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Screened modified gravity (SMG) is a kind of scalar-tensor theory with screening mechanisms, which
can suppress the fifth force in dense regions and allow theories to evade the solar system and laboratory
tests. In this paper, we investigate how the screening mechanisms in SMG affect the gravitational radiation
damping effects, calculate in detail the rate of the energy loss due to the emission of tensor and scalar
gravitational radiations, and derive their contributions to the change in the orbital period of the binary
system. We find that the scalar radiation depends on the screened parameters and the propagation speed of
scalar waves, and the scalar dipole radiation dominates the orbital decay of the binary system. For strongly
self-gravitating bodies, all effects of scalar sector are strongly suppressed by the screening mechanisms in
SMG. By comparing our results to observations of binary system PSR J1738þ 0333, we place the
stringent constraints on the screening mechanisms in SMG. As an application of these results, we focus on
three specific models of SMG (chameleon, symmetron, and dilaton), and derive the constraints on the
model parameters, respectively.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has been very
successful at interpreting gravity on a huge range of scales,
from submillimeter scale tests in the laboratory [1,2], to
solar system [3,4] and binary pulsar [5–8] tests.
Nevertheless, GR is known to be incomplete in the ultra-
violet regime where it should be replaced by a (still
unknown) quantum theory of gravity [9]. Also, within
the framework of GR, in order to explain the observations
on the infrared cosmological scales, the dark ingredients
(dark matter and dark energy) [10] were introduced as the
supplementary material in our Universe. Therefore, an
alternative theory of gravity is the direction that is supposed
to be worth a try. In addition, the majority of tests of GR
only verify the effects of the conservative sector of GR in
the weak-field and low energy regimes [3,4]. Gravitational
waves (GWs) provide the excellent opportunity to perform
quantitative tests of dissipative sector and strong-field
dynamics of gravity theories. The first indirect detection
of GWs is based on the observations of orbital decay of the
binary pulsar system [11]. On September 14, 2015, the first
direct GW signal GW150914 was observed by LIGO,
which was produced by the coalescence of two stellar-mass
black holes [12]. In order to better understand gravity and
fundamental physics from these observations, it is impor-
tant to clarify the corresponding predictions from GR and

alternative theories of gravity [13,14]. For these reasons,
the study of gravitational radiation in alternative theories of
gravity has become an important issue.
Another motivation for the research on gravity theories is

the following argument: Scientists can never truly “prove”
that a theory (e.g., GR) is correct, but rather all we do is
disprove, or more accurately constrain, alternative hypoth-
eses. The theory that remains and cannot be disproven by
observations becomes the status quo [15]. Indeed, this is
the case today for Einstein’s theory of GR. So, even for the
verification of GR theory, we should also investigate the
prediction of alternative theories, and compare them with
the prediction of GR. Actually, this has been subjected to a
battery of tests through solar system [4,16], binary pulsar
[5–8], gravitational waves in the binary black holes [17],
and cosmological observations [18].
A natural alternative to GR is scalar-tensor theory

[19–21], which invokes a conformal coupling between
matter and an underlying scalar field, besides the standard
space-time metric tensor. Scalar-tensor theory cannot only
be shown to be equivalent to several phenomenological
gravity theories [e.g., fðRÞ gravity [22,23]], but also be
justified by the low energy limit of string theory or
supergravity [24–27]. Moreover, scalar fields are also
widely used in modern cosmology (e.g., quintessence
[28] and inflation [29]). The coupling between scalar field
and matter leads to the scalar force (fifth force), and current
experimental constraints [30,31] require that the fifth force
must be screened in high density environments. Presently,
there are three main screening mechanisms in scalar-tensor
gravity: chameleon [32–34], symmetron [35–37], and
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dilaton [25,26,38].1 These three mechanisms can be
described within a unified theoretical framework called
screened modified gravity (SMG) [40]. SMG is a class of
scalar-tensor theory with screening mechanisms, which is
described by a bare potential VðϕÞ and a conformal
coupling function AðϕÞ in scalar-tensor theory. The motion
of the scalar field is governed by an effective potential
defined through VðϕÞ and AðϕÞ. In order that SMG can
generate a screening effect to suppress the fifth force in
high density environments, the effective potential must
have a minimum [40], which can be naturally understood as
a physical vacuum. Around this physical vacuum, the scalar
field acquires an effective mass, which increases as the
ambient density increases. Therefore, the scalar field can be
screened in high density regions (small scales), where the
range of the fifth force (scalar force) is so short that it
cannot be detected within current experimental accuracy
[33,34]. Whereas in low density regions (galactic and
cosmological scales), the long-range fifth force may affect
galactic dynamics [41,42], and the scalar potential can play
the role of dark energy to accelerate the expansion of the
Universe [32,36].
The salient feature of SMG is the screening mechanism,

which can suppress the fifth force and allow theories to
evade the solar system tests. In previous work [43], we have
investigated the screening mechanisms for the SMG with a
general potential VðϕÞ and coupling function AðϕÞ, and
calculated the parametrized post-Newtonian (PPN) param-
eters, the effective gravitational constant, and the effective
cosmological constant. Based on these, we derived the
constraints on the model parameters by combining the
observations on solar system and cosmological scales. As
an extension of this issue, in this paper we investigate how
the screening mechanisms in SMG affect the gravitational
radiation damping of compact binary systems. We calculate
in detail the rate of the energy loss due to the emission of
tensor and scalar gravitational radiations (including monop-
ole, dipole, quadrupole, and dipole-octupole radiations)
from compact binary systems in SMG. We pay particular
attention to dipole radiation, which is generally stronger
than GR’s quadrupole radiation, and might dominate the
orbital decay of the binary system.
In earlier work, Eardley [44] was the first to point out

the existence of dipole gravitational radiation from self-
gravitating bodies in the Brans-Dicke gravity, and Will
et al. [45] and Alsing et al. [46] placed the pulsar
constraints on the massless and massive Brans-Dicke
gravity, respectively. Damour and Esposito-Farèse [21]
derived the tensor and scalar gravitational radiation fluxes
in the massless multiscalar-tensor theories. However, these
theories do not have screening effects. Brax et al. [47]

investigated how the cosmological evolution of the scalar
field in SMG results in the emission of scalar radiation.
However, he did not consider that the objects spiraling into
each other results in the emission of gravitational radiation;
as a complement, in this paper we focus on this case.
In general, in any theory of gravity (including GR), GW

emission depends not only on the dissipative sector of the
theory that regulates how fast the binary system loses energy,
but also on the conservative sector of the theory that regulates
the orbital dynamics of the system. In alternative theories of
gravity, in general, both the conservative and dissipative
sectors aremodified relative toGR. In order to understand the
effects of the dissipative sector of the theory, we first need to
consider the modifications to the conservative sector.
In the conservative sector of SMG, we study the impact of

the screeningmechanism on the orbital dynamics of compact
binary systems, which can be effectively described by the
point-particle action with ϕ-dependent mass introduced by
Eardley [44]. In alternative theories (including SMG), the
orbital dynamics is generally modified by the additional
fields controlled by the sensitivities [44], which characterize
how the gravitational binding energy of the object responds
to itsmotion relative to the additional fields. In theweak-field
limit around the Minkowski background and the scalar
background [the vacuum expectation value (VEV) of the
scalar field], making use of the post-Newtonian (PN)
formalism, we solve the PN equations for the massless
tensor and massive scalar fields in the near zone. By
comparing this scalar field solution with our previous result
[43] obtained by the method of matching the internal and
external solutions, we find that the first sensitivity of the
object is completely equivalent to its screened parameter.We
utilize these PN solutions to derive the equations of motion
for compact binary systems by adopting the method of
Einstein, Infeld, and Hoffmann (EIH) [48]. It turns out that
the equations of motion at Newtonian order violate not only
the weak equivalence principle (WEP) but also the gravita-
tional inverse-square law. However, in the near zone the
inverse-square law approximately holds, which guarantees
the Kepler’s third law in this scale.
In the dissipative sector of SMG, we solve the wave

equations for the massless tensor and massive scalar fields
in the wave zone, and derive the energy fluxes carried by
the tensor and scalar modes by investigating the conserved
charges and currents in this theory. We find that the tensor
and scalar modes carry away energy from the source
starting at quadrupole and monopole orders, respectively.
These emerge as the consequences of the facts that the
tensor and scalar gravitons are respectively the massless
spin-2 and massive spin-0 particles [49]. In the tensor
sector of SMG, like in GR, the tensor gravitational charge is
the mass itself. Consequently, the conservations of mass
and momentum forbid monopole and dipole tensor radi-
ations, and the tensor quadrupole radiation in SMG behaves
similar to that in GR at leading PN order. In the scalar

1The screen mechanism can also be realized by the non-
linearities in the kinetic term pðϕ; XÞ of the scalar field [39],
which is not considered in the present article.
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sector of SMG, the scalar radiation (including monopole,
dipole, quadrupole, and dipole-octupole radiations)
depends strongly on the screened parameter, which acts
as the scalar gravitational charge in the theory. There is no
scalar monopole radiation contribution to leading order in
the quasicircular orbit case. The (scalar) dipole radiation is
present in SMG or in other alternative theories of gravity.
This is because the violation of the WEP in these theories
leads to the difference between the two centers of gravi-
tational and inertial masses of the system, which induces a
time-varying dipole moment that emits radiation as the
objects spiral into each other. The dipole-octupole cross
term appearing in the scalar radiation is the negative
modification to the energy flux at the same PN order as
the quadrupole radiation contribution. In alternative theo-
ries (including SMG), the dipole radiation generally
depends on the difference in sensitivities (screened param-
eters in SMG), since the conservation of momentum turns
the charge dipole moment into the form of the difference in
sensitivities. In SMG, the scalar radiation also depends on
the propagation speed of the massive scalar particle, which
satisfies the relativistic dispersion relation. This result
shows that in SMG the scalar GWs can be emitted (i.e.,
the scalar mode is excited) if and only if the frequency
(energy) of the scalar mode is greater than its mass.
In this paper, we pay particular attention to dipole

radiation, which is generally stronger than GR’s quadrupole
radiation and leads to a strong modification on the orbital
evolution of compact binary systems. However, in SMG,
we find that the scalar dipole radiation, as well as the other
modifications in the conservative and dissipative sectors, is
suppressed by the screening mechanisms, and thus the
deviations from GR become small for strongly gravitating
bodies (such as white dwarfs and neutron stars). Since in
SMG, the screened parameter (or sensitivity) of the object
is inversely proportional to its surface gravitational poten-
tial, which induces that the SMG is completely different
from other alternative theories without screening mecha-
nisms [50,51], and possibly passes the accurate tests in
binary systems [52,53]. Finally, we obtain the stringent
bounds on the screened parameter (and scalar field VEV)
by comparing our results for the orbital period decay rate to
the observations of quasicircular binary system PSR
J1738þ 0333 [53]. As an application of these results,
we focus on three specific models of SMG (chameleon,
symmetron, and dilaton), and derive the constraints on the
model parameters, respectively.
This paper is organized as follows. InSec. II,we display the

action for SMGand derive the field equations and their weak-
field limit. In Sec. III, we focus on the conservative sector of
SMG, solve the PN equations for the tensor and scalar fields,
and investigate the orbital dynamics of binary systems. In
Sec. IV, we focus on the dissipative sector of SMG, calculate
the rate of the energy loss due to the tensor and scalar
gravitational radiations, and derive their contributions to the

change of the orbital period. In Sec. V, we apply our results to
three specific models of SMG (chameleon, symmetron, and
dilaton), and derive the constrains on these models by the
current observations.We conclude in Sec. VIwith a summary
and discussion.
Throughout this paper, the metric convention is chosen

as ð−;þ;þ;þÞ, and greek indices (μ; ν; � � �) run over
0,1,2,3. We set the units to c ¼ ℏ ¼ 1, and therefore the
reduced Planck mass is MPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8πG

p
, where G is the

gravitational constant.

II. SCREENED MODIFIED GRAVITY

A. The action

SMG is a class of scalar-tensor theory with screening
mechanisms, which can suppress the fifth force in dense
regions and pass the 4 tests [43]. A general scalar-tensor
gravity with two arbitrary functions is given by the
following action in the Einstein frame [21,40]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∇ϕÞ2 − VðϕÞ

�

þ Sm½A2ðϕÞgμν;ψ ðiÞ
m �; ð1Þ

where g is the determinant of the Einstein frame metric gμν,

R is the Ricci scalar, and ψ ðiÞ
m are various matter fields

labeled by i. The bare potential VðϕÞ characterizes the
scalar self-interaction, which has three main effects in the
theory: First, it can play the role of dark energy to
accelerate the expansion of the Universe at late times.
Second, it endows the scalar field with mass. Finally, it may
introduce nonlinearities into the scalar dynamics. AðϕÞ is a
conformal coupling function characterizing the interaction
between the scalar and matter fields, which induces the fifth
force (scalar force) in the theory. In the Einstein frame, the
scalar field interacts directly with the matter field through
the conformal coupling function AðϕÞ. In the Jordan frame,
the matter field couples to the Jordan frame metric ~gμν
through a conformal rescaling of the Einstein frame metric
gμν as ~gμν ¼ A2ðϕÞgμν [54,55]. The coupling function AðϕÞ
is usually different for different matter fields ψ ðiÞ

m , but for
simplicity we assume that all matter fields couple in the
same way to the scalar field with a universal coupling
function AðϕÞ.
In general, the scalar field equation is Klein-Gordon

equation □gϕ ¼ ∂Veff=∂ϕ in Eq. (8). The scalar field is
governed by the effective potential VeffðϕÞ defined in (11),
which depends on the bare potential VðϕÞ and coupling
function AðϕÞ. The shape of the effective potential deter-
mines the behavior of the scalar field. For suitably chosen
functions VðϕÞ and AðϕÞ, the effective potential VeffðϕÞ
can have a minimum, i.e., the scalar field has a physical
vacuum [40,43],
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dVeff

dϕ

����
ϕmin

¼ 0; m2
eff ≡ d2Veff

dϕ2

����
ϕmin

> 0: ð2Þ

Around this minimum (physical vacuum), the scalar field
acquires an effective mass that increases as the ambient
density increases. Therefore, the scalar field can be
screened inside matter overdensities (high density), where
the fifth force range is so short that it cannot be detected
within current experimental accuracy. This kind of scalar-
tensor gravity with screening mechanism is often called
screened modified gravity [40,47,56], which can generate
the screening effect to suppress the fifth force in high
density environments and pass the solar system and
laboratory tests. There are many SMG models in the
market, including the chameleon, symmetron, and dilaton
models [40], in which the functions VðϕÞ and AðϕÞ are
chosen as the specific forms.

B. Point-particle action of compact objects
and field equations

GR satisfies exactly the strong equivalence principle
(SEP), which leads to a happy property called the “efface-
ment” principle [57]. This principle states that the internal
structure of strongly self-gravitating bodies is “effaced” and
their dynamics and radiation depend only on their masses
and spins (for simplicity we do not consider the spin effects
in this article). However, the effacement principle does not
hold in alternative theories of gravity like scalar-tensor
gravity. In scalar-tensor theory, the inertial mass and
internal structure of a strongly self-gravitating body depend
on the local scalar field (i.e., the local gravitational coupling
“constant”), which may act back on the motion of the body
and lead to violation of the SEP. In general, so long as the
compact objects are far enough from each other, their
motion can be effectively described through point particles
with the composition dependent effects encapsulated in
nonstandard couplings in the particle action. Eardley [44]
first showed that these effects could be accounted for by
supposing the mass of the body as a function of the scalar
field, such that the matter action for a system of pointlike
masses can be written as

Sm ¼ −
X
a

Z
maðϕÞdτa; ð3Þ

where maðϕÞ is the ϕ-dependent mass of the ath point
particle, and τa is its proper time measured along its
worldline xλa. From this action we can clearly observe that
the WEP is violated, since the scalar field depends on
position, the mass becomes position dependent, and the
variation of Sm does not yield the geodesic equation. Using
the definition of Tμν ≡ ð2= ffiffiffiffiffiffi−gp ÞδSm=δgμν, the energy-
momentum tensor of matter Tμν and its trace T hence take
the form

Tμνðx;ϕÞ ¼ ð−gÞ−1=2
X
a

maðϕÞ
uμauνa
u0a

δ3ðr − raðtÞÞ; ð4Þ

Tðx;ϕÞ ¼ −ð−gÞ−1=2
X
a

maðϕÞ
u0a

δ3ðr − raðtÞÞ; ð5Þ

where uμa is the four-velocity of the ath point particle, and
δ3 is the three-dimensional Dirac delta function.
The full action for a system of compact objects is now

given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∇ϕÞ2 − VðϕÞ

�

−
X
a

Z
maðϕÞdτa: ð6Þ

The variation of the action (6) with respect to the tensor
field and the scalar field yields the tensor field equation of
motion (EOM)

Gμν ¼ 8πG½Tμνðx;ϕÞ þ TϕμνðϕÞ�; ð7Þ

and the scalar field EOM

□gϕ ¼ ∂VeffðϕÞ
∂ϕ ; ð8Þ

where □g ≡ ð−gÞ−1=2∂νðð−gÞ1=2gμν∂μÞ is the curved
space d’Alembertian. Note that G is the bare gravitati-
onal constant, and it is related to the Newtonian gravita-
tional constant measured with Cavendish-type experiments
through Eq. (37). Here,Gμν is the Einstein tensor, Tμνðx;ϕÞ
is the matter energy-momentum tensor given in Eq. (4),

TϕμνðϕÞ ¼ ∂μϕ∂νϕ − gμν

�
1

2
ð∂ϕÞ2 þ VðϕÞ

�
ð9Þ

is the scalar energy-momentum tensor, and

VeffðϕÞ≡ VðϕÞ − Tðx;ϕÞ ð10Þ

is the effective potential. Note that, for a negligibly self-
gravitating body, the effective potential reduces to

VeffðϕÞ ¼ VðϕÞ þ ρAðϕÞ; ð11Þ

where ρ is the matter density of the local environment of the
scalar field.

C. Field equations in the weak-field limit

We are interested in the energy and momentum carried
by the (scalar and tensor) GWs at large distances from the
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source (e.g., at the position of the detector). So, the tensor
field gμν and the scalar field ϕ can be expanded around the
two backgrounds as follows:

gμν ¼ ημν þ hμν; ϕ ¼ ϕVEV þ φ; ð12Þ

where ημν is the flat Minkowski background, and ϕVEV is
the scalar field VEV (scalar background) that depends on
the background matter density. Note that in this paper we
do not consider the effect of the cosmological evolution of
the scalar field VEV ϕVEV,

2 i.e., ϕVEV is regarded as a
constant in our case.
The bare potential VðϕÞ and the coupling function AðϕÞ

can be expanded in Taylor’s series around the scalar
background as follows,

VðϕÞ ¼ VVEV þ V1φþ V2φ
2 þ V3φ

3 þOðφ4Þ;
AðϕÞ ¼ AVEV þ A1φþ A2φ

2 þ A3φ
3 þOðφ4Þ; ð13Þ

where AVEV ≡ AðϕVEVÞ is the coupling function VEV, and
VVEV ≡ VðϕVEVÞ is the bare potential VEV that can act as
the effective cosmological constant to accelerate the
expansion of the late Universe [43]. The inertial mass
maðϕÞ for a strongly self-gravitating body can be expanded
in Taylor’s series around the scalar background,

maðϕÞ ¼ ma

�
1þ sa

�
φ

ϕVEV

�
þ 1

2
s0a

�
φ

ϕVEV

�
2

þO

�
φ

ϕVEV

�
3
�
; ð14Þ

where ma ≡maðϕVEVÞ is the inertial mass at the scalar
background, and the “first and second sensitivities” sa and
s0a are defined by [46]

sa ≡ ∂ðlnmaÞ
∂ðlnϕÞ

����
ϕVEV

; ð15aÞ

s0a ≡ s2a − sa þ
∂2ðlnmaÞ
∂ðlnϕÞ2

����
ϕVEV

: ð15bÞ

In the weak-field limit, we define small perturbation h̄μν ¼
hμν − 1

2
ημνhλλ, and impose the Lorentz gauge condition

∂μh̄μν ¼ 0; then the tensor field equation (7) reduces to

□h̄μν ¼ −16πGτμν; ð16Þ

where □≡ ημν∂μ∂ν is the flat-space d’Alembertian, and
τμν ¼ Tμν þ t̄μν is the total energy-momentum tensor and
satisfies the conservation law ∂ντ

μν ¼ 0 because of the

Bianchi identity. t̄μν is the common energy-momentum
tensor of the scalar and tensor fields, and can be derived by
collecting the quadratic and higher-order terms of the
perturbations hμν and φ and neglecting the terms involving
Vn that correspond to the effects of dark energy. The dark
energy effects on GWs from isolated systems were studied
by Ashtekar and collaborators [58]. If considering only the
quadratic terms, t̄μν can be decomposed as t̄μν ¼ Tφμν þ tμν
(i.e., hμν and φ are decoupled). The quantity

Tφμν ¼ ∂μφ∂νφ −
1

2
ð∂φÞ2ημν ð17Þ

is the energy-momentum tensor of the scalar field (or scalar
GWs) in the weak-field limit. The quantity tμν is the stress-
energy tensor of the gravitational field up to quadratic order
in hμν, defined as in GR [49]. Performing the transverse-
traceless (TT) gauge on tμν, we derive the energy-
momentum tensor of the tensor GWs,

tTTμν ¼ 1

32πG
∂μhTTij ∂νh

ij
TT; ð18Þ

where hTTij is the TT part of hij. This result can also be
obtained from the Pauli-Fierz action [49] by using the
Noether’s theorem.
In the weak-field limit, using the Lorentz gauge con-

dition ∂μh̄μν ¼ 0, the scalar field equation (8) reduces to

ð□ −m2
sÞφ ¼ −16πGS; ð19Þ

with the distributional source term

S ¼ −
1

16πG

�
−
∂T
∂φþ hμν∂μ∂νφþ 3V3φ

2

�
þOðh3; h2φ; hφ2;φ3Þ; ð20Þ

where ms is the effective mass of the scalar field in a
homogeneous background, defined by (2)

m2
s ≡ d2Veff

dϕ2

����
ϕVEV

¼ 2ðV2 þ ρbA2Þ; ð21Þ

which is a positive and monotonically increasing fun-
ction of the background matter density ρb. By considering
a plane wave φ ∼ eik

λxλ and substituting this into
ð□ −m2

sÞφ ¼ 0, we obtain the relativistic dispersion rela-
tion for the scalar mode,

ω2 ¼ k2 þm2
s ; ð22Þ

where kλ ¼ ðω;kÞ, and ω and k are the frequency and
wave vector of the scalar GWs. From this we can further
obtain

2This effect on scalar radiation from compact binary systems
was studied by Brax and collaborators [47].
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vsgðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

s=ω2

q
;

vspðωÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −m2
s=ω2

p ; ð23Þ

which are respectively the group and phase speeds of the
massive scalar mode, and satisfy the relation vsgvsp ¼ 1.
This result implies that the scalar mode in SMG can be
excited only if the frequency (energy) of the scalar mode is
greater than its mass.

III. POST-NEWTONIAN SOLUTION
AND EIH EQUATIONS OF MOTION

In general, in any theory of gravity (including GR), GW
emission depends not only on the dissipative sector of the
theory but also on the conservative sector of the theory, and
both sectors in alternative theories of gravity are modified
relative to GR. In order to understand the dissipative
effects, we should first consider the conservative sector
of the theory, and investigate the conservative orbital
dynamics for compact binary systems in this section.

A. PN scalar solution and sensitivity

Now, let us derive the static solution of the scalar field
equation (19) within the PN approximation [3,4]. Using the
relations (5) and (14), in the near zone the source term S
(20) turns into the PN expression,

S ¼ −
1

16πG

�
ϕ−1
VEV

X
a

samaδ
3ðr− raðtÞÞ

�
1−

1

2
v2a

−
1

2
hkk
ð2Þ

þ s0a
sa

ϕ−1
VEVφ

ð2Þ
�
þ hij

ð2Þ∂i∂jφ
ð2Þ þ 3V3φ

2
ð2Þ	

þOðv6Þ:

ð24Þ

This expression (24) up to leading PN order (i.e.,
Newtonian order), from Eq. (19) we obtain the field
equation in the near zone,

ð∇2 −m2
sÞφ

ð2Þ ¼ ϕ−1
VEV

X
a

samaδ
3ðr − raðtÞÞ; ð25Þ

and the solution is

φ
ð2Þ ¼ −2

M2
Pl

ϕVEV

X
a

Gmasa
ra

e−msra ; ð26Þ

where ra ¼ jr − raðtÞj. Note that this solution is based on
the definition ofmaðϕÞ in Eq. (3) and the related sensitivity
of sa in Eq. (14).
In addition, based on the action in Eq. (1), the scalar

solution was also derived by using the method of matching
the internal and external solutions in Ref. [43], which is

briefly reviewed in Appendix A. In this approach, we
obtain the solution of scalar field as follows,

φ ¼
X
a

φa ¼ −MPl

X
a

Gmaϵa
ra

e−msra þOðv4Þ; ð27Þ

with the ath object’s screened parameter (or scalar charge)

ϵa ≡ ϕVEV − ϕa

MPlΦa
; ð28Þ

where Φa ¼ Gma=Ra is the surface gravitational potential
of the ath object, and ϕa is the position of the minimum of
Veff inside the ath object.
Comparing the above two solutions (26) with (27), we

obtain the useful relation between sensitivity and screened
parameter,

sa ¼
ϕVEV

2MPl
ϵa: ð29Þ

That is to say, the sensitivity sa is equivalent to the screened
parameter (or scalar charge) ϵa in SMG theories. From
Eqs. (28) and (29) we can observe that the sensitivity of the
object is inversely proportional to its surface gravitational
potential. Therefore, in SMG theories, for the compact
objects (such as white dwarfs and neutron stars), the
sensitivity effect is very weak (the screening mechanism
is very strong), and thus the deviations from GR become
small and weak. This is completely different from most
alternative theories of gravity without screening mecha-
nisms, which generally predict the large non-GR effects for
compact objects, since in these theories, the sensitivities of
the object usually increase as its surface gravitational
potential increases [45].

B. PN metric solution

We solve the tensor field equations (7) within the PN
approximation [3,4] in the near zone, where we can neglect
the bare potential VðϕÞ corresponding to the dark energy.
The detailed derivations are given in Appendix B, and the
results are listed below,

g00 ¼ −1þ 2
X
a

Gma

ra
− 2

�X
a

Gma

ra

�
2

þ 3
X
a

Gmav2a
ra

− 2
X
a

X
b≠a

G2mamb

rarab

�
1þ 1

2
ϵaϵbe−msrab

�
þOðv6Þ;

ð30aÞ

g0j¼−
7

2

X
a

Gmav
j
a

ra
−
1

2

X
a

Gma

r3a
ðra ·vaÞðrj−rjaÞþOðv5Þ;

ð30bÞ
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gij ¼ δij

�
1þ 2

X
a

Gma

ra

�
þOðv4Þ; ð30cÞ

where ma is the inertial mass of the ath object, ϵa is
its screened parameter, va is its velocity, ms is the effe-
ctive mass of the scalar, ra ¼ jr − raðtÞj, and rab ¼
jraðtÞ − rbðtÞj. Obviously, the above results can reduce
to the GR case in the limit where every object’s screened
parameter ϵa → 0.
Substituting these PN solutions (27) and (30) into the

source term S (24), and using Eq. (25), we obtain the PN
expression of the source term S in the near zone,

S ¼ −
MPl

4

X
a

ϵamaδ
3ðr − raðtÞÞ

�
1 −

1

2
v2a −

X
b≠a

Gmb

rb

−
s0a
sa

MPl

ϕVEV
×
X
b≠a

Gmbϵb
rb

e−msrb þOðv4Þ
�
; ð31Þ

where we have neglected the terms involving Vn that
correspond to the effects of dark energy, since these effects
are very weak in the near zone.

C. Violation of the WEP and EIH equations of motion

The WEP is defined as the universality of free fall for
bodies. We know that the WEP is satisfied in GR where the
sensitivities are absent. However, the WEP generally does
not hold in alternative theories of gravity where the
sensitivities are not 0 in general. This is because the
sensitivities characterize how the properties (e.g., mass)
of a compact object change with its motion relative to the
additional field of the theory. Therefore, different bodies
respond differently to motion relative to the ambient field,
and thus move along different trajectories. Thus, the WEP
is violated in the theories [59]. In other words, the violation
of the WEP is due to the additional field force (fifth force),
which depends on the properties (besides mass, e.g., self-
gravitational binding energy) of the object.
In SMG, the first sensitivity is equivalent to the screened

parameter, which affects both the conservative and dissipative
sectors of theory. For the former one, the screened parameter
modifies the conservative orbital dynamics of compact
systems, which can be derived from the matter action (3)
by using the method of EIH [48]. Using the expansion of
maðϕÞ in (14) and the PN expressions of the scalar and tensor
fields in (27) and (30), from thematter action (3)we obtain the
EIH Lagrangian up to Newtonian order,

LEIH¼−
X
a

maðϕÞ
dτa
dt

¼−
X
a

ma

�
1−

1

2
v2a

�
þ1

2

X
a

X
b≠a

Gabmamb

rab
þOðv4Þ;

ð32Þ

with the effective gravitational constant

Gab ≡G

�
1þ 1

2
ϵaϵbe−msrab

�
: ð33Þ

Note that this result is manifestly symmetric under inter-
change of all pairs of particles.
Substituting the EIH Lagrangian into the Euler-Lagrange

equation yields the n-body equations of motion up to
Newtonian order,

aa ¼ −
X
b≠a

Gabmb

r2ab
r̂ab; ð34Þ

with

Gab ≡ G

�
1þ 1

2
ϵaϵbð1þmsrabÞe−msrab

�
; ð35Þ

where aa ≡ d2ra=dt2 is the acceleration of the ath object,
r̂ab is the unit direction vector from the bth object to the ath
object, and rab ¼ jraðtÞ − rbðtÞj. Note that the Yukawa-like
terms involving the screened parameters violate the WEP
and the gravitational inverse-square law. In the near zone,
the separation rab is always much less than the Compton
wavelengthm−1

s (which roughly is cosmological scale), i.e.,
msrab ≪ 1 is satisfied. Using this relation, both the
expressions (33) and (35) reduce to

Gab ¼ Gab ¼ G
�
1þ 1

2
ϵaϵb

�
: ð36Þ

Note that this result satisfies the inverse-square law but still
violates the WEP, since the screened parameters (or scalar
charges) of different bodies are different.
Now let us consider a binary system of compact objects.

The most well-known dissipative effect is the orbital period
decay due to the emission of gravitational radiation. In fact,
it was the monitoring of the orbital period that led to the
first indirect detection of GWs by Hulse and Taylor [11].
Because the orbital motion satisfies the inverse-square law
in Eqs. (34) and (36), the orbital period decay rate _P can be
written as

_P
P
¼ −

3

2

_E
E
; ð37Þ

where the orbital period P satisfies the Kepler’s third law

ð2π=PÞ2a3 ¼ Gm; ð38Þ

and

E ¼ −
Gmμ

2a
ð39Þ

is the orbital binding energy of the system. Here,
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G≡ G12 ¼ G

�
1þ 1

2
ϵ1ϵ2

�
ð40Þ

is the effective gravitational coupling constant between two
compact objects (labeled by 1 and 2), a is the semimajor axis,
and m≡m1 þm2, μ≡m1m2=m are the total and reduced
masses of the system. Note that the inverse-square law
guarantees that these relations (37)–(39) hold inSMGtheories.
From the relation in Eq. (37), we find that the orbital decay of
the binary system is directly determined by the energy loss of
the system, which is addressed in the next section.

IV. GRAVITATIONAL RADIATION FROM
COMPACT BINARIES

In GR, we know that the leading order energy flux is
quadrupole radiation flux. However, besides quadrupole
radiation, a general scalar-tensor theory also predicts
monopole and dipole radiations [44,60]. In this section,
we focus on the dissipative effects of SMG, calculate the
rate of the energy loss due to the emission of tensor and
scalar gravitational radiations (including monopole, dipole,
quadrupole, and dipole-octupole radiations), and derive
their contributions to the change in the orbital period.

A. Tensor and scalar energy fluxes

The energy flux of GWs is defined as the energy of GW
flow per unit time at a large distance from the source. Since
the total energy of the system is a conserved quantity, the
rate of change of the orbital binding energy _E is equal to
minus the total energy flux F carried away from the
compact binary system by GWs, i.e.,

_E ¼ −F : ð41Þ
In GR, the energy flux is only due to the propagation of

the tensor mode, but in a general scalar-tensor theory,
gravitational radiation comes from both scalar and tensor
modes. In addition, in gravity theories with vector fields
like TeVeS theory [61,62] and Einstein-æther theory
[63,64], vector modes also exist. The energy flux carried
by all propagating degrees of freedom can be derived
directly from the Lagrangian of the theory by investigating
the Noether charges and currents in the theory. Here, we
derive the formulas to calculate the tensor and scalar energy
fluxes in the general SMG.
In the wave zone (far zone), because of the absence of

matter energy-momentum tensor Tμν, we have the con-
servation law ∂νðtμνTT þ Tμν

φ Þ ¼ 0. Since hμν and φ are
decoupled, the energy-momentum tensors (i.e., Noether
currents) of the tensor and scalar GWs are respectively
conserved, i.e., ∂νt

μν
TT ¼ 0 and ∂νT

μν
φ ¼ 0. Thus, we can

investigate them separately.
According to the conservation law ∂νt

μν
TT ¼ 0, from the

energy-momentum tensor of the tensor GWs (18), we
obtain the tensor energy flux

F g ¼ r2
Z

dΩht0rTTi

¼ −
r2

32πG

Z
dΩh∂0hTTij ∂rhTTij i; ð42Þ

where the angular brackets represent a time average over a
period of the system’s motion, hTTij is the TT part of hij, and
Ω is the solid angle. The massless tensor mode propagates
with the speed of light, and hTTij ðt; rÞ takes the form
ð1=rÞfijðt − rÞ, so we have ∂rhTTij ¼ −∂0hTTij þOð1=r2Þ
at large distances. Using this, the tensor energy flux (42)
can be further simplified to

F g ¼
r2

32πG

Z
dΩh∂0hTTij ∂0hTTij i: ð43Þ

This expression is exactly the same as that in GR.
The scalar energy flux can be derived from the energy-

momentum tensor of the scalar GWs (17) by using the
conservation law ∂νT

μν
φ ¼ 0,

Fϕ ¼ r2
Z

dΩhT0r
φ i

¼ −r2
Z

dΩh∂0φ∂rφi: ð44Þ

Unlike Eq. (42), this expression (44) cannot be further
simplified, since the speed of propagation of the massive
scalar mode changes with its frequency [see Eq. (23)].

B. Tensor radiation

By using a retarded Green’s function, performing the
time integral, we obtain the formal solution of the linear-
ized tensor wave equation (16),

h̄μνðt; rÞ ¼ 4G
Z
N
d3r0

τμνðt − jr − r0j; r0Þ
jr − r0j : ð45Þ

Here, the spatial (source point r0) integration region N is
over the near zone; the field point r is in the wave zone (far
zone), such that jr0j ≪ jrj. Considering this condition and
making the slow-motion approximation, we can expand the
integrand in powers of (n · r0) as follows,

h̄μνðt;rÞ¼4G
r

X∞
l¼0

1

l!
∂l

∂tl
Z
N
τμνðt−r;r0Þðn ·r0Þld3r0; ð46Þ

where n ¼ r=r is the unit vector in the r direction. Because
of the conservation law ∂ντ

μν ¼ 0, the spatial components
h̄ij up to leading order (l ¼ 0) can be rewritten as

h̄ijðt; rÞ ¼ 4G
r

Z
τijðt − r; r0Þd3r0

¼ 2G
r

∂2

∂t2
Z

τ00ðt − r; r0Þr0ir0jd3r0; ð47Þ
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which only involves the quadrupole moment of τ00; like in
GR, there is neither monopole nor dipole radiation in tensor
gravitational radiation. This emerges as a consequence of
the fact that the tensor graviton is a massless spin-2 particle
[49]. The quantity τ00 is the total energy density of both
matter and (scalar and tensor) fields. Note that at the
leading PN order, the field energy density is negligible, so
from Eq. (4) we obtain the expression of τ00 as follows:

τ00ðt; rÞ ¼
X
a

maδ
3ðr − raðtÞÞ: ð48Þ

Substituting this into Eq. (47) yields

h̄ijðt; rÞ ¼ 2G
r

d2

dt2
Mijjret; ð49Þ

with the mass quadrupole moment

MijðtÞ ¼
X
a

mariaðtÞrjaðtÞ; ð50Þ

where the subscript ret means that the quantity Mij is
evaluated at the retarded time t − r. The TT part of hij is
hijTT ¼ Λij;klhkl ¼ Λij;klh̄kl, where the projector Λij;kl is the
Lambda tensor as defined in [49]. Using Eqs. (49) and (50),
from Eq. (43) we obtain the tensor quadrupole flux

FQ
g ¼ G

5

D
M
:::klM

:::kl −
1

3
ðM:::kkÞ2

E
; ð51Þ

where we have performed the integral over the solid angle.
The overdots denote derivatives with respect to coordinate
time, and the angular brackets represent a time average over
an orbital period. At leading PN order, the tensor quadru-
pole flux (51) in SMG behaves as in GR.
Now let us consider a compact binary (labeled by 1 and

2) with quasicircular orbit, which is parametrized in the
center of mass frame by

x1ðtÞ¼−R1cosðωtÞ; y1ðtÞ¼−R1 sinðωtÞ; z1¼0;

x2ðtÞ¼R2cosðωtÞ; y2ðtÞ¼R2 sinðωtÞ; z2¼0; ð52Þ

where ω is the orbital frequency, and R1 and R2 are the
orbital radiuses of the two components of the binary
system. Substituting these into Eq. (50), using the
Kepler’s third law (38), from Eq. (51) we obtain

FQ
g ¼ 32Gμ2ðGmÞ3

5R5
; ð53Þ

where R ¼ R1 þ R2 is the separation between the two
components of the system, and G ¼ Gð1þ 1

2
ϵ1ϵ2Þ is the

effective gravitational coupling constant between the two
components.

C. Scalar radiation

Now, let us turn to the dissipative effects of the scalar
sector of SMG, and show that there are monopole, dipole,
and dipole-octupole radiations in the scalar sector, besides
quadrupole radiation.
The massive scalar wave equation (19) can be solved by

using Green’s function method,

ð□ −m2
sÞGðx; x0Þ ¼ −4πδ4ðx − x0Þ; ð54Þ

and the formal solution of Eq. (19) is

φðxÞ ¼ 4G
Z

d4x0Sðx0ÞGðx; x0Þ: ð55Þ

The Green’s function in Eq. (54) is given by [65,66]

Gðx; x0Þ ¼ δðt − t0 − jr − r0jÞ
jr − r0j − Θðt − t0 − jr − r0jÞ

×
msJ1ðms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − t0Þ2 − jr − r0j2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt − t0Þ2 − jr − r0j2
p ; ð56Þ

where δ is the Dirac delta function, Θ is the Heaviside
function, and J1 is the Bessel function of the first kind.
Substituting this into (55) and performing the time t0
integral, we obtain the formal solution

φðt; rÞ ¼ 4G
Z

∞

0

dzJ1ðzÞ
Z
N
d3r0

�
Sðt − jr − r0j; r0Þ

jr − r0j

−
Sðt −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr − r0j2 þ ðz=msÞ2

p
; r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jr − r0j2 þ ðz=msÞ2
p 	

; ð57Þ

where we have used the identity
R
∞
0 J1ðzÞdz ¼ 1 and made

the substitution z ¼ ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − t0Þ2 − jr − r0j2

p
. Here, the

spatial (source point r0) integration region N is over the
near zone, the field point r is in the wave zone (far zone),
such that jr0j ≪ jrj, and considering the slow-motion
approximation, the integrand in Eq. (57) can be expanded
in Taylor’s series of ðn · r0Þ,

φðt; rÞ ¼ 4G
r

Z
∞

0

dzJ1ðzÞ
X∞
l¼0

1

l!
∂l

∂tl
Z
N
d3r0ðn · r0Þl

×

�
Sðt − r; r0Þ − Sðt − ruðr; zÞ; r0Þ

ulþ1ðr; zÞ
	
; ð58Þ

with

uðr; zÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z

msr

�
2

s
; ð59Þ

where n ¼ r=r is the unit vector in the r direction.
Substituting the source term S (31) into this formal

solution (58) and performing the spatial r0 integral, we have
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φðt; rÞ ¼ −MPl
G
r

Z
∞

0

dzJ1ðzÞ
X∞
l¼0

1

l!
nL∂l

t ML
l ; ð60Þ

with the scalar multipole moments

ML
l ≡Mi1i2���il

l ðt; r; zÞ
¼
X
a

ϵa½Maðt − rÞ · rLa ðt − rÞ − u−ðlþ1Þðr; zÞ

×Maðt − ruðr; zÞÞ · rLa ðt − ruðr; zÞÞ�; ð61Þ

and the mass

MaðtÞ≡ma

�
1 −

1

2
v2aðtÞ −

X
b≠a

Gmb

rabðtÞ

−
s0a
sa

MPl

ϕVEV

X
b≠a

Gmbϵb
rabðtÞ

e−msrabðtÞ
�
; ð62Þ

where the quantities nL and rLa ðtÞ are defined by

nL≡ni1ni2 �� �nil ; rLa ðtÞ≡ri1a ðtÞri2a ðtÞ���rila ðtÞ: ð63Þ

Taking the spatial gradient of the scalar field (60) and
neglecting the higher order terms Oð1=r2Þ, we obtain

∂rφðt; rÞ ¼ MPl
G
r

Z
∞

0

dzJ1ðzÞ
X∞
l¼0

1

l!
nL∂lþ1

t ML
lþ1; ð64Þ

where we again define new scalar multipole moments

ML
lþ1 ≡Mi1i2���il

lþ1 ðt; r; zÞ
¼
X
a

ϵa½Maðt − rÞ · rLa ðt − rÞ − u−ðlþ2Þðr; zÞ

×Maðt − ruðr; zÞÞ · rLa ðt − ruðr; zÞÞ�: ð65Þ

From Eqs. (61) and (65) we find that all scalar multipole
moments are suppressed by the screened parameters of the
objects, since the scalar gravitational charge is the screened
parameter.
Substituting Eqs. (60) and (64) into Eq. (44) and

performing the integral over the solid angle, we obtain
the scalar energy flux

Fϕ ¼ G
2

ZZ
dz1dz2J1ðz1ÞJ1ðz2Þ

D
_M0

_M1

þ 1

6
ð2M̈k

1M̈
k
2 þ _M0M

::: kk
3 þ _M1M

::: kk
2 Þ

þ 1

60
ð2M

::: kl
2 M

::: kl
3 þM

::: kk
2 M

::: ll
3 Þ

þ 1

30
ðM̈k

1M
::::kll

4 þ M̈k
2M

:::: kll
3 Þ
E
; ð66Þ

where the angular brackets represent a time average over a
period of the system’s motion, the overdots denote deriv-
atives with respect to coordinate time, and we have used the
identity [49]

Z
dΩ
4π

ni1ni2 � � � nik ¼
�
0 for k ¼ odd
δi1i2δi3i4 ���δik−1ikþ���

ðkþ1Þ!! for k ¼ even
;

ð67Þ
where the final dots denote all possible pairing of indices.
Now let us specialize our calculations to a compact

binary with quasicircular orbit parametrized in the center of
mass frame by Eq. (52). Substituting Eq. (52) into the scalar
multipole moments (61) and (65), we obtain the time
derivatives of monopole, dipole, quadrupole, and octupole
moments as follows:

1. Monopole:

_M0 ¼ _M1 ¼ 0: ð68Þ

2. Dipole:

M̈k
1 ¼ −

�
Ed −

Gμ
2R

Ēd

�
μω2R

× ½cosðωðt − rÞÞ − u−2 cosðωðt − ruÞÞ;
sinðωðt − rÞÞ − u−2 sinðωðt − ruÞÞ; 0�;

ð69aÞ

M̈k
2 ¼ −

�
Ed −

Gμ
2R

Ēd

�
μω2R

× ½cosðωðt − rÞÞ − u−3 cosðωðt − ruÞÞ;
sinðωðt − rÞÞ − u−3 sinðωðt − ruÞÞ; 0�: ð69bÞ

3. Quadrupole:

M
::: kl

2 ¼

0
B@

M
::: 11

2 M
::: 12

2 0

M
:::

12
2 −M

:::
11
2 0

0 0 0

1
CA;

M
::: kl

3 ¼

0
B@

M
::: 11

3 M
::: 12

3 0

M
::: 12

3 −M
::: 11

3 0

0 0 0

1
CA; ð70Þ

with the components

M
::: 11

2 ¼4Eqμω
3R2½sinð2ωðt−rÞÞ−u−3 sinð2ωðt−ruÞÞ�;

ð71aÞ

M
::: 12

2 ¼−4Eqμω
3R2½cosð2ωðt−rÞÞ−u−3cosð2ωðt−ruÞÞ�;

ð71bÞ
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M
::: 11

3 ¼4Eqμω
3R2½sinð2ωðt−rÞÞ−u−4 sinð2ωðt−ruÞÞ�;

ð71cÞ

M
:::

12
3 ¼−4Eqμω

3R2½cosð2ωðt−rÞÞ−u−4cosð2ωðt−ruÞÞ�:
ð71dÞ

4. Octupole:

M
::::1kk

3 ¼Eoμω
4R3½cosðωðt−rÞÞ−u−4cosðωðt−ruÞÞ�;

ð72aÞ

M
::::2kk

3 ¼Eoμω
4R3½sinðωðt−rÞÞ−u−4 sinðωðt−ruÞÞ�;

ð72bÞ

M
::::1kk

4 ¼Eoμω
4R3½cosðωðt−rÞÞ−u−5cosðωðt−ruÞÞ�;

ð72cÞ

M
::::2kk

4 ¼Eoμω
4R3½sinðωðt−rÞÞ−u−5 sinðωðt−ruÞÞ�;

ð72dÞ

where the dummy indices just indicate summation. Here, ω
is the orbital frequency, μ is the reduced mass of the system,
R is the separation between the two components of the
system, u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=ðmsrÞ2

p
, and we have defined

Ed ≡ ϵ2 − ϵ1; ð73aÞ

Ēd ≡ 2ðϵ2 − ϵ1Þ þ 3

�
ϵ2m1

m2

−
ϵ1m2

m1

�
; ð73bÞ

Eq ≡ ϵ2m1 þ ϵ1m2

m1 þm2

; ð73cÞ

Eo ≡ ϵ2m2
1 − ϵ1m2

2

ðm1 þm2Þ2
; ð73dÞ

where the subscripts d, q, and o denote dipole, quadrupole,
and octupole, respectively. Note that from Eq. (68) we can
observe that there is no monopole radiation contribution to
leading order in the quasicircular orbit case.
Using the above results, the scalar energy flux (66) can

be further simplified to

Fϕ ¼ FD
ϕ þ FQ

ϕ þ FDO
ϕ ; ð74Þ

with the scalar dipole flux

FD
ϕ ¼G

6

ZZ
dz1dz2J1ðz1ÞJ1ðz2ÞM̈k

1ðz1ÞM̈k
2ðz2Þ

¼GðGmμÞ2
6R4

�
E2
d−

Gμ
R

EdĒd

�
f1−cosðωrÞhcosðωruÞi2−sinðωrÞhsinðωruÞi2−ðcosðωrÞ−hcosðωruÞi2ÞhcosðωruÞi3

−ðsinðωrÞ−hsinðωruÞi2ÞhsinðωruÞi3g; ð75aÞ

the scalar quadrupole flux

FQ
ϕ ¼ G

60

ZZ
dz1dz2J1ðz1ÞJ1ðz2ÞM

::: kl
2 ðz1ÞM

::: kl
3 ðz2Þ

¼ 8Gμ2ðGmÞ3
15R5

E2
qf1 − cosð2ωrÞhcosð2ωruÞi3 − sinð2ωrÞhsinð2ωruÞi3

− ðcosð2ωrÞ − hcosð2ωruÞi3Þhcosð2ωruÞi4 − ðsinð2ωrÞ − hsinð2ωruÞi3Þhsinð2ωruÞi4g; ð75bÞ

and the scalar dipole-octupole flux

FDO
ϕ ¼ G

60

ZZ
dz1dz2J1ðz1ÞJ1ðz2Þ½M̈k

1ðz1ÞM
:::: kll

4 ðz2Þ þ M̈k
2ðz1ÞM

:::: kll
3 ðz2Þ�

¼ −
Gμ2ðGmÞ3

60R5
EdEof2 − cosðωrÞðhcosðωruÞi2 þ hcosðωruÞi3 þ hcosðωruÞi4 þ hcosðωruÞi5Þ

− sinðωrÞðhsinðωruÞi2 þ hsinðωruÞi3 þ hsinðωruÞi4 þ hsinðωruÞi5Þ þ hcosðωruÞi2hcosðωruÞi5
þ hcosðωruÞi3hcosðωruÞi4 þ hsinðωruÞi2hsinðωruÞi5 þ hsinðωruÞi3hsinðωruÞi4g; ð75cÞ
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where we have used the Kepler’s third law (38), and the
angular brackets with subscript n represent the integrals as
follows:

hcosðωruÞin≡
Z

∞

0

cos

 
ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
�

z
msr

�
2

s !
J1ðzÞdz

ð1þð z
msr

Þ2Þn2 ;

ð76aÞ

hsinðωruÞin ≡
Z

∞

0

sin

 
ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z

msr

�
2

s !
J1ðzÞdz

ð1þ ð z
msr

Þ2Þn2 :

ð76bÞ

In order to obtain the total power of scalar radiation we
must perform these integrals in the limit r → ∞. The
detailed calculations for these integrals were discussed in
Ref. [46]. We briefly summarize these calculations in
Appendix C, and the results are listed as follows:

lim
r→∞

hcosðωruÞin

¼
�cosðωrÞ−vn−1sg ðωÞcosðωrvsgðωÞÞ forω>ms

cosðωrÞ− ð−1Þn−1þ1

2
vn−1sg ðωÞe−iωrvsg ðωÞ forω<ms

;

ð77aÞ

lim
r→∞

hsinðωruÞin

¼
�sinðωrÞ−vn−1sg ðωÞsinðωrvsgðωÞÞ forω>ms

sinðωrÞ− ð−1Þn−1−1
2

vn−1sg ðωÞe−iωrvsg ðωÞ forω<ms

;

ð77bÞ

where vsgðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

s=ω2
p

is the propagation (group)
speed of the massive scalar mode [see Eq. (23)].
Performing these integrals in Eqs. (75), we obtain the

scalar dipole flux

FD
ϕ ¼GðGmμÞ2

6R4

�
E2
d−

Gμ
R

EdĒd

�
v3sgðωÞΘðω−msÞ; ð78aÞ

the scalar quadrupole flux

FQ
ϕ ¼ 8Gμ2ðGmÞ3

15R5
E2
qv5sgð2ωÞΘð2ω −msÞ; ð78bÞ

and the scalar dipole-octupole flux

FDO
ϕ ¼ −

Gμ2ðGmÞ3
30R5

EdEov5sgðωÞΘðω −msÞ; ð78cÞ

where Θ is the Heaviside function. Since the screened
parameter of the object usually decreases as its mass (or
surface gravitational potential) increases, the second term

in Eq. (78a) and the dipole-octupole cross term in Eq. (78c)
are the negative modifications to the energy flux at the same
PN order as the quadrupole radiation contribution. By
comparing Eq. (78a) to Eqs. (78b) and (78c), we then find
that the frequency of the quadrupole scalar wave is twice
the frequency of the dipole (or dipole-octupole) scalar
wave, which is equal to the orbital frequency in the
quasicircular orbit case. By summing the tensor and scalar
energy fluxes (53) and (78), we obtain the total energy
fluxes

F ¼ FQ
g þ FQ

ϕ þ FD
ϕ þ FDO

ϕ

¼ 32Gμ2ðGmÞ3
5R5

�
1þ 1

12
E2
qv5sgð2ωÞΘð2ω −msÞ

−
1

192
EdEov5sgðωÞΘðω −msÞ

þ 5

192

�
R
Gm

Ed −
μ

m
Ēd

�
Edv3sgðωÞΘðω −msÞ

�
: ð79Þ

Using this and the relations (39) and (41), from Eq. (37)
we finally obtain the orbital period decay rate due to the
emission of tensor and scalar GWs,

_P
P
¼ −

96GμðGmÞ2
5R4

�
1þ 1

12
E2
qv5sgð2ωÞΘð2ω −msÞ

−
1

192
EdEov5sgðωÞΘðω −msÞ

þ 5

192

�
R
Gm

Ed −
μ

m
Ēd

�
Edv3sgðωÞΘðω −msÞ

�
: ð80Þ

These results show that in SMG the scalar GWs can be
emitted (i.e., the scalar mode is excited) if and only if the
frequency (energy) of the scalar mode is greater than its
mass. We know that the Compton wavelength m−1

s is
roughly cosmological scale (if m−1

s ∼ 1 Mpc, then
ms ∼ 10−14 Hz), and the orbital frequency ω for compact
binaries with a 1-hour orbital period is of the order of
10−3 Hz, so ms ≪ ω for compact binaries. In this case, the
expression (80) for the fractional period derivative can be
further simplified to

_P
P
¼ −

96GμðGmÞ2
5R4

�
1þ 1

12
E2
q −

1

192
EdEo

þ 5

192

�
R
Gm

Ed −
μ

m
Ēd

�
Ed

�
: ð81Þ

Using the Kepler’s third law (38), this expression (81) can
be rewritten as

_P ¼ −
192π

5

�
2πGm
P

�
5=3
�
μ

m

�
A; ð82Þ
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and we have defined

A ¼ 1þ 1

3
ϵ1ϵ2 þ

1

12
E2
q −

1

192
EdEo −

5

192

μ

m
EdĒd

þ 5

192

�
P

2πGm

�
2=3

E2
d: ð83Þ

In Eq. (83), the first and second terms represent the
contribution of the tensor quadrupole radiation, the third
term corresponds to the scalar quadrupole radiation, the
fourth term is the contribution of the scalar dipole-octupole
cross term, and the last two terms represent the scalar dipole
radiation. Because of Gm=P ¼ Oð10−9Þ for a typical NS
binary with a 1-hour orbital period, the scalar dipole
radiation dominates the orbital decay rate, unless
ϵ2 − ϵ1 ≃ 0. In the limiting case (ϵ1 and ϵ2 → 0), the
expression (82) reduces to the GR result (A ¼ 1).

V. EXPERIMENTAL TESTS IN THE
BINARY PULSAR

In this section, we discuss how to place constraints on
SMG with the orbital decay rate observations of compact
binaries. In particular, as an application of our results, we
focus on three specific models of SMG (chameleon,
symmetron, and dilaton), and derive the constraints on
the model parameters, respectively.

A. Pulsar constraints

Up to now, all observations of compact binary systems
agree with the GR prediction within observational uncer-
tainties [5–8,52,53]. Therefore, in order to place constraints
on these gravity theories by using the observations of
compact binary systems, the non-GR effects of the theories
should be smaller than observational uncertainties.
As mentioned in the previous section, in SMG the scalar

dipole radiation dominates the orbital decay rate, unless
ϵ2 − ϵ1 ≃ 0. Because of the large difference of the screened
parameters in the neutron star-white dwarf (NS-WD)
binary systems, these systems are the best target to
constrain the model parameters in SMG. Now, let us
consider a NS-WD binary system with quasicircular orbit.
The screened parameter is inversely proportional to the
surface gravitational potential [see Eq. (28)], i.e.,
ϵWD=ϵNS ≃ΦNS=ΦWD ∼ 104. Therefore, the difference in
the screened parameters is approximately equal to the WD
screened parameter, i.e., Ed ¼ ϵWD − ϵNS ≃ ϵWD. Using
these, the expression (83) can be simplified to

A ¼ 1þ 5

192

�
P

2πGm

�
2=3

ϵ2WD: ð84Þ

We can also write the observed value Aobs as

Aobs ¼
_Pobs

_PGR ¼ 1þ δ� σ; ð85Þ

where δ is the fractional deviation of the observed value
from the GR prediction, and σ is the observational
uncertainty. Comparing Eq. (85) with Eq. (84), we obtain
the constraint���� 5

192

�
P

2πGm

�
2=3

ϵ2WD − δ

���� ≤ 2σ ð86Þ

at 95% confidence level (CL). This constraint relation can
be further simplified to

ϵWD ≤ ðδþ 2σÞ1=2
�
m
P

�
1=3

× 1.269 × 10−2 ð87Þ

at 95% CL, where the total mass m is expressed in units of
solar masses, and the orbital period P is expressed in units
of hours. For the general SMG, including chameleon,
symmetron, and dilaton theories, ϕminðρÞ [in Eq. (2)] is
generally inversely correlated to the matter density ρ of the
local environment of the scalar field. The background
matter density is always much less than the WD density,
i.e., ρb ≪ ρWD, so we have ϕVEV ≫ ϕWD [43]. Using this
and substituting the relation (28) into the constraint (87),
we obtain

ϕVEV

MPl
≤ ðδþ 2σÞ1=2

�
m
P

�
1=3mWD

RWD
× 2.694 × 10−8 ð88Þ

at 95% CL, where the mass mWD and radius RWD of the
WD are expressed in units of solar masses and solar radii,
respectively.
In this paper, we use the observation data of the binary

system PSR J1738þ 0333, which is a 5.85-ms pulsar in a
8.51-hour quasicircular orbit with a low-mass WD
companion [53,67]. The orbital parameters for this system
are listed in Table I, which are taken directly from [53].
Using these observed values of the orbital parameters, from
the constraints (87) and (88) we obtain an upper bound on
the WD screened parameter

TABLE I. Parameters relevant to the binary system PSR
J1738þ 0333 [53].

Eccentricity, e ð3.4� 1.1Þ × 10−7

Period, P (day) 0.3547907398724(13)

Period derivative, _Pobs ð−25.9� 3.2Þ × 10−15

_Pobs= _PGR 0.93� 0.13

Total mass, m (M⊙) 1.65þ0.07
−0.06

WD mass, mWD (M⊙) 0.181þ0.008
−0.007

White dwarf radius, RWD (R⊙) 0.037þ0.004
−0.003
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ϵWD ≤ 3.2 × 10−3 ð89Þ

at 95% CL, and an upper bound on the scalar field VEV

ϕVEV

MPl
≤ 3.3 × 10−8 ð90Þ

at 95% CL. In the following subsections, we apply them to
three specific models of SMG (chameleon, symmetron, and
dilaton), and derive the constraints on the model parameters
by the pulsar observations. For comparison, we also present
the constraints on these three models by the observations in
the Solar System [68].

B. Chameleon

The chameleon model was introduced as a screening
mechanism by Khoury and Weltman [32–34]. The chame-
leon mechanism operates a thin-shell shielding scalar field,
which acquires a large mass in dense environments and
suppresses its ability to mediate a fifth force. The original
chameleon is ruled out by the combined constraints of the
Solar System and cosmology [43,69]. Here, we consider the
exponential chameleon, which is characterized by an expo-
nential potential and an exponential coupling function [70],

VðϕÞ ¼ Λ4 exp

�
Λα

ϕα

�
; ð91aÞ

AðϕÞ ¼ exp

�
βϕ

MPl

�
; ð91bÞ

where β is a positive dimensionless coupling constant, α is
a positive dimensionless constant index, and Λ labels the
energy scale of the theory and today is close to the dark
energy scale (Λ ¼ 2.24 × 10−3 eV) [43,71].
Substituting chameleon potential and coupling function

(91) into Eq. (11), from Eq. (2) we have the chameleon
VEV and mass,

ϕVEV ¼
�
αMPlΛ4þα

βρb

� 1
αþ1

; ð92aÞ

m2
s ¼

ðαþ 1Þβρb
MPlϕVEV

þ β2ρb
M2

Pl

: ð92bÞ

Here, ρb is the background matter density, and ρb ¼ ρgal≃
10−42 GeV4, which roughly corresponds to the galactic
matter density. Using the pulsar constraint (90), from
Eq. (92a) we derive the following relation between α
and β,

log β ≥ log α − 22.6αþ 2.88; ð93Þ

which is illustrated in Fig. 1 by the yellow region.
In addition, for the chameleon model, the PPN parameter

γ ¼ 1–2βϕVEV=ðMPlΦÞ (see [43] for detailed derivations),
from the Cassini constraint jγobs − 1j ≤ 2.3 × 10−5 [68], we
present the allowed region in the parameter space ðα; βÞ in
Fig. 1 by the shadow region.
Figure 1 shows the bound on the model parameters α and

β by considering the galactic background. The yellow
region is allowed by the orbital decay rate observations of
PSR J1738þ 0333. The shadow region indicates the
parameter space allowed by Cassini experiment in the
Solar System. The overlap region allowed by the combined
constraints of the two experiments gives the stringent
bound α ≥ 0.2.
Substituting the chameleon VEV (92a) into the chame-

leon mass (92b) and imposing the constraint α ≥ 0.2 yields
the lower bound on chameleon mass ms in Fig. 2 by the
green solid line. Combining α ≥ 0.2 and the pulsar con-
straint (90) yields the constraint

ðαþ 1ÞMPl

ϕVEV
≥ 3.6 × 107: ð94Þ

(0.2, 0.0007)
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Cassini
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FIG. 1. In the parameter space of the exponential chameleon
model, the shadow region is allowed by the tests of the Cassini
experiment, while the yellow region is allowed by the observa-
tions of PSR J1738þ 0333. The combined constraints of the two
experiments require α ≥ 0.2.
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FIG. 2. Lower bound on chameleon mass ms (upper bound on
m−1

s ) as a function of the coupling constant β from the constraints
α ≥ 0.2 (green solid line) and Eq. (94) (blue dashed line).
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Using this, from Eq. (92b) we obtain the lower bound on
chameleon mass ms in Fig. 2 by the blue dashed line.
Figure 2 shows the lower bound on chameleon mass ms

as a function of the coupling constant β. The green solid
and blue dashed lines indicate the bounds on ms from the
constraints α ≥ 0.2 and Eq. (94), respectively. From Fig. 2
we can see that ms ≥ 10−28.6 eV (m−1

s ≤ 102.4 kpc) if
β ≥ 10−4, and β ≤ 102.7 if m−1

s ≥ 1 pc.

C. Symmetron

The symmetron models are characterized by a Z2

symmetry breaking potential (a mexican hat potential)
and a quadratic coupling function [35–37],

VðϕÞ ¼ V0 −
1

2
μ2ϕ2 þ λ

4
ϕ4; ð95aÞ

AðϕÞ ¼ 1þ ϕ2

2M2
; ð95bÞ

where μ and M are mass scales, λ is a positive dimension-
less coupling constant, and V0 is the vacuum energy of the
bare potential VðϕÞ. In high density regions the Z2

symmetry is unbroken and the fifth force is absent, whereas
in low density regions the Z2 symmetry is spontaneously
broken and the fifth force is present.
Substituting symmetron potential and coupling function

(95) into Eq. (11), from Eq. (2) we obtain the relation
between the symmetron VEV ϕVEV and the symmetron
mass ms,

ϕVEV ¼ msffiffiffiffiffi
2λ

p : ð96Þ

Using this, from the pulsar constraint (90) we obtain the
upper bound on symmetron mass ms in the top plot of
Fig. 3. For the symmetron model, the PPN parameter
γ ¼ 1 − 2ϕ2

VEV=ðM2ΦÞ (see [43] for detailed derivations),
from the Cassini constraint jγobs − 1j ≤ 2.3 × 10−5 [68] and
the pulsar constraint (90), we obtain the combined con-
straints on the parameter space (ϕVEV;M). This result is
displayed in the bottom plot of Fig. 3.
The top panel of Fig. 3 shows the upper bound on

symmetron mass ms as a function of the coupling constant
λ of ϕ4 interaction, which is derived from the orbital
decay rate observations of PSR J1738þ 0333. From the
top panel we find a relatively weak bound λ ≥ 10−98.5, if
m−1

s ≤ 103 kpc. The bottom panel shows the bound on
the parameter space (ϕVEV;M). The yellow region is
allowed by the tests of Cassini experiment in the Solar
System, while the shadow region indicates the pulsar
constraint (90) from the orbital decay rate observations
of PSR J1738þ 0333.

D. Dilaton

The dilaton model, inspired by string theory in the large
string coupling limit, has an exponentially runaway poten-
tial and a quadratic coupling function [25,26,38],

VðϕÞ ¼ V0 exp

�
−

ϕ

MPl

�
; ð97aÞ

AðϕÞ ¼ 1þ ðϕ − ϕ⋆Þ2
2M2

; ð97bÞ

where V0 is a constant with the dimension of energy
density, M labels the energy scale of the theory, and ϕ⋆ is
approximately the value of ϕ today. The dilaton mechanism
is similar to the symmetron. The coupling between dilaton
and matter is negligible in dense regions, while in low
density regions the dilaton mediates a gravitational-strength
fifth force.
Substituting dilaton potential and coupling function (97)

into Eq. (11), from Eq. (2) we have the dilaton VEV and
mass,

ϕVEV ¼ ϕ⋆ þ
M2ρΛ0

MPlρb
; ð98aÞ

m2
s ¼

ρb
M2

þ ρΛ0

M2
Pl

: ð98bÞ

Using the pulsar constraint (90), from Eq. (98) we derive
the constraint on model parameters,
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FIG. 3. Top: Upper bound on symmetron mass ms (lower
bound on m−1

s ) as a function of the coupling constant λ from the
observations of PSR J1738þ 0333. Bottom: In the parameter
space of the symmetron model, the yellow region is allowed by
the tests of Cassini experiment, while the shadow region is
allowed by the observations of PSR J1738þ 0333.
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M
MPl

≤ 0.036 ð99aÞ

and

ms ≥ 1.1 × 10−29 eV ðor m−1
s ≤ 0.58 MpcÞ ð99bÞ

at 95% CL. For the dilaton model, the PPN parameter γ ¼
1 − 2ðϕVEV − ϕ⋆Þ2=ðM2ΦÞ (see [43] for detailed deriva-
tions); from the Cassini constraint jγobs − 1j ≤ 2.3 × 10−5

[68] we have

M
MPl

≤ 0.20 ð100aÞ

and

ms ≥ 2.1 × 10−30 eV ðor m−1
s ≤ 3.1 MpcÞ ð100bÞ

at 68% CL. By comparing Eq. (99) with Eq. (100), we find
that the pulsar constraints are more stringent than the solar
system tests.

VI. CONCLUSIONS

The salient feature of SMG is the screening mechanism,
which can suppress the fifth force in dense regions and
allow theories to evade the tight gravitational tests in the
Solar System and the laboratory. In this paper, we inves-
tigated how the screening mechanisms in SMG affect the
orbital evolution of compact binaries due to the tensor and
scalar gravitational radiations, and derived the constraints
on the screening mechanisms by the pulsar observations. In
any theory of gravity, the gravitational radiation generally
depends not only on the dissipative sector which regulates
how fast the system loses energy, but also on the
conservative sector that regulates the orbital dynamics of
the system. In alternative theories (including SMG), both
the sectors are generally modified by the additional fields
controlled by the sensitivities, which characterize how the
gravitational binding energy of a compact object responds
to its motion relative to the additional fields.
In SMG, we first considered the modifications to the

conservative sector of the theory. By solving the PN
equations for the massless tensor and massive scalar fields
in the near zone, we derived the EIH equations of motion
for a compact binary system. It turned out that both the
WEP and the gravitational inverse-square law are violated
in general. However, in the near zone, the inverse-square
law can be approximately satisfied, which guarantees that
the Kepler’s third law holds. In addition, by comparing with
the two scalar solutions obtained by means of different
methods, we found that the first sensitivity is completely
equivalent to the screened parameter.
In the dissipative sector, we solved the wave equations

for the massless tensor and massive scalar fields in the wave

zone, calculated in detail the rate of the energy loss due to
the emission of tensor and scalar GWs, and derived their
contributions to the change in the orbital period. The tensor
radiation in SMG behaves as in GR at leading PN order,
and there is neither monopole nor dipole radiation. The
emission of scalar radiation starts at monopole order, but
there is no monopole contribution to leading order in the
quasicircular orbit case. The scalar dipole radiation
depends not only on the difference in screened parameters
but also on the propagation speed of the massive scalar
particle. The dipole-octupole cross term appearing in the
scalar radiation is the negative modification to the energy
flux at the same PN order as the quadrupole radiation
contribution. We focused mostly on the scalar dipole
radiation, which is generally stronger than quadrupole
radiation and leads to a strong modification to the evolution
of the orbital period.
In SMG, all modifications (of the conservative and

dissipative sectors) are due to the scalar field controlled
by the object’s screened parameter (or scalar charge), which
is inversely proportional to the object’s surface gravitational
potential. For the compact objects (such as white dwarfs and
neutron stars), the effects of the scalar sector of SMG are
strongly suppressed by the screening mechanisms, and
thus the deviations from GR become small and weak. In
other words, SMG looks more like GR for strongly self-
gravitating bodies, which is completely different from other
alternative theories without screening mechanisms.
All current pulsar observations agree with GR’s pre-

dictions within the observational uncertainties [5–8,52,53],
which allows us to place the stringent constraints on the
screening mechanisms in SMG. By comparing our results
for the orbital period decay rate to the observations of
quasicircular binary system PSR J1738þ 0333, we
obtained the quite stringent bounds on the screened
parameter and the scalar field VEV.
Finally, we applied our results to three specific models of

SMG (chameleon, symmetron, and dilaton), and derived
the pulsar constraints on the model parameters, respec-
tively. For comparison, we also discussed the solar system
constraints on these three models. Consistent with all the
previous works, we found the following results for these
SMGmodels: The combined observations of the pulsar and
solar systems yield a lower bound on the chameleon
parameter α and a lower bound on the chameleon mass
ms as a function of the chameleon coupling constant β.
Contrary to chameleon, the pulsar observations yield an
upper bound on the symmetron massms as a function of the
symmetron coupling constant λ. For the dilaton model, the
pulsar constraints are more stringent than the solar system
tests. All these models pass the current constraints from the
pulsar and solar systems, and we obtained the bounds on
the model parameters, respectively.
At the end of this paper, we emphasize that the results

derived in this article are applicable for the quasicircular
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orbits of the compact binary system. In a separate paper, we
extend these calculations to a much more general case with
the quasielliptic orbits.
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APPENDIX A: SCALAR SOLUTION

Now let us solve the scalar field equation by the method
of matching the internal and external solutions. We con-
sider a static spherically symmetric source object with
constant density ρo and radius R, which is embedded in a
homogeneous background of matter density ρb. Then, the
scalar field equation (8) can be simplified to

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ m2
mðρÞ½ϕ − ϕmðρÞ�; ðA1Þ

with

ρðrÞ ¼
�
ρo for r < R

ρb for r > R
: ðA2Þ

This is a second order differential equation, and as such we
must impose two boundary conditions. The first is that the
solution is regular at the origin, i.e., dϕ=drjr¼0 ¼ 0, and the
second is that the scalar field asymptotically converges to
the scalar background, i.e., ϕjr→∞ → ϕVEV. Moreover, ϕ
and dϕ=dr are of course continuous at the surface of the
object. By solving Eq. (A1) directly, we get the exact
solution

ϕðr < RÞ ¼ ϕo þ
A
r
sinhðmorÞ; ðA3aÞ

ϕðr > RÞ ¼ ϕVEV þ B
r
e−msr; ðA3bÞ

with

A ¼ ðϕVEV − ϕoÞð1þmsRÞ
mo coshðmoRÞ þms sinhðmoRÞ

; ðA4aÞ

B ¼ −emsRðϕVEV − ϕoÞ
moR − tanhðmoRÞ
mo þms tanhðmoRÞ

; ðA4bÞ

where ϕo and ϕVEV are respectively the positions of the
minimum of Veff inside and far outside the source object;
mo and ms are respectively the effective masses of the
scalar field at ϕo and ϕVEV. In general, the radius R is much
larger than the fifth force range m−1

o , but is much less than
the Compton wavelength m−1

s , that is m−1
o ≪ R ≪ m−1

s .
Using this, the exterior scalar field (A3b) reduces to

φðrÞ ¼ ϕðrÞ − ϕVEV

¼ −MPl
Gmϵ

r
e−msr; ðA5Þ

with

ϵ≡ ϕVEV − ϕo

MPlΦ
; ðA6Þ

wherem is the mass of the object;Φ ¼ Gm=R is its surface
gravitational potential. The quantity ϵ is always called the
screened parameter (or scalar charge) of the object. In the
case of ϵ ≪ 1, the scalar field is strongly suppressed (i.e.,
the screening mechanism is very strong), whereas in the
case of ϵ≳ 1, the screening mechanism is weak and the
scalar force (fifth force) becomes comparable with
the gravitational force.
For a multibody system, we have the scalar field

φ ¼
X
a

φa ¼ −MPl

X
a

Gmaϵa
ra

e−msra ; ðA7Þ

where ma is the mass of the ath object, ϵa is its screened
parameter, ms is the effective mass of the scalar,
and ra ¼ jr − raðtÞj.

APPENDIX B: PN EXPANSION
OF THE METRIC TENSOR

Here we derive in detail the PN expansion (30) of the
metric tensor. We follow very closely the method outlined
in [3]. For convenience, the tensor field equations (7) are
written in the equivalent form

Rμν ¼ 8πG½Sμν þ ∂μϕ∂νϕþ VðϕÞgμν�; ðB1Þ

with

Sμν ≡ Tμν −
1

2
gμνT; ðB2Þ

where Tμν and T are respectively the energy-momentum
tensor of matter and its trace, given in Eqs. (4) and (5).
In the weak-field limit around the flat Minkowski

background and the scalar field VEV (scalar background),
the tensor Sμν is expanded in the form
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S00 ¼
1

2

X
a

maδ
3ðr − raÞ

�
1þ 3

2
v2a − h

ð2Þ
00

−
1

2
h
ð2Þ

ijδij þ
ϵa

2MPl
φ
ð2Þ
�
þOðv6Þ; ðB3aÞ

S0j ¼ −
X
a

mav
j
aδ3ðr − raÞ þOðv5Þ; ðB3bÞ

Sij ¼
δij
2

X
a

maδ
3ðr − raÞ þOðv4Þ: ðB3cÞ

By using these relations, the right-hand sides of the
tensor field equations (B1) can be expanded to the required
order in the form

R00 ¼ 4πG
X
a

maδ
3ðr − raÞ

�
1þ 3

2
v2a − h00

ð2Þ

−
1

2
hij
ð2Þ
δij þ

ϵa
2MPl

φ
ð2Þ
�
þOðv6Þ; ðB4aÞ

R0j ¼ −8πG
X
a

mav
j
aδ3ðr − raÞ þOðv5Þ; ðB4bÞ

Rij ¼ 4πGδij
X
a

maδ
3ðr − raÞ þOðv4Þ; ðB4cÞ

where we have neglected the bare potential VðϕÞ corre-
sponding to the dark energy. The left-hand sides of the
tensor field equations (B1), i.e., the components of the
Ricci tensor, are expanded to the same order in the form

R00 ¼ −
1

2
∇2 h

ð2Þ
00 −

1

2
∇2 h

ð4Þ
00 −

1

4
ð∇ h

ð2Þ
00Þ2

−
1

2
ð h
ð2Þ

jj;00 − 2 h
ð3Þ

j0;j0Þ

þ 1

2
h
ð2Þ

00;j

�
h
ð2Þ

jk;k − 1

2
h
ð2Þ

kk;j

�

þ 1

2
h
ð2Þ

jk h
ð2Þ

00;jk þOðv6Þ; ðB5aÞ

R0j ¼ −
1

2
ð∇2 h

ð3Þ
0j þ h

ð2Þ
kk;0j − h

ð3Þ
k0;jk − h

ð2Þ
kj;0kÞ þOðv5Þ;

ðB5bÞ

Rij ¼ −
1

2
ð∇2 h

ð2Þ
ij − h

ð2Þ
00;ij þ h

ð2Þ
kk;ij − h

ð2Þ
ki;kj

− h
ð2Þ

kj;kiÞ þOðv4Þ: ðB5cÞ

In addition, in order to solve the tensor field equations,
we generally impose the PN gauge condition [3]

hμi;μ −
1

2
hμμ;i ¼ 0; ðB6aÞ

hμ0;μ −
1

2
hμμ;0 ¼ −

1

2
h00;0: ðB6bÞ

We consider the PN tensor field equations (B4a)
and (B5a) up to order Oðv2Þ, and obtain the equation

∇2 h
ð2Þ

00 ¼ −8πG
X
a

maδ
3ðr − raÞ; ðB7Þ

this solution is

h
ð2Þ

00 ¼ 2
X
a

Gma

ra
: ðB8Þ

For the spatial components, up to order Oðv2Þ, using the
PN gauge (B6a), the PN tensor field equations (B4c)
and (B5c) follow

∇2 h
ð2Þ

ij ¼ −8πGδij
X
a

maδ
3ðr − raÞ; ðB9Þ

this solution is

h
ð2Þ

ij ¼ 2δij
X
a

Gma

ra
: ðB10Þ

For the mixed components, up to orderOðv3Þ, using the PN
gauge (B6), the PN tensor field equations (B4b) and (B5b)
follow

∇2 h
ð3Þ

0j þ
1

2
h
ð2Þ

00;0j ¼ 16πG
X
a

mav
j
aδ3ðr − raÞ; ðB11Þ

and using Eq. (B8), the solution is given by

h
ð3Þ

0j ¼ −
7

2

X
a

Gmav
j
a

ra
−
1

2

X
a

Gma

r3a
ðra · vaÞðrj − rjaÞ:

ðB12Þ

Now, considering the PN tensor field equations (B4a)
and (B5a) up to order Oðv4Þ, using the PN gauge (B6),
we obtain the equation

XING ZHANG, TAN LIU, and WEN ZHAO PHYSICAL REVIEW D 95, 104027 (2017)

104027-18



∇2 h
ð4Þ

00 þ
1

2
∇2h200

ð2Þ
− h

ð2Þ
00∇2 h

ð2Þ
00 − h

ð2Þ
jk h
ð2Þ

00;jk

¼ −8πG
X
a

maδ
3ðr − raÞ

�
3

2
v2a − h

ð2Þ
00

−
1

2
h
ð2Þ

ijδij þ
ϵa

2MPl
φ
ð2Þ
�
; ðB13Þ

and this solution is derived in the form by applying the
above results [(B8), (B10), and (A7)],

h
ð4Þ

00 ¼ −2
�X

a

Gma

ra

�
2

þ 3
X
a

Gmav2a
ra

− 2
X
a

X
b≠a

G2mamb

rarab

�
1þ 1

2
ϵaϵbe−msrab

�
: ðB14Þ

In all the above expressions, ma is the mass of the ath
object, ϵa is its screened parameter, va is its velocity, ms is
the effective mass of the scalar field, and ra ¼ jr − raðtÞj,
rab ¼ jraðtÞ − rbðtÞj. Finally, summing the relevant com-
ponents of gμν, we obtain the results presented in Eqs. (30).

APPENDIX C: EVALUATION OF INTEGRALS
ARISING IN THE DERIVATION OF SCALAR

RADIATION

Here, we derive the integrals related to the scalar energy
flux. It is hopeless to get an exact result of these integrals.
However, we can obtain their asymptotic behavior in the
wave zone (r → þ∞).

hcosðωruÞin¼
Z

∞

0

cos

 
ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
�

z
msr

�
2

s !
J1ðzÞdz

ð1þð z
msr

Þ2Þn2 ;

hsinðωruÞin¼
Z

∞

0

sin

 
ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
�

z
msr

�
2

s !
J1ðzÞdz

ð1þð z
msr

Þ2Þn2 :

ðC1Þ

We only discuss the evaluation of hcosðωruÞin, since
hsinðωruÞin can be evaluated in the same way. Choose a
parameter λ such that msrλ ≫ 1 and split the integral into
two parts. The asymptotic expansion of the first part can be
obtained by performing integration by parts as follows:

Z
msrλ

0

cos

 
ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z

msr

�
2

s !
J1ðzÞdz

ð1þ ð z
msr

Þ2Þn2

¼ cosðωrÞ − J0ðmsrλÞ cosðωr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
Þ þ � � � : ðC2Þ

For the second part, when we perform integration by parts,
we can exactly cancel the terms in Eq. (C2) that depend

on λ. Therefore, all the contribution that comes from the
end point msrλ can be ignored.
We can substitute the leading asymptotic behavior of

Bessel function

JνðxÞ ∼
ffiffiffiffiffi
2

πx

r
cos

�
x −

νπ

2
−
π

4

�
ðC3Þ

into the second part; then the integral can be approximated
by

ffiffiffi
2

π

r Z
∞

msrλ

cos ðωr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð z

msr
Þ2

q
Þ cosðz − 3π=4Þffiffiffi

z
p ð1þ ð z

msr
Þ2Þn2 dz: ðC4Þ

The above integral can be transformed into complex
integral

I ¼ 1

4

ffiffiffi
2

π

r Z
∞

msrλ

eρðzÞdzffiffiffi
z

p ð1þ ð z
msr

Þ2Þn2 ; ðC5Þ

with

ρðzÞ ¼ in1ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z

msr

�
2

s
þ in2

�
z −

3

4
π

�
; ðC6Þ

where n1;2 ¼ �1. The integration contour that gives the
dominant contribution of the integral is determined by ρðzÞ
and the relative sizes of ω and ms.
When ω > ms and n1 ¼ −n2, ρðzÞ has a stationary point

at a ¼ m2
srffiffiffiffiffiffiffiffiffiffi

ω2−m2
s

p . Using the method of stationary phase [72],

I can be approximated by

I ∼
1

4

ffiffiffi
2

π

r
eρðaÞffiffiffi

a
p ð1þ ð a

msr
Þ2Þn2

Z þ∞

−∞
dteρ

00ðaÞt2=2

∼ −
1

2
ein1

ffiffiffiffiffiffiffiffiffiffi
ω2−m2

s

p
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

s

p
ω

�n−1

: ðC7Þ

When ω > ms and n1 ¼ n2, ρðzÞ has no stationary point
and hence I does not give contribution to the leading
asymptotic behavior of Eq. (C1). All in all, the leading
asymptotic behavior of hcosðωruÞin and hsinðωruÞin for
ω > ms is
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hcosðωruÞin ∼ cosðωrÞ −
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 −m2
s

p
ω

!
n−1

cos


r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

s

q �
;

hsinðωruÞin ∼ sinðωrÞ −
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 −m2
s

p
ω

!
n−1

sin


r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

s

q �
:

ðC8Þ

When ω < ms, ρðzÞ has two saddle points. Using the method of steepest descent [72], we can obtain the leading
asymptotic behavior of Eq. (C1),

hcosðωruÞin ∼ cosðωrÞ −
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
s − ω2

p
ω

!
n−1

e−r
ffiffiffiffiffiffiffiffiffiffi
m2

s−ω2
p in−1 þ ð−iÞn−1

2
;

hsinðωruÞin ∼ sinðωrÞ −
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
s − ω2

p
ω

!
n−1

e−r
ffiffiffiffiffiffiffiffiffiffi
m2

s−ω2
p in−1 − ð−iÞn−1

2
: ðC9Þ
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