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Abstract
In the non-standard model of relic gravitational waves (RGWs) generated in the
early universe, the theoretical spectrum is mainly described by an amplitude r
and a spectral index β, the latter usually being determined by the slope of the
inflaton potential. Pulsar timing arrays (PTAs) data have imposed constraints on
the amplitude of strain spectrum for a power-law form as a phenomenological
model. Applying these constraints to a generic, theoretical spectrum with r and
β as independent parameters, we convert the PTAs constraint into an upper
bound on the index β, which turns out to be less stringent than those upper
bounds from the Big Bang nucleosynthesis, cosmic microwave background and
LIGO/VIRGO, respectively. Moreover, it is found that PTAs constrain the non-
standard RGWs more stringently than the standard RGWs. If the condition of
the quantum normalization is imposed upon a theoretical spectrum of RGWs,
r and β become related. With this condition, a minimum requirement of the
horizon size during inflation is greater than the Planck length that results in an
upper bound on β, which is comparable in magnitude to that by PTAs. When
both PTAs and the quantum normalization are applied to a theoretical spectrum
of RGWs, constraints can be obtained for other cosmic processes of the early
universe, such as the reheating, a process less understood observationally so
far. The resulting constraint is consistent with the slow-roll, massive scalar
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inflation model. The future square kilometer array will be able to constrain
RGWs further and might even detect RGWs, rendering an important probe to
the very early universe.

Keywords: relic gravitational waves, pulsar timing arrays, early universe,
quantum normalization
PACS numbers: 04.30.−w, 98.80.Cq, 97.60.Gb, 04.80.Nn
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1. Introduction

A stochastic background of relic gravitational waves (RGWs) is a natural prediction of general
relativity and quantum mechanics [1–7]. As fluctuations of the metric of spacetime, RWGs
could be originated from the quantum fluctuations during the inflationary stage. Since their
interaction with other cosmic components was typically very weak, RGWs, after being
generated, are determined by the expanding behavior of spacetime background and only
slightly modified by other cosmic processes during the evolution [8–12]. Thus, RGWs carry
a unique information of the early universe and serve as a probe into the universe much
earlier than the cosmic microwave background (CMB). As an important feature for detection
purpose, RGWs exist everywhere and all the time, and the spectrum spreads a very broad range
of frequency, 10−18 − 1010 Hz, constituting one of the major scientific targets of various types
of gravitational wave (GW) detectors, that includes the ground-based interferometers, such as
LIGO [13], VIRGO [14], GEO [15] and KAGRA [16] at the frequency range 102–103 Hz; the
space interferometers, such as the future eLISA/NGO [17], DECIGO [18, 19] and BBO [20, 21]
at the frequencies 10−4 − 100 Hz; the waveguide detector [22], the proposed Gaussian maser
beam detector around GHz [23], and the 100 MHz detector with a pair of interferometers [24].
Furthermore, the very low frequency portion of RGWs also contribute to the CMB anisotropies
and polarizations [25], yielding a distinguished magnetic type of polarization of CMB, which
has been a detecting goal of CMB observations, such as WMAP [26–29], Planck [30, 31] and
the proposed CMBpol [32].

Another important tool to detect RGWs is the pulsar timing arrays (PTAs) [33, 34]. The
detection of the lower frequency limit is the inverse of the observation time span, ∼10−9 Hz,
and the upper frequency limit corresponds to the observation time interval, ∼10−7 Hz. By
correlating the pulse arrival timings of an array of selected millisecond pulsars, one can, in
principle, disentangle the signal of GWs from the timing data of a long period of observations.
Currently, there are several such detectors running, such as the Parkes pulsar timing array
(PPTA) [35], European pulsar timing array (EPTA) [37], the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [38], and the much more sensitive five-
hundred-meter aperture spherical radio telescope (FAST) [39] and square kilometer array
(SKA) [40] are also under planning. The typical response frequency of PTA is nanoHertz,
inversely proportional to the observation period. In these range of frequencies, both RGWs
and the gravitational radiation by supermassive black hole binaries [41–45] are the major of
scientific targets of PTAs. Besides, PTAs can be instrumental in study of cosmology [46].

Although RGWs has not been detected directly so far, various constraints on RGWs have
been studied. The successful Big Bang nucleosynthesis (BBN) puts a tight upper bound on
the total energy fraction �gwh2 < 7.8 × 10−6 of GWs for frequencies > 10−10 Hz [47, 48].
Besides, CMB + galaxy surveys + Lyman-α also yields a similar bound on �gwh2 < 6.9×10−6

for extended lower frequencies >10−15 Hz [49]. The RGWs spectrum is, to a large extent,
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prescribed by the initial amplitude r (the tensor–scalar ratio), the spectral index β and
the running index αt . For scalar field inflationary models, while r is largely determined by the
energy scale of inflaton potential, β is determined by the slope and αt by the curvature of the
potential [50, 51]. So, the indices β and αt are more powerful in discriminating inflationary
models. By integrating the spectrum of RGWs, the aforementioned bounds have been converted
into the constraints on β and αt for fixed r [52, 53]. The WMAP observations of the spectra
of CMB anisotropies and polarization have yielded upper bounds on the ratio r of RGWS for
the fixed scalar index [27, 28]. The observational data of LIGO/VIRGO has led to constraint
on β and αt of RGWs at fixed r [52]. Based on the LIGO S5 data, the signal-noise ratios for
β and αt haven been obtained by correlating the given pair of detectors [53].

The amplitude of RGWs at frequencies ∼10−9Hz of PTAs is about ten orders higher
than at frequencies 102–103 Hz of LIGO, VIRGO, etc [8, 9]. One might expect to get tighter
constraints on RGWs thereby. Recently, we discussed the constraints and detection of the
RGWs in the standard hot Big Bang cosmological model by various PTAs and the future
FAST and SKA [54]. In this paper, employing the data of the current and future PTAs, we
will give the constraints on the non-standard RGWs model [1–4] which contains a reheating
(or preheating [55]) process occurred after the end of inflation and before the beginning of
the radiation dominated stage of the universe. From the constraints, we also try to study the
expansion behavior and the physical processes that had happened in the very early universe. To
be as general as possible, we take r and β as two free parameters of RGWs, and do not include
αt for simplicity. Specifically, we will focus on the constraint on the spectral index β, which is
also the power-law index of cosmic expansion during the inflation, determined by the specific
inflation models. PTAs have been used to constrain the GW background generated by the
cosmic strings [56], which has a different origin and different spectral features from RGWs.

While β is predicted by the potential in specific inflation models, r could be determined
by certain extra condition, such as the consistency condition [57]. In regard to this issue, there
is another kind of condition, the so-called quantum normalization of amplitude of RGWs
[2]. One can treat the RGWs field hi j as a quantum field in the vacuum state when initially
generated, requiring that each mode k = ω/2π have an energy 1

2 �ω. This leads to the quantum
normalization for the initial condition of RGWs, in which r and β are no longer independent.
In this paper, we will also use the theoretical condition of quantum normalization to constrain
β for given values of r, complementary to the observational constraints from PTAs.

Finally, when both PTAs and the quantum normalization are applied on RGWs, instead
of the inflation expansion via r and β, a constraint can be obtained upon the reheating process,
which is the least understood, theoretically as well as observationally, among the cosmic
processes so far.

We neglect the effect on the spectrum of RGWs caused by the neutrino free-streaming
[10, 58, 59], since its modifications just fall out of the band of frequencies of PTAs. As for
the QCD transition and the e+e− annihilation [11, 12], their modifications on the spectrum of
RGWs occur for f > 10−9 Hz and f > 10−12 Hz, respectively, within the band of frequencies
of PTAs. But the combined result is only a small reduction of amplitude of RGWs by ∼30%,
which can be simply absorbed into the definition of the amplitude r in our treatment. In this
paper, we use unit with c = � = kB = 1.

2. RGWs in the accelerating universe

In a spatially flat universe, the general Friedmann–Robertson–Walker metric is

ds2 = a2(τ )[−dτ 2 + (δi j + hi j)dxi dx j], (1)
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where a(τ ) is the scale factor, τ is the conformal time and hi j stands for the perturbations
to the homogenous and isotropic spacetime background. In general, there are three kinds of
perturbations: scalar perturbation, vectorial perturbation and tensorial perturbation. Here, we
are only interested in the tensorial perturbation, i.e., GWs. In the transverse-traceless gauge,
hi j satisfies: ∂hi j

∂x j = 0 and hi
i = 0, where we used the Einstein summation convention. With

the evolutions of the cosmic background, RGWs satisfy

∂μ(
√−g∂μhi j(τ, x)) = 0, (2)

according to Einstein field equation, where g ≡ det(gμν ). In the Fourier k-modes space, the
general solution of equation (2) is given by

hi j(τ, x) =
∑

σ

∫
d3k

(2π)3/2
ε

(σ )
i j h(σ )

k (τ ) eik·x, (3)

where σ = +,× stands for the two polarization states, the comoving wave number k is related
with the wave vector k by k = (δi jkik j)1/2, h(σ )∗

−k (τ ) = h(σ )

k (τ ) ensuring hi j be real, and the
polarization tensor ε

(σ )
i j satisfies [2]:

ε
(σ )
i j ε(σ ′)i j = 2δσσ ′ , ε

(σ )
i j δi j = 0, ε

(σ )
i j n j = 0, ε

(σ )
i j (−k) = ε

(σ )
i j (k). (4)

In terms of the mode h(σ )

k , the wave equation is

h(σ )

k
′′(τ ) + 2

a′(τ )

a(τ )
h(σ )

k
′(τ ) + k2h(σ )

k (τ ) = 0, (5)

where a prime means taking derivative with respect to τ . The two polarizations of h(σ )

k (τ )

have the same statistical properties and give equal contributions to the unpolarized RGWs
background, so the super index (σ ) can be dropped. For a power-law form of a(τ ) ∝ τα ,
equation (5) has an analytic solution which is a linear combination of Bessel and Neumann
functions:

hk(τ ) = τ
1
2 −α[C1Jα− 1

2
(kτ ) + C2Nα− 1

2
(kτ )], (6)

where the constants C1 and C2 for each stage are determined by the continuities of hk(τ ) and
h′

k(τ ) at the joining points τ1, τs, τ2 and τE [8–10] for the different stages of the universe.
The scale factor in a series of cosmic expansion stages can be written in power-law forms
[2, 10, 52, 55] as the following:

The inflationary stage:

a(τ ) = l0|τ |1+β, −∞ < τ � τ1, (7)

where the inflation index β is a model parameter describing the expansion behavior of inflation.
The special case of β = −2 corresponds the exact de Sitter expansion driven by a constant
vacuum energy density. However, for inflationary expansions driven by some dynamic field,
the predicted values of β scatter around −2, depending on specific models. In the single-field
slow-roll inflation model, one always has β < −2, i.e., red spectrum [55, 57, 60]. However,
some other inflation models, such as the phantom inflations [61] also predict the blue spectrum,
which has not been excluded by observations [62, 63]. Besides, a relation ns = 2β + 5 with ns

being the scalar spectral index of primordial perturbations, has been often employed [4, 52].
The observed result of CMB isotropies by WMAP [27, 28] indicates the scalar spectral index
ns 	 0.96, corresponding to β 	 −2.02. In this paper, we mainly focus on β as a major free
parameter of RGWs in analysis.

The reheating stage :

a(τ ) = az|τ − τp|1+βs , τ1 � τ � τs, (8)
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where the parameter βs describes the expansion behavior of the preheating stage from the end
of inflation to the happening of reheating process followed by the radiation-dominant stage. As
shown in [60], βs only affects the RGWs in very high frequencies. In this paper, we will take
the value βs = 1 [55, 64, 65], since we focus on the very-low frequency bands 10−9 −10−7 Hz
for PTAs. Compared with the inflation, the reheating as a dynamical process is less understood
so far, either theoretically or observationally. In the later part of this paper, we will also try to
give some information of the increase of scale factor ζ1 ≡ a(τs)/a(τ1) during the reheating
stage.

The radiation-dominant stage :

a(τ ) = ae(τ − τe), τs � τ � τ2. (9)

The matter-dominant stage:

a(τ ) = am(τ − τm)2, τ2 � τ � τE . (10)

The accelerating stage up to the present time τ0:

a(τ ) = lH |τ − τa|−γ , τE � τ � τ0, (11)

where γ 	 2 for the energy density contrast �� 	 0.7 [53]. Conveniently, one chose the
normalization |τ0 − τa| = 1 [8, 9], i.e., the present scale factor a(τ0) = lH . By definition, one
has lH = γ /H0, where the Hubble constant H0 = 100 h km s−1 Mpc−1 with h = 0.673.

All the constants referring from equations (7) to (11) can be determined by the continuity of
a(τ ) and a′(τ ) at the four given joining points τ1, τs, τ2 and τE , which are equivalent to the four
given increases of the scale factor: ζ1 = a(τs)/a(τ1), ζs ≡ a(τ2)/a(τs), ζ2 ≡ a(τE )/a(τ2),
and ζE ≡ a(τ0)/a(τE ). For the accelerating stage in the simple �CDM model, one has
ζE = 1 + zE 	 (��/�m)1/3 	 1.3, where zE is the redshift when the accelerating expansion
begins. For the matter-dominated stage, one has ζ2 = a(τ0)

a(τ2)

a(τE )

a(τ0)
= (1+zeq)ζ

−1
E with zeq = 3402

[31].
For the radiation stage, the value of ζs depends on the reheating temperature TRH, at which

the radiation stage begins. In the Big Bang cosmology, following the inflationary expansion
is the reheating process that converts the vacuum energy into radiation. This process is not
yet well understood, either observationally or theoretically. Associated with this issue is the
uncertainty of TRH. Due to the conservation of the entropy, the increase of the scale factor
during the radiation-dominated era can be written in terms of TRH [55, 60]:

ζs = TRH

TCMB(1 + zeq)

(
g∗s

g�s

)1/3

, (12)

where TCMB = 2.725 K = 2.348 × 10−13 GeV is the present CMB temperature, g∗s 	 200
is the effective number of relativistic species contributing to the entropy after the reheating,
and g�s = 3.91 is the one after recombination [55, 59]. For the single-field inflation, CMB
data would yield the lower bound of TRH � 6 × 103 GeV, and the most upper bound could
be up to TRH � 3 × 1015 GeV [66]. The slow-roll massive scalar field inflation would predict
TRH = 5.8 × 1014 GeV [55]. In the supersymmetry scenarios, gravitinos production would
give an upper bound TRH � 108 GeV [68]. Thus, for our purpose, we will consider the range
TRH ∼ (104–108) GeV.

For the reheating process, the parameter ζ1 is also uncertain. Based on the slow-roll scalar
inflation models [55, 60, 67], ζ1 depends on the specific form of the potential V that drives
the inflation. When calculating the spectrum of RGWs in low frequencies, we just choose
some particular values of ζ1, as it only affects RGWs in very high frequencies which will
be shown below. Apart from that, we will treat ζ1 as a parameter of the reheating, and put

5



Class. Quantum Grav. 31 (2014) 035001 M L Tong et al

certain constraints on it by a combination of PTAs data and the condition of the quantum
normalization of RGWs.

The spectrum of RGWs h(k, τ ) is defined by

〈hi j(τ, x)hi j(τ, x)〉 ≡
∫ ∞

0
h2(k, τ )

dk

k
, (13)

where the angle brackets mean ensemble average. The dimensionless spectrum h(k, τ ) relates
to the mode hk(τ ) as [52]

h(k, τ ) =
√

2

π
k3/2|hk(τ )|. (14)

At the present time τ0, the above expression gives the present RGWs spectrum h(k, τ0).
Assuming that the wave mode crosses the horizon of the universe when λ/(2π) = 1/H, then
the characteristic comoving wave number at a certain joining time τx can be defined as

kx ≡ k(τx) = a(τx)H(τx), (15)

which is little different from [55]. For example, the characteristic comoving wave number at
present is kH = a(τ0)H0 = γ . By a similar calculation, one has the following relations:

kE

kH
= ζ

− 1
γ

E ,
k2

kE
= ζ

1
2

2 ,
ks

k2
= ζs,

k1

ks
= ζ

1
1+βs

1 . (16)

In the present universe, the physical frequency relates to a comoving wave number k as

f = k

2πa(τ0)
= k

2π lH
. (17)

The present energy density contrast of RGWs defined by �GW = 〈ρg〉/ρc, where ρg =
1

32πG hi j,0hi j
,0 is the energy density of RGWs and ρc = 3H2

0 /8πG is the critical energy density,
and is given by [4, 6]

�gw =
∫ fupper

flow

�g( f )
d f

f
, (18)

with

�g( f ) = 2π2

3
h2

c ( f )

(
f

H0

)2

(19)

being the dimensionless energy density spectrum. Here, we have used a notation, hc( f ) ≡
h( f , τ0)/

√
2, called the characteristic strain spectrum [6] or chirp amplitude [69]. The lower

and upper limit of integration in equation (18) can be taken to be flow 	 fE and fupper 	 f1,
respectively, since only the wavelength of the modes inside the horizon contribute to the total
energy density.

The analytic solutions were studied by many authors [9, 10, 52, 59, 65]. For simple
discussions but without losing generality, in this paper, we employ the approximate solutions
of RGWs listed in [55]:

h(k, τ0) = A

(
k

kH

)2+β

, k � kE; (20)

h(k, τ0) = A

(
k

kH

)β−γ

(1 + zE )
− 2+γ

γ , kE � k � kH; (21)

h(k, τ0) = A

(
k

kH

)β

(1 + zE )
− 2+γ

γ , kH � k � k2; (22)
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Figure 1. The characteristic strain spectra hc( f ) of RGWs for various values of TRH and
ζ1 at fixe r = 0.1 and β = −2 for demonstration.

h(k, τ0) = A

(
k

kH

)1+β (
kH

k2

)
(1 + zE )

− 2+γ

γ , k2 � k � ks; (23)

h(k, τ0) = A

(
k

kH

)1+β−βs
(

ks

kH

)βs
(

kH

k2

)
(1 + zE )

− 2+γ

γ , ks � k � k1, (24)

where the coefficient A can be determined by the initial condition. After all it should be
determined by observations. We will discuss this issue below.

The amplitude of RGWs at a pivot wave number kp
0 = k0/a(τ0) = 0.002 Mpc−1 [28] can

be normalized to the tensor-to-scalar ratio [70, 71]:

r ≡ �2
h(k0)

�2
R(k0)

, (25)

where �2
h(k0) ≡ h2(k0, τ0) [55] and �2

R(k0) = 2.427 × 10−9 given by WMAP 9+BAO+H0

[29]. At present, only observational constraints on r have been given. The upper bounds of r are
constrained by WMAP 9+eCMB+BAO+H0[29] as r < 0.13 for the vanishing scalar running
spectral index αs and r < 0.47 for the non-vanishing αs, respectively. More tighter constraints
of r were given by Planck+WMAP [31]: r < 0.11 and r < 0.26 for the vanishing αs and
the non-vanishing αs, respectively. In this paper, we will follow the constraints given in [31].
On the other hand, using a discrete, model-independent measure of the degree of fine-tuning
required, if 0.95 � ns < 0.98, in accord with current measurements, the tensor-to-scalar ratio
satisfies r � 10−2 [69]. We will take r lying in the range of (0.01, 0.26) in our demonstrations.
Since kH � k0 � k2, from equation (22) one has

h(k0, τ0) = A

(
k0

kH

)β

(1 + zE )
− 2+γ

γ = [
�2

R(k0)r
]1/2

, (26)

telling that A can be determined for the given ratio r and the index β.
In figure 1, we plot the characteristic strain spectrum hc( f ) of RGWs for various values

of TRH and ζ1 for the fixed r = 0.1 and β = −2. One can see that, the variations of TRH and
ζ1 affect the RGWs only at frequencies f > 10−1Hz, far away from the frequency window
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Figure 2. The characteristic strain spectra of RGWs for various values of r and β without
considering the quantum normalization. The vertical dashed lines stand for the detecting
window of PTAs.

∼10−9 − 10−7 Hz of PTAs. So, for demonstration below, we choose TRH = 107 GeV and
ζ1 = 108 allowed by the slow-roll inflation models [55, 60, 67].

Unlike TRH and ζ1, small variations of the parameters r and β do significantly affect the
spectrum in all frequencies. In figure 2, we show hc( f ) for β = −2 of the exact de Sitter
expansion, and for β = −2.02 corresponding to the scalar spectral index ns = 0.96 as given
by Planck [31]. A greater r leads to greater amplitudes for the whole frequency range, while
a greater β leads to greater amplitudes at higher frequencies.

3. Constraints by pulsar timing arrays

The existence of GWs will change the geodesic of the photons from millisecond pulsars to the
observer. Consequently, the times of arrival of the electromagnetic signals from pulsars will
be perturbed, forming the so-called timing residuals [33]. If the GWs are strong enough, one
could extract their signals buried in the data of the timing residual measurements. Even RGWs
are very weak, still, constraints on the amplitude of GWs can be obtained from the long-time
accumulating data of timing residuals.

Over the last 30 years, various data from PTA experiments have set constraints [34, 36–38,
72–76]. In the practice of data analysis of PTAs, the GW is usually modeled simply with a
power-law form of the characteristic strain spectrum:

hc( f ) = A1

(
f

yr−1

)α

, (27)

where A1 is the amplitude and f is the frequency in unit yr−1. For PTAs, the detection frequency
band is 10−9 � f � 10−7 Hz. Relevant to this band of frequency, the RGWs mode by our
calculation is given in equation (23), and the corresponding, theoretical characteristic strain
spectrum has the following form:

hc( f ) = A√
2

(
f

fH

)1+β (
fH

f2

)
(1 + zE )

− 2+γ

γ , (28)

8
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Figure 3. The constraints of α given by various PTAs for RGWs with different values
of ratio r. The limit curves of the PPTA (2006) and the full PPTA are taken from [36].
The limit curves of the current EPTA and NANOGrav are taken from [37] and [38],
respectively.

where fH = H0/(2π) = 3.47 × 10−19 Hz and f2 = 1.56 × 10−17 Hz due to equation (16).
With the help of equation (26), equation (28) can be rewritten as

hc( f ) =
[
�2

R(k0)r
]1/2

√
2

(
f0

f2

) (
f

f0

)1+β

, (29)

where f0 = 3.09 × 10−18 Hz is the pivot frequency. Note that f / f0 � 1 in the pulsar timing
frequency band. Comparing equations (27) and (29) tells that the power-law index is related
to the inflation index via

α = 1 + β. (30)

In [54], the power spectrum of RGWs described by the tensor spectral index nt , which has a
relation with α,

α = nt

2
− 1. (31)

Then, one can straightly get nt = 2β + 4. nt was constrained by PTAs in [54]. In this paper,
however, we will constrain the parameter β instead, which describes the expansion behavior
of the inflation directly.

Improving the earlier works [34, 75], Jenet et al [36] developed a frequentist technique
of statistics, and have placed an upper limit on A1 for each given α in the range α ∈ (−2, 1).
Expecting a GW stochastic background with a red spectrum (more power at low frequencies,
corresponding to α < −1, i.e, β < −2), they have selected seven pulsars with formally white
spectra from the observational data of PPTA and Arecibo experiments. They also gave the
limit curve from the simulated data of the potential 20 pulsars for the future goal of the PPTA
timing (see figure 2 in [36]). From now on, as in Jenet et al [36], we refer to this simulated
data as the ‘full PPTA’. Currently, EPTA [37] and NANOGrav [38] also gave the similar limit
curves. For investigation, we quote these upper limit curves of A1(α) in figure 3, which are
also demonstrated in [54]. For example, at α = −1, the current NANOGrav gives the upper
bounds A1 = 4.1 × 10−15, and the full PPTA gives A1 = 3.8 × 10−16, respectively, at the 95%
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Table 1. The upper limits of α with different values of r given by different PTA groups.

PTA groups r = 0.26 r = 0.1 r = 0.01

PPTA(2006) [36] α � −0.87 (β � −1.87) α � −0.85 (β � −1.85) α � −0.79 (β � −1.79)

EPTA(2012) [37] α � −0.89 (β � −1.89) α � −0.86 (β � −1.86) α � −0.81 (β � −1.81)

NANOGrav (2012) [38] α � −0.88 (β � −1.88) α � −0.86 (β � −1.86) α � −0.81 (β � −1.81)

Full PPTA [36] α � −0.99 (β � −1.99) α � −0.97 (β � −1.97) α � −0.92 (β � −1.92)

confidence level. Note that, in these results of statistical analysis of observational data, only
the amplitude A1 is constrained, and there is no constraint on the index α.

Making use of these resulting amplitude constraints from experiment as well as the
calculated strain spectrum hc( f ), we will be able to put constraint on the index α, and thus
on the inflation index β = α − 1. To do this, in figure 3, we plot the calculated hc( f ) in
equation (29) at fixed frequency f = 1/(1 yr), i.e, hc(yr−1), as a function of α, where three
cases of the ratio r = 0.01, 0.1 and 0.26 are given, respectively. Note that the upper limit
curves A1(α) intersects that of the calculated hc(yr−1). These intersection points give rise to
the corresponding constraints on the index α. The intersection point can be obtained by setting
equal the right hand sides of equations (29) and (27), yielding following constraint equation

�R(k0)r1/2

√
2

(
yr−1

f0

)α (
f0

f2

)
= A1(α). (32)

The solution of this equation gives the upper limit on α. In table 1, the resulting constraints of
α, and β as well, given by the above equation are listed, where we have presented the results
imposed by various PTA groups, and for values of the ratio r = 0.26, 0.1, 0.01, respectively.
It is worth to point out that the results given in table 1 are little different from those shown in
[36]. The difference is induced by many reasons. Firstly, the normalized spectral amplitude in
our results depends on the tensor-to-scalar ratio r. Secondly, the pivot frequency in this paper
is different from that in [36]. We chose the pivot frequency to be f0, while the pivot frequency
was chosen to be H0 in [36]. Thirdly, here we considered the acceleration stage of the universe.
On the other hand, the estimation of a2/aH 	 10−4 in [36] is a little bit large. We find that the
constraints of α or β depend on this value sensitively. These resulting upper limits of α and
β are quite large, telling that the constraints by PTAs are not as stringent as those by BBN,
CMB and LIGO [53]. However, the constraints of α and β are tighter than those shown in
[54]. Hence, the PTAs give more strict constraints on the non-standard RGW model.

Notice that, even though the parameters β and r are initially independent in a generic
theoretical model, the constraint equation (32) now imposes a relation between r and the
upper limit of α. This relation is not from the quantum normalization mentioned earlier, but,
instead, from the constraints of PTAs in combination with a specific RGWs model. We plot
the resulting upper limit of β = α − 1 as a function of r for various PTA groups in figure 4. It
shows that, a smaller upper limit β is associated with a larger value of r.

4. Constraints by the quantum normalization

In general, from theoretical perspective, β and r could be independent parameters, when
RGWs were generated by a generic mechanism in the early universe. However, there is
another possible way in which β and r are related. If one treats the RGWs field hi j as a
quantum field, and requires that, when initially generated, it be in the vacuum state with an

10
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Figure 4. The upper limit of β varies with r according to equation (32) for various PTAs
without the quantum normalization.

energy 1
2 �ω for each mode k = ω/2π , one ends up with the so-called quantum normalization

for the amplitude of RGWs [2]:

h(k, τi) = 8
√

π/λi. (33)

During the inflationary expansion, the reduced wavelength of each wave mode crossed the
horizon when λi/(2π) = 1/H(τi), which leads to

A = 4blPl√
π l0

, (34)

where lPl is the Planck length, b ≡ γ 2+β/|1 + β|1+β , and

l0 = bH−1
0 ζ

β−βs
1+βs

1 ζ β
s ζ

β−1
2

2 ζ
−
(

1+ 1+β

γ

)
E , (35)

in our notation [10]. Let us explore the consequences of this normalization. From
equations (26), (34) and (35), one obtains the following relation:

�R(k0)r
1/2

(
kH

k0

)β

ζ
γ+2
γ

E = 4π− 1
2 lPlH0ζ

βs−β

1+βs
1 ζ−β

s ζ
1−β

2
2 ζ

(
1+ 1+β

γ

)
E , (36)

which tells that, according to the quantum normalization, the two major parameters r and β

are no longer independent, but rather related. In particular, r and β are related by a function
r = r(β) in a specific form, when other parameters such as βs, γ , ζ1, ζ2 and ζs are all held
fixed. In figure 5, we plot r = r(β) for fixed TRH = 107 GeV, showing that a smaller β is
associated with a greater r. This pattern of behavior predicted the quantum normalization is
formally similar to that in figure 4 from PTAs. Besides, figure 5 also demonstrates that when
the parameter ζ1 of the reheating is allowed to vary, a larger ζ1 shifts the curve r = r(β) to a
larger β.

In the scenario of generation of RGWs as perturbations of metric during inflation, there is a
theoretical upper limit on the index β [2, 8]. During the inflationary expansion, the wavelength
of each mode of the GWs at the horizon-crossing, λi/(2π) = 1/H(τi), should be greater than
the Planck length, i.e., λi > lPl , which is a reasonable requirement for validity of treatment

11
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Figure 5. The quantum normalization predicts a relation between r and β for various
values of ζ1. The upper dashed line represents the constraint of r given by Planck
[31] and the lower dashed line represents solid line represents lower limit of r 	 0.01
required by the model-independent measure of the degree of fine-tuning [69].

of the spacetime during inflation as classical. With the help of equation (7), the wavelength at
the crossing is written as λi = 2π l0

b (
fH

f )2+β . So, the requirement becomes
(

f

fH

)2+β

<
8
√

π

A
, (37)

where A is the amplitude from the quantum normalization in equation (34). The rate of
the primordial nucleosynthesis requires an upper bound of frequency [2, 10], which is
f1 	 4 × 1010 Hz when the effect of dark energy is included [55]. Substituting this bound
into equation (37) and using equation (26), one obtains the theoretical upper limit on the index
β < −1.87 for r = 0.26, and β < −1.85 for r = 0.01, respectively.

It is interesting to notice that the upper limits of β imposed by the quantum normalization
are comparable to those by the current PTAs in table 1 in the last section. So, the result of
the current PTAs experiments supports the scenario that the wavelengths λ of RGWs were
much greater than the Planck length lPl when the wave modes crossed over the horizon during
inflation.

5. Constraints upon reheating by both PTAs and quantum normalization

In the above analysis, on the parameters β and r, we have fixed other remaining parameters of
RGWs, such as ζ1, and etc. In fact, using the PTAs results, in combination with the quantum
normalization, one can also put constraints on certain other parameters of RGWs. Now, we
focus on the parameter ζ1 for the reheating, a very important parameter for the cosmology.
Although its value can be predicted by certain inflation models [67], but so far it is not
constrained by experiment other than WMAP on CMB.

Again, using equation (36) now with both β and ζ1 as being free, one has r as a function:
r = r(β, ζ1). Substituting this into equation (29) at f = 1/(1 yr) yields the strain amplitude
hc as a function of both β and ζ1: hc = hc(β, ζ1). Requiring that this be not higher than the
amplitude A1(β) from PTAs,

hc(β, ζ1) � A1(β), (38)

12



Class. Quantum Grav. 31 (2014) 035001 M L Tong et al

Figure 6. The upper limit of ζ1 given by different PTAs under the quantum normalization.

Figure 7. The upper limits on the energy density spectrum �g( f )h2 given by various
PTAs compared with the theoretical �g( f )h2 with r = 0.26 and r = 0.01, respectively.
Here, β = −2 is taken so that �g( f )h2 is flat.

one can get an upper limit of ζ1 for each β. The results are plotted in figure 6 with the upper
limits of ζ1 as a function of β, where we have demonstrated for two sets of constraints of
PTAs. The future full PPTA will give stronger constraints than the current PTAs. For the
value β = −2.02, the upper bound is ζ1 < 3.6 × 1013 by the current NANOGrav, and
the full PPTA will give a bound ζ1 < 7.6 × 1012. For the value β = −2 corresponding
to the de Sitter expansion of inflation, the current NANOGrav and the full PPTA give the
bounds ζ1 < 5.7 × 1013 and ζ1 < 1.2 × 1013, respectively. Therefore, to the very early cosmic
processes, the future full PTPA can also serve as an important probe, complementary to others,
such as CMB, etc.
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Figure 8. The energy density spectrum �g( f )h2 to be explored by full PPTA [36] and
the planned SKA. Here, the probing of SKA is converted from that from [42], assuming
the monitoring of 20 pulsars for ten years at a precision level of δtrms ∼ 10 ns.

6. Conclusions and discussions

Our analysis demonstrated constraints on RGWs given by different PTAs, which can be
expressed in terms of the upper bounds of the spectral index β determined by inflation. We
find that the PTAs give more strict constraints on the non-standard RGW model than the
standard RGW model. On the other hand, the requirement of the quantum normalization also
imposes constraints on RGWs. These two sets of bounds are comparable, and consistent to
each other. But the current PTAs bounds are not as stringent as those by LIGO and VIRGO.
However, as an advantage, when the combination of the PTAs and the quantum normalization
are both applied to RGWs, constraints can be obtained on the parameter ζ1 of the reheating,
an important process of the very early universe, which is currently less understood than the
inflation.

To examine the possibility of detection of RGWs by PTAs, we just take β = −2 as an
example. In figure 7, we plot the upper limit of the energy density spectrum �g( f )h2 set by the
PPTA [36], the current NANOGrav [38] and the full PPTA [36], respectively. For comparison,
we also plot the theoretical �gh2 for r = 0.26 and for r = 0.01, respectively. The curves
for �g( f )h2 in figure 7 are flat, since, for the case β = −2, by equations (19) and (29), the
function �g( f )h2 is independent of frequency f . It is clearly seen that the current PTAs fall
short of at least two orders of magnitude, but the full PPTA will nearly catch the signal of
the RGWs of r = 0.26. On the other hand, if r be a much smaller value, even the full PPTA
will have no chance to detect RGWs. However, the future instruments such as SKA [40] will
have enormously improved sensitivity, and would have a greater potential to detect RGWs.
Figure 8 shows the possible probing of SKA and the theoretical �g( f )h2 for β = −2 and
β = −2.02, respectively. One sees that the sensitivity of SKA would be enough to detect
RGWs. Furthermore, given such a capability, SKA will also be able to put constraints upon
the parameter ζ1 of the reheating stringent than PTAs. Therefore, SKA will become a powerful
tool to detect or constrain RGWs and other kinds of stochastic gravitational wave background.

All the analysis and results presented in this paper are arrived under the assumption
that the tensorial running index αt = 0. The curvature of the inflation potential determines
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αt . Inflation models with large values of αt predict a spectrum of RGWs tilting up on short
wavelengths, increasing the chances of detection, and vice versa.

Aside RGWs, there is a stochastic background of gravitational waves generated by
supermassive black hole binaries [41, 42], whose power-law spectral index α = −2/3, is
different from α 	 −1 of RGWs. With a relatively wider range of detection frequencies, SKA
might be able to distinguish the two different kinds of gravitational wave background.
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