows from the definitions
(1)–(3)]:

rðk1Þ ¼ rðk0Þ
�
k1
k0

�
nt�nsþ1

: (4)

Let us now turn our attention to CMB. Density pertur-
bations and gravitational waves produce temperature and
polarization anisotropies in the CMB characterized by the
four angular power spectra CTT

‘ , CEE
‘ , CBB

‘ and CTE
‘ as

functions of the multipole number ‘. HereCTT
‘ is the power

spectrum of the temperature anisotropies, CEE
‘ and CBB

‘ are

the power spectra of the so-called E and B modes of
polarization, respectively (note that density perturbation
do not generate a B mode of polarization [15]), and CTE

‘ is

the power spectrum of the temperature-polarization cross
correlation. In what follows, we shall use the shorthand
notations CT

‘ , C
E
‘ , C

B
‘ and CC

‘ to denote these spectra.

In general, the various power spectra CY
‘ (where Y ¼ T,

E, B or C) can be presented in the following form:

CY
‘ ¼ CY

‘;s þ CY
‘;t; (5)

where CY
‘;s is the power spectrum due to the density per-

turbations (scalar perturbations), and CY
‘;t is the power

spectrum due to RGWs (tensor perturbations).
In the case of RGWs, the various CMB power spectra

can be presented in the following form [16–18]:

CY
‘;t ¼ ð4�Þ2

Z dk

k
PhðkÞ½�ðTÞ

Y‘ ðkÞ�2; for Y ¼ T; E; B;

CC
‘;t ¼ ð4�Þ2

Z dk

k
PhðkÞ½�ðTÞ

T‘ ðkÞ�ðTÞ
E‘ ðkÞ�: (6)

Similar expressions hold in the case of CMB anisotropies
due to density perturbations with a single exception.
Density perturbations do not produce the B mode of po-
larization [15]. Thus, the CMB power spectra have the
form [16]

CY
‘;s ¼ ð4�Þ2

Z dk

k
PRðkÞ½�ðSÞ

Y‘ ðkÞ�2; for Y ¼ T; E;

CC
‘;s ¼ ð4�Þ2

Z dk

k
PRðkÞ½�ðSÞ

T‘ ðkÞ�ðSÞ
E‘ðkÞ�:

(7)

The transfer functions �ðS;TÞ
Y‘ ðkÞ (see [16–18] for details) in

the above expressions translate the power in the metric

fluctuations (density perturbations or gravitational waves)
into corresponding CMB power spectrum at an angular
scale characterized by multipole ‘. In general, these trans-
fer functions are peaked at values ‘ ’ ð1:35� 104 MpcÞ �
k, which is a reflection of the fact that metric fluctuations at
a particular linear scale k�1 lead to CMB anisotropies
predominantly at angular scales �� kD (where D is the
distance to the surface of last scattering). In this work, for
numerical evaluation of the various CMB power spectra
due to density perturbations and gravitational waves, we
use the publicly available CAMB code [37].
Since we are primarily interested in the parameters of

the RGW field, in the analytical and numerical analysis
below we shall work with a fixed cosmological background
model. More specifically, we shall work in the framework
of �CDM model, and keep the background cosmological
parameters fixed at the values determined by a typical
model [38]

h ¼ 0:732; �bh
2 ¼ 0:022 29; �mh

2 ¼ 0:1277;

�k ¼ 0; �reion ¼ 0:089: (8)

Furthermore, for density perturbations, we shall use a
model with a primordial scalar perturbation power spec-
trum characterized by an amplitude and spectral index

As ¼ 2:3� 10�9; ns ¼ 1:0: (9)

In light of the above, CMB power spectra produced by
RGWs depend on the tensor-to-scalar ratio r and the
spectral index nt. In general, this dependence is compli-
cated and requires numerical calculations. For analytical
calculations in Sec. III, we shall use a simple analytical
approximation for this dependence (see for example [39])

CY
‘;t ’ ĈY

‘;t

�
r

r̂

��
‘

‘0

�
nt�n̂t ¼ ĈY

‘;t

�
r

r̂

�
exp½ðnt � n̂tÞ lnð‘=‘0Þ�:

(10)

Here ĈY
‘;t ¼ CY

‘;tðr ¼ r̂; nt ¼ n̂tÞ are the spectra calculated
for values of the tensor-to-scalar ratio and the spectral
index fixed at fiducial values r̂ and n̂t, and ‘0 is the pivot
multipole. The approximation (10) can be further simpli-
fied, for values of spectral index nt sufficiently close to the
fiducial value n̂t [such that ðnt � n̂tÞ lnð‘=‘0Þ � 1]:

CY
‘;t ’ ĈY

‘;t

�
r

r̂

�
½1þ ðnt � n̂tÞ lnð‘=‘0Þ�: (11)

The pivot multipole ‘0 is closely related to the pivot
wave number k0. The approximation (10) can be derived
from (2) and (6) under the assumption that the wave
number k and multipole ‘ are linearly related, i.e. k=k0 �
‘=‘0. This assumption is justified due to the peaked nature

of transfer functions�ðTÞ
Y;‘ðkÞ entering (6). Numerical evalu-

ations show that the pivot multipole is related to pivot wave
number by
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‘0 � k0 � 104 Mpc: (12)

For illustration, in Fig. 1 we plot the power spectra CY
‘;t for

different values of the spectral index nt. The pivot wave
number is taken to be k0 ¼ 0:05 Mpc�1. As expected, in
all the panels the spectra with different values of nt con-
verge at ‘ ’ 500, which is consistent with the prediction of
the relation (12).

The CMB power spectra CY
‘ are theoretical construc-

tions determined by ensemble averages over all possible
realizations of the underlying random process. However, in
real CMB observations, we only have access to a single
sky, and hence to a single realization. In order to obtain
information on the power spectra from a single realization,
it is required to construct estimators of power spectra. In
order to differentiate the estimators from the actual power
spectra, we shall use the notation DY

‘ to denote the estima-

tors while retaining the notation CY
‘ to denote the power

spectrum. It is important to keep in mind that the estima-
tors DY

‘ are constructed from observational data, while the

power spectra CY
‘ are theoretically predicted quantities.

The probability density functions (pdfs) for the estimators
are described in detail in the appendix. In what follows, we
shall require the data from all the power spectral estima-

tors, i.e. DY
‘ for Y ¼ T, E, B, and C. Let us denote this set

of estimators (which we shall sometimes refer to as the
sample) as

fDY
‘ g � fDY

‘ jY ¼ C; T; E; B; ‘ ¼ 2; 3; . . . ; ‘maxg:

To simulate an experiment, we shall randomly draw a data
set fDY

‘ g from the pdf (A1). In calculating the pdf (A1),

along with parameters given in (8) and (9), we set the value
of the RGW parameters as

r ¼ r̂; nt ¼ n̂t: (13)

We shall refer to r̂ and n̂t as the parameters of the input
model.
For analytical evaluations in Sec. III, we shall work with

Gaussian approximation to the exact pdfs (A1) for the
estimators fDY

‘ g. The Gaussian approximation is charac-

terized by corresponding mean values and standard devia-
tions [22]

FIG. 1 (color online). The CMB power spectra due to RGWs for various values of the spectral index nt: C
T
‘;t (left upper panel), C

E
‘;t

(right upper panel), CB
‘;t (left lower panel), C

C
‘;t (right upper panel). The pivot wave number is chosen k0 ¼ 0:05 Mpc�1 (in all the

panels), and the power spectra are shown for multipoles around the value of the corresponding pivot multipole ‘� 500.
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hDY
‘ i ¼ CY

‘ ; ðY ¼ T; E; B; CÞ;

�DY
‘
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2‘þ 1Þfsky

s
ðCY

‘ þ NY
‘W

�2
‘ Þ ðY ¼ T; E; BÞ;

�DC
‘
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCC

‘ Þ2 þ ðCT
‘ þ NT

‘W
�2
‘ ÞðCE

‘ þ NE
‘W

�2
‘ Þ

ð2‘þ 1Þfsky

vuut : (14)

Note that the above expressions for mean values and
standard deviations follow from the exact pdfs considered
in the appendix. In the above expression, NY

‘ are the noise

power spectra, fsky is the cut sky factor, and W‘ is the

window function.
In the case of the Planck mission [1], considering the

channel at 143 GHz (which has the lower foreground level
and lowest noise power spectra) the noise power spectra,
the cut sky factor and the window function are given by [1]
(see [22,40] for further explanations)

NT
‘ ¼ 1:53�10�4 �K2; NE

‘ ¼NB
‘ ¼ 5:58�10�4 �K2;

fsky ¼ 0:65; W‘ ¼ exp

�
�‘ð‘þ1Þ

2

�2FWHM

8ln2

�
; (15)

where �FWHM ¼ 7:10 is the full width at half maximum of
the Gaussian beam.

In this paper, along with predictions for Planck, we shall
consider an idealized situation with no instrumental noise,
full sky coverage and an idealized window function W‘ ¼
1. For this case, we shall assume that the only source of
noise comes from the contribution of cosmic lensing to the
B mode of polarization. In this case the noise spectrum for
the B mode is close to white with a value NB

‘ ’
2� 10�6 �K2 [41,42]. A number of works have discussed
methods to subtract the lensing B-mode signal (see for
example [41,43]). In [43], the authors claimed that a re-
duction in lensing power by a factor of 40 is possible using
an approximate iterative maximum-likelihood method. For
this reason, as a further idealized but feasible scenario, we
shall also consider the case with reduced cosmic lensing
noise NB

‘ ’ 5� 10�8 �K2. Thus in the two described

examples the noises are

NB
‘ ðlensingÞ ¼ 2� 10�6 �K2;

NB
‘ ðreduced lensingÞ ¼ 5� 10�8 �K2;

NT
‘ ¼ NE

‘ ¼ 0; fsky ¼ 1; W‘ ¼ 1:

(16)

Note that, in addition to the instrumental noises and lensing
noise, various foregrounds, such as the synchrotron and
dust, significantly contaminate the CMB signal. However,
it is hoped that, using multifrequency observations together
with ingenious foreground subtraction techniques, future
experiments would be able to approach the ideal limit of
expression (16) (see for instance [44]).

Before proceeding, let us briefly mention the notational
conventions used in this paper. The star superscript denotes

the quantities evaluated at the best-pivot multipole ‘�t . The
hat superscript indicates the parameters of the fixed (input)
cosmological model, that are used to generate the simu-
lated observational data. The summation (product) sym-
bols with subscript ‘ or Y indicate summation (product) for
‘ ¼ 2; . . . ; ‘max and Y ¼ C; T; E; B, respectively. In nu-
merical evaluation we set ‘max ¼ 1000.

III. ANALYTICAL APPROXIMATION

In this section, we shall derive analytical expressions for
the estimation of the parameters r and nt, the associated
uncertainties�r and�nt and the correlation between these
parameters. We will show the existence and explain the
significance of the best-pivot multipole ‘�t . Introducing the
tensor-to-scalar ratio r� defined at the best-pivot multipole,
we shall show that this parameter can be determined with
the smallest possible uncertainty, and is not correlated with
the spectral index nt. Based on this analysis, we shall
discuss the signal-to-noise ratio and detection possibilities
for various CMB experiments.

A. Approximation for the likelihood function

In order to estimate the parameters r and nt character-
izing the RGW background, we shall use an analysis based
on the likelihood function [45,46]. The likelihood function
is just the probability density function of the observational
data considered as a function of the unknown parameters
(which are r and nt in our case). Up to a constant, inde-
pendent of its arguments, the likelihood function is given
by

L ¼ Y
‘

fðDC
‘ ;D

T
‘ ; D

E
‘ ; D

B
‘ Þ;

where the function fðDC
‘ ;D

T
‘ ; D

E
‘ ; D

B
‘ Þ is explained in de-

tail in the appendix.
For analysis in this section, we shall use a Gaussian

function to approximate the pdf of the individual estimator
DY

‘ , and ignore any possible correlation between different

estimators. In this case the approximate likelihood function
can be written as (see [40] for details)

� 2 lnL ¼ X
‘

X
Y

�
DY

‘ � CY
‘

�DY
‘

�
2
: (17)

The parameters r and nt enter the above expression through
the quantities CY

‘ and �DY
‘
. In our analytical considerations

we shall make a further simplification. We shall assume
that�DY

‘
entering (17) is weakly dependent on parameters r

and nt and assume �DY
‘
¼ �̂DY

‘
(for a justification of this

assumption see [22,40]). With this assumption, the like-
lihood function can be rewritten as follows:

� 2 lnL ¼ X
‘

X
Y

�
DY

‘ � CY
‘

�̂DY
‘

�
2
: (18)
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In the likelihood analysis, we shall assume that the value
of the sought parameter nt is sufficiently close to the input
value n̂t. In this case, inserting (11) into (18), using (5), we
can rewrite the likelihood in the form

� 2 lnL ¼ X
‘

X
Y

�
aY‘

��
r

r̂

�
ð1þ ðnt � n̂tÞb‘Þ

�
� dY‘

�
2
;

(19)

where

aY‘ � ĈY
‘;t

�̂DY
‘

; b‘ � ln

�
‘

‘0

�
; dY‘ � DY

‘ � CY
‘;s

�̂DY
‘

:

(20)

Note that, in the above expression, the dependence on the
data (on the estimators DY

‘ ) is solely contained in the term

dY‘ . Furthermore, aY‘ , b‘ and dY‘ are independent of the

RGW parameters r and nt. The dependence on r and nt
takes a particularly simple form and is contained within the
square brackets on the right side in (19).

In order to proceed, it is convenient to introduce new
variables

� � r=r̂� � ðnt � n̂tÞðr=r̂Þ; (21)

in place of r and nt. In terms of these variables, the like-
lihood (19) can be simplified as

� 2 lnL ¼ X
‘

X
Y

½aY‘ ð�þ �b‘Þ � dY‘ �2: (22)

Note that the dependence on the sought for parameters r
and nt, in the above expression, is contained in the varia-
bles � and � . After straightforward manipulations (22) can
be rewritten as

� 2 lnL ¼ �2

�X
‘

X
Y

aY2‘

�
þ �2

�X
‘

X
Y

ðaY‘b‘Þ2
�

þ 2��

�X
‘

X
Y

aY2‘ b‘

�
� 2�

�X
‘

X
Y

aY‘ d
Y
‘

�

� 2�

�X
‘

X
Y

aY‘ d
Y
‘ b‘

�
þX

‘

X
Y

dY2‘ :

This expression can be rewritten as

� 2 lnL ¼
�X

‘

X
Y

aY2‘

��
��

P
‘

P
Y
aY‘ d

Y
‘P

‘

P
Y
aY2‘

�
2

þ
�X

‘

X
Y

ðaY‘b‘Þ2
��
� �

P
‘

P
Y
aY‘ b‘d

Y
‘P

‘

P
Y
ðaY‘b‘Þ2

�
2

þ 2��

�X
‘

X
Y

aY2‘ b‘

�
þ C; (23)

where C is a constant, independent of r and nt. This

constant is responsible for the overall normalization of
the likelihood function and will not participate in estima-
tion of parameters. In the following subsection we shall use
the approximation (23) for estimating the parameters r and
nt.

B. Posterior pdf and the best-pivot multipole ‘�t
1. Posterior pdf

The constraints on the parameters r and nt are deter-
mined by the posterior probability density function
Pðr; ntÞ. This posterior pdf is related to the likelihood
function L by [45,46]

Pðr; ntÞ ¼ fðr; ntÞL; (24)

where fðr; ntÞ is the prior probability density function of
the parameters r and nt. In this paper, we adopt a flat prior,
i.e.

fðr; ntÞ ¼ 1: (25)

Thus, in this case, the posterior pdf Pðr; ntÞ becomes equal
to the likelihood. Using the approximation (23) for the
likelihood, we obtain

�2 lnPðr; ntÞ ¼
�X

‘

X
Y

aY2‘

��
��

P
‘

P
Y
aY‘ d

Y
‘P

‘

P
Y
aY2‘

�
2

þ
�X

‘

X
Y

ðaY‘b‘Þ2
��
� �

P
‘

P
Y
aY‘ b‘d

Y
‘P

‘

P
Y
ðaY‘b‘Þ2

�
2

þ 2��

�X
‘

X
Y

aY2‘ b‘

�
þ C: (26)

The parameters r and nt enter the above expression through
the variables � and � . For this reason it is convenient to first
consider the posterior pdf for variables � and � . It will be
seen that the posterior pdf for these variables will have a
particularly simple form, namely, a bivariate normal func-
tion. The posterior pdf Pð�; �Þ is related to Pðr; ntÞ in the
following manner:

Pð�; �Þ ¼
��������@ðr; ntÞ@ð�; �Þ

��������Pðr; ntÞ ¼ r̂

�
Pðr; ntÞ; (27)

where j @ðr;ntÞ@ð�;�Þ j denotes the Jacobian of the transformation

between the two sets of variables calculable from (21). For
simplicity and clarity, let us first consider the constraints on
the parameters � and � . Following this, we shall return to
the discussion on r and nt using relation (27).
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Introducing the notations

�p �
�X

‘

X
Y

aY‘d
Y
‘

�	�X
‘

X
Y

aY2‘

�
;

�s � 1

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
‘

X
Y

aY2‘

s
;

�p �
�X

‘

X
Y

aY‘ d
Y
‘ b‘

�	�X
‘

X
Y

ðaY‘b‘Þ2
�
;

�s � 1

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
‘

X
Y

ðaY‘b‘Þ2
s

;

(28)

from (26) and (27), we obtain that expression for the
posterior pdf of � and � in the form

Pð�; �Þ ¼ r̂eC

�
exp

�
�ð�� �pÞ2

2ð�sÞ2
�
exp

�
�ð� � �pÞ2

2ð�sÞ2
�

� exp

�
���

�X
‘

X
Y

aY2‘ b‘

��
: (29)

2. Best-pivot multipole ‘�t
Let us concentrate on the posterior pdf (29). As can be

seen, there is a nonvanishing correlation between the pa-
rameters � and � in the case when

P
‘

P
Y a

Y2
‘ b‘ � 0. From

the definition (20), it follows that the terms b‘ depend on
the arbitrarily chosen pivot multipole ‘0 [corresponding to
the pivot wave number k0 through the relation (12)]. For
this reason, we can select the pivot multipole ‘0 ¼ ‘�t so as
to require X

‘

X
Y

aY2‘ b�‘ ¼ 0; (30)

where b�‘ � b‘j‘0¼‘�t . With this choice of pivot multipole

‘�t , and the corresponding pivot wave number k�t , the
variables �ðk�t Þ and �ðk�t Þwill have no correlation. We shall
refer to this pivot multipole ‘�t as the best-pivot multipole
number. From definitions (20) of aY‘ and b‘, along with

expression (14), it follows that the precise numerical value
of the best-pivot multipole number ‘�t depends on the input
cosmological model characterized by (8), (9), and (13), as
well as the specifics of the CMB experiment characterized
by noise power spectra, cut sky factor and window func-
tion. We shall discuss this dependence in more detail
below.

Setting the value of the pivot multipole ‘0 ¼ ‘�t , so as to
satisfy (30), we arrive at a simplified form for the posterior
pdf:

Pð��; ��Þ ¼ ðr̂eCÞ 1
�� exp

�
�ð�� � ��

pÞ2
2ð��

sÞ2
�

� exp

�
�ð�� � ��pÞ2

2ð��s Þ2
�
: (31)

As a reminder let us point out that, in the above expression,
as well as in what follows, we have used notations r�, ��,
�� and b�‘ to denote the corresponding quantities calculated
for the pivot multipole chosen at the best-pivot multipole
value ‘�t . Note that for the spectral index of RGWs we shall
retain the notation nt, since it does not depend on the
choice of the pivot multipole.

3. Constraints on parameters �� and ��

Equipped with the posterior pdf (31), let us analyze the
uncertainties in determining the parameters �� and ��. For
simplicity of analysis we shall assume

��
p 	 ��

s : (32)

In Sec. III F, we shall show that this constraint corresponds
to a condition that the signal-to-noise ratio is large, i.e.
S=N 	 1. Taking into account this condition, the posterior
function (31) may be further approximated in the following
manner:

Pð��; ��Þ ’ r̂eC

��
p

exp

�
�ð�� � ��

pÞ2
2ð��

sÞ2
�
exp

�
�ð�� � ��pÞ2

2ð��s Þ2
�
:

(33)

Note that, in the above expression, the factor in front of the
exponent r̂eC=��

p now becomes a constant independent of

�� and ��. Thus, the posterior pdf Pð��; ��Þ becomes a
bivariate normal (Gaussian) function for variables �� and
��. The position of the maximum and the standard devia-
tion associated with the posterior pdfPð��; ��Þ are given by
��
ML ¼ ��

p; ��� ¼ ��
s ; ��ML ¼ ��p; ��� ¼ ��s :

(34)

In the above expression, subscript ‘‘ML’’ stands for ‘‘-
maximum-likelihood,’’ since the maximum of the posterior
pdf coincides with that of the likelihood function due to
(24) and (25). Following the maximum-likelihood parame-
ters estimation procedure, we shall accept the values ��

ML

and ��ML as the estimators for the corresponding quantities
�� and ��. It is worth mentioning that, for the posterior pdfs
considered in this work, the maximum-likelihood values
coincide with the mean values of the corresponding poste-
rior pdfs. It is worth mentioning that the assumption ��

p 	
��
s [which was used to derive the pdf (33)] is equivalent to

the requirement ��
ML 	 ���.

Proceeding further, we can calculate the correlation
coefficient for variables �� and ��. Let us first define the
covariance in the following manner:

cov ðx; yÞ � ðx� �xÞðy� �yÞ; (35)

where the overline indicates averaging over the corre-
sponding posterior pdf. The correlation coefficient can
now be explicitly calculated to give
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�ð��;��Þ � covð��; ��Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covð��; ��Þcovð��; ��Þp ¼ 0; (36)

and as expected, the correlation between the variables ��
and �� vanishes.

Taking into account (28), we find that the mean values ���
(also ��

ML) and
��� (also ��ML) depend on data fDY

‘ g through
quantities dY‘ . However, in our approximation, the standard

deviations ��� and ��� are independent of the data. They
depend on the input cosmological model determined by (8)
, (9), and (13), along with noises, cut sky factor and the
window function characterizing the CMB experiment.

C. Constraints on parameters r� and nt

Let us now return to the parameters of our direct interest,
namely, the tensor-to-scalar ratio (determined at the best-
pivot wave number) r� and RGW primordial spectral index
nt. These parameters are related to �� and �� through
relations

r� ¼ r̂���; nt ¼ n̂t þ ��=��; (37)

which follow from (21). Taking into account the fact that
the quantity �� is peaked at ��

ML which is sufficiently close

to the input value �̂�, and ���=��
ML � 1, we can approxi-

mate the quantity �� in the expression for nt [see the
second formula in (37)] with 1. Thus (37) can be written as

r� ¼ r̂���; nt ’ n̂t þ ��: (38)

Using (27), the posterior pdf for r� and nt is related to
Pð��; ��Þ in the following way:

Pðr�; ntÞ ¼ ��

r̂�
Pð��; ��Þ ’ ��

p

r̂�
Pð��; ��Þ: (39)

Note that, in the current approximation, the pdf for varia-
bles r� and nt has a bivariate normal form.

Based on the above pdf (39), we can now evaluate the
maximum-likelihood estimators, standard deviations, and
the correlation coefficient for the variables r� and nt. For
the maximum-likelihood values we get

r�ML ¼ r̂���
ML ¼ r̂�

P
‘

P
Y
aY‘ d

Y
‘P

‘

P
Y
aY2‘

;

ntML ’ n̂t þ ��ML ¼ n̂t þ
P
‘

P
Y
aY‘ d

Y
‘ b

�
‘P

‘

P
Y
ðaY‘b�‘Þ2

:

(40)

The standard deviations are given by

�r� ¼ r̂���� ¼ r̂�
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

‘

X
Y

aY2‘

s
;

�nt ’ ��� ¼ 1

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
‘

X
Y

ðaY‘b�‘Þ2
s

:

(41)

Finally, it can be shown that the correlation between r� and
nt vanishes:

�ðr�;ntÞ �
covðr�; ntÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covðr�; r�Þcovðnt; ntÞ
p ¼ 0: (42)

It is interesting to point out that these results are consistent
with the results in [40]. The constraints, presented in this
paper, on the tensor-to-scalar ratio r are exactly the same as
those in [40]. Unlike the analysis in the current paper, [40]
works with a single free parameter r and does not consider
nt as an independent free parameter.

D. Constraints on parameter r

In Sec. III C, using the posterior probability function
Pðr�; ntÞ, we have investigated the tensor-to-scalar ratio
r� and the spectral index nt defined at the best-pivot wave
number k�t (corresponding to the best-pivot multipole ‘�t ).
We can now proceed to the analysis of the tensor-to-scalar
ratio r, defined at an arbitrary pivot wave number k0, and
determine the possible constraints on this parameter.
From Eq. (4), we can express the tensor-to-scalar ratio r,

in terms of r�, k�t and the spectral indices nt and ns, in the
following form:

lnr ¼ lnr� þ nt lnðk0=k�t Þ þ ð1� nsÞ lnðk0=k�t Þ: (43)

It can be seen that, for a fixed value of the spectral index ns
[see (9)], r depends on the parameters r� and nt. Thus, the
properties of r can be determined using the posterior pdf
Pðr�; ntÞ, which was analyzed in detail in Sec. III C. In the
case k0 � k�t it is more illustrative to consider the variable
lnr instead of the variable r. For this reason, when dealing
with the maximum-likelihood estimators of the tensor-to-
scalar ratio defined at a pivot scale different from the best-
pivot scale, we shall use the corresponding logarithms

lnrML ¼ lnr�ML þ ntML lnðk0=k�t Þ þ ð1� nsÞ lnðk0=k�t Þ;
(44)

where r�ML and ntML are the maximum-likelihood estima-
tors expressible in terms of the input parameters r̂�, n̂t and
the data fDX

‘ g [see (40)]. The uncertainty of r can be

expressed in terms of the uncertainties �r� and �nt deter-
mined in (41), leading to the following expression:

� lnr ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�r�=r̂�Þ2 þ ðlnðk0=k�t Þ�ntÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��

sÞ2 þ ðlnðk0=k�t Þ��s Þ2
q

: (45)

The quantities ��
s and ��s , entering the above expression,

can be expressed through CMB power spectra due to
RGWs CX

‘;t using (20) and (28).

From (45) it follows that �r=r * �r�=r�, with the
equality holding for k0 ! k�t . Thus, the smallest uncer-
tainty on tensor-to-scalar ratio r is achieved for the choice
of the pivot scale k0 ¼ k�t . This justifies the title ‘‘best’’-
pivot wave number for k�t . For a choice of pivot wave
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number k0 � k�t the uncertainty in determining r becomes
larger due to the uncertainty in determining the spectral
index nt.

Although, as was shown in Sec. III C, the quantities r�
and nt are uncorrelated, this is not true for the quantities r
and nt in general. In order to describe the correlation
between r and nt, it is convenient to introduce the corre-
lation coefficient

�ðnt;lnrÞ �
covðnt; lnrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covðnt; ntÞcovðlnr; lnrÞ
p ; (46)

where the notation covð
; 
Þ for the covariance was defined
in (35). Using this definition, along with (42) and (43), the
terms entering the above expression can be evaluated as

cov ðlnr; lnrÞ ¼ ð� lnrÞ2; covðnt; ntÞ ¼ ð�ntÞ2;
covðnt; lnrÞ ¼ covðnt; lnr�Þ þ ðlnðk0=k�t ÞÞcovðnt; ntÞ

¼ ðlnðk0=k�t ÞÞð�ntÞ2:
Taking into account (41), the correlation coefficient can be
presented in the following form:

�ðnt;lnrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��2s ðlnðk0=k�t ÞÞ2
��2s ðlnðk0=k�t ÞÞ2 þ ��2

s

s
: (47)

As expected, for choice the k0 ¼ k�t , i.e. when the pivot
wave number is chosen at the value of the best-pivot wave
number, the correlation between r and nt vanishes. On the
other hand, for j lnðk0=k�t Þj 	 1, i.e. for values of the pivot
wave number significantly different from the best-pivot
wave number, the correlation coefficient approaches unity,
implying a strong correlation between r and nt.

E. Statistical properties of maximum-likelihood
estimators

The exact numerical values of the maximum-likelihood
(ML) estimators ��

ML, �
�
ML, r

�
ML, ntML and lnrML discussed

in the previous subsections depend on the CMB data fDY
‘ g.

Since the set fDY
‘ g is a single realization of an underlying

random process characterized by the pdf (A1), the precise
values of the maximum-likelihood estimators will depend
on this realization. For this reason, it is instructive to
analyze the distribution of these maximum-likelihood es-
timators in various realizations of the underlying random
process specified by the pdf for estimators of the CMB
power spectrum fDX

‘ g. Heuristically speaking, the mean

value of this distribution characterizes the typical value
for the ML estimators that we are likely to observe (for a
specific input cosmological model), while the standard
deviation characterizes the typical departure from the
mean value.

Let us first, for simplicity, consider the estimators ��
ML

and ��ML. The expectation values for these estimators can be
calculated in the following manner:

h��
MLi ¼


�X
‘

X
Y

aY‘ d
Y
‘

�	�X
‘

X
Y

aY2‘

��

¼
�X

‘

X
Y

aY‘ hdY‘ i
�	�X

‘

X
Y

aY2‘

�
¼ 1;

h��MLi ¼

�X

‘

X
Y

aY‘ d
Y
‘b

�
‘

�	�X
‘

X
Y

ðaY‘b�‘Þ2
��

¼
�X

‘

X
Y

aY‘ hdY‘ ib�‘
�	�X

‘

X
Y

ðaY‘b�‘Þ2
�
¼ 0:

(48)

The angle brackets h. . .i, in the above expression and else-
where in the text, denote the ensemble average over the
joint pdf (A1). Furthermore, in this pdf, the input values for
the tensor-to-scalar ratio and spectral index are chosen as
r ¼ r̂ and nt ¼ n̂t, respectively. In deriving the above
expressions we have first used (28) and (34). We have
also used the identity hdX‘ i ¼ aX‘ which follows directly

from (5), (14), and (20). Finally, in the bottom line, we
have used the definition of the best-pivot multipole (30).
Similarly, the standard deviations can be calculated to yield

���
ML

¼ ��
s ; ���ML

¼ ��s : (49)

Proceeding in an identical manner, the expectation val-
ues and standard deviations for the maximum-likelihood
estimators r�ML, ntML and lnrML are given by

hr�MLi ¼ r̂�h��
MLi ¼ r̂�; hntMLi ¼ n̂t þ h��MLi ¼ n̂t;

hlnrMLi ¼ lnr̂� þ ðn̂t � ns þ 1Þ lnðk0=k�t Þ ¼ lnr̂; (50)

and

�r�ML
¼ r̂����

ML
¼ r̂���

s ; �ntML
¼ ���ML

¼ ��s ;

�lnrML
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��

sÞ2 þ ðlnðk0=k�t Þ��s Þ2
q

:
(51)

As expected, from expression (50) it can be seen that the
constructed ML estimators are unbiased. Furthermore, the
standard deviation of the estimator �lnrML

strongly depends

on the choice of the pivot multipole k0, and is minimal for
the choice k0 ¼ k�t . We shall numerically verify these
results in the following section.

F. The dependence of results on cosmological
parameters and experimental noises

Let us now address the question of detection of RGWs in
various CMB experiments. In order to quantify the ability
to detect the signature of RGWs in the CMB data, it is
convenient to define the signal-to-noise ratio as follows
[22,40]:

S=N � r̂�

�r�
: (52)

Using expression (41) we arrive at an elegant expression
for the signal-to-noise ratio:
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S=N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
‘

X
Y

�
ĈY
‘;t

�̂DY
‘

�
2

vuut : (53)

Thus, the signal-to-noise ratio contains contributions from
individual power spectra and individual multipoles. These
contributions have a clear physical meaning. For a particu-
lar power spectrum and a particular multipole, they repre-
sent the ratio of the expected signal due to RGWs to the
overall uncertainty.

As was mentioned in Sec. III B, for the analytical esti-
mations, we had assumed ��

p 	 ��
s [see (32)]. We can now

relate this condition to the requirement on the value of the
signal-to-noise ratio S=N. Using Eqs. (34), (40), and (41),
we find that

��
p

��
s

¼ r�ML

�r�
’ r̂�

�r�
¼ S=N: (54)

Hence, the condition ��
p 	 ��

s corresponds to the require-

ment S=N 	 1, i.e. to the requirement that the RGW
signal may be well determined at a high signal-to-noise
ratio.

In the discussion above we have mentioned that the best-
pivot multipole ‘�t , the signal-to-noise ratio S=N and the
uncertainty in determination of the RGW spectral index
�nt depend on the input cosmological model and the
specifics of the CMB experiment. Let us analyze this
dependence in more detail.

The input cosmological model is determined by specify-
ing the background cosmological model, along with the
parameters determining the density perturbations and
gravitational waves. The background cosmological pa-

rameters and contribution from density perturbations are
fairly well constrained by the current observations [38].
The variation of these parameters within the margin al-
lowed by these constraints will not significantly alter our
results. For this reason, we shall fix the background cos-
mological model using the values of the typical �CDM
model (8). We shall also fix the contribution of density
perturbations at a value (9). Furthermore, numerical cal-
culations show that the dependence of various parameters
on the input value of the spectral index n̂t is weak, and for
this reason in evaluations of this section we shall set n̂t ¼
0. Thus, we shall be interested in the dependence of the
parameters on value of the input tensor-to-scalar ratio r̂.
Figure 2 shows the values of quantities ‘�t , S=N and �nt as
functions of r̂�, calculated using the expressions (30), (41),
and (53).
As was explained in Sec. II, the specifics of the CMB

experiment are determined by the noise power spectra, the
cut sky factor and window function. In this section we shall
consider the parameters ‘�t , S=N and �nt for the three
cases specified in Sec. II [see (15) and (16)]. The different
curves (solid, dashed and dotted) on the three panels in
Fig. 2 show the corresponding values of quantities ‘�t , S=N
and �nt for these three noise scenarios.
The left panel of Fig. 2 shows the best-pivot multipole ‘�t

as a function of the input tensor-to-scalar ratio r̂� which is
defined with respect to the best-pivot multipole. It can be
seen that, for small values of r̂�, the best-pivot multipole ‘�t
is small. This behavior can be easily understood. For small
values of r̂�, the constraints on r� and nt mainly come from
B-mode power spectrum [40]. However, in the B mode the
main contribution to the signal comes from large angular
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FIG. 2 (color online). The figures show the value of the best-pivot multipole ‘�t (left panel), signal-to-noise ratio S=N (middle panel)
and the uncertainty in the RGW spectral index �nt (right panel) as functions of the tensor-to-scalar ratio r̂

�. The solid lines correspond
to the Planck instrumental noises [see (15)]; the dashed lines correspond to noises from cosmic lensing [see (16)]; the dotted lines
correspond to reduced cosmic lensing noise [see (16)].
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scales corresponding to ‘ & 10, where the signal is mainly
due to cosmic reionization [22,40]. Thus, for small r̂�, the
constraints on parameters r and nt are most stringently
determined at large angular scales corresponding to multi-
poles ‘ & 10. For this reason, for small values of r̂� the
best-pivot multipole is small, corresponding to the scale at
which the parameters r and nt are most stringently deter-
mined. On the other hand, for large values r̂�, the best-pivot
multipole ‘�t also becomes large. This happens due to two
reasons. First, with an increase in value of r̂�, the relative
contribution of the reionization contribution to the to the
S=N decreases, while the relative contribution of the multi-
poles around ‘ � 90 (where the B-mode spectrum is ex-
pected to have a maximum) increases (see Fig. 3). Thus,
the contribution of RGWs at higher multipoles (‘� 100)
becomes significant, which in turn increases the value of
the best-pivot multipole. Second, when r̂� is large, the
contributions from the C, T, E power spectra become
important in constraining r and nt [40]. For these power
spectra, the main contribution to the signal comes from the
multipoles 10 & ‘ & 100 [40]. This again leads to an
increase in the value of ‘�t .

The middle panel in Fig. 2 shows the signal-to-noise
ratio S=N as a function of r̂�. As expected, the signal-to-
noise ratio rises with the increase of r̂�. Setting the thresh-
old value of S=N ¼ 2, we can determine the detection
possibilities for the three considered examples: r̂� � 0:05
for Planck noises; r̂� � 1:5� 10�4 for the case with cos-
mic lensing; r̂� � 3:7� 10�6 for the case with the reduced
cosmic lensing. These estimations are consistent with pre-
vious results [22,41–43].

Finally, the right panel in Fig. 2 presents the achievable
constraints on the spectral index�nt as a function of r̂

�. As
expected, the uncertainty in determining the spectral index
drops with the increase of the input value r̂�. For the case of
the Planck mission, the uncertainty in estimation of nt
always remains fairly large. Even for large value r̂� ¼ 1
the constraint on the spectral index is �nt ¼ 0:08 (for
comparison, the Planck mission will be able to achieve a
constraint of�ns ¼ 0:0045 on the spectral index of density
perturbations [1]). For a value r̂� ¼ 0:1, the constraint on
the spectral index is �nt ¼ 0:25, which is too large to
constrain inflationary models or to verify the consistency
relation. Potentially, in an idealized situation with reduced
cosmic lensing, for r̂� ¼ 0:1, we can constrain the spectral
index to the level �nt ¼ 0:007. If this accuracy can be
achieved in the future, it will place a fairly tight constraint
on inflationary models.

IV. COMPARISON WITH NUMERICAL
SIMULATIONS

In Sec. III we have analytically studied the likelihood
analysis of the RGW parameters r�, nt and r, as well as
introduced the best-pivot multipole ‘�t (corresponding to
the best-pivot wave number k�t ) and explained its signifi-
cance. We have analytically derived expressions for the
uncertainties of the RGW parameters and the value of the
best-pivot multipole, in terms of the CMB power spectra,
experimental uncertainties and the estimators of the CMB
power spectra. In this section we shall compare the ana-
lytical results of the previous section with numerical simu-
lations. We shall show that, although we have used a
number of approximations, the analytical results are in
good agreement with the exact numerical results based
on the analysis of simulated data.
This section is separated into two parts. In the first

subsection, using a single simulated data set fDX
‘ g, we shall

use theMCMC techniques to construct the posterior pdf for
the RGW parameters. We shall calculate the uncertainties
and correlations associated with the parameters, and com-
pare these values with the analytical predictions in
Secs. III C and III D. In the second subsection we shall
generate 300 samples of data sets fDX

‘ g. For each individual
sample, using the posterior pdf Pðr�; ntÞ we shall calculate
the estimates for the RGW parameters r�ML, n

�
tML and rML.

Analyzing the distribution of these estimates, we shall
evaluate the mean values and the standard deviation, and
compare these with the analytical predictions from
Sec. III E.

A. Likelihood analysis of a single simulated data set

In this subsection, from a single simulated data set fDX
‘ g,

using the likelihood analysis procedure, we shall derive the
constraints on the tensor-to-scalar ratio and the RGW
primordial spectral index.

FIG. 3 (color online). The comparison of ĈB
‘ and �̂DB

‘
[which

enter the expression for signal-to-noise ratio S=N (53)], for
models with r̂� ¼ 0:3 (black lines) and r̂� ¼ 0:7 (red lines).
The solid lines show the ‘‘signal’’ term (i.e. power spectrum)
‘ð‘þ 1ÞĈB

‘ =2� ð�K2Þ, and dotted lines show the ‘‘noise’’ term
‘ð‘þ 1Þ�̂DB

‘
=2� ð�K2Þ. The quantity �̂DB

‘
was calculated using

the Planck noises (15).
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In order to simulate the CMB data, we shall randomly
draw a data set fDX

‘ g, from an underlying pdf (A1) (see the

appendix). This pdf depends on the input cosmological
model and characteristics of the CMB experiment. We
shall choose as an input cosmological model a model
with the background cosmological parameters given in
(8) and the contribution of density perturbation (9). The
input parameters for the RGW field will be chosen as

r̂ ¼ 0:3; n̂t ¼ 0:0: (55)

To characterize the properties of the CMB experiment,
namely, the power spectra of noises, the cut sky factor
and the window function, we shall adopt the values speci-
fied for the Planck satellite mission (15) [1].

In order to simulate and analyze the data, we proceed as
follows:

(1) We generate a single data sample fDY
‘ jY ¼

C; T; E; B; ‘ ¼ 2; 3; . . . ; 1000g, drawn from the pdf
(A1).

(2) Using (30), we calculate the best-pivot multipole
scale ‘�t ¼ 21:1 (corresponding to the best-pivot
wave number k�t ¼ 0:002 Mpc�1). Note that the
value of ‘�t does not depend on the concrete realiza-
tion generated in step 1.

(3) Using the MCMC method (see [45] for details), we
construct the likelihood function L as a function
of two free parameters r� and nt, with the other
cosmological parameters fixed at their ‘‘best-fit’’
values given by (8) and (9). Choosing a uniform
prior we build the posterior pdf Pðr�;ntÞ (which is
exactly equal to the likelihood function L
[see (24) and (25)]).

(4) Using the posterior pdf Pðr�; ntÞ, we find the
maximum-likelihood values ðr�ML; ntMLÞ, and plot
the contours corresponding to 68.3% and 95.4%
confidence interval regions in the ðr�; ntÞ plane sur-
rounding these values. We also calculate the one-
dimensional posterior pdfs for variables r� and nt.
From Pðr�; ntÞ, we calculate the uncertainties �r�
and �nt. Using the importance sample technique
(see [45,46]), we evaluate the correlation coefficient
�ðr�;ntÞ defined in (42).

(5) We now choose a different value of the pivot wave
number k0 ¼ 0:05 Mpc�1, corresponding to the
value for the pivot multipole ‘0 ¼ 500. Using (43)
, we calculate the tensor-to-scalar ratio for this pivot
wave number r as a function of the parameters r�
and nt. From the posterior probability function
Pðr�; ntÞ, using the importance sample technique,
we can obtain the uncertainty � lnr and the corre-
lation coefficient �ðnt;lnrÞ defined in (46).

The results of the simulation and analysis are shown in
Fig. 4. The panels on the top show the constraints in the
r� � nt plane (top-left), and the one-dimensional posterior
pdfs for r� (top-middle) and nt (top-right). The constraint
on the parameters r� and nt, together with the correlation

coefficient are as follows:

r� ¼ 0:343þ0:047
�0:053 ð68:3%C:L:Þ;

nt ¼ �0:067þ0:146
�0:130 ð68:3%C:L:Þ;

�ðr�;ntÞ ¼ �0:02 ðsimulation resultsÞ:
(56)

For comparison, the analytical formulas (40)–(42) yield the
following results for these quantities:

r�ML ��r� ¼ 0:345� 0:047;

ntML � �nt ¼ �0:062� 0:135;

�ðr�;ntÞ ¼ 0 ðanalytical resultsÞ:
(57)

As can be seen, the analytical results (57) are in good
agreement with results of simulation (56).
The bottom panels in Fig. 4 show the constraints in the

lnr� nt plane (bottom-left), and the one-dimensional pos-
terior pdfs for lnr (bottom-middle). As expected, the con-
fidence interval contours in the lnr� nt indicate a strong
correlation between lnr and nt. The corresponding con-
straints and correlation coefficient are as follows:

lnr ¼ �1:299þ0:527
�0:413 ð68:3%C:L:Þ;

�ðnt;lnrÞ ¼ 0:95 ðsimulation resultsÞ: (58)

The analytical expressions (44), (45), and (47) yield the
following results for these quantities:

lnrML �� lnr ¼ �1:307� 0:456;

�ðnt;lnrÞ ¼ 0:94 ðanalytical resultsÞ: (59)

Once again, we find that analytical and the exact results are
consistent with each other.
Furthermore, we have applied the same simulation and

analysis procedure to the case with the ‘‘cosmic lensing’’
noises [see (16)], for input values of tensor-to-scalar ratio
r̂� ¼ 0:1, 0.2 and 0.3. We found that in all these cases, the
numerical estimations for �r�, � lnr and �nt agree with
the analytical expression to within 20%. Thus the analyti-
cal formulas for �r�, � lnr and �nt seem to be accurate.

B. Maximum-likelihood analysis in numerous data
simulations

In this subsection, we shall discuss the distribution of the
maximum-likelihood estimators for the RGW parameters
r�ML, rML and ntML in multiple realizations. We shall gen-
erate a simulated CMB data set fDX

‘ g a number of times.

For each individual realization we shall calculate the esti-
mators r�ML, rML and ntML. We shall then analyze the
distribution of these parameters and compare these results
with analytical calculations.
In order to generate and analyze the data, we proceed in

the following manner:
(1) A collection of 300 samples of data sets fDY

‘ jY ¼
T; E; B; C; ‘ ¼ 2; 3; . . . ; 1000g is randomly gener-
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ated from an underlying pdf fðDC
‘ ;D

T
‘ ; D

E
‘ ; D

B
‘ Þ,

given in (A1). The input cosmological model and
the noise characteristics of the CMB experiment are
chosen in the same manner as in Sec. IVA.

(2) Using (30), we calculate the best-pivot multipole
‘�t ¼ 21:1 (corresponding to the best-pivot wave
number k�t ¼ 0:002 Mpc�1). Note that the value of
‘�t does not depend on the concrete realization gen-
erated in step 1.

(3) For each individual sample, we construct the like-
lihood function L as a function of variables r� and
nt, which is equal to the posterior pdf Pðr�; ntÞ [see
(24) and (25)]. For each individual sample, an auto-
mated search (which uses the numerical technique
of the simulated annealing [47]) determines the
maximum-likelihood estimators r�ML and ntML [at

which the posterior pdf Pðr�; ntÞ reaches a maxi-
mum]. The calculated values r�ML and ntML are

plotted in Fig. 5 (left panel).
(4) We adopt a different pivot wave number k0 ¼

0:05 Mpc�1, corresponding to the value for the
pivot multipole ‘0 ¼ 500. From the set of values
ðr�ML; ntMLÞ, we calculate the corresponding values

of tensor-to-scalar ratio for the new pivot wave
number rML using (43). The resulting values are
illustrated in Fig. 5 (right panel).

The mean values and standard deviations for the quan-
tities r�ML and ntML [shown in Fig. 5 (left panel)], obtained
from the analysis of the simulated data, are

hr�MLi � �r�ML
¼ 0:298� 0:046;

hntMLi � �ntML
¼ �0:001� 0:152 ðsimulation resultsÞ:

(60)

For comparison, we can calculate the corresponding quan-
tities using the analytical expressions derived in Sec. III.
Using (50) and (51), we obtain

hr�MLi � �r�ML
¼ 0:300� 0:047;

hntMLi � �ntML
¼ 0� 0:135 ðanalytical resultsÞ:

(61)

Comparing (61) with (60), we find that the analytical
expressions are in good agreement with results of numeri-
cal simulation.
In a similar fashion, for the mean values and the standard

deviation of quantity rML [shown in Fig. 5 (right panel)],
we obtain
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FIG. 4 (color online). Two-dimensional and one-dimensional posterior constraints for parameters: r� and nt (upper panels), and for
parameters: lnr and nt (lower panels). The blue þ in the left panels indicates the value of the input model parameters.
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hlnrMLi � �lnrML
¼ �1:252� 0:508 ðsimulation resultÞ:

(62)

The analytical expressions (50) and (51) yield the follow-
ing results:

hlnrMLi � �lnrML
¼ �1:204� 0:456 ðanalytical resultÞ:

(63)

Comparing (62) with (63), we find a reasonable agreement
to within 10%.

V. CONCLUSION

In this paper, we have analyzed the potential joint con-
straints on the two parameters characterizing the RGW
background, the tensor-to-scalar ratio r and the tensor
primordial spectral index nt, achievable by the upcoming
CMB observations. We have shown that, in general, there
exists a correlation between the parameters r and nt.
However, when considering the tensor-to-scalar ratio r�
defined at the best-pivot multipole number ‘�t , the correla-
tion between r� and nt disappears. Furthermore, the uncer-
tainty �r� has the least possible value. We have derived
analytical formulas for calculating ‘�t , �r�, �nt, �r, and
the correlation coefficient between r and nt. Using numeri-
cal simulations of future CMB data we have verified the
robustness of our analytical estimations and have shown
that our fairly simple analytical expressions agree with
exact numerical evaluations to within 20%. We have also
discussed the dependence of our results on the background
cosmological model, the amplitude of the RGWs, and the
characteristics of the CMB experiment. We have studied
the dependence of the signal-to-noise ratio S=N along with

the value of the best-pivot multipole ‘�t and the uncertainty
�nt on the amplitude of the RGWs. We show that,
although the Planck satellite will potentially be able to
measure the tensor-to-scalar ratio to a level r * 0:05 (at
2� C.L.), the uncertainty in determining the spectral index
will remain fairly large�nt * 0:25 (for r ¼ 0:1). Thus, for
example, the Planck satellite will not be able to verify the
so-called consistency relation nt ¼ �r=8. In an idealized
scenario, where the noises are limited by reduced cosmic
lensing noise, the precision �nt * 0:007 (for r ¼ 0:1) is
achievable, thus potentially allowing tight constraints on
possible inflationary scenarios. The analytical results pre-
sented here provide a simple and quick method to inves-
tigate the ability of the future CMB observations to detect
RGWs.
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APPENDIX: EXACT PROBABILITY DENSITY
FUNCTIONS FOR DY

‘ AND LIKELIHOOD
FUNCTION

In [22] (see also [40,48,49]) we have derived the pdfs for
the best unbiased estimatorsDY

‘ of the various CMB power

spectra CY
‘ . These were derived under the assumption that

the primordial perturbations (density perturbations and
RGWs) are isotropic and homogeneous Gaussian random

FIG. 5 (color online). The values of the ML estimators from 300 simulations are shown projected onto the ntML � r�ML plane (left
panel), and ntML � lnrML plane (right panel). The red þ indicates the value of the input model parameters.
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fields, and that the noises associated with the CMB mea-
surements can be assumed Gaussian. In this appendix we
shall briefly list the main results that have been used in the
present paper.

The joint pdf for the estimators DT
‘ , D

E
‘ , D

B
‘ and DC

‘ has

the following form:

fðDC
‘ ;D

T
‘ ;D

E
‘ ; D

B
‘ Þ ¼ fðDC

‘ ;D
T
‘ ; D

E
‘ ÞfðDB

‘ Þ; (A1)

where the pdf fðDB
‘ Þ has the form of the 	2 distribution

fðDB
‘ Þ ¼

ðneW2
‘ Þvðne�2Þ=2e�v=2

2ne=2�ðne=2Þð�B
‘ Þ2

; (A2)

and the joint pdf fðDC
‘ ;D

T
‘ ; D

E
‘ Þ is the Wishart distribution

fðDC
‘ ;D

T
‘ ; D

E
‘ Þ ¼

�
1

4ð1� �2
‘Þð�T

‘�
E
‘ Þ2

�
ne=2

� ðneW2
‘ Þ3ðxy� z2Þðne�3Þ=2

�1=2�ðne=2Þ�ððne � 1Þ=2Þ
� exp

�
� 1

2ð1� �2
‘Þ
�

x

ð�T
‘ Þ2

þ y

ð�E
‘ Þ2

� 2�lz

�T
‘�

E
‘

��
: (A3)

In the above expressions (A2) and (A3), CY
‘ are the corre-

sponding CMB power spectra, NY
‘ are the noise power

spectra, andW‘ is the window function. The quantity ne ¼
ð2‘þ 1Þfsky is the effective degree of freedom for a par-

ticular multipole ‘ in the case of partial sky coverage with

the cut sky factor fsky. The quantities v, x, y, and z are

defined as follows:

v � neðDB
‘W

2
‘ þ NB

‘ Þ=ðCB
‘W

2
‘ þ NB

‘ Þ;
x � neðDT

‘W
2
‘ þ NT

‘ Þ;
y � neðDE

‘W
2
‘ þ NE

‘ Þ;
z � neD

C
‘W

2
‘ :

In (A2), �B
‘ is the standard deviation for the multipole

coefficient aB‘m. The quantities �
T
‘ , �

E
‘ and �‘ in (A3) are

correspondingly the standard deviations and the correlation
coefficient for the multipole coefficients aT‘m and aE‘m.
These are expressible in terms of the CMB and noise power
spectra in the following form:

�T
‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CT
‘W

2
‘ þ NT

‘

q
;

�E
‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE
‘W

2
‘ þ NE

‘

q
;

�B
‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CB
‘W

2
‘ þ NB

‘

q
;

�‘ ¼ CC
‘ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCT

‘ þ NT
‘W

�2
‘ ÞðCE

‘ þ NE
‘W

�2
‘ Þ

q
:

Finally, the likelihood function L introduced in Sec. III A
is, up to a constant of normalization, the product of the
joint pdf fðDC

‘ ;D
T
‘ ; D

E
‘ ; D

B
‘ Þ, i.e.

L / Y
‘

fðDC
‘ ;D

T
‘ ; D

E
‘ ; D

B
‘ Þ: (A4)
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