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1.1 INTRODUCTION

Wireless sensor networks are large-scale distributed embedded systems composed
of small devices that integrate sensors, actuators, wireless communication, and mi-
croprocessors. With advances in hardware, it will soon be feasible to deploy dense
collections of sensors to perform distributed micro-sensing of physical environments.
Sensor networks will serve as a key infrastructure for a broad range of applications
including precision agriculture, intelligent highway systems, emergent disaster re-
covery, and surveillance.

Sensor networks are an emerging technology that promises unprecedented ability
to monitor and instrument the physical world. Sensor networks consist of a large
number of inexpensive wireless devices (nodes) densely distributed over the region
of interest and have wireless connectivity. They are typically battery powered with
limited communication and computation abilities. Also each node in a wireless sen-
sor network is equipped with a variety of sensing modalities, such as acoustic, seis-
mic, and infrared.

Having location information can be very useful and has so many applications, it
can answer questions like: Are we almost to the campsite? What lab bench was
I standing by when I prepared these tissue samples? How should our search-and-
rescue team move to quickly locate all the avalanche victims? Can I automatically
display this stock devaluation chart on the large screen I am standing next to? Where
is the nearest cardiac defibrillation unit? and so on.

Service providers can also use location information to provide some novel location-
aware services. The navigation system based on GPS is an example. A user can tell
the system his destination and the system will guide him there. Phone systems in an
enterprise can exploit locations of people to provide follow-me services.

Researchers are working to meet these and similar needs by developing sys-
tems and technologies that automatically locate people, equipment, and other tan-
gibles. Indeed, many systems over the years have addressed the problem of auto-
matic location-sensing. Because each approach solves a slightly different problem
or supports different applications, they vary in many parameters,such as the physical
phenomena used for location determination, the form factor of the sensing apparatus,
power requirements, infrastructure versus portable elements, and resolution in time
and space.

For outdoor environments, the most well-known positioning system is the global
positioning system (GPS) [28], which uses24 satellites set up by the U.S. Depart-
ment of Defense to enable global three dimensional positioning services and it pro-
vides the accuracy around20 to 50 m. In addition to the GPS system, positioning
can also be done using some wireless networking infrastructures. Taking the PCS
cellular networks as an example, theE911 emergency service requires determining
the location of a phone call via the base stations of the cellular system.

In Global Positioning System (GPS), triangulation uses ranges to at least four
known satellites to find the coordinates of the receiver, and the clock bias of the re-
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ceiver. For our node location purposes, we are using a simplified version of the GPS
triangulation, as we only deal with distances, and there is no need for clock synchro-
nization. Because of the following reasons GPS is not suitable for wireless sensor
networks and much work has been dedicated recently to positioning and location
tracking in the area of wireless sensor networks. The reasons are as follows:

• It is not available in an indoor environment because satellite signals cannot
penetrate buildings.

• For more fine-grained applications, higher accuracy is usually necessary in the
positioning result.

• Sensor networks have their own battery constraint, which requires special de-
sign.

Many applications of sensor networks require knowledge of physical sensor po-
sitions. For example, target detection and tracking is usually associated with loca-
tion information [23]. Further, knowledge of sensor location can be used to facili-
tate network functions such as packet routing [9],[18], [24], and collaborative signal
processing [14]. Sensor position can also serve as a unique node identifier, making
it unnecessary for each sensor to have a unique ID assigned prior to its deployment.

In sensor networks the capabilities of individual nodes are very limited and nodes
are often powered by batteries only. To conserve energy collaboration between nodes
is required and communication between nodes should be minimized. To achieve this
goal nodes in wireless sensor networks (WSNs) need to determine devices context
and since each node has limited power, we want to determine the location of individ-
ual sensor nodes without relying on external infrastructure (base stations, satellites,
etc.).

Location information not only can be used to minimize the communication but
also can be used to improve the performance of wireless networks and provide new
types of services. For example, it can facilitate routing in a wireless ad hoc network
to reduce routing overhead. This is known as geographic routing [20, 25]. Through
location-aware network protocols, the number of control packets can be reduced.
Other types of location-based services include geocast [19], by which a user can
request to send a message to a specific area, and temporal geocast, by which a user
can request to send a message to a specific area at specific time. In contrast to
traditional multicast, such messages are not targeted at a fixed group of members,
but rather at members located in a specific physical area.

However, location discovery in wireless sensor networks is very challenging.
First, the positioning algorithm must be distributed and localized in order to scale
well for large sensor networks. Second, the localization protocol must minimize
communication and computation overhead for each sensor since nodes have very
limited resources (power, CPU, memory, etc.). Third, the positioning functionality
should not increase the cost and complexity of the sensor since an application may
require thousands of sensors. Fourth, a location detection scheme should be robust.
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It should work with accuracy and precision in various environments, and should not
depend on sensor to sensor connectivity in the network.

The localization problem has received considerable attention in the past, as many
applications need to know where objects or persons are, and hence various location
services have been created. Undoubtedly, the Global Positioning System (GPS) is
the most well-known location service in use today. The approach taken by GPS,
however, is unsuitable for low-cost, ad-hoc sensor networks since GPS is based on
extensive infrastructure (i.e., satellites). Likewise solutions developed in the area of
robotic [6, 22, 36] and ubiquitous computing [16] are generally not applicable for
sensor networks as they require too much processing power and energy. Recently a
number of localization systems have been proposed specifically for sensor networks
[10, 11, 26]. We are interested in truly distributed algorithms that can be employed
on large-scale ad-hoc sensor networks (100+ nodes). Such algorithms should be:

• self-organizing (i.e., do not depend on global infrastructure).

• robust (i.e., be tolerant to node failures and range errors).

• energy efficient (i.e., require little computation and, especially, communica-
tion).

These requirements immediately rule out some of the proposed localization al-
gorithms for sensor networks. The rest of this chapter is organized as follows. In
Section 1.2, we briefly discuss what informations are available to the nodes whose
location is unknown and then the methods that these information can be used to de-
rive the location of the object are discussed. In Section 1.3 the localization problem
is introduced and methods to solve it are discussed. Similarly in Section 1.4 the tar-
get tracking problem is introduced and methods to solve it are discussed. Section
1.5 reviews some experimental location and tracking system and finally section 1.6
concludes this book chapter.

1.2 NAVIGATION TECHNIQUES TO DERIVE LOCATION

In previous chapter we discussed several approaches with which an object can esti-
mate its distance or its relative location to a reference point. In this section several
methods used to calculate an object’s location will be discussed.

1.2.1 Lateration

Lateration computes the position of an object by measuring its distance from multiple
reference positions. Calculating an objects position in two dimensions requires dis-
tance measurements from3 non-collinear points as shown in Figure 1.1(a). In3 di-
mensions, distance measurements from4 non-coplanar points are required. Domain-
specific knowledge may reduce the number of required distance measurements. For
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example, the Active Bat Location System measures distance from indoor mobile
tags, called Bats, to a grid of ceiling mounted ultrasound sensors [13]. A Bat’s3-
dimensional position can be determined using only3 distance measurements because
the sensors in the ceiling are always above the receiver. The geometric ambiguity of
only 3 distance measurements can be resolved because the Bat is known to be below
the sensors and not in the alternate possible position on the next floor or roof above
the sensor grid. Following two different lateration technics are described.

1.2.1.1 Trilateration Trilateration is a well-known technique in which the
positioning system has a number ofbeacons at known locations. These beacons can
transmit signals so that other devices can determine their distances to these beacons
based on received signals. If a device can hear at least three beacons, its location can
be estimated. Figure 1.1(a) shows how trilateration works:A, B, andC are beacons
with known locations. FromA’s signal, one can determine the distance toA and
thus that the object should be located at the circle centered atA with radius equal
to estimated distance. Similarly, fromB’s andC ’s signals, it can be determined
that the object should be located at some circles centered atB andC, respectively.
Thus, the intersection of the three circles is the estimated location of the device. The
preceding discussion has assumed an ideal situation; however, as mentioned earlier,
distance estimation always contains errors that will, in turn, lead to location errors.
Figure 1.1(b) illustrates an example in practice. The three circles do not intersect
in a common point. In this case, the maximum likelihood method may be used
to estimate the devices location. Let the three beaconsA, B, andC be located at
(xA, yA),(xB , yB), and(xC , yC), respectively. For any point(x, y) on the plane, a
difference function is computed:

C

A

B

C

A

B

(a) Ideal Situation (b) Real situation with error.

Fig. 1.1 Trilateration Method.

σx,y = |
√

(x− xA)2 + (y − yA)2 − rA|+ |
√

(x− xB)2 + (y − yB)2 − rB |+
|
√

(x− xC)2 + (y − yC)2 − rC |

WhererA, rB , andrC are the estimated distances toA, B, andC, respectively.
The location of the object can then be predicted as the point(x, y) among all points
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such thatσx,y is minimized. In addition to using the ToA approach for positioning,
the AoA approach can be used. For example, in Figure 1.2, the unknown nodeD
measures the angle of,∠ADB, ∠BDC, and∠ADC by the received signals from
beaconsA, B, andC. From this information,D

′
s location can be derived [26].

Reference Point

Unknown Point

C

D

B

A

Fig. 1.2 Angle measurement from three beacons A, B, and C

1.2.1.2 Multilateration The trilateration method has its limitation in that at
least three beacons are needed to determine a devices location. In a sensor network,
in which nodes are randomly deployed, this may not be true. Several multilateration
methods are proposed to relieve this limitation. The AHLoS (Ad Hoc Localization
System) [34] is a distributed system for location discovery. In the network, some
beacons have known locations and some devices have unknown locations. The AH-
LoS enables nodes to discover their locations by using a set of distributed iterative
algorithms. The basic one is atomic multilateration, which can estimate the location
of a device of unknown location if at least three beacons are within its sensing range.
Figure 1.3 shows an example in which, initially, beacon nodes contain only nodes
marked as reference point. Device nodesA, B, andC are at unknown locations. In
the first iteration, as Figure 1.3(a) shows, the locations of nodesA andC will be
determined. Note that since nodeB can communicate with only one beacon, it’s
location cannot be determined.

The atomic multilateration is further extended to an iterative multilateration method.
Specifically, once the location of a device is estimated, its role is changed to a bea-
con node so as to help determining other devices locations. This is repeated until all
hosts’ locations are determined (if possible). As Figure 1.3(b) shows, in the second
iteration, the location of nodeB can be determined with the help of nodesA andB,
which are now serving as beacons. The iterative multilateration still has its limita-
tion. For example, as Figure 1.4 shows, it is impossible to determine node2′s and
node4′s locations even if the locations of nodes1, 3, 5, and6 are known. The col-
laborative multilateration method may relieve this problem because it allows one to
predict multiple potential locations of a node if it can hear fewer than three beacons.
For example, in Figure 1.4, from beacon nodes1 and3, two potential locations of
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Unknown Point

A
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Reference Point

Unknown Point

A

B

(a) (b)

Fig. 1.3 (a) Atomic multilateration; (b)Iterative multilateration

node2 may be guessed (the other potential location is marked by2′). Similarly, from
beacon nodes5 and6, one may guess two potential locations of node4 (the other
potential location is marked by4′). Collaborative multilateration allows estimation
of the distance between nodes2 and4. With this information, the locations of nodes
2 and4 can be estimated, as the figure shows.

Note that, in a distributed location protocol, we may wonder if the order of de-
termining the position of nodes can affect the outcome of the location system. If
the distance or regular estimation is precise, we can show that the order in which
each node determines its location and then serves as beacon node willnot affect the
number of nodes whose positions can be computed. However, when the information
is not precise, it does affect this and further, the precision of the system.

5

4’

1

Unknown Point

Reference Point

2’

3

6

4

2

Fig. 1.4 Collaborative multilateration in AHLoS
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1.2.2 Pattern Matching Using Database

Another type of location discovery is by pattern matching. Instead of estimating the
distance between a beacon and a device, this approach tries to compare the received
signal pattern against the training patterns in the database. Thus, this method is also
known as thefingerprintingapproach. The basic idea is that signal strength received
at a fixed location is not necessarily a constant. It typically moves up and down, so
it would be better to model signal strength by a random variable. This is especially
true for indoor environments.

The main idea is to compare the received signals against those in the database and
determine the likelihood that the device is currently located in a position. A typical
solution has two phases :

• Off-line phase: The purpose of this phase is to collect signals from all base
stations at each training location. The number of training locations is decided
first. Then, the received signal strengths are recorded (for a base station that is
too far away, the signal strength is indicated as zero). Each entry in the data-
base has the format:(x, y, 〈ss1, ss2, ..., ssn〉), where(x, y) is the coordinate
of the training location, andssi (i = 1...n) is the signal strength received at the
training location from theith base station. These entries are stored in the data-
base. Note that for higher accuracy, one may establish multiple entries in the
database for the same training location. From the database, some positioning
rules, which form the positioning model, will then be established.

• Real-time phase:With a well-trained positioning model, one can estimate a
device’s location given the signal strengths collected by the device from all
possible base stations. The positioning model may determine a number of
locations, each associated with a probability. However, the typical solution is
to output only the location with the highest likelihood.

There are several similarity searching methods in the matching process; two ap-
proaches are discussed next.

1.2.2.1 Nearest Neighbor Algorithms The simplest approach is thenear-
est neighbor in signal space(NNSS) approach [7, 8]. In the first phase, only the av-
erage signal strength of each base station at each training location is recorded. Then,
in the second phase, the NNSS algorithm computes the Euclidean distance in signal
space between the received signal and each record in the database. Euclidean dis-
tance means the square root of the summation of square of the difference between
each received signal strength and the corresponding average signal strength from the
access point under consideration. The training location with the minimum Euclid-
ean distance is then chosen as the estimated location of the device. Because this
algorithm only picks existing locations in the database, to improve its accuracy, it
is suggested that the training set be dense enough. One variant of the basic NNSS
algorithm is NNSS-AVG. To take the uncertainty of a device’s location into consid-
eration, this method tries to pick a small number of training locations that closely
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match the received signal strengths (such as those with smaller Euclidean distances).
Then, it infers the location of the device to be a function of the coordinates of the
selected training locations. For example, one may take the average of thex andy
coordinates of the selected training locations as the estimated result.

1.2.2.2 Probability-Based Algorithms The probability-based position-
ing approach regards signal strength as a probability distribution [30]. In NNSS,
because the received signal strengths are averaged out, the probability distribution
would disappear. So the probability-based approach will try to maintain more com-
plete information of signal strength distribution. The prediction result is typically
more accurate. The core of the probability-based model is the Bayes rule:

p(l|o) =
p(o|l)p(l)

p(o)
=

p(o|l)p(l)∑
l′∈L p(o|l′)p(l′)

Wherep(l|o) is the probability that the device is at locationl given an observed
signal strength patterno. The prior probability that a device is resident atl is p(l),
which may be inferred from history or experience. For example, people may have a
higher probability to appear in a hallway or lobby. If this is not available,p(l) may
be assumed to be a uniform distribution.L is the set of all training locations. The
denominatorp(o) does not depend on the location variablel, so it can be treated as
a normalized constant whenever only relative probabilities are required. The term
p(o|l) is called the likelihood function; this represents the core of the positioning
model and can be computed in the off-line phase.

There are two ways to implement the likelihood function [30]:

• Kernel method: For each observationoi in the training data, it is assumed that
the signal strength exhibits a Gaussian distribution with meanoi and standard
deviationσ, whereσ is an adjustable parameter in the model. Specifically,
givenoi, the probability to observeo is

K(o; oi) =
1√
2πσ

exp(
(o− oi)2

2σ2
)

Based on the kernel function, the probabilityp(o|l) can be defined as

p(o|l) =
1
n1

∑

li∈L,i=l

K(o; oi)

Wheren1 is the number of training vectors inL obtained at locationl. In-
tuitively, the probability function is a mixture ofn1 equally weighted density
functions. Also note that the preceding formulas are derived assuming that
only one base station exists. With multiple base stations, the probability func-
tion will be multivariated, and the probability will become the multiplication
of multiple independent probabilities, each for one base station.
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• Histogram method: Another method to estimate the density functions is to
use histogram, which is related to discretization of continuous values to dis-
crete ones. A number of bins can be defined as a set of non-overlapping inter-
vals that cover the whole random variables. The advantage of this method is
in its ease in implementation and low computational cost. Another reason is
that its discrete property can smooth out the instability of signal strengths.

The probability-based methods can adapt to different environments. To further
reduce the computational overhead, Youssef and colleagues [39] proposed a method
by clustering training data in the database.

1.2.3 Network Based Tracking

Special concerns such as power saving, bandwidth conservation, and fault tolerance
arise when a solution is designed for a wireless sensor network. At the network level,
location tracking may be done via the cooperation of sensors. Tseng and colleagues
[37] addressed these issues using an agent-based paradigm. Once a new object is
detected by the network, a mobile agent will be initiated to track the roaming path
of the object. The agent is mobile because it will choose the sensor closest to the
object to stay. The agent may invite some nearby slave sensors to cooperatively
position the object and inhibit other irrelevant (i.e., farther) sensors from tracking
the object. More precisely, only three agents will be used for the tracking purpose at
any time and they will move as the object moves. The trilateration method is used
for positioning. As a result, the communication and sensing overheads are greatly
reduced. Because data transmission may consume a lot of energy, this agent-based
approach tries to merge the positioning results locally before sending them to the
data center. These authors also address how to conduct data fusion.

Figure 1.5 shows an example. The sensor network is deployed in a regular manner
and it is assumed that each sensors sensing distance equals the distance between two
neighboring sensors. Initially, each sensor is in the idle state, searching for new
objects. Once detecting a target, a sensor will transit to the election state, trying
to serve as the master agent. The nearest sensor will win. The master agent will
then dispatch two neighboring sensors as the slave agents; master and slave agents
will cooperate to position the object. In the figure, the object is first tracked by
sensors{S0, S1, S2} when resident inA0, then by{S0, S2, S3} when in A1, by
{S2, S3, S5} when in A2, etc. The master agent is responsible for collecting all
sensing data and performing the trilateration algorithm. It also conducts data fusion
by keeping the tracking results while it moves around. At a proper time, the master
agent will forward the tracking result to the data center. Two strategies are proposed
for this purpose: threshold-based (TB) strategy, which will forward the result when
the amount of data reaches a predefined threshold valueT , and distance-based (DB)
strategy, which will make a decision based on the routing distance from the agents
current location to the data center and the direction in which the agent is moving.
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Fig. 1.5 Roaming path of an object (dashed line).

1.3 LOCALIZATION IN WIRELESS SENSOR NETWORKS

In this section we address the issue of localization in ad-hoc sensor networks. That
is, we want to determine the location of individual sensor nodes without relying
on external infrastructure (base stations, satellites, etc.). Undoubtedly, the Global
Positioning System (GPS) is the most well-known location service in use today. The
approach taken by GPS, however, is unsuitable for low-cost, ad-hoc sensor networks
since GPS is based on extensive infrastructure (i.e., satellites).

Location service enables routing in sufficiently isotropic large networks, without
the use of large routing tables. APS (Ah hoc Positioning System)[26] is a distributed,
hop by hop positioning algorithm, that works as an extension of both distance vector
routing and GPS positioning in order to provide approximate location for all nodes in
a network where only a limited fraction of nodes have self location capability. Also,
APS is appropriate for indoor location aware applications, when the network’s main
feature is not the unpredictable, highly mobile topology, but rather deployment that is
temporary, and ad hoc. Large sensor networks of low power nodes face a number of
challenges: routing without the use of large conventional routing tables, adaptability
in front of intermittent functioning regime, network partitioning and survivability. In
this section, we address the problem of self locating the nodes in the field, which
may provide a solution to the first challenge, and solve other practical problems as
well.

Before discussing distributed localization in detail, we first outline the context in
which these algorithms have to operate. A first consideration is that the requirement
for sensor networks to be self-organizing implies that there is no fine control over
the placement of the sensor nodes when the network is installed (e.g., when nodes
are dropped from an airplane). Consequently, we assume that nodes are randomly
distributed across the environment. For simplicity and ease of presentation we limit
the environment to2 dimensions, but all algorithms are capable of operating in3D.
Figure 1.6 shows an example network with25 nodes; pairs of nodes that can com-
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municate directly are connected by an edge. The connectivity of the nodes in the
network (i.e., the average number of neighbors) is an important parameter that has a
strong impact on the accuracy of most localization algorithms. It can be set initially
by selecting a specific node density, and in some cases it can be set dynamically by
adjusting the transmit power of the RF radio in each node.

Anchor

Unknown

Fig. 1.6 Example network topology

In some application scenarios, nodes may be mobile. Here, however, we focus
on static networks, where nodes do not move, since this is already a challenging
condition for distributed localization. We assume that some anchor nodes have a pri-
ori knowledge of their own position with respect to some global coordinate system.
Note that anchor nodes have the same capabilities (processing, communication, en-
ergy consumption, etc.) as all other sensor nodes with unknown positions. Ideally
the fraction of anchor nodes should be as low as possible to minimize the installa-
tion costs. The final element that defines the context of distributed localization is the
capability to measure the distance between directly connected nodes in the network.
From a cost perspective it is attractive to use the RF radio for measuring the range
between nodes, for example, by observing the signal strength. As mentioned before,
this approach yields poor distance estimates. Much better results are obtained by
time-of-flight measurements (i.e., TOA and TDOA), particularly when acoustic and
RF signals are combined; accuracies of a few percent of the transmission range are
reported. It is important to realize that the main three context parameters (connectiv-
ity, anchor fraction, and range errors) are dependent. Poor range measurements can
be compensated for by using many anchors and/or a high connectivity.

1.3.1 Ad-hoc Positioning System (APS)

1.3.1.1 Platform If a graph issufficientlyconnected, and the lengths of its
edges are all known, then its plane topology may be reconstructed [26]. But what
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is a sufficient degree of connectivity? If we assimilate the graph with a wire frame,
where nodes act as hinges, the goal is to determine which part of the graph has
non-coordinate moving parts, and those will be the nodes which can determine their
location. Once such a wire-frame is fixed, it will have a reference system of its own,
that eventually has to be aligned to the global coordinate system of the GPS. In order
to fix this wire frame somewhere on the global plane, at least three nodes (called
landmarks), that are GPS enhanced, or know their position by some other means,
have to be present in the connected graph. Devices as simple as the Rene motes [17]
have software access to the signal strength of the radio signal, thus offering a way to
estimate distance to immediate neighbors. This measurements however, are affected
by errors. One of the aims of APS is to enhance position accuracy as the fraction
of landmarks of the entire population increases. Even if it is theoretically sufficient
to have three landmarks, the presence of measurement errors will demand higher
fractions of landmarks, depending on the requirements of the application.

1.3.1.2 Algorithm It is not desirable to have the landmarks emit with large
power to cover the entire network for several reasons: collisions in local communi-
cation, high power usage, coverage problems when moving. Also, it is not acceptable
to assume some fixed positions for the landmarks, as the applications envisioned by
APS systems are either in flight deployments over inaccessible areas, or possibly in-
volving movement and reconfiguration of the network. In this case, one option is to
use hop by hop propagation capability of the network to forward distances to land-
marks. In general, they aim for the same principle as GPS, with the difference that the
landmarks are contacted in a hop by hop fashion, rather than directly, as ephemerides
are. Once an arbitrary node has estimates to a number(≥ 3) of landmarks, it can
compute its own position in the plane, using a similar procedure with the one used
in GPS position calculation described in the previous section. The estimate we start
with is the centroid of the landmarks collected by a node. In what follows we will
refer to one landmark only, as the algorithm behaves identically and independently
for all the landmarks in the network. It is clear that the immediate neighbors of the
landmark can estimate the distance to the landmark by direct signal strength mea-
surement. Using some propagation method, the second hop neighbors then are able
to infer their distance to the landmark, and the rest of the network follows, in a con-
trolled flood manner, initiated at the landmark. Complexity of signaling is therefore
driven by the total number of landmarks, and by the average degree of each node.
What makes this method similar with the distance vector routing, is that at any time,
each node only communicates with its immediate neighbors, and in each message
exchange it broadcasts available estimates to landmarks acquired so far. This is ap-
propriate for nodes with limited capabilities, which do not need, and cannot handle
the image of the entire, possibly moving, network. The APS system used three meth-
ods of hop to hop distance propagation and examine advantages and drawbacks for
each of them. Each propagation method is appropriate for a certain class of problems
as it influences the amount of signaling, power consumption, and position accuracy
achieved.



LOCALIZATION IN WIRELESS SENSOR NETWORKS 13

1.3.1.3 Distance to Anchors Nodes that can communicate with anchor
nodes directly are able to find their distance to anchor nodes , but this information
is not available to all nodes. Nodes share information to collectively determine the
distances between individual nodes and the anchors, so that an (initial) position can
be calculated. None of the alternatives engages in complicated calculations, so find-
ing distance to anchors is communication bounded. Most of distributed localization
algorithms share a common communication pattern: information is flooded into the
network, starting at the anchor nodes. A network-wide flood by some anchorA is
expensive since each node must forwardA’s information to its (potentially) unaware
neighbors. This implies a scaling problem: flooding information from all anchors
to all nodes will become too expensive for large networks, even with low anchor
fractions. Fortunately a good position can still be derived with knowledge (position
and distance) from a limited number of anchors. Therefore nodes can simply stop
forwarding information when enough anchors have beenlocated. This simple opti-
mization (have aflood limit) has been proved to be highly effective in controlling the
amount of communication.

There are several requirements an ad hoc positioning algorithm has to satisfy.
Some of these requirement are similar to the requirements mentioned before. First,
it has to be distributed: in a very large network of low memory and low bandwidth
nodes, designed for intermittent operation, even shuttling the entire topology to a
server in a hop by hop manner would put too high a strain on the nodes close to
the base station or server. Partitioned areas would make centralization impossible,
and anisotropic networks would put more strain on some nodes that have to support
more forwarding traffic than others. Changing topologies would also make the cen-
tralized solution undesirable. Second, it has to minimize the amount of node to node
communication and computation power, as the radio and the processor are the main
sources of draining battery life. Also, it is desirable to have a low signaling complex-
ity in the event a part of the network changes topology. Third, the positioning system
should work even if the network becomes disconnected (in the context of sensor net-
works, the data can be later collected by a fly-over base station). Finally, our aim
is to provide absolute positioning, in the global coordinate system of the GPS, as
opposed to relative coordinates, for the following reasons: relative positioning might
incur a higher signaling cost in the case the network topology changes, and absolute
positioning enables a unique name-space, that of GPS coordinates.

Sum-dist: This method is also known asDV-distance[26]. The most simple so-
lution for determining the distance to the anchors is simply adding the ranges en-
countered at each hop during the network flood. Sum-dist starts at the anchors, who
send a message including their identity, position, and a path length set to0. Each
receiving node adds the measured range to the path length and forwards (broadcasts)
the message if the flood limit allows it to do so. Another constraint is that when the
node has received information about the particular anchor before, it is only allowed
to forward the message if the current path length is less than the previous one. The
end result is that each node will have stored the position and minimum path length
to at least flood limit anchors.
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DV-hop: A drawback of Sum-dist is that range errors accumulate when distance
information is propagated over multiple hops. This cumulative error becomes signif-
icant for large networks with few anchors (long paths) and/or poor ranging hardware.
A robust alternative is to use topological information by counting the number of hops
instead of summing the (erroneous) ranges. This approach was named DV-hop by
Niculescu and Nath [26], and Hop-TERRAIN by Savarese et al. [32]. DV-Hop prop-
agation method is the most basic scheme, and it first employs a classical distance
vector exchange so that all nodes in the network get distances, in hops, to the land-
marks. DV-hop essentially consists of two flood waves. After the first wave, which
is similar to Sum-dist, nodes have obtained the position and minimum hop count
to at least flood limit anchors. The second calibration wave is needed to convert
hop counts into distances such that nodes can compute a position. This conversion
consists of multiplying the hop count with an average hop distance. Whenever an
anchorA1 infers the position of another anchorA2 during the first wave, it computes
the distance between them, and divides that by the number of hops to derive the aver-
age hop distance betweenA1 andA2. When calibrating, an anchor takes all remote
anchors into account that it is aware of. Nodes forward (broadcast) calibration mes-
sages only from the first anchor that calibrates them, which reduces the total number
of messages in the network.

When using DV-hop method, each node maintains a table of entries(Xi, Yi, hi)
and exchanges updates only with its neighbors. Once a landmark gets distances to
other landmarks, it estimates average size for one hop, which is then deployed as a
correction to the entire network. When receiving the correction, a node may then
have estimated distances to landmarks, in meters, which can be used to perform the
triangulation. The correction a landmark(Xi, Yi) computes is

ci =
∑√

(Xi −Xj)2 + (Yi − Yj)2∑
hi

, i 6= j, for all landmarks j

A regular node gets an update from one of the landmarks, and it is usually the
closest one, depending on the deployment policy and the time the correction phase
of APS starts at each landmark. Corrections are distributed by controlled flooding,
meaning that once a node gets and forwards a correction, it will drop all the subse-
quent ones. This policy ensures that most nodes will receive only one correction,
from the closest landmark. When networks are large, a method to reduce signaling
would be to set a TTL field for propagation packets, which would limit the number
of landmarks acquired by a node. Here, controlled flooding helps keeping the cor-
rections localized in the neighborhood of the landmarks they were generated from,
thus accounting for non-isotropies across the network.

The advantages of the ”DV-hop” propagation scheme are its simplicity and the
fact that it does not depend on measurement error. The drawbacks are that it will
only work for isotropic networks, that is, when the properties of the graph are the
same in all directions, so that the corrections that are deployed reason-arbitrary ably
estimate the distances between hops.
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Euclidean: A drawback of DV-hop is that it fails for highly irregular network
topologies, where the variance in actual hop distances is very large. Niculescu and
Nath [26] have proposed another method, named Euclidean, which is based on the
local geometry of the nodes around an anchor. Again anchors initiate a flood, but
forwarding the distance is more complicated than in the previous cases. When a node
has received messages from two neighbors that know their distance to the anchor,
and to each other, it can calculate the distance to the anchor. Figure 1.7 shows a
nodeX that has two neighborsn1 andn2 with distance estimates (a andb) to an
anchor. Together with the known rangesc, d, ande, there are two possible values
(r1 and r2) for the distance of the node to the anchor. Niculescu describes two
methods to decide on which, if any, distance to use. The neighbor vote method
can be applied if there exists a third neighborn3 that has a distance estimate to the
anchor and that is connected to eithern1 orn2. Replacingn2 (orn1) byn3 will again
yield a pair of distance estimates. The correct distance is part of both pairs, and is
selected by a simple voting. Of course, more neighbors can be included to make the
selection more accurate. The second selection method is called common neighbor
and can be applied if noden3 is connected to bothn1 and n2. Basic geometric
reasoning leads to the conclusion that the anchor andn3 are on the same or opposite
side of the mirroring linen1n2, and similarly whether or notX andn3 are on the
same side. From this it follows whether or notX and the anchor lay on the same
side. To handle the uncertainty introduced by range errors Niculescu implements a
safety mechanism that rejects ill-formed (flat) triangles, which can easily derail the
selection process byneighbor voteandcommon neighbor. This check verifies that
the sum of the two smallest sides exceeds the largest side multiplied by a threshold,
which is set to two times the range variance. For example, the triangle4Xn1n2 in
Figure 1.7 is accepted whenc + d > (1 + 2 × RangeV ar). Note that the safety
check becomes more strict as the range variance (RangeVar) increases. This leads to
a lower coverage, defined as the percentage of non-anchor nodes for which a position
was determined.

We now describe some modifications proposed in [21] to Niculescu’sneighbor
votemethod that remedy the poor selection of the location forX in important cor-
ner cases. The first problem occurs when the two votes are identical because, for
instance, the three neighbors (n1, n2, andn3) are collinear. In these cases it is hard
to select the right alternative. Solution is to leave equal vote cases unsolved, instead
of picking an alternative and propagating an error with50% chance, then filter all in-
decisive cases by adding the requirement that the standard deviation of the votes for
the selected distance must be at most1/3 of the standard deviation of the other dis-
tance. The second problem that is that of a bad neighbor with inaccurate information
spoiling the selection process by voting for two wrong distances. This case is filtered
out by requiring that the standard deviation of the selected distance is at most5% of
that distance. To achieve good coverage, they use both methods. If both produce a
result, they use the result from the modifiedneighbor votebecause they found it to
be the most accurate of the two. If both fail, the flooding process stops leading to the
situation where certain nodes are not able to establish the distance to enough anchor
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nodes. Sum-dist and DV-hop, on the other hand, never fail to propagate the distance
and hop count, respectively.

Anchor

n1

X’
X

r1

r2

a

b
e e

c

d d
n2

Fig. 1.7 Determining distance using Euclidean.

Let us see another example. An arbitrary nodeA needs to have at least two
neighborsB andC which have estimates for the landmarkL (See Figure 1.8).A also
has measured estimates of distances forAB, AC, andBC, so there is the condition
that: B andC, besides being neighbors ofA, are neighbors of each other, orA
knows distanceBC, from being able to map all its neighbors in a local coordinate
system. In any case, for the quadrilateralABCL, all the sides are known, and one
of the diagonals, which isBC in this case, is also known. This allows nodeA to
compute the second diagonalAL, which in fact is the Euclidean distance fromA to
the landmarkL. It is possible thatA is on the same side ofBC asL, shown asA′

in the Figure 1.8 in which case the distance toL is different. The choice between
the two possibilities is made locally byA either by voting, whenA has several pairs
of immediate neighbors with estimates forL, or by examining relation with other
common neighbors ofB andC. If it cannot be chosen clearly betweenA andA′,
an estimate distance toL won’t be available forA until either more neighbors have
estimates forL that will suit voting, or more second hop neighbors have estimates
for L, so a clear choice can be made. Once the proper choice forA is available, the
actual estimate is obtained by applying Pithagora’s generalized theorem in triangles
ACB, BCL, andACL, to find the length ofAL. An error reduction improvement
applicable for the ”Euclidean” propagation, but not for the ”DV based” methods is
for a landmark to correct all the estimates it forwards. It uses the true, GPS obtained
coordinates, instead of relying on the measurement based received values.

1.3.1.4 Node Position Now nodes can determine their position based on the
distance estimates to a number of anchors provided by one of the three alternatives
(Sum-dist, DV-hop, or Euclidean). The determination of the node positions does not
involve additional communication.
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Fig. 1.8 Euclidean Propagation Method.

Lateration: The most common method for deriving a position is Lateration,
which is a form of triangulation (introduced earlier in section 1.2.1). From the
estimated distancesdi and known positions(xi, yi) of the anchors we derive the
following system of equations:

(x1 − x)2 + (y1 − y)2 = d1
2,

(x2 − x)2 + (y2 − y)2 = d1
2,

...
(xn − x)2 + (yn − y)2 = dn

2,

Where the unknown position is denoted by(x, y). The system can be linearized by
subtracting the last equation from the firstn− 1 equations.

x1
2 − xn

2 − 2(x1 − xn)x + y1
2 − yn

2 − 2(y1 − yn)y = d1
2 − dn

2,
...

xn−1
2 − xn

2 − 2(xn−1 − xn)x + yn−1
2 − yn

2 − 2(yn−1 − yn)y = dn−1
2 − dn

2,

Reordering the terms gives a proper system of linear equations in the formAx =
b, where

A =




2(x1 − xn) 2(y1 − yn)
...

...
2(xn−1 − xn) 2(yn−1 − yn)


 ,

b =




x1
2 − xn

2 + y1
2 − yn

2 + dn
2 − d1

2

...
xn−1

2 − xn
2 + yn−1

2 − yn
2 + dn

2 − dn−1
2


 .

The system is solved using a standard least-squares approach:x̂ = (AT A)−1AT b.
In exceptional cases the matrix inverse cannot be computed and Lateration fails. In
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the majority of the cases, however, we succeed in computing a location estimate
x̂.We run an additional sanity check by computing the residue between the given
distancesdi and the distances to the location estimatex̂

residue =
Σn

i=1

√
(xi − x̂)2 + (yi − ŷ)2 − di

n

A large residue signals an inconsistent set of equations; we reject the locationx̂
when the length of the residue exceeds the radio range.

Min-max: Lateration is quite expensive in the number of floating point operations
that is required. A much simpler method is presented by Savvides et al. [33] as part
of theN -hop multilateration approach.

Estimated Position
Anchor3

Anchor2

Actual Position

Anchor1

Fig. 1.9 Determining position using Min-Max.

The main idea is to construct a bounding box for each anchor using its position
and distance estimate, and then to determine the intersection of these boxes. The
position of the node is set to the center of the intersection box. Figure 1.9 illustrates
the Minmax method for a node with distance estimates to three anchors. Note that
the estimated position by Minmax is close to the true position computed through
Lateration (i.e., the intersection of the three circles). The bounding box of anchor
a is created by adding and subtracting the estimated distanceda from the anchor
position(xa, ya) : [xa − da, ya − da]× [xa + da, ya + da]. The intersection of the
bounding boxes is computed by taking the maximum of all coordinate minimums
and the minimum of all maximums:[max(xi − di),max(yi − di)] × [min(xi +
di),min(yi +di)]. The final position is set to the average of both corner coordinates.
As for Lateration, we only accept the final position if the residue is small.



LOCALIZATION IN WIRELESS SENSOR NETWORKS 19

1.3.1.5 Refinement Now we can refine the (initial) node positions computed
so far. These positions are not very accurate, even under good conditions (high con-
nectivity, small range errors), because not all available information is used in the
first two phases. In particular, most ranges between neighboring nodes are neglected
when the distances between node and anchor are determined. The iterative refine-
ment procedure proposed by Savarese et al. [32] does take into account all internode
ranges, when nodes update their positions in a small number of steps. At the be-
ginning of each step a node broadcasts its position estimate, receives the positions
and corresponding range estimates from its neighbors, and performs the Lateration
procedure to determine its new position. In many cases the constraints imposed by
the distances to the neighboring locations will force the new position towards the
true position of the node. When, after a number of iterations, the position update
becomes small, refinement stops and reports the final position.

The basic iterative refinement procedure outlined above may be too simple to be
used in practice. The main problem is that errors propagate quickly through the net-
work; a single error introduced by some node needs onlyd iterations to affect all
nodes, whered is the network diameter. This effect was countered by (1) clipping
undetermined nodes with non-overlapping paths to less than three anchors, (2) filter-
ing out difficult symmetric topologies, and (3) associating a confidence metric with
each node and using them in a weighted least-squares solution(wAx = wb). The de-
tails (see [32]) are beyond the scope of this chapter, but the adjustments considerably
improved the performance of the refinement procedure. This is largely due to the
confidence metric, which allows filtering of bad nodes, thus increasing the (average)
accuracy at the expense of coverage. TheN -hop multilateration approach by Sav-
vides et al. [33] also includes an iterative refinement procedure, but it is less sophis-
ticated than the refinement discussed above. In particular, they do not use weights,
but simply group nodes into so-called computation subtrees (over-constrained con-
figurations) and enforce nodes within a subtree to execute their position refinement
in turn in a fixed sequence to enhance convergence to a pre-specified tolerance.

1.3.2 Time-based Positioning Scheme (TPS)

TPS is a time-based positioning scheme for outdoor wireless sensor networks. Many
applications of outdoor sensor networks require knowledge of physical sensor posi-
tions. For example, target detection and tracking is usually associated with location
information. Further, knowledge of sensor location can be used to facilitate network
functions such as packet routing and collaborative signal processing. Sensor position
can also serve as a unique node identifier, making it unnecessary for each sensor to
have a unique ID assigned prior to its deployment.

TPS relies on RF signal, which performs well compared to ultrasound, infrared,
etc., in outdoor environments. They measure the difference in arrival times (TDoA)
of beacon signals. In previous research, Time-of-Arrival (ToA) has proven more use-
ful than RSSI in location determination. TPS does not need the specialized antennae
generally required by an Angle-of-Arrival (AoA) positioning system. This time-
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based location detection scheme avoids the drawbacks of many existing systems for
outdoor sensor location detection. Compared to existing schemes proposed in the
context of outdoor sensor networks, TPS scheme has the following characteristics
and advantages:

• Time synchronization of all base stations and nodes is not required in TPS.
Sensors measure the difference in signal arrival times using a local clock.
Base stations schedule their transmissions based on receipt of other beacon
transmissions and do not require synchronized clocks. Many existing location
discovery systems for sensor networks require time synchronization among
base stations, or between satellites and sensors. Imperfect time synchroniza-
tion can degrade the positioning accuracy.

• There are no requirements for an ultrasound receiver, second radio or spe-
cialized antennae at base stations or sensors. TPS scheme does not incur the
complexity, power consumption and cost associated with these components.
(TPS sensors do require the ability to measure the difference in signal arrival
times with precision.)

• TPS algorithm is not iterative and does not require a complicated refinement
step. We refine position estimates by averaging time difference measurements
over several beacon intervals prior to calculating position. This is useful to
mitigate the effects of momentary interference and fast fading. This averaging
requires less computation than repeatedly solving linear system matrices, least
squares or multilateration algorithms.

• TPS has low computation cost. TPS location detection algorithm is based on
simple algebraic operations on scalar values. On the other hand, multilatera-
tion based systems require matrix operations to optimize the objective func-
tions (minimum mean square estimation or maximum likelihood estimation),
which induces higher computation overhead at each sensor.

• Sensors listen passively and are not required to make radio transmissions. Base
stations transmit all the beacon signals. This conserves sensor energy and re-
duces RF channel use. Connectivity based systems often require global flood-
ing or global connectivity information to estimate range.

1.3.2.1 Network Model Assume that the sensors are deployed randomly
over a2-dimensional monitored area (on the ground). Each sensor has limited re-
sources (battery, CPU, etc), and is equipped with an omni-directional antenna. Three
base stationsA, B, C, with known coordinates(xa, ya), (xb, yb), and(xc, yc), re-
spectively, are placed beyond the boundary of the monitored area, as shown in Figure
1.10. Let us assumeA be the master base station. Assume the monitored area is en-
closed within the angle∠BAC. Let the unknown coordinates of a sensor be(x, y),
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(a) An example sensor network (b) NodeS determines its position.

Fig. 1.10 TPS example

which will be determined by TPS. Each base station can reach all sensors in the mon-
itored area. One restriction on the placement of these base stations is that they must
be non-collinear, as otherwise, the sensor locations will be indistinguishable.

Note that these base stations will transmit RF beacon signals periodically to as-
sist each sensor with location discovery. They have long-term power supplies and
can receive RF signals from each other. Note that there is no time synchronization
among these three base stations. However, TPS system requires base stations to de-
tect signal arrival times with precision and to accurately calculate total turnaround
delay. This calculated turn-around delay consists of a random delay combined with
known system transmission and reception delays. If the monitored area is so large
that3 base stations can not cover the whole area completely, we can always divide
the area into smaller subareas and place more base stations.

1.3.2.2 Positioning Scheme TPS time-based location detection scheme con-
sists of two steps. The first step detects the time difference of signal arrival times
from three base stations. These time differences are transformed into range differ-
ences from the sensor to the base stations. In the second step, we perform trilateration
to transform these range estimates into coordinates.

Given the locations(xa, ya), (xb, yb), and(xc, yc) of base stationsA, B, andC,
respectively, TPS system determines the location(x, y) of sensorS, as shown in
Figure 1.10.

• Range Detection:Let A be the master base station, which will initiate a bea-
con signal everyT seconds. Each beacon interval begins whenA transmits
a beacon signal. SensorS, base stationsB andC will all receive As bea-
con signal respectively.B will reply to A with a beacon signal conveying the
difference between the time the signal fromA was received and the time the
replay was sent. This signal will reachS. After receiving beacon signals from
bothA andB,C will reply to A with a beacon signal conveying the difference
between the time the signal fromA was received byC and the time the replay
was sent. This signal will also reachS. Based on triangle inequality,
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• Location Computation: NodeS know the time the signal was sent fromA
and the time it was received byB, C and also by itself. NodeS also has the
same information about the signal sent byB andC. Now nodeS can calculate
its position using trilateration.

1.3.2.3 Sources of Errors There are three major sources of errors for TPS:
the receiver system delay, thewireless multipath fading channel, and thenon-line-
of-sight (NLOS) transmission. The receiver system delay is the time duration from
which the signal hits the receiver antenna until the signal is decoded accurately by
the receiver. This time delay is determined by the receiver electronics. Usually it is
constant or varies in very small scale when the receiver and the channel is free from
interference. This system delay can be predetermined and be used to calibrate the
measurements. If base stationsB andC can provide precise a priori information on
receiver system time delay, their effect will be negligible. The wireless multipath
fading channel will greatly influence the location accuracy of any location detection
system. Major factors influencing multipath fading include multipath propagation,
speed of the receiver, speed of the surrounding objects, and the transmission signal
bandwidth. Multipath propagation refers to the fact that a signal transmitted from the
sender can follow a multiple number of propagation paths to the receiving antenna.
In TPS system, the performance is not affected by the speed of the receivers since
all sensors and base stations are stationary. However, a moving tank in the surround-
ing area can cause interference. There are two important characteristics of multipath
signals. First, the multiple non-direct path signals will always arrive at the receiver
antennae latter than the direct path signal, as they must travel a longer distance.
Second, in LOS transmission model, non-direct multipath signals will normally be
weaker than the direct path signal, as some signal power will be lost from scattering.
If NLOS exists, the non-direct multipath signal may be stronger, as the direct path
is hindered in some way. Based on these characteristics, scientists can always de-
sign more sensitive receivers to lock and track the direct path signal. TPS mitigates
the effect of multipath fading by measuring TDoA over multiple beacon intervals.
TDoA measurements have been very effective in fading channels, as many detri-
mental effects caused by multipath fading and processing delay can be cancelled.
Another factor related to wireless channels that causes location detection errors is
NLOS transmission. To mitigate NLOS effects, base stations can be placed well
above the surrounding objects such that there are line-of-sight transmission paths
among all base stations and from base stations to sensors.

1.3.3 GPS-less Low Cost Outdoor Localization for Very Small
Devices

Wireless networks of sensors greatly extend our ability to monitor and control the
physical world. The availability of microsensors and low power wireless communi-
cations enables the deployment of densely distributed sensor/actuator networks for a
wide range of biological and environmental monitoring applications, from marine to
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soil and atmospheric contexts. Networked sensors can collaborate and aggregate the
huge amount of sensed data to provide continuous and spatially dense observation of
biological, environmental and artificial systems. Applications include environmen-
tal monitoring in the water and soil, tagging small animals unobtrusively, or tagging
small and light objects in a factory or hospital setting. Instrumenting the physical
world, particularly for such applications, requires that the devices we use as sensor
nodes be small, light, unobtrusive and un-tethered. This imposes substantial restric-
tions on the amount of hardware that can be placed on these devices.

GPS solves the problem of localization in outdoor environments for PC class
nodes. However, for large networks of very small, cheap and low power devices,
practical considerations such as size, form factor, cost and power constraints of the
nodes preclude the use of GPS on all nodes. The GPS-less system [10] addresses the
problem of localization for such devices, with the following design goals.

• RF-based: They focus on small nodes which have some kind of short-range
radio frequency (RF) transceiver. The primary goal is to leverage this radio
for localization, thereby eliminating the cost, power and size requirements of
a GPS receiver.

• Receiver based: In order to scale well to large distributed networks, the re-
sponsibility for localization must lie with the receiver node that needs to be
localized and not with the reference points.

• Ad hoc: In order to ease deployment, a solution that does not require pre-
planning or extensive infrastructure is desired.

• Responsiveness: We need to be able to localize within a fairly low response
time.

• Low Energy: Small, un-tethered nodes have modest processing capabilities,
and limited energy resources. If a device uses all of its energy localizing itself,
it will have none left to perform its task. Therefore, we desire to minimize
computation and message costs to reduce power consumption.

• Adaptive Fidelity: In addition, we want the accuracy of our localization algo-
rithms to be adaptive to the granularity of available reference points.

This scheme uses an idealized radio model and proposes a simple connectivity
based localization method for such devices in unconstrained outdoor environments.
It leverages the inherent radio-frequency (RF) communications capabilities of these
devices. A fixed number of nodes in the network with overlapping regions of cov-
erage serve asreferencepoints and transmit periodic beacon signals. Nodes use a
simple connectivity metric to infer proximity to a given subset of these reference
points and then localize themselves to the centroid of the selected (proximate) refer-
ence points.
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1.3.3.1 Localization Algorithm We considered two approaches to engi-
neer an RF-based localization system, based on measurements of received signal
strength and connectivity respectively.The first approach for RF-based localization
is to use measured signal strength of received beacon signals to estimate distance,
as in the RADAR system [8], with an outdoor radio signal propagation model. We
discarded this approach for several reasons relating to our short-range (10m) radios.
First, signal strength at short ranges is subject to unpredictable variation due to fad-
ing, multipath, and interferences. It does not therefore correlate directly with dis-
tance. Moreover, short range does not allow much gain in density of reference points
when considering signal strength. We have found an idealized radio model useful
for predicting bounds on the quality of connectivity based localization. We chose
this model because it was simple and easy to reason about mathematically. This sec-
tion presents this idealized model. To our surprise, this model compares quite well
to outdoor radio propagation in uncluttered environments as we explore in the next
section. We make two assumptions in our idealized model:

• Perfect spherical radio propagation.

• Identical transmission range (power) for all radios.

Multiple nodes in the network with overlapping regions of coverage serve as ref-
erence points (labeledR1 to Rn). They are situated at known positions,(X1, Y1)
to (Xn, Yn), that form a regular mesh and transmit periodic beacon signals everyT
seconds containing their respective positions. We assume that neighboring reference
points can be synchronized so that their beacon signal transmissions do not overlap
in time. Furthermore, in any time interval, each of the reference points would have
transmitted exactly one beacon signal.

Each mobile node listens for a fixed time periodt and collects all the beacon sig-
nals that it receives from various reference points. We characterize the information
per reference pointRi by aconnectivity metricdefined as:

CMi =
Nrecv(i, t)
Nsent(i, t)

× 100

WhereNrecv(i, t) is the number of beacons sent byRi that have been received
in time t, andNsent(i, t) is the number of beacons that have been sent byRi. In
order to improve the reliability of our connectivity metric in the presence of various
radio propagation vagaries, we would like to base our metric on a sample of at least
S packets, whereS is the sample size, a tunable parameter of our method ( i.e.,
Nsent(i, t) = S). Since we knowT to be the time period between two successive
beacon signal transmissions, we can sett, the receivers sampling time as:

t = (s + 1− ε)T (0 < ε ¿ 1)

From the beacon signals that it receives, the receiver node infers proximity to a
collection of reference points for which the respective connectivity metrics exceed a
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certain threshold. We denote the collection of reference points byRi1, Ri2, . . . , Rik.
The receiver localizes itself to the region which coincides to the intersection of the
connectivity regions of this set of reference points, which is defined by the centroid
of these reference points.

(X, Y ) =
(

Xi1 + Xi2 + . . . + Xik

k
,
Yi1 + Yi2 + . . . + Yik

k

)

1.3.4 Computational Complexity of Sensor Network Localization

The localization problem for sensor networks is to reconstruct the positions of all
of the sensors in a network, given the distances between all pairs of sensors that
are within some radiusr of each other. In the past few years, many algorithms for
solving the localization problem were proposed, without knowing the computational
complexity of the problem. Aspnes et al [5] showed that nopolynomial-timealgo-
rithm can solve this problem in the worst case, even for sets of distance pairs for
which a unique solution exists, unlessRP = NP.

Although the designs of the previous schemes have demonstrated clever engineer-
ing ingenuity, and their effectiveness is evaluated through extensive simulations, the
focus of these schemes is on algorithmic design, without knowing the fundamental
computational complexity of the localization process. In sensor network localization,
since only nodes who are within a communication range can measure their relative
distances, the graphs formed by connecting each pair of nodes who can measure
each others distance are better modeled as unit disk graphs. Such constraints could
have the potential of allowing computationally efficient localization algorithms to be
designed.

The localization problem considered here is to reconstruct the positions of a set
of sensors given the distances between any pair of sensors that are within some unit
disk radiusr of each other. Some of the sensors may be beacons, sensors with known
positions, but our impossibility results are not affected much by whether beacons are
available. To avoid precision issues involving irrational distances, it is assumed that
the input to the problem is presented with the distances squared. If we make the
further assumption that all sensors have integer coordinates, all distances will be
integers as well.

For the main result, we consider a decision version of the localization problem,
which we call UNIT DISK GRAPH RECONSTRUCTION. This problem essentially
asks if a particular graph with given edge lengths can be physically realized as a unit
disk graph with a given disk radius in two dimensions. The input is a graphG where
each edgeuv of G is labeled with an integerluv2, the square of its length, together
with an integerr2 that is the square of the radius of a unit disk. The output isyes
or no depending on whether there exists a set of points inR2 such that the distance
betweenu andv is luv wheneveruv is an edge inG and exceedsr wheneveruv is
not an edge inG.
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The main result, is that UNIT DISK GRAPH RECONSTRUCTION isNP-hard,
based on a reduction from CIRCUIT SATISFIABILITY. The constructed graph for
a circuit with m wires hasO(m2) vertices andO(m2) edges, and the number of
solutions to the resulting localization problem is equal to the number of satisfying
assignments for the circuit. In each solution to the localization problem, the points
can be placed at integer coordinates, and the entire graph fits in anO(m)-by-O(m)
rectangle, where the constants hidden by the asymptotic notation are small. The
construction also permits a constant fraction of the nodes to be placed at known
locations. Formally:

Theorem 1 There is a polynomial-time reduction from CIRCUIT SATISFIABILITY
to UNIT DISK GRAPH RECONSTRUCTION, in which there is a one-to-one corre-
spondence between satisfying assignments to the circuit and solutions to the resulting
localization problem.

A consequence of this result is:

Corollary 2 There is no efficient algorithm that solves the localization problem for
sparse sensor networks in the worst case unless P = NP.

It might appear that this result depends on the possibility of ambiguous recon-
structions, where the position of some points is not fully determined by the known
distances. However, if we allow randomized reconstruction algorithms, a similar
result holds even for graphs that have unique reconstructions.

Corollary 3 There is no efficient randomized algorithm that solves the localization
problem for sparse sensor networks that have unique reconstructions unless RP =
NP.

Finally, because the graph constructed in the proof of Theorem 1 uses only points
with integer coordinates, even an approximate solution that positions each point to
within a distanceε < 1/2 of its correct location can be used to find the exact lo-
cations of all points by rounding each coordinate to the nearest integer. Since the
construction uses a fixed value for the unit disk radiusr (the natural scale factor for
the problem), we have:

Corollary 4 The results of Corollary 2 and Corollary 3 continue to hold even for
algorithms that return an approximate location for each point, provided the approx-
imate location is withinεr of the correct location, whereε is a fixed constant.

What we do not know at present is whether these results continue to hold for
solutions that have large positional errors but that give edge lengths close to those in
the input. Our suspicion is that edge-length errors accumulate at most polynomially
across the graph, but we have not yet carried out the error analysis necessary to prove
this. If our suspicion is correct, we would have:



TARGET TRACKING AND CLASSIFICATION 27

Conjecture 1 The results of Corollary 2 and Corollary 3 continue to hold even for
algorithms that return an approximate location for each point, provided the relative
error in edge length for each edge is bounded byε/nc for some fixed constantc.

1.4 TARGET TRACKING AND CLASSIFICATION

One of the most important areas where the advantages of sensor networks can be
exploited is for tracking mobile targets. Scenarios where such network may be de-
ployed can be both military (tracking enemy vehicles, detecting illegal border cross-
ings) and civilian (tracking the movement of wild animals in wildlife preserves).
Typically, for accuracy, two or more sensors are simultaneously required for track-
ing a single target, leading to coordination issues. Additionally, given the require-
ments to minimize the power consumption due to communication or other factors,
we would like to select the bare essential number of sensors dedicated for the task
while all other sensors should preferably be in the hibernation or off state. In order
to simultaneously satisfy the requirements like power saving and improving over-
all efficiency, we need large scale coordination and other management operations.
These tasks become even more challenging when one considers the random mobility
of the targets and the resulting need to coordinate the assignment of the sensors best
suited for tracking the target as a function of time. In this section managing and
coordinating a sensor network for tracking moving targets is discussed.

The power limitation due to the small size of the sensors, the large numbers of
sensors which need to be deployed and coordinated, and the ability to deploy sensors
in an ad hoc manner give rise to a number of challenges in sensor networks. Each of
these needs to be addressed by any proposed architecture in order for it to be realistic
and practical.

• Scalable Coordination: A typical deployment scenario for a sensor network
comprises of a large number of nodes reaching in the thousands to tens of thou-
sands. At such large scales, it is not possible to attend to each node individually
due to a number of factors. Sensors nodes may not be physically accessible,
nodes may fail and new nodes may join the network. In such dynamic and
unpredictable scenarios, scalable coordination and management functions are
necessary which can ensure a robust operation of the network. In the light
of target tracking, the coordination function should scale with the size of the
network, the number of targets to be tracked, number of active queries etc.

• Tracking Accuracy: To be effective, the tracking system should be accurate
and the likelihood of missing a target should be low. Additionally, the dynamic
range of the system should be high while keeping the response latency, sensi-
tivity to external noise and false alarms low. The overall architecture should
also be robust against node failures.

• Ad Hoc Deployability: A powerful paradigm associated with sensor networks
is their ability to be deployed in an ad hoc manner. Sensors may be thrown in
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an area affected by a natural or man made disaster or air dropped to cover
a geographical region. Thus sensor nodes should be capable of organizing
themselves into a network and achieving the desired objective in the absence
of any human intervention or fixed patterns in the deployment.

• Computation and Communication Costs:Any protocol being developed for
sensor networks should keep in mind the costs associated with computations
and communication. With current technology, the cost of computation locally
is lower than that of communication in a power constrained scenario. As a
consequence, emphasis should be put on minimizing the communication re-
quirements.

• Power Constraints: The available power in each sensor is limited by the bat-
tery lifetime due to the difficulty or impossibility of recharging the nodes. As
a consequence, protocols which tend to minimize the energy consumption or
power aware protocols which adapt to the existing power levels are highly de-
sirable. Additionally, efforts should be made to turn off the nodes themselves
if possible in the absence of sensing or coordination operations.

1.4.1 Collaborative Signal Processing

Power consumption is a critical consideration in a wireless sensor network. The lim-
ited amount of energy stored at each node must support multiple functions, including
sensor operations, on-board signal processing, and communication with neighboring
nodes. Thus, one must consider power-efficient sensing modalities, low sampling
rates, low-power signal processing algorithms, and efficient communication proto-
cols to exchange information among nodes. To facilitate monitoring of a sensor
field, including detection, classification,identification, and tracking of targets, global
information in both space and time must be collected and analyzed over a specified
space-time region. However, individual nodes only provide spatially local informa-
tion. Furthermore, due to power limitation, temporal processing is feasible only over
limited time periods. This necessitatesCollaborative Signal Processing (CSP)(i.e.,
Collaboration between nodes to process the space-time signal). A CSP algorithm
can benefit from the following desirable features:

• Distributive processing: Raw signals are sampled and processed at individual
nodes but are not directly communicated over the wireless channel. Instead,
each node extracts relevant summary statistics from the raw signal, which are
typically of smaller size. The summary statistics are stored locally in individ-
ual nodes and may be transmitted to other nodes upon request.

• Goal-oriented, on-demand processing:To conserve energy, each node only
performs signal processing tasks that are relevant to the current query. In the
absence of a query, each node retreats into a standby mode to minimize en-
ergy consumption. Similarly, a sensor node does not automatically publish
extracted information (i.e., it forwards such information only when needed.).
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• Information fusion: To infer global information over a certain space-time re-
gion from local observations, CSP must facilitate efficient, hierarchical infor-
mation fusion and progressively lower bandwidth information must be shared
between nodes over progressively large regions. For example, (high band-
width) time series data may be exchanged between neighboring nodes for
classification purposes. However, lower bandwidthCPA (closest point of ap-
proach)data may be exchanged between more distant nodes for tracking pur-
poses.

• Multi-resolution processing: Depending on the nature of the query, some
CSP tasks may require higher spatial resolution involving a finer sampling of
sensor nodes, or higher temporal resolution involving higher sampling rates.
For example, reliable detection may be achievable with a relatively coarse
space-time resolution, whereas classification typically requires processing at a
higher resolution.

1.4.2 Target Tracking Using Space-Time Cells

1.4.2.1 Introduction Each object in a geographical region generates a time-
varying space-time signature field that may be sensed in different modalities, such
as acoustic, seismic or thermal. The nodes sample the signature field spatially and
the density of nodes should be commensurate with the rate of spatial variation in
the field. Similarly, the time series from each sensor should be sampled at a rate
commensurate with the required bandwidth. Thus, the rate of change of the space-
time signature field and the nature of the query determines the required space-time
sampling rate. A moving object in a region corresponds to a peak in the spatial signal
field that moves with time. Tracking an object corresponds to tracking the location
of the spatial peak over time.

1.4.2.2 Using Space-Time Cells To enable tracking in a sensor network,
the entire space-time region must be divided intospace-time cellsto facilitate local
processing . The size of a space-time cell depends on the velocity of the moving
target and the decay exponent of the sensing modality. It should approximately cor-
respond to a region over which the space-time signature field remains nearly con-
stant. In principle, the size of space-time cells may be dynamically adjusted as new
space-time regions are created based on predicted locations of targets. Space-time
signal averaging may be done over nodes in each cell to improve the signal to noise
ratio. We note that the assumption of constant signature field over a space-time cell
is at best an approximation in practice due to several factors, including variations
in terrain, foliage, temperature gradients and non-isotropic nature of source signal.
However, such an approximation may be judiciously applied in some scenarios for
the purpose of reducing intra-sensor communication as well to improve algorithm
performance against noise.
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1.4.2.3 Single Target Tracking One of the key premises behind the net-
working algorithms being developed at Wisconsin [23] is that routing of information
in a sensor network should be geographic-centric rather than node-centric. In other
words, from the viewpoint of information routing, the geographic locations of the
nodes are the critical quantities rather than their arbitrary identities. In the spirit of
space-time cells, the geographic region of interest is divided into smaller regions
(spatial cells) that facilitate communication over the sensor network. Some of the
nodes in each cell are designated asmanager nodesfor coordinating signal process-
ing and communication in that cell.

Figure 1.11 illustrates the basic idea of region-based CSP for detection and track-
ing of a single target. Under the assumption that a potential target may enter the
monitored area via one of the four corners, four cells,A, B, C andD, are created by
the UW-API protocols [23]. Nodes in each of the four cells are activated to detect
potential targets.

Each activated node runs an energy detection algorithm whose output is sampled
at an a priori fixed rate depending on the characteristics of expected targets. Suppose
a target enters CellA. Tracking of the target consists of the following five steps:

C

AB

D

Fig. 1.11 A Schematic illustrating detection and tracking of a single target.

1. Some and perhaps all of the nodes in CellA detect the target. These nodes are
the active nodes and CellA is the active cell. The active nodes also yield CPA
time information. The active nodes report their energy detector outputs to the
manager nodes atN successive time instants.

2. At each time instant, the manager nodes determine the location of the target
from the energy detector outputs of the active nodes. The simplest estimate of
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target location at an instant is the location of the node with the strongest signal
at that instant. However, more sophisticated algorithms for target localization
may be used. Such localization algorithms justify their higher complexity only
if the accuracy of their location determination is finer than the node spacing.

3. The manager nodes use locations of the target at theN successive time instants
to predict the location of the target atM(< N) future time instants.

4. The predicted positions of the target are used by the UW-API protocols [23]
to create new cells that the target is likely to enter. This is illustrated in Figure
1.11 where the three dotted cells represent the regions that the target is likely to
enter after the current active cell (CellA in Figure 1.11). A subset of these cells
is activated by the UW-API protocols for subsequent detection and tracking of
the target.

5. Once the target is detected in one of the new cells, it is designated as the new
active cell and the nodes in the original active cell (CellA in Figure 1.11) may
be put in the standby state to conserve energy.

Steps 1 5 are repeated for the new active cell and this forms the basis of detecting
and tracking a single target. For each detected target, an information field containing
tracking information, such as the location of the target at certain past times, is usually
passed from one active cell to the next one. This is particularly important in the case
of multiple targets.

1.4.2.4 Multiple Target Tracking Figure 1.11 illustrates detection and
tracking of a single target. If multiple targets are sufficiently separated in space or
time, that is they occupy distinct space-time cells, essentially the same procedure as
described in Section 1.4.2.3 may be used: a different track is initiated and maintained
for each target. Sufficient separation in time means that the energy detector output of
a particular sensor exhibits distinguishable peaks corresponding to the CPAs of the
two targets. Similarly, sufficient separation in space means that at a given instant the
spatial target signatures exhibit distinguishable peaks corresponding to nodes that are
closest to the targets at that instant. The assumption of sufficient separation in space
and/or time may be too restrictive in general. In such cases, classification algorithms
are needed that operate on spatio-temporal target signatures to classify them. This
necessarily requires a priori statistical knowledge of typical signatures for different
target classes.

1.4.2.5 Target Classification Here, we focus on single-node (no collabora-
tion between nodes) classification based on temporal target signatures: a time series
segment is generated for each detected event at a node and processed for classifica-
tion. Some form of temporal processing, such as a fast Fourier transform (FFT), is
performed and the transformed vector is fed to a bank of classifiers corresponding
to different target classes. The outputs of the classifiers that detect the target, ac-
tive classifiers, are reported to the manager nodes as opposed to the energy detector
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outputs. Steps (1) to (5) in Section 1.4.2.3 are repeated for all the active classifier
outputs to generate and maintain tracks for different classified targets. In some cases,
both energy-based CPA information and classifier outputs may be needed.

Now we briefly describe the three classifiers explored in this paper. Given a set
of N -dimensional feature vectors{x;x ∈ RN}, we assume that each of them is as-
signed a class label,ωc ∈ Ω = {ω1, ω2, ..., ωm}, that belongs to a set ofm elements.
We denote byp(ωc) the prior probability that a feature vector belongs to classωc.
Similarly, p(ωc|x) is the posterior probability for classωc given thatx is observed.

A minimum error classifiermaps each vectorx to an element in. such that the
probability of misclassification (i.e., the probability that the classifier label is dif-
ferent from the true label) is minimized. To achieve this minimum error rate, the
optimal classifier decidesx has labelωi if p(ωi|x) for all j 6= i, ωi, ωj ∈ Ω. In prac-
tice, it is very difficult to evaluate the posterior probability in closed form. Instead,
one may use an appropriate discriminant functiongi(x) that satisfiesgi(x) > gj(x)
if p(ωi|x) > p(ωj |x) for j 6= i, for all x. Then minimum error classification can be
achieved as: decidex has labelωi if gi(x) > gj(x) for j 6= i. The minimum prob-
ability of misclassification is also known as theBayeserror, and a minimum error
classifier is also known as a Bayes classifier or a maximum a posterior probability
(MAP) classifier. Below, we briefly discuss three classifiers that approximate the
optimal Bayes classifier.

• k-Nearest Neighbor (kNN) Classifier:The kNN classifier uses all the train-
ing features as the set of prototypes{pk}. During testing phase, the distance
between each test vector and every prototype is calculated, and thek proto-
type vectors that are closest to the test vector are identified. The class labels
of thesek-nearest prototype vectors are then combined using majority vote or
some other method to decide the class label of the test vector. Whenk = 1,
the kNN classifier is called the nearest neighbor classifier. It is well-known[9]
that asymptotically (in the number of training vectors), the probability of mis-
classification of a nearest neighbor classifier approaches twice the (optimal)
Bayes error. Hence the performance of a nearest neighbor classifier can be
used as a baseline to gauge the performance of other classifiers. However, as
the number of prototypes increases, a kNN classifier is not very suitable for ac-
tual implementation since it requires too much memory storage and processing
power for testing.

• Maximum Likelihood Classifier: Using Gaussian Mixture Density Model
In this classifier, the distribution of training vectors from the same class is
modeled as a mixture of Gaussian density functions. That is, the likelihood
function is modeled as:

p(x|ωi) ∝ Gi( x|θi) =
∑

k

|Λik|−N/2exp

(
−1

2
(x−mik)T Λik

−1 (x−mik)
)

(1.1)



TARGET TRACKING AND CLASSIFICATION 33

whereθi = [mi1,mi2, ..., mip, Λi1, Λi2, ..., Λip] are the mean and covariance
matrix parameters of theP mixture densities corresponding to classωi. These
model parameters can be identified by applying an appropriate clustering al-
gorithm, such as the k-means algorithm, or the Expectation-Maximization al-
gorithm to the training vectors of each class. The discriminant function is
computed asgi(x) = Gi(x|θi)p(ωi) where the prior probabilityp(ωi) is ap-
proximated by the relative number of training vectors in classi. In the numeri-
cal examples The can also be modeled data as Gaussian rather than a Gaussian
mixture (P = 1). Furthermore, you can use the maximum likelihood (ML)
classifier (uniform prior probabilities).

• Support Vector Machine (SVM) Classifier: A support vector machine (SVM)
is essentially a linear classifier operating in a higher dimensional space. Con-
sider a binary classification problem without loss of generality. Let{ϕ(x)}M

i=1

be a set of nonlinear transformations mapping theN -dimensional input vector
to anM -dimensional feature space(M > N). A linear classifier, charac-
terized by the weightsw1, w2, ..., wM , operates in this higher dimensional
feature spaceg(x) =

∑M
j=1 wjϕj(x) + b, whereb is the bias parameter

of the classifier. The optimal weight vectors for this classifier can be rep-
resented in terms of a subset of training vectors, termed the support vec-
tors wj =

∑Q
i=1 αiϕj(xi), j = 1, 2, ..., M . Using the above representa-

tion for the weight vectors, the linear classifier can be expressed asg(x) =∑Q
i=1 αiK(x, xi) + b whereK(x, xi) =

∑M
j=1 ϕj(x)ϕj(xi) is the symmet-

ric kernel representing the SVM. In the numerical examples presented in this
paper, we use a third degree polynomial kernel:K(x, xi) = (xT xi + 1)3.
In practice, the SVM discriminant functiong(x) is computed using the kernel
representation, bypassing the nonlinear transformation into the higher dimen-
sional space [10]. The classifier design then corresponds to the choice of the
kernel and the support vectors. By appropriately choosing the kernel, an SVM
can realize a neural network classifier as well. Similar to neural networks, the
training phase can take a long time. However, once the classifier is trained, its
application is relatively easy. In general, a different SVM is trained for each
class. The output of each SVM can then be regarded as an estimate of the
posterior probability for that class and the MAP decision rule can be directly
applied.

1.4.3 Target Tracking Based on Cooperative Binary Detection

1.4.3.1 Introduction Unlike other sensor network-based methods, which de-
pend on determining distance to the target or the angle of arrival of the signal, co-
operative tracking approach requires only that a sensor be able to determine if an
object is somewhere within the maximum detection range of the sensor. Cooperative
tracking is proposed as a method for tracking moving objects and extrapolating their
paths in the short term. By combining data from neighboring sensors, this approach
enables tracking with a resolution higher than that of the individual sensors being
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used. In cooperative tracking, statistical estimation and approximation techniques
can be employed to further increase the tracking precision, and enables the system
to exploit the tradeoff between accuracy and timeliness of the results. This work fo-
cuses on acoustic tracking, however the presented methodology is applicable to any
sensing modality where the sensing range is relatively uniform.

Cooperative tracking is a solution for tracking objects using sensor networks, and
may achieve a high degree of precision while meeting the constraints of sensor net-
work systems. The approach uses distributed sensing to identify an object and deter-
mine its approximate position, and local coordination and processing of sensor data
to further refine the position estimate. The salient characteristics of the cooperative
tracking approach are that it achieves resolution that is finer than that of the indi-
vidual sensors being used and that it provides early estimates of the objects position
and velocity. Thus cooperative tracking is useful for short-term extrapolation of the
objects path. Here an acoustic tracking system for wireless sensor networks is con-
sidered as a practical application of the cooperative tracking methodology. Acoustic
tracking relies on a network of microphone-equipped sensor nodes to track an object
by its characteristicacoustic signature.

1.4.3.2 Model In the real world, objects can move arbitrarily, i.e. possibly
changing speed and direction at any time. The representation of such arbitrary paths
may be cumbersome, and unnecessarily complex for the purpose of tracking the
objects path with a reasonable degree of precision. Instead, an approximation of the
path can be considered. Cooperative tracking usespiecewise linear approximation
to represent the path of the tracked object. Although the object itself may move
arbitrarily, its path is considered as a sequence of line segments along which the
object moves with a constant speed. The degree to which the actual path diverges
from its representation depends on several factors, including speed and turning radius
of the object itself. For vehicles such as cars driving along highways the difference
is quite small, whereas for a person walking a curved route with tight turns it may be
significant. In either case, accuracy can be improved by increasing the resolution of
the sensor network, either through increasing sensor density or by other means.

In cooperative tracking, it is assumed each node is equipped with a sensor (in the
case of acoustic tracking, a microphone) and a radio for communication with nearby
nodes. Since these embedded systems are designed to be small and cheap, the sensors
they are equipped with are unlikely to be very sophisticated. Traditionally, tracking
relies on sensors that are long range and can detect the direction of an object and the
distance to it. This is not the case with sensor networks: the microphones used for
acoustic tracking are likely to be short range, non-directional and poorly suited for
detecting the distance to the sound source. The method presented here assumes that
only binary (on-off) detection can be used. It is possible to generalize this analysis if
multilevel detection is feasible. Moreover, without proper calibration the detection
range may be neither uniform nor exact. Figure 1.12 shows the model of a sensor
considered in this paper. Given a sensor with a nominal (non-calibrated) rangeR,
the object will always be detected if it is distanceR−e or less away from the sensor,
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detected some of the time betweenR− e andR + e, and never detected beyond that
range. We found that settinge = 0.1R comes fairly close to the actual behavior of
the sensors used in our experiments.

To track an object, it must be identified and its presence detected. For acoustic
tracking, objects are identified based on their acoustic signature, which is a charac-
teristic sound pattern or a set of frequencies unique to that object. For simplicity, It
is assumed that the object emits sound of a frequency not present in the environment,
so there are no false positives. However, the results are fairly robust with respect to
intermittent detection (false negatives) during the period of observations.

It is worth noting that the sensor model is generic enough to encompass other
sensing modalities beyond acoustic. All that is required is a sensor with a relatively
uniform range, as defined above, which is capable of differentiating the target from
the environment. Magnetometer, a device that detects changes in magnetic fields, is
one such sensor.

R
ee

Fig. 1.12 Model of a sensor. For nominal sensing range R, the object is always
detected when it is R − e away or closer, never detected beyond R + e, and has a
non-negative chance of detection between R− e and R + e.

1.4.3.3 Algorithm The simplest distributed tracking algorithm entails simply
recording the times when each sensor detects the object and then performing line
fitting on the resulting set of points. While simple, this approach is not very precise:
it can only track the object with a resolution of the sensor rangeR. Moreover, if a
sensor detects the object more than once as it moves through the sensors detection
range, that information is lost.

The position of a stationary object, or a moving object for that matter, which is
determined using this method is not very precise and depends heavily on the number,
the detection range and precision of sensors that detect the sound. Instead of looking
at a single position measurement, we are interested in the path of a moving object,
which is a sequence of positions over a period of time. Combining a large num-
ber of somewhat imprecise position estimates distributed over space and time may
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yield surprisingly accurate results. Cooperative tracking addresses the problem of
high-resolution tracking using sensor networks. It improves accuracy by combining
information from neighboring sensors. The only requirement for cooperative track-
ing to be used is that the density of sensor nodes must be high enough for the sensing
ranges of several sensors to overlap. When the object of interest enters the region
where multiple sensors can detect it, its position can be pinned down with a higher
degree of accuracy, since the intersection area is smaller than the detection area of a
single node. The outline of a generic cooperative tracking algorithm is as follows:

• Each node records the duration for which the object is in its range.

• Neighboring nodes exchange these times and their locations.

• For each point in time, the objects estimated position is computed as a weighted
average of the detecting nodes locations.

• A line fitting algorithm is run on the resulting set of points.

Several of these steps require careful consideration. First, the algorithm implicitly
assumes that the nodes clocks are synchronized, and that the nodes know their loca-
tions. Second, we obtain a position reading by a weighted average of the locations of
the nodes that detected the sound at a given instant, but the exact weighting scheme
is not specified. This is an important issue, as selecting an appropriate scheme will
improve accuracy, while a poor choice might be detrimental to it.

The simplest choice is to assign equal weights to all sensors readings. This ef-
fectively puts the estimate of the objects position at the centroid of the polygon with
sensors acting as vertices. This is a safe choice, and intuitively it should be more
accurate than non-cooperative tracking. However it is possible to do even better.
Consider Figure 1.13: sensors that are closer to the path of the target will stay in sen-
sor range for a longer duration. Thus to increase accuracy, the weight of a sensors
reading should be proportional to some function of the duration for which the target
has been in range of that sensor.

Once the individual position estimates are computed, the final step of the line fit-
ting algorithm can begin. Least squares regression can be used to find the equation
of the line. It is interesting to note that the duration-based weighting scheme for po-
sition estimates moves the points closer to the actual path, thus reducing variance in
the least squares computation. Also important is the fact that the multi-step approach
enables early estimates of the path to be computed, so that continuous refinement is
possible as more data points become available. The resulting equation of the line
extrapolates the path of the object until it changes course sharply. This information
may be used by the system, e.g. for asynchronous wake up of nodes likely to be in
its path.

1.4.3.4 Data Aggregation The final step of the algorithm involves perform-
ing a line fitting computation on the set of all the position estimates (or some sub-
set of them). Unlike position estimates, which can be performed in a distributed
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Fig. 1.13 If the object’s speed is constant, detection time is directly proportional
to path segment d and inversely proportional to distance r from the sensor to object’s
trajectory.

manner with only local communication, this necessitates collecting sensor readings
from many sensor nodes at a centralized location for processing. This process is
calleddata aggregation, and it is present in one form or another in virtually all sen-
sor network applications. The main concerns for data aggregation are timeliness
and resource usage. Timeliness, with respect to sensor data, is critical to real-time
monitoring and control applications where stale data is useless or even detrimental.
Resources, in particular network bandwidth and message buffers, are quite scarce in
networked embedded systems. Low bandwidth of small wireless transmitters and
the potential for contention with other messages drastically limit the amount of data
that can pass through the network.

We assume that some nodes in the sensor network are gateways nodes connected
to outside networks such as the Internet. To process the data from the sensor net-
work, it needs to be sent through one of these gateway nodes to the more powerful
computers connected to the outside network. To do this efficiently, a tree rooted at
each gateway is constructed and spanning the entire network. Each sensor node in
the tree collects data from its children and sends it up the tree to either the closest or
the least busy gateway. This scheme addresses the conflicting requirements of low
bandwidth usage and timeliness of data: a near-shortest path is always taken, unless
its links are overloaded. What mentioned above is practical only if the outside net-
work is low latency and high bandwidth, so it does not matter to which gateway the
data is sent.

1.4.4 Distributed Prediction Tracking (DPT)

The Distributed Prediction Tracking (DPT) algorithm is specifically aimed at ad-
dressing the various challenges outlined in the Section 1.4 while accurately tracking
moving targets. As the name suggests, this algorithm does not require any central
control point, eliminating the possibility of a single point of failure and making it ro-
bust against random node failures. The tracking task is carried out distributively by
sequentially involving the sensors located along the track of the moving target. DPT
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assumes a cluster based architecture for the sensor network and the choice was mo-
tivated by the need to ensure the sensor networks scalability and energy efficiency.
Any suitable clustering mechanism from those proposed in literature may be used
and note that DPT does not impose any specific requirements or restrictions on the
choice of the clustering algorithm.

1.4.4.1 Assumptions of the DPT Algorithm While no assumption is
made on the choice of the clustering algorithm, we assume that the Cluster Head
(CH) has the following information about all sensors belonging to its cluster: (1)
Sensor identity, (2) Location and (3) Energy level. When tracking a moving target
and deciding which sensors to use for tracking, the cluster heads decision-making
procedure will be based on this information. The assumptions about the sensors
are enumerated below. These assumptions are realistic and targeted at reducing the
energy cost and prolonging the whole networks lifetime as well.

1. All sensors have the same characteristics.

2. Sensors are randomly distributed across the whole sensing area with uniform
density.

3. Each sensor has two sensing radii, normal beamr and high beamR. The
default operation uses the low beam and the high beam is turned on only when
necessary. The following relationship holds between the energy consumed by
the low and high beams:

Elowbeam

Ehighbeam
=

r2

R2
(1.2)

4. A sensors communication and sensing channel stay in the hibernation mode
most of the time where they consume minimal energy. The communication
channel will wake up routinely to receive possible messages from its cluster
head. The sensor will perform sensing according to its cluster heads require-
ments.

In order to produce accurate enough information to locate the moving target, DPT
requires that at any given time there should be at least3 sensors to sense the target
jointly. The number3 is chosen as the compromise between increasing accuracy
and minimizing the consumed energy (note that this is not a hard assumption and
depending on the sensor node specifications the number may vary).

No specific assumptions are made about the movement pattern of the targets.
However, DPT assumes that the targets originate outside the sensing region and then
move inside. Also, it is assumed that the movement of each tracked target needs to
be forwarded to a central location which we term the sink. In reality, the sink could
be either a special node or a terminal associated with a human.
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1.4.4.2 DPT Algorithm The DPT algorithm comes into play after sensors
are deployed and clusters are formed. DPT distinguishes between theborder sensors,
sensors located within a given distance of the border, andnon border sensorsin
terms of their operation. While border sensors are required to keep sensing all times
in order to detect all targets that enter the sensing region, the non-border sensors
sensing channel hibernates unless it is specifically asked to sense by its cluster head.
Since the target is assumed to move from outside into the sensing area, it will be
detected by the border sensors when trespassing the border. As soon as a target is
detected, a sequence of tasks in the order ofsense-predict-communicate-senseare
carried out distributively by a series of sensors that are located along the targets
track. This forms the essential idea behind the DPT algorithm.

Let CH1,CH2,...,CHN denote the sequence of cluster heads that become in-
volved with tracking the targets as it proceeds from its very first location to the last.
The information gathered by each cluster head is sent all the way back to the sink
(either sent intact or after being aggregated) for further processing as well as to the
downstream cluster headCHi+1. TheTarget Identityis created when the target is
first detected. This identity is unique and all cluster heads that co-track this target
use it to identify the Target. In order to facilitate the smooth tracking of the target,
CHi predicts the future location of the moving target, and informs the downstream
cluster headCHi+1 ahead of time about this target. The accuracy of thepredic-
tion is very important if downstream cluster heads are to be identified accurately and
the overall tracking mechanism is to be effective. Many prediction mechanisms are
possible, the simplest one is a linear predictor, which only uses the previous two
locations to linearly predict the third location. Higher order prediction can also be
adopt, which predicts thenth location information based on previousn − 1 actual
locations. Higher order prediction results in more accurate results, though, at the
cost of greater energy consumption.

Sensor Selection Algorithm:After cluster headCHi predicts the location of the
target, the downstream cluster headCHi+1 towards which the target is headed re-
ceives a message fromCHi indicating this predicted location. With information
of all sensors belonging toCHi+1 available in its database, the search algorithm
running atCHi+1 is able to locally decide the sensor-triplet to sense the target. The
selection rule chooses3 sensors (if possible) such that their distances to the predicted
location are not only less than the sensors normal beamr, but also the smallest. Af-
ter the sensor triplet is chosen,CHi+1 sends them awake-upmessage so that they
are ready to sense the target. If the prediction and selections process succeeds, after
sensing, each sensor will send a location message toCHi+1. If CHi+1 in unable to
find enough sensors eligible for this sensing task with the normal sensing beam, it
will try to search for eligible sensors within a distanceR, the higher sensing beam,
from the predicted location. The selected sensors, whose distance from the predicted
location is greater thanr and lower thanR, will now be contacted and instructed to
sense with their high beam, while the rest of the sensors in the triplet use their normal
beam. IfCHi+1 is unable to find enough sensors even with high sensing beams, it
asks its neighboring cluster heads for help.
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Failure Recovery:Let’s first identify two possible failure scenarios. As described
in the previous subsections, each upstream cluster head sends a message to the ex-
pected downstream cluster head. If the upstream cluster head does not get any con-
firmation from the downstream cluster head after a given period of time, then it as-
sumes that the downstream cluster head is no longer available and the target has been
lost. Another failure scenario occurs when the target changes it direction or speed
so abruptly that it moves significantly away from the predicted location and falls out
of the detectable region of the sensor-triplet selected for the sensing task. In both of
these failure scenarios a straight forward solution is to wake up all sensors within a
given area, which is calculated based on the target’s previous actual location. The
re-captureradiusσ is an important parameter in this process and is decided by the
target’s moving speed and time elapsed since it was last sensed.

1.5 EXPERIMENTAL LOCATION AND TRACKING
SYSTEMS

In this section, several location systems are introduced. Although they may not be
specially designed for wireless sensor networks, these design concepts and experi-
ences will benefit future implementations of positioning systems in wireless sensor
networks.

1.5.1 Active Badge and Bat

1.5.1.1 Introduction Efficient location and coordination of staff in any large
organization is a difficult and recurring problem. Hospitals, for example, may require
up-to-date information about the location of staff and patients, particularly when
medical emergencies arise. In an office building, a receptionist is usually respon-
sible for determining the location of staff members; in some organizations, public
address systems are provided to help a receptionist locate employees but, more fre-
quently, a telephone is used to contact all the possible locations at which the required
person might be found. These solutions can cause a great deal of irritation and dis-
ruption to other employees; a solution that provides direct location information is
more desirable. See [38] for detail information.

1.5.1.2 Active Badge vs Pager The conventional solution used for person-
nel location is thepager system. In order to locate someone, a signal is sent out by
a central facility that addresses a particular receiver unit (beeper) and produces an
audible signal. In addition, it may display a number to which the called party should
phone back.(Some systems allow a vocal message to be conveyed about the call-
back number.) It is then up to the recipient to use the conventional telephone system
to call back confirming the signal and to determine the required action. Although
useful, in practice there are still circumstances where it is not ideal. For instance, if
the called party does not reply, the controller has no idea whether they are in an area
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where the signal does not penetrate, have been completely out of the area for some
time, have been too busy to reply, or have misheard or misread the call-back number.
Moreover, in the case where there are a number of people who could respond to a
crisis situation, it is not known which one is the nearest to the crisis and therefore the
most suitable to contact. An alternative approach is totag a person and try to locate
the tag. The main application of personal tags has been in the area of access control
and logging [15]. In many high-security installations, card-key systems restrict ac-
cess to various parts of the installation. If there are enough access-control zones, the
same mechanism can also provide location information on a per-zone basis. For this
kind of system, the information is positive and directly available to be acted upon.
However, it is inappropriate for most organizations to use access-control techniques
to derive location information because of the inconvenience experienced by person-
nel. There are additional problems arising from groups of people obtaining access to
adjoining zones with only one card-key, which is a hard problem to solve.

1.5.1.3 An Active Badge Design A solution to the problem of automati-
cally determining the location of an individual has been to design a tag in the form
of an ’Active Badge’ that emits a unique code for approximately a tenth of a second
every 15 seconds (a beacon). These periodic signals are picked up by a network
of sensors placed around the host building. A master station, also connected to the
network, polls the sensors for badge ’sightings’, processes the data, and then makes
it available to clients that may display it in a useful visual form. The badge was
designed in a package roughly 55x55x7mm and weighs a comfortable 40g. Pulse-
width modulated infrared (IR) signals are used for signaling between the badge and
sensor [31] mainly because: IR solid-state emitters and detectors can be made very
small and very cheaply (unlike ultrasonic transducers); they can be made to oper-
ate with a 6m range, and the signals are reflected by partitions and therefore are not
directional when used inside a small room. Moreover, the signals will not travel
through walls, unlike radio signals that can penetrate the partitions found in office
buildings. Infrared communication has been used in a number of commercial appli-
cations ranging from the remote control of domestic appliances to data backup links
for programmable calculators and personal organizers [12]. More recently, IR has
been used as the basis for wireless local area networks [27]. Because IR technol-
ogy has already been exploited commercially, it is inexpensive and readily available
for developing new applications such as the Active Badge. An active signaling unit
consumes power; therefore, the signaling rate is an important design issue. Firstly,
by only emitting a signal every 15 seconds, the mean current consumption can be
very small with the result that ’badge-sized’ batteries will last for about one year.
Secondly, it is a requirement that several people in the same locality be detectable
by the system. Because the signals have a duration of only one-tenth of a second,
there is approximately a 2/150 chance that two signals will collide when two badges
are placed in the same location. For a small number of people, there is a good
probability they will all be detected. Even so, in order to improve this chance, the
beacon oscillator has been deliberately designed around low-tolerance components.
The components used for the beacon oscillator have a 10% tolerance rating; for two
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badges to remain in synchronization for even a single 15-second beacon period, the
components would have to be matched better than 1.4%. It is very likely that two
badges, which at some instant may be synchronized, will have slightly differing fre-
quencies and thus lose synchronization within a few beacon periods. In practice,
synchronization has not been a problem. The Active Badge also incorporates a light-
dependent component that, when dark, turns the badge off to conserve battery life.
Reduced lighting also increases the period of the beacon signal to a time greater than
15 seconds. In ambient lighting conditions in a room, this effect only slightly modi-
fies the period, but it is another factor that ensures synchronized badges will not stay
synchronized very long. If the badge is placed in a drawer out of office hours, at
weekends and during vacation, the effective lifetime of the batteries is increased by
a factor of 4. Note that the more obvious solution of a manual switch was considered
a bad idea as it was likely that a badge user would forget to turn it on. Other options
for switching the device on included a tilt switch and an accelerometer, although the
size limitation of a badge precluded using them in the initial experimental system. A
disadvantage of an infrequent signal from the badge is that the location of a badge
is only known, at best, to a 15-second time window. However, because in general
a person tends to move relatively slowly in an office building, the information the
Active Badge system provides is very accurate. An Active Badge signal is transmit-
ted to a sensor through an optical path. This path may be found indirectly through a
surface reflection, for example, from a wall. A badge must be worn on the outside
of clothing, so an essential part of the badge case design was the clip allowing it to
be easily attached to a shirt or a blouse. Most commonly, the badge was worn at the
breast pocket position; however, some people preferred a belt or waist position. The
belt position was not as good when the wearer was seated at a desk but typically the
system still detected enough signals to locate the badge.

Active Badge location system developed at Olivetti Research Laboratory and now
AT&T at Cambridge.

1.5.1.4 Bat System A successor of the Active Badge system is the Bat sys-
tem [4], which consists of a collection of wireless transmitters, a matrix of receiver
elements, and a central RF base station. The wireless transmitters, called bats, can be
carried by a tagged object and/or attached to equipment. The sensor system measures
the time of flight of the ultrasonic pulses emitted from a bat to receivers installed in
known and fixed positions. It uses the time difference to estimate the position of
each bat by trilateration. The RF base station coordinates the activity of bats by
periodically broadcasting messages to them. Upon hearing a message, a bat sends
out an ultrasonic pulse. A receiver that receives the initial RF signal from the base
station determines the time interval between receipt of the RF signal and receipt
of the corresponding ultrasonic signal. It then estimates its distance from the bat.
These distances are sent to the computer, which performs data analysis. By collect-
ing enough distance readings, it can determine the location of the bat within 3 cm of
error in a three-dimensional space at 95% accuracy. This accuracy is quite enough
for most location-aware services; however, the deployment cost is high.
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1.5.2 Cricket

1.5.2.1 Introduction The design and deployment of a system for obtaining
location and spatial information in an indoor environment is a challenging task for
several reasons, including the preservation of user privacy, administration and man-
agement overheads, system scalability, and the harsh nature of indoor wireless chan-
nels. The degree of privacy offered by the system is an important deployment consid-
eration, since people often value their privacy highly. The administrative overhead
to manage and maintain the hardware and software infrastructure must be minimal
because of the potentially large number (possibly several thousands in a building) of
devices and networked services that would be part of the system, and the communi-
cation protocols must be able to scale to a high spatial density of devices. Finally,
indoor environments often contain substantial amounts of metal and other such re-
flective materials that affect the propagation of radio frequency (RF) signals in non-
trivial ways, causing severe multipath effects, dead-spots, noise, and interference.
See [29] for more information about Cricket.

Cricket is a location-support system for in-building, mobile, location-dependent
applications. It allows applications running on mobile and static nodes to learn their
physical location by using listeners that hear and analyze information from beacons
spread throughout the building. Cricket is the result of several design goals, includ-
ing user privacy, decentralized administration, network heterogeneity, and low cost.
Rather than explicitly tracking user location, Cricket helps devices learn where they
are and lets them decide whom to advertise this information to; it does not rely on
any centralized management or control and there is no explicit coordination between
beacons; it provides information to devices regardless of their type of network con-
nectivity; and each Cricket device is made from off-the-shelf components and costs
less than U.S. $10.

By not tracking users and services, user privacy concerns are adequately met.
We emphasize that Cricket is alocation-supportsystem, rather than a conventional
location trackingsystem that tracks and stores location information for services and
users in a centrally maintained database.

The design of Cricket was driven by the following specific goals:

• User privacy: Whenever a system for providing location information to clients
has been deployed in the past, the issue of user privacy has arisen. This is
because many previous systems were location tracking systems, where a data-
base kept track of the locations of all the entities, including users in the system.
To address this concern, we designed a location support system, which allows
clients to learn their location without centralized tracking in order to construct
location-specific queries for resources.

• Decentralized administration: Our goal is widespread building-wide de-
ployment. We believe that it is not possible to deploy and administer a system
in a scalable way when all control and management functions are centralized.
Our design is decentralized - the ”owner” of a space in a building (e.g.,the
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occupant of a room) configures and installs a location beacon that announces
the identity of that space (some character string) and each beacon seamlessly
integrates with the rest of the system. Location receiver hardware, called a
listener, is attached to every device of interest to a user. Listeners use an in-
ference algorithm to determine the space in which they are currently located
by listening to beacon announcements. And there is no need to keep track of
individual components within the system.

• Network heterogeneity:A wide variety of network technologies exist in most
building environments. In our own laboratory, devices and users connected
over 10/100 Mbps Ethernet, three different types of indoor wireless LANs,
cellular digital packet data (CDPD), infrared, public telephone, and power line
using X10 [1]. Independent of which technology they use to serve or gain
access to information, many services and clients can benefit from learning
their location in an automatic way, and we would like to accommodate them.
In our design, we achieve this by decoupling the Cricket system from other
data communication mechanisms.

• Cost: Achieving building-wide deployment requires cost effective compo-
nents.We use commercial, off-the-shelf, inexpensive components in Cricket,
setting and meeting the goal of less than U.S. $10 per location beacon and
listener. Our design involves no custom hardware and is small enough to fit in
one’s palm.

• Room-sized granularity: Our goal is a system where spatial regions can be
determined to within a few square feet, so as to distinguish portions of rooms.
This requires the ability to demarcate and determine boundaries between re-
gions corresponding to different beacons.

Cricket uses a combination of RF and ultrasound to provide a location-support
service to users and applications. Wall- and ceiling-mounted beacons are spread
through the building, publishing location information on an RF signal. With each
RF advertisement, the beacon transmits a concurrent ultrasonic pulse. The listen-
ers receive these RF and ultrasonic signals, correlate them to each other, and infer
the space they are currently in. The beacons use a decentralized randomized trans-
mission algorithm to minimize collisions and interference amongst each other. The
listeners implement a decoding algorithm to overcome the effects of ultrasound mul-
tipath and RF interference.

1.5.2.2 System Architecture The only configuration required in Cricket is
setting the string for a space that is disseminated by a beacon. The specific string is
a function of the resource discovery protocol being used, and Cricket allows any one
of several possibilities (in Section 5 we describe our implementation platform and
integration with INS). Cricket also provides a way by which the owner of a room
can securely set and change the space identifier that is sent in the advertisements.
This is done by sending a special message over the same RF channel that is used for
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the advertisements, after authenticating the user via a password. At this stage, we
have chosen to allow this change only from within physical proximity of the room or
location where the beacon is located. This makes the system somewhat more secure
than if we allowed this to be done from afar. The boundaries between adjacent
spaces can either be real, as in a wall separating two rooms, or virtual, as in a non-
physical partition used to separate portions of a room. The precision of the system
is determined by how well the listener can detect the boundary between two spaces,
while the granularity of the system is the smallest possible size for a geographic space
such that boundaries can be detected with a high degree of precision. A third metric,
accuracy is used to calibrate individual beacons and listeners; it is the degree to
which the distance from a beacon, estimated by a listener, matches the true distance.
While our experiments show that the distance accuracy of our hardware is smaller
than a few inches, what matters is the precision and granularity of the system. These
depend on the algorithms and the placement of beacons across boundaries. Our goal
is a system with a close-to-100of a few feet (a portion of a room).

1.5.2.3 Beacon positioning and configuration The positioning of a bea-
con within a room or space plays a nontrivial role in enabling listeners to make the
correct choice of their location. For example, consider the positioning shown in Fig-
ure 2. Although the receiver is in Room A, the listener finds the beacon in Room B to
be closer and will end up using the space identifier advertised by the latter. One way
of overcoming this is to maintain a centralized repository of the physical locations
of each beacon and provide this data to listeners. Systems like the Bat essentially
use this type of approach, where the central controller knows where each wall- or
ceiling-mounted device is located, but it suffers from two problems that make it un-
suitable for us. First, user-privacy is compromised because a listener now needs to
make active contact to learn where it is (observe that in Cricket, a listener is com-
pletely passive). Second, it requires a centrally managed service, which does not
suit our autonomously managed environment particularly well. Fortunately, there is
a simple engineering solution to this problem that preserves privacy and is decen-
tralized. Whenever a beacon is placed to demarcate a physical or virtual boundary
corresponding to a different space, it must be placed at a fixed distance away from
the boundary demarcating the two spaces. Figure 3 shows an example of this in a
setting with both real and virtual boundaries. Such placement ensures that a listener
rarely makes a wrong choice, unless caught within a small distance (1 foot in our cur-
rent implementation) from the boundary between two beacons advertising different
spaces. In this case, it is often equally valid to pick either beacon as the closest.

1.5.3 RADAR:An In-Building RF-based User Location and
Tracking System and Nibble

RADAR [8] is a radio-frequency (RF) based system for locating and tracking users
inside buildings. RADAR operates by recording and processing signal strength in-
formation at multiple base stations positioned to provide overlapping coverage in
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the area of interest. It combines empirical measurements with signal propagation
modeling to determine user location and thereby enable location-aware services and
applications.

RADAR complements the data networking capabilities of RF wireless LANs with
accurate user location and tracking capabilities, thereby enhancing the value of such
networks. RADAR uses signal strength information gathered at multiple receiver
locations to triangulate the user’s coordinates. Triangulation is done using both
empirically-determined and theoretically-computed signal strength information.

Recently, several location systems have been proposed for wide-area cellular sys-
tems [35]. The technological alternatives for locating cellular telephones involve
measuring the signal attenuation, the angle of arrival (AOA), and/ or the time dif-
ference of arrival (TDOA). While these systems have been found to be promising in
outdoor environments, their effectiveness in indoor environments is limited by the
multiple reflections suffered by the RF signal, and the inability of off-the-shelf and
inexpensive hardware to provide fine-grain time synchronization.

Systems based on the Global Positioning System [28], while very useful outdoors,
are ineffective indoors because buildings block GPS transmissions. RADAR differs
from previous work in that it tackles the problem of user location and tracking on a
widely available radio frequency based wireless network in an in-building environ-
ment. RF networks offer a significant advantage over IR (Infra Red) networks in
terms of range, scalability, deployment, and maintenance. With speeds of up to 11
Mbps, these systems have gained rapid acceptance and are being widely deployed in
offices, schools, homes, etc.

RADAR has been developed by a Microsoft Research group. It is a building-wide
tracking system based on the IEEE 802.11 WaveLAN wireless networking technol-
ogy [8]. RADAR measures, at the base station, the signal strength and signal-to-
noise ratio of signals that wireless devices send, then it uses this data to compute
the 2D position within a building. Microsoft has developed two RADAR imple-
mentations: one using scene analysis and the other using lateration. The RADAR
approach offers two advantages: It requires only a few base stations, and it uses the
same infrastructure that provides the buildings general-purpose wireless networking.
Likewise, RADAR suffers two disadvantages. First, the object it is tracking must
support a wireless LAN, which may be impractical on small or power-constrained
devices. Second, generalizing RADAR to multi-floored buildings or three dimen-
sions presents a nontrivial problem. RADARs scene-analysis implementation can
place objects to within about 3 meters of their actual position with50 percent prob-
ability, while the signal-strength lateration implementation has4.3-meter accuracy
at the same probability level. Although the scene-analysis version provides greater
accuracy, significant changes in the environment, such as moving metal file cabi-
nets or large groups of people congregating in rooms or hallways, may necessitate
reconstructing the predefined signal-strength database or creating an entirely new
database.

Several commercial companies such as WhereNet [2] and Pinpoint [3] sell wire-
less asset-tracking packages, which are similar in form to RADAR. Pinpoints 3D-iD
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performs indoor position tracking using proprietary base station and tag hardware
to measure radio time of flight. Pinpoints system achieves 1- to 3-meter accuracy
and, by virtue of being a commercial product, offers easier deployment and admin-
istration than many research systems. The 3D-iD system suffers the disadvantage
that each antenna has a narrow cone of influence, which can make ubiquitous de-
ployment prohibitively expensive. Thus, 3D-iD best suits large indoor space settings
such as hospitals or warehouses. It has difficulty interoperating with the 802.11 wire-
less networking infrastructure because of radio spectrum collision in the unregulated
Industrial, Scientific, and Medical (ISM) band.

The Nibble also adopts the IEEE 802.11 infrastructure for positioning purpose.
Nibble uses the probability-based approach in Subsection 1.2.2.2. It relies on a fusion
service to infer the location of an object from measured signal strengths. Data are
characterized probabilistically and input into the fusion service. The output of the
fusion service is a probability distribution over a random variable that represents
some context.

1.5.4 CSIE/NCTU Indoor Tour Guide

The prototype indoor tour guide system has been developed at the Department of
Computer Science and Information Engineering, National Chiao Tung University
(CSIE/NCTU), Taiwan. The hardware platforms of this project include several Com-
paq iPAQ PDAs and laptops. Each mobile station is equipped with a Lucent Orinoco
Gold wireless card. Signal strengths are used for indoor positioning. The probability-
based pattern-matching algorithm in Subsection 1.2.2.2 is used.

There is a manager or control center responsible for monitoring each users move-
ments, configuring the system, and planning logical areas and events. The location
server takes care of the location discovery job and the service server is in charge of
message delivery. The database can record users profiles; the gateway can conduct
location-based access control to the Internet. One of the innovations in this project
is that an event-driven messaging system has been designed. A short message can be
delivered to a user when he enters or leaves a logical area. The event-driven message
can also be triggered by a combination of time, location, and property of location
(such as who is in the location and when the location is reserved for meetings). A
user can set up a message and a corresponding event to trigger the delivery of the
message. The manager will check the event list periodically and initiate messages,
when necessary, with the service server. Messages can be unicast or broadcast. The
expectation is that streaming multimedia can be delivered in the next stage. The sys-
tem can also be applied to support a smart library. Another innovation is to provide
location-based access control. In certain rooms, such as classrooms and meeting
rooms, users may be prohibited from accessing certain sensitive Web pages. These
rules can be organized through the manager and set up at the gateway.
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1.6 CONCLUSION

In this chapter, some fundamental techniques in positioning and location tracking
have been discussed and several experimental systems reviewed. Location infor-
mation may enable new types of services. Accuracy and deployment costs are two
factors that may contradict each other, but both are important factors for the success
of location-based services.
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