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Abstract. By taking into account the contamination of foreground radiations, we employ the
Fisher matrix to forecast the future sensitivity on the tilt of power spectrum of primordial
tensor perturbations for several ground-based (AdvACT, CLASS, Keck/BICEP3, Simons
Array, SPT-3G), balloon-borne (EBEX, Spider) and satellite (CMBPol, COrE, LiteBIRD)
experiments of B-mode polarizations. For the fiducial model nt = 0, our results show that
the satellite experiments give good sensitivity on the tensor tilt nt to the level σnt . 0.1 for
r & 2× 10−3, while the ground-based and balloon-borne experiments give worse sensitivity.
By considering the BICEP2/Keck Array and Planck (BKP) constraint on the tensor-to-scalar
ratio r, we see that it is impossible for these experiments to test the consistency relation
nt = −r/8 in the canonical single-field slow-roll inflation models.
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1 Introduction

The inflation paradigm [1–5] predicts the primordial gravitational waves, i.e. tensor per-
turbations. The primordial gravitational waves can contribute to the total intensity and
polarizations of cosmic microwave background (CMB) anisotropy [6–12]. From the recent
Planck TT,TE,EE+lowP data release [13], the upper limit on tensor-to-scalar ratio is given
by r0.002 < 0.11 at the 95% confidence level (C.L.) by fitting the ΛCDM+r model. The B-
mode polarizations contributed by primordial gravitational waves may be detectable at the
range ` . 150. Actually, BICEP2 [14] has pushed the sensitivity of B-mode polarizations to
be comparable with that of temperature in searching for the primordial gravitational waves.
However, the polarized dust emissions make us difficult to distinguish whether the detected
B-mode power comes from the primordial gravitational waves [15–18]. Recently, Planck [19]
released the full-sky data of polarized dust emissions. Based on this, a joint analysis of the
B-mode data from BICEP2/Keck Array and Planck (BKP) [20] yielded an upper bound
r0.05 < 0.12 at the 95% C.L., which is compatible with the upper limit from Planck data
without the B-mode polarizations.

The tilt of power spectrum of primordial tensor perturbations is used to measure the
feature of the primordial gravitational waves. In the power spectrum of primordial tensor
perturbations, the tensor tilt nt is defined by

Pt(k) = rAs

(
k

kp

)nt

, (1.1)

where Pt(k) is the amplitude of power spectrum of primordial tensor perturbations at the
scale k, r denotes the tensor-to-scalar ratio at a given pivot scale kp and As the amplitude
of primordial scalar perturbations which is set as a constant in this paper. In the inflation
model, the tensor tilt is generally predicted as nt = −2ε [21, 22]. The inflation requires
ä/a = H2(1 − ε) where ε = Ḣ/H2, and thus −2 < nt < 0. In the canonical singe-field
slow-roll inflation models, the tensor tilt is determined by the tensor-to-scalar ratio via the
consistency relation, i.e. nt = −r/8 [21]. By considering the upper bounds on r, we expect the
power spectrum of primordial gravitational waves to be nearly scale-invariant, i.e. nt ' 0.
The current constraint on nt was given by nt,0.01 = −0.76+1.37

−0.52 [23] at the 68% C.L. by
combining only the BKP B-mode data and the upper limit on the intensity of stochastic
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gravitational wave background from Laser Interferometer Gravitational-Waves Observatory
(LIGO) [24]. The scale-invariant spectrum is well compatible with this constraint.

Even though at present there are no evidence for the primordial gravitational waves,
several future polarization experiments might reach the sensitivity to detect the primordial
gravitational waves in the coming years. As a recent analysis, ref. [25] forecasted that the
primordial gravitational waves with theoretically motivated r ∼ 2 × 10−3 can be achievable
by certain future experiments if the noise is reduced to ∼ 1µK-arcmin and the lensing
B-modes reduced to 10%. Their forecasts are not changed significantly with respect to
previous estimates [26]. In this paper, we study the sensitivity on the tensor tilt nt for
several future ground-based (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G),
balloon-borne (EBEX, Spider) and satellite (CMBPol, COrE, LiteBIRD) experiments. We
are just interested in studying the nearly scale-invariant case, i.e. nt ' 0 which corresponds
to a class of the simplest inflation models. Similar to ref. [25], the approach of Fisher matrix
is also used in our analysis. The paper is arranged as follows. The B-mode polarizations,
foregrounds and noise sources are described in section 2. In section 3, the method used in this
paper is revealed. In section 4, we show our forecasts for the future experiments. Conclusions
and discussion are given in section 5.

2 Signal, foregrounds and noise

In general, the CMB linear polarizations can be expressed in terms of the spin-weighted
spherical harmonics ±2Y`m, namely

Q± iU =
∑
`m

a±2`m ±2Y`m , (2.1)

or equivalently, defined by the E- and B-modes as

E =
∑
`m

aE`mY`m , (2.2)

B =
∑
`m

aB`mY`m , (2.3)

where the coefficients are given by

aE`m = −1

2

(
a+2
`m + a−2`m

)
, (2.4)

aB`m = − 1

2i

(
a+2
`m − a

−2
`m

)
. (2.5)

In this paper, we are just focused on studying the B-modes which may include the signal of
primordial gravitational waves.

In the linear perturbation theory, the primordial B-modes are Gaussian with zero mean,
and their variance is given by

〈aB`maB∗`′m′〉 = CBB` δ``′δmm′ , (2.6)

where δ comes from statistical isotropy. As conventions, the angular correlation coefficients
between B-modes are defined as

C̃` =
`(`+ 1)

2π
CBB` , (2.7)
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Parameters Synchrotron Thermal Dust

A72% 2.1× 10−5 0.169

A53% 2.1× 10−5 0.065

A24% 2.1× 10−5 0.019

A11% 4.2× 10−6 0.013

A1% 4.2× 10−6 0.006

ν[GHz] 65 353

` 80 80

α −2.6 −2.42

β −2.9 1.59

T [K] — 19.6

Table 1. A list of foreground parameters [16, 19, 25, 30]. Here Afsky
denotes the cleanest effective

area fsky in the sky and its unit is µK2.

where we have dropped the superscript BB for simplicity. In our study, we generate the power
spectrum of primordial B-modes by running the CAMB package [27, 28], and we set all the
cosmological parameters except r and nt to the best-fit values of Planck 2015 results [29].
However, we should find out a reasonable pivot scale kp such that there is least degeneracy
between r and nt in eq. (1.1).

The foregrounds contaminate the CMB B-mode signal and should be taken into account
in the forecast. Actually, we can separate each component of foregrounds by noting that
they have very different frequency-dependence. The Galactic synchrotron emission (S) and
thermal dust emission (D) are considered in this paper. Their power spectra are given by

S`ν =
(
WS
ν

)2
CS` =

(
WS
ν

)2
AS

(
`

`S

)αS

, (2.8)

D`ν =
(
WD
ν

)2
CD` =

(
WD
ν

)2
AD

(
`

`D

)αD

, (2.9)

where various parameters can be found in table 1, and WS
ν and WD

ν are defined by

WS
ν =

WCMB
νS

WCMB
ν

(
ν

νS

)βS
, (2.10)

WD
ν =

WCMB
νD

WCMB
ν

(
ν

νD

)1+βD ehνD/kBT − 1

ehν/kBT − 1
, (2.11)

WCMB
ν =

x2ex

(ex − 1)2
, x =

hν

kBTCMB
. (2.12)

Here we have rescaled the temperature of Galactic synchrotron emission and thermal dust
emission with respect to the CMB temperature. There might be certain correlation between
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synchrotron emission and dust emission. To account for this, we assume their correlation
taking the form g

√
S`νiD`νj in the power spectra.

In this paper, we do not consider the systematics which strongly depend on the exper-
imental setups. However, we consider the instrumental white noise which is Gaussian. The
power spectrum of the white noise can be expressed as [31]

N` =
`(`+ 1)

2π
δP 2e`

2σ2
b , (2.13)

where δP denotes the sensitivity for the Stokes parameters Q and U, and σb = 0.425θFWHM

denotes the beam-size variance. Various instrumental parameters here can be found in table 5
in appendix.

The gravitational lensing can also limit our ability to detect primordial B-mode polar-
izations. However, the lensing B-modes and primordial B-modes have the same frequency-
dependence, and we cannot separate them as mentioned above. Fortunately, one can re-
construct the lensing potential by considering the CMB data of temperature and E-mode
polarizations at small angular scales, and then remove the lensing B-modes away at large
angular scales [42–45]. In this paper, we assume the power of lensing B-modes reduced to
10% of its original value for the CMBPol and COrE experiments. For others, it is marginal to
employ delensing [25]. The residual power δC lensing` of lensing B-modes can be incorporated

into the power spectrum of an effective noise, i.e. N` −→ N` + δC lensing` [26].

3 Likelihood and Fisher matrix

As mentioned above, we will deal with three components of CMB B-modes which originate
from primordial gravitational waves, Galactic dust and synchrotron emissions, respectively.
In the “Component Separation” (CS) method, the average of log-likelihood can be given
by [25]

〈logLBB〉 = −1

2

∑
`

(2`+ 1)fsky

(
log det

(
WC`W T +N`
W̄ C̄`W̄ T +N`

)
+ tr

(
W̄ C̄`W̄ T +N`
WC`W T +N`

− 1

))
,

(3.1)
where the bar denotes all the parameters fixed to their “true” values, and we have used
the normalization such that 〈logLBB〉 = 0 for C̄` = C` and W̄ = W . Here W denotes the
frequency-dependence of each component of CMB B-modes, which is a 3 × N matrix with
a row (1,WD

νi ,W
S
νi). N denotes the number of frequency channels for each experiment. C`

is the covariance matrix of the amplitudes of three components. fsky stands for the effective
area of the sky in table 5, where each experiment observes.

In our consideration, the average of log-likelihood is a function of several parameters p
which are (r, nt, AD, AS , βD, βS , g). We assume Gaussian priors for AD, AS , βD and βS with
the variance of 50%, 50%, 15% and 10%. Based on eq. (3.1), the Fisher matrix is defined by

Fij = −∂
2〈logLBB〉
∂pi∂pj

|p=p̄ , (3.2)

where p̄ denote “true” values of the parameters p. In our fiducial model, we set ḡ = 0.5 and
n̄t = 0. The minimum error on the parameter pi is given by the Cramer-Rao bound, i.e.

σ2pi >
(
F−1

)
ii
. (3.3)

– 4 –



J
C
A
P
1
0
(
2
0
1
5
)
0
3
5

In this paper, we will forecast the future sensitivity on both r and nt simultaneously, since
primordial gravitational waves are not detected until now. There could be certain correlation
between r and nt, or equivalently, the (r, nt) confidence ellipse has a tilt. Thus we should
find a pivot scale kp to make their correlation to be least. In other words, we should find the
pivot scale such that

(
F−1

)
rnt

= 0, which minimizes the constraint on r.

4 Analysis and results

For the future ground-based experiments, we consider the CMB multipoles of the range
[30, 150] for Keck/BICEP3, Simons Array and SPT-3G, while [2, 150] for AdvACT and
CLASS. The reason is that AdvACT and CLASS cover a larger fraction of the sky. We
forecast on the future sensitivity on r and nt by using the Fisher matrix. The 1σ errors on
r and nt can be found in table 2. We also list the pivot scale kp[Mpc−1] at which there is no
tilt for the (r, nt) confidence ellipse. We found that the ground-based experiments can probe
the tensor-to-scalar ratio to the level r ' 0.01, which is consistent with previous estimates.
The 1σ error on the tensor tilt is to the level σnt ∼ 0.1 when 2×10−3 < r < 0.1 for AdvACT
and CLASS, while σnt & 1 for other three experiments.

For the future balloon-borne experiments, we consider the CMB multipoles of the range
[30, 150]. The 1σ errors on r and nt and the pivot scale kp can be found in table 3. We find
that EBEX and Spider can marginally probe the tensor-to-scalar ratio to the level r ' 0.02,
which is consistent with previous estimates. The 1σ error on the tensor tilt is σnt > 1 when
2× 10−3 < r < 0.1.

For the future satellite experiments, we consider the CMB multipoles of the range [2, 300]
for CMBPol and COrE while [2, 150] for LiteBIRD. The 1σ errors on r and nt and the pivot
scale kp can be found in table 4. The delensing has been taken into account for CMBPol and
COrE. We find that the satellite experiments can well probe the tensor-to-scalar ratio even
to the level r ' 2× 10−3, which is also consistent with previous estimates. The 1σ error on
the tensor tilt nt runs from ∼ 0.1 to ∼ 0.01 when r runs from 2 × 10−3 to 0.1. Thus the
future satellite experiments provide the highest sensitivity on the tensor tilt nt by contrast
to the future ground-based and balloon-borne experiments.

We plot the (r, nt) confidence ellipses of 1σ and 2σ C.L. for the CLASS and LiteBIRD
experiments in figure 1. Here the fiducial parameters are chosen as r = 0.01 and nt =
0. AdvACT and CLASS denote the best sensitivity on both r and nt in the five future
ground-based experiments. Unfortunately, they can not still compare with the future satellite
experiments such as LiteBIRD. Even though the satellite experiments give the best sensitivity
on nt, it is impossible for them to test the consistent relation, i.e. nt = −r/8. By considering
the BKP constraint r0.05 < 0.12 at 95% C.L., we deduce nt < 0.015 which is much smaller
than the 1σ errors on nt in table 4.

5 Discussion

In this paper, we forecasted the sensitivity on the tensor tilt nt for future ground-based,
balloon-borne and satellite experiments of B-mode polarizations. We focused on the scale-
invariant power spectrum nt = 0 which approximately corresponds to the canonical single-
field slow-roll inflation models. For the tensor tilt, the satellite experiments can give a good
sensitivity on nt even for r ' 2 × 10−3. Specifically, the 1σ error on nt varies from ∼ 0.1
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r σr σnt kp[Mpc−1]

0.1 5.3× 10−3 9.7× 10−2 8.4× 10−3

0.05 4.4× 10−3 1.2× 10−1 7.5× 10−3

AdvACT
0.02 3.6× 10−3 1.6× 10−1 5.2× 10−3

0.01 3.1× 10−3 2.3× 10−1 3.4× 10−3

0.005 2.6× 10−3 3.6× 10−1 2.1× 10−3

0.002 2.1× 10−3 7.5× 10−1 1.3× 10−3

0.1 6.7× 10−3 9.0× 10−2 6.3× 10−3

0.05 5.5× 10−3 1.1× 10−1 4.7× 10−3

CLASS
0.02 4.1× 10−3 1.6× 10−1 2.4× 10−3

0.01 3.1× 10−3 2.5× 10−1 1.3× 10−3

0.005 2.2× 10−3 4.2× 10−1 8.6× 10−4

0.002 1.5× 10−3 9.3× 10−1 5.7× 10−4

0.1 2.3× 10−2 1.2 9.2× 10−3

0.05 1.7× 10−2 1.8 8.9× 10−3

Keck/BICEP3
0.02 1.4× 10−2 3.6 8.7× 10−3

0.01 1.3× 10−2 6.6 8.7× 10−3

0.005 1.2× 10−2 12.5 8.6× 10−3

0.002 1.2× 10−2 30.4 8.6× 10−3

0.1 1.7× 10−2 7.0× 10−1 9.3× 10−3

0.05 1.5× 10−2 1.3 9.3× 10−3

Simons Array
0.02 1.4× 10−2 3.0 9.2× 10−3

0.01 1.4× 10−2 5.9 9.2× 10−3

0.005 1.4× 10−2 11.7 9.2× 10−3

0.002 1.4× 10−2 29.1 9.2× 10−3

0.1 8.8× 10−3 4.3× 10−1 9.4× 10−3

0.05 6.6× 10−3 6.4× 10−1 9.2× 10−3

SPT-3G
0.02 5.3× 10−3 1.3 9.1× 10−3

0.01 4.8× 10−3 2.3 9.1× 10−3

0.005 4.5× 10−3 4.4 9.0× 10−3

0.002 4.4× 10−3 10.6 9.0× 10−3

Table 2. 1σ errors on r and nt for future ground-based experiments. The pivot scale kp[Mpc−1] is
also listed, at which there is no correlation between r and nt and then the (r,nt) confidence ellipse
has no tilt.
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r σr σnt kp[Mpc−1]

0.1 2.3× 10−2 1.2 9.1× 10−3

0.05 1.7× 10−2 1.9 8.8× 10−3

EBEX
0.02 1.3× 10−2 3.7 8.6× 10−3

0.01 1.2× 10−2 6.8 8.4× 10−3

0.005 1.1× 10−2 12.9 8.4× 10−3

0.002 1.0× 10−2 31.4 8.4× 10−3

0.1 1.8× 10−2 1.0 8.6× 10−3

0.05 1.5× 10−2 1.8 8.4× 10−3

Spider
0.02 1.4× 10−2 4.1 8.3× 10−3

0.01 1.3× 10−2 7.9 8.3× 10−3

0.005 1.3× 10−2 15.4 8.3× 10−3

0.002 1.3× 10−2 38.2 8.3× 10−3

Table 3. 1σ errors on r and nt for future balloon-borne experiments. The pivot scale kp[Mpc−1] is
also listed correspondingly.

Figure 1. The (r, nt) confidence ellipses of 1σ and 2σ C.L. for CLASS (blue) and LiteBIRD (red).
The fiducial parameters are given by r = 0.01 and nt = 0.
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r σr σnt kp[Mpc−1]

0.1 1.2× 10−3 3.0× 10−2 1.1× 10−2

0.05 7.1× 10−4 3.8× 10−2 1.0× 10−2

CMBPol
0.02 3.8× 10−4 5.1× 10−2 9.0× 10−3

0.01 2.5× 10−4 6.2× 10−2 8.4× 10−3

0.005 1.8× 10−4 7.5× 10−2 7.9× 10−3

0.002 1.4× 10−4 9.7× 10−2 7.2× 10−3

0.1 1.3× 10−3 3.4× 10−2 1.1× 10−2

0.05 8.2× 10−4 4.4× 10−2 9.7× 10−3

COrE
0.02 4.6× 10−4 5.8× 10−2 8.6× 10−3

0.01 3.3× 10−4 7.0× 10−2 8.1× 10−3

0.005 2.5× 10−4 8.3× 10−2 7.5× 10−3

0.002 2.1× 10−4 1.1× 10−1 6.3× 10−3

0.1 1.8× 10−3 5.3× 10−2 8.9× 10−3

0.05 1.1× 10−3 6.1× 10−2 8.5× 10−3

LiteBIRD
0.02 7.3× 10−4 7.5× 10−2 8.0× 10−3

0.01 5.8× 10−4 8.8× 10−2 7.1× 10−3

0.005 4.9× 10−4 1.1× 10−1 6.2× 10−3

0.002 4.4× 10−4 1.7× 10−1 5.3× 10−3

Table 4. 1σ errors on r and nt for future satellite experiments. The pivot scale kp[Mpc−1] is also
listed correspondingly.

to ∼ 0.01 when r varies from ∼ 0.001 to ∼ 0.1. By contrast, the ground-based and balloon-
borne experiments give much worse sensitivity on both r and nt. Furthermore, our results
did not change significantly with respect to previous forecasts on the future sensitivity of
tensor-to-scalar ratio r in ref. [25]. The reason is that we just considered the scale-invariant
tensor tilt nt = 0 in our fiducial model. By considering the BKP constraint on r, we see that
it is impossible for these future experiments to test the consistent relation nt = −r/8 in the
canonical single-field slow-roll inflation models.
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A Instrumental specifications

Experiments fsky[%] ν[GHz] θFWHW [′] δP [µK ′]

AdvACT
50 90 2.2 7.8

50 150 1.3 6.9

50 230 0.9 25

CLASS
70 38 90 39

70 93 40 13

70 148 24 15

70 217 18 43

Keck/BICEP3
1 95 30 9.0

1 150 30 2.3

1 220 30 10

Simons Array
20 90 5.2 15.2

20 150 3.5 12.3

20 220 2.7 23.6

SPT-3G
6 95 1 6.0

6 150 1 3.5

6 220 1 6.0

EBEX
1 150 8 5.8

1 250 8 17

1 410 8 150

Spider
7.5 94 49 17.8

7.5 150 30 13.6

7.5 280 17 52.6

70 30 26 19.2

CMBPol
70 45 17 8.3

70 70 11 4.2

70 100 8 3.2

70 150 5 3.1

70 220 3.5 4.8

70 340 2.3 21.6

70 45 23 9.1

COrE
70 75 14 4.7

70 105 10 4.6

70 135 7.8 4.6

70 165 6.4 4.6

70 195 5.4 4.5

70 225 4.7 4.6

70 255 4.1 10.5

70 285 3.7 17.4

70 315 3.3 46.6

70 375 2.8 119

70 60 32 10.3

LiteBIRD
70 78 58 6.5

70 100 45 4.7

70 140 32 3.7

70 195 24 3.1

70 280 16 3.8

Table 5. Instrumental specifications of future ground-based, balloon-borne and satellite experi-
ments [32–41]. Here δP = σpixθFWHM .
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