RESOURCE MANAGEMENT IN WIRELESS NETWORKING
M. Cardei, I. Cardei and D.-Z. Du (Eds.) pp. — - -

(©2004 Kluwer Academic Publishers

Truthful Computing in Wireless Networks

Xiang-Yang Li

Department of Computer Science

1llinois Institute of Technology, Chicago, IL 60616
E-mail: x1i@cs.iit.edu

WeiZhao Wang

Department of Computer Science

1llinois Institute of Technology, Chicago, IL 60616
E-mail: wangwei4@iit.edu

Contents
1 Introduction 2
1.1 Ad Hoc Wireless Networks . . . . . . ... ... ... ... ...... 2
1.2 Why Truthful Computing . . . . . . .. .. ... ... ... ... 3
1.3 Approaches and challenges . . . . . . .. ... ... ... ..., 3
2 Credit Based Methods 4
3 Incentive Based Method 7
3.1 Mechanism Design . . . . . . ... . oo 7
3.2 Truthful Mechanism Design . . . . .. ... ... ... ... ..... 8
3.3 VCG Based Mechanism . . . .. ... ... .. ... ...... 9
3.4 Network Model . . . . .. .. ... .o 10
3.5 Unicast . . . . . . . . e 10
3.5.1 Statement of Problem . . ... ... ... ... ........ 10
3.5.2  Pricing for Unicasting . . . . . ... ... ... ... ... 11
3.5.3 The Distributed Algorithm . . . ... .. ... ... ..... 12
3.5.4 Truthful Implementation . . .. ... ... ... ....... 13
3.5.5 Collusion . . .. ... ... ... .. 15
3.5.6 Over Payment . ... .. ... ... ... ... ... 16
3.6 Multicast . . . . . ... 19
3.6.1 Statement of problem and related works . . . . . . ... ... 19



3.6.2 Computational Hardness and Strategy-proof Hardness . . . . 20

3.6.3 Node Weighted receiving relay free UDG graph cases . . . . . 22

3.6.4 Sharing Cost and Payment . . . . ... .. ... ... .. ... 24

4 Other problems 25
4.1 Non-cooperation of Topology Control . . . . . . ... ... ... ... 26
4.2 Incentives for Cooperation in Peer-to-Peer Networks . . . . . . . .. 27
4.3 Resource allocation . . . . . ... ... L oo 28
4.4 Cooperation in MAC Layer . . . ... .. .. ... ... ....... 28
4.5 Cooperation for TCP/IP on end-node . . .. ... ... .. ..... 29

5 Conclusion 29

References

1 Introduction

1.1 Ad Hoc Wireless Networks

Wireless network has received significant attention over past few years due to
its potential applications in various situations such as battlefield, emergency
relief and environmental monitor, etc. Unlike wired networks and cellular
networks which have fixed infrastructures, wireless ad hoc network enjoys
a more flexible composition. Each mobile node has a transmission range
and energy cost. A node v can receive the signal from another node u iff
node v is within node u’s transmission range. We assume that when u
sends a packet, it consumes node u some energy and it does not cost node
v any energy to receive it. If the receiving node is not within the sender’s
transmission range, then it must choose some intermediate nodes to repay
the message. So unlike the wired networks, all nodes in the wireless ad hoc
network should be able to act as a router. On the other aspect, the wireless
node usually uses omni-directional antenna, which means that it can use
a broadcasting-like manner to distribute the message to all nodes within
its transmission range. We consider a wireless ad hoc network G = (Q, E)
consisting of a node set @ with |Q| = n distributed in a two-dimensional
plane, and directed edge e = uv € E if v can receive signal from u directly.

There are two different category of wireless ad hoc nodes: fized transmis-
sion range and adjustable transmission range. For fized transmission range
nodes, their transmission range have been fixed and can’t be adjusted after-
ward. So there is a directed arc from u to v if node v is in the transmission



range of node u. Here the transmission cost depends on node u regardless
of the distance between two nodes. Thus it can be considered as a node
weighted graph. If all nodes’ transmission range is the same, by properly
scaling, we can assume all nodes have transmission range 1. Thus, wire-
less topology can be modelled by a Unit Dish Graph(UDG). The wireless
nodes of second category have adjustable transmission range: they can ad-
just their transmission range when necessary. Thus the cost to send a packet
from node u to v not only depends on u but also depends on the geometry
distance of u and v. For example, under most power attenuation model,
the power needed to support a link uv is |uv|?, where 8 € [2,5] depends on
the transmission environment. We call this graph edge weighted graph. The
weight of an edge wv is the power needed to support the communication
between v and v.

1.2 Why Truthful Computing

Many existing works in wireless ad hoc networking assume that each indi-
vidual wireless node (possibly owned by individual selfish users) will follow
prescribed protocols without deviation. However, each user may modify the
behavior of an algorithm for self-interested reasons.

Consider a user in a campus environment equipped with a laptop. The
user might expect that his battery-powered laptop will last without recharg-
ing until the end of the day. When he participates in various ad hoc net-
works, he will be expected to relay traffic for other users. If he accepts all
relay requests, his laptop might run out of energy prematurely. Therefore,
to extend his laptop’s lifetime, he might decide to reject all relay requests.
If every user argues in this fashion, then the throughput that each user re-
ceives will drop dramatically. For some extreme cases, those students who
needn’t access the network even wouldn’t care about the existence of the
whole wireless ad hoc network. Clearly, they won’t relay any messages at
all. Thus, a stimulation mechanism is required to encourage users to provide
service to other users.

Throughout this chapter, we address these stimulation mechanism that
stimulates every individual node following prescribed protocols without de-
viation, which also known as truthful computing.

1.3 Approaches and challenges

There are generally two ways to implement the truthful computing: credit
based method and incentive based method. The first category used vari-



ous non-monetary approaches including auditing, system-wide optimal point
analysis and special hardware. The basic idea of credit based method is that
all nodes will cooperate in order to achieve the system optimal performance,
and the overall system optimum will in turn benefit the individual node.
Some methods falling in this category can be found in [1, 2, 3, 4, 5, 6, 7]. The
drawback of this method is that overall system optimum doesn’t necessarily
guarantee the individual optimality. Thus the nodes still have the incentive
to deviate from their normal activity. The second method borrowed some
ideas from the micro-economic and game-theoretic world, which involves the
monetary transfer. The key result of this category is that all nodes won’t
deviate from their normal activities because they will benefit most when
they reveal their true cost, even knowing all other nodes’ true costs. We can
thus achieve the optimal system performance.

In wireless ad hoc network environment, it is very expensive for one
node to run the centralized algorithm for all nodes. Thus we often need to
design some distributed algorithms or even localized algorithms. But one
difficult problem has risen in distributed truthful computing environment:
the algorithm is running on the selfish-node, is it a paradox asking the node
itself to truthfully compute its own payment? On the other hand, there are
some questions in the wireless ad hoc networks that are computationally
intractable, so can we design some approximation method without losing
the truthfulness of the mechanism?

The rest of the chapter is organized as follows. In Section 2, we review the
credit based methods proposed in the literature used for truthful computing
in wireless ad hoc networks. In Section 3, we discuss in detail the incentive
based methods used for unicast and multicast in wireless ad hoc networks.
In Section 4, we discuss the truthful computing at other layers of the wireless
ad hoc networks such as MAC, TCP, and application layer. We conclude
this Chapter in Section 5.

2 Credit Based Methods

Credit based methods have been widely proposed to solve the selfishness
in wireless ad hoc networks for several years. Most of them are based on
the simulation and are heuristics. They usually lack of formal analysis and
theoretical proof, but several of them work well in the real world.

In [4], nodes, which agree to relay traffic but do not, are termed as
misbehaving. They used Watchdog and Pathrater to identify misbehaving
users and avoid routing through these nodes. Watchdog runs on every node



keeping track of how the other nodes behave; Pathrater uses this information
to calculate the route with the highest reliability. Notice that this method
ignores the reason why a node refused to relay the transit traffics for other
nodes. A node will be wrongfully labelled as misbehaving when its battery
power cannot support many relay requests and thus refused to relay. It also
does not provide any incentives to encourage nodes to relay the message for
other nodes.

In [2], Buttyan et al. focused on the problem how to stimulate selfish
nodes to forward the packets for other nodes. Their approach is based on
a so called nuglet counter in each node. A node’s counter is decreased
when sending its own packet, and is increased when forwarding other nodes’
packet. All counters should always remain positive. In order to protect the
proposed mechanism against misuse, they presented a scheme based on a
trusted and tamper resistant hardware module in each node, which generates
cryptographically protected security headers for packets and maintains the
nuglet counters of the nodes. They also studied the behavior of the proposed
mechanism analytically and by means of simulations, and showed that it
indeed stimulates the nodes for packet forwarding.

In [6], they still use a nugget counter to store the nuglets and besides
that they use a fine which decreases the nugget counter to prevent the node
from not relaying the packet. They use Packet Purse Model to discourage
the user to send useless traffic and overload the network. The basic idea
presented in [6] is similar to [2] but different in the implementation.

In [7], two acceptance algorithms are proposed. These algorithms are
used by the network nodes to decide whether to relay traffic on a per session
basis. The goal of them is to balance ! the energy consumed by a node in
relaying traffics for others with energy consumed by other nodes to relay its
traffic and to find an optimal trade-off between energy consumption and ses-
sion blocking probability. By taking decisions on a per session basis, the per
packet processing overhead of previous schemes is eliminated. In [1], a dis-
tributed and scalable acceptance algorithm called GTFT is proposed. They
proved that GTFT results in Nash equilibrium and the system converges to
the rational and optimal operating point. We emphasize, however, that all
the above algorithms are based on heuristics and lack a formal framework

Tt is impossible to strictly balance the number of packets a node has relayed for other
nodes and the number of packets of this node relayed by other nodes since, in a wireless
ad hoc network, majority of the packet transmissions are relayed packets. For example,
consider a path of A hops. h — 1 nodes on the path relay the packets for others. If the
average path length of all routes is h, then 1 —1/h fraction of the transmissions are transit
traffics.



to analyze the optimal trade-off between lifetime and throughput. More im-
portantly, they assumed that each path is h hops long and the h relay nodes
are chosen with equal probability from the remaining n — 1 nodes, which is
unrealistic.

In [8], Salem et al. presented a novel charging and rewarding scheme for
packet forwarding in multi-hop cellular networks. In their network model,
there is a base-station to forward the packets. They use symmetric cryp-
tography to cope with the lying. To count several possible attacks, it pre-
charges some nodes and then refunds them only if a proper acknowledgment
is received. Their basic payment scheme is still based on nuglets.

In [3] Jakobsson et al. described an architecture for fostering collabo-
ration between selfish nodes of multi-hop cellular networks. Based on this
architecture, they provided mechanisms based on per packet charge to en-
courage honest behavior and to discourage dishonest behavior. In their
approach, all packet originators attach a payment token to each packet, and
all intermediaries on the packet’s path to the base station verify whether
this token corresponds to a special token called winning ticket. Winning
tickets are reported to nearby base stations at regular intervals. The base
stations, therefore, receive both reward claims (which are forwarded to some
accounting center), and packets with payment tokens. After verifying the
validity of the payment tokens, base stations send the packets to their de-
sired destinations, over the backbone network. The base stations also send
the payment tokens to an accounting center. Their method also involves
some traditional security method including auditing, node abuse detection
and encryption etc.

Generally speaking, these methods need some extra equipment, includ-
ing special hardware, which is not very realistic under certain situation.
In addition some methods assume that every node will enjoy better perfor-
mance if the whole system’s performance increases, but it is easy to construct
some counter cases. One of these counter cases is the TCP/IP’s congestion
control scenery. Nodes using TCP/IP protocols will decrease their packet
sending rate when they encounter some packet loss or timeout, so the over-
all system can survive the network congestion. Considering some malicious
users, if they don’t decrease their sending rate even they meet packet loss
or time-out, they will enjoy a much faster sending rate than other nodes
which conform to the rule, in the meanwhile the overall system performance
will decrease sometime. Thus, we will concentrate much on incentive based
methods instead of credit based methods in the following sections, which
has also been studied extensively in wired networks and economics recently.



3 Incentive Based Method

3.1 Mechanism Design

In designing efficient, centralized (with input from individual agents) or dis-
tributed algorithms and network protocols, the computational agents are
typically assumed to be either correct/obedient or faulty (also called adver-
sarial). Here agents are said to be correct/obedient if they follow the protocol
correctly; agents are said to be faulty if (1) they stop working, or (2) they
drop messages, or (3) they act arbitrarily, which is also called Byzantine
failure, i.e., they may deviate from the protocol in arbitrary ways that harm
other users, even if the deviant behavior does not bring them any obvious
tangible benefits.

In contrast, economists design market mechanisms in which it is assumed
that agents are rational. The rational agents respond to well-defined incen-
tives and will deviate from the protocol only if it improves their gain. A
rational agent is neither correct/obedient nor adversarial.

Notice that, besides correct/obedient, adversarial, and rational agents,
there is another set of agents, called irrational, which behave strategically
but do not follow a behavior modelled by the mechanism designer. They
behave irrationally with respect to the mechanism, e.g., they may have util-
ity functions depending on more than just their own preferences. Another
example is that some agents may be unable to act rationally if the strategy
calculation is too expensive.

In this chapter, we always assume that the agents are rational. In addi-
tion, the mechanism used in this chapter is not computationally expensive.

A standard economic model for analyzing scenarios in which the agents
act according to their own self-interest is as follows.

1. There are n agents. Each agent 4, for i € {1,---,n}, has some private
information t*, called its type. The type t' could be its cost to forward
a packet in a network environment or its willing payment for a good in
an auction environment. The type vector t = (t',#2,---,t") of these
agents is called a profile.

2. Each agent i has a set of strategies A’ that it can choose from. For each
strategy vector a = (al, ---,a"), i.e., agent i plays strategy al € Ai,
the mechanism computes an output o = o(al,---,a™) and a payment
vector p = (p'(a),---,p"(a)). Here the payment p‘(a) is the money

given to each participating agent i under strategy vector a. If p‘(a) <



0, it means that the agent has to pay —p’(a) to participate in the
action.

3. Agent i has preference given by a valuation function v’ that assigns
a real number v¢(#',0) to each possible output o. Here, we assume
that the valuation of an agent does not depend on other agents’ types.
Everything in the scenario is public except the type ¢, which is known
to agent ¢ only.

4. For Agent i’s utility is u* = v'(t', 0) +p’. By assumption of rationality,
agent ¢ always tries to maximize its utility u’.

3.2 Truthful Mechanism Design

A mechanism is strategy-proof or Truthful if the types are part of the strat-
egy space A’ and each agent maximizes its utility by reporting its type ¢
as input regardless of what other agents do. We will focus our attention on
the truthful mechanism in the rest of our chapter.

The following are some natural constraints which any truthful mecha-
nism must satisfy, before that we introduce a notation that will be used very
often in the following sections.

Let a~* denote the vector of strategies of all other agents except i, i.e.,
a”t=(a',a?,---,a" Y at - a™). Let a|’b = (a',a?,---, a1, b, @t - a™),
i.e., each agent j # i uses strategy a’ and the agent i uses strategy b.

1. Incentive Compatibility (IC): For strategy-proof mechanism, the

payment function should satisfy the incentive compatibility, i.e., for
each agent 1,
v (', oal't")) +p'(al't") = 0'(t, 0(al'a’)) + p(al'a’).

In other words, revealing the type t* is the dominating strategy. If the
payment were computed by a strategyproof mechanism, agent ¢ would
have no incentive to lie about its type because its overall utility would
be no greater than it would have been if he had told the truth.

2. Individual Rationality (IR): It is also called Voluntary Participa-
tion. Every participating agent must have non-negative utility, i.e.,

v (t', o(al't")) + p'(al't") = 0.

Notice that here an agent is guaranteed to have non-negative utility if
it reports its type truthfully no matter what other agents do.



3. Polynomial Time Computability (PC): All computation, the com-
putation of the output and the payment, is done in polynomial time.

3.3 VCG Based Mechanism

Arguably the most important positive result in mechanism design is what
is usually called the generalized Vickrey-Clarke-Groves (VCG) mechanism
by Vickrey [9], Clarke [10], and Groves [11]. The VCG mechanism applies
to mechanism design maximization problems where the objective is to max-
imize the sum of all agents’ valuations and the set of possible outputs is
assumed to be finite.

A maximization mechanism design problem is called utilitarian if the
function g(o, t)(also called objective function) to be maximized satisfies g(o,a) =
S, vi(at, 0). A direct revelation mechanism m = (o(a),p(a)) belongs to the
VCG family if (1) the output o(a) computed based on the type vector a max-
imizes the objective function g(o,a) = Y, v'(a’,0), and (2) the payment to
agent ¢ is

p'(a) =Y v/(dl,0(a)) + h'(a™).
J#i
Here hi() is an arbitrary function of a~% and different agent could have dif-
ferent function h’() as long as it is defined on a™*. It is proved by Groves
[11] that a VCG mechanism is truthful. Green and Laffont [12] proved that,
under mild assumptions, VCG mechanisms are the only truthful implemen-
tations for utilitarian problems.

An output function of a VCG mechanism is required to maximize the ob-
jective function. This makes the mechanism computationally intractable in
many cases. Notice that replacing the optimal algorithm with non-optimal
approximation usually leads to untruthful mechanisms. In their seminal
paper on algorithmic mechanism design, Nisan and Ronen [13] add com-
putational efficiency to the set of concerns that must be addressed in the
study of how privately known preferences of a large group of selfish agents
can be aggregated into a “social choice” that results in optimal allocation
of resources.

Similar to the wtilitarian mechanism design problem, a maximization
mechanism design problem is called weighted utilitarian if there exists pos-
itive real numbers (i, ---, §, such that the objective function is g(0,a) =
> Bi-v'(a’,0). A direct revelation mechanism m = (o(a), p(a)) belongs to
the weighted VCG family if (1) the output o(a) computed based on the type
vector a maximizes the objective function g(o,a), and (2) the payment to



agent i is p'(a) = i > jzi B v/ (a’,0(a)) + hi(a™%). Here h¥() is an arbi-
trary function of a~%. It is proved by Roberts [14] that a weighted VCG
mechanism is truthful.

3.4 Network Model

We consider a set @ = {qo,q1, ", qn—1} of n wireless nodes. Here qq is
used to represent the access point (AP) of the wireless network to the wired
network if it presents. Let G = (Q, E) be the directed communication
graph defined by @, where E is the set of links (g;, g;) such that the node
¢; can communicate directly to the node g;. We assume that the graph G
is node bi-connected. In other words, we assume that, the remaining graph,
by removing any node ¢; and its incident links from the graph G, is still
connected. The bi-connectivity of the communication graph G will prevent
the monopoly on the network as will see later in addition to provide fault
tolerance.

We also assume that each wireless node has an omni-directional antenna
and a single transmission of a node can be received by any node within its
vicinity, i.e., all its neighbors in G. A node ¢; can receive the signal from
another node ¢; if node ¢; is within the transmission range of the sender
g;- Otherwise, they communicate through multi-hop wireless links by using
some intermediate nodes to relay the message. Consequently, each node
in the wireless network also acts as a router, forwarding data packets for
other nodes. We assume that each wireless node ¢; has a fixed cost ¢; of
relaying/sending a data packet to any (or all) of its outgoing neighbors. This
cost ¢; is a private information, only known to node g;. In the terminology of
economic theory, ¢; is the type of node g;. All n nodes together define a cost
vector ¢ = (¢g,c1,- -+, Cp—1), which is the profile of the network G. Based
on this network model, we will address two important routing problems—
Unicast and Multicast in the following two subsections.

3.5 Unicast
3.5.1 Statement of Problem

If a node g; wants to send data to the access point qg, typically, the path with
minimum total relaying cost from node ¢; to node ¢o under profile ¢ is used
to route the packets. We call this path Least Cost Path (LCP) and denote
it as LCP(c,,0). Consider a (directed) path II(2,0) = ¢r,, Gry 1> Grys Qro
connecting node ¢; and node qq, i.e., ¢, = ¢; and ¢, = qo, and node g,, can

10



send signal directly to node g, ,. The cost of the path II(i,0) is Z‘;;% Crj
which excludes the cost of the source and the target nodes.

To stimulate cooperation among all wireless nodes, node ¢; pays some
nodes of the network to forward the data for node g; to the access point.
Thus, each node ¢; declares a cost dj;, which is its claimed cost to relay the
packets. Note that here d; could be different from its true cost c¢;. Then
node ¢; computes the least cost path LCP(d,,0) according to the declared
cost vector d = (do,d1,---,dp—1). For each node ¢;, node ¢; computes
a payment p{ (d) according to the declared cost vector d. The wtility, in
standard economic model, of node g; is u; = p{ (d) — ¢;. We always assume
that the wireless nodes are rational: it always tries to maximize its utility
uj = p;(d) — ;.

We assume that the cost ¢; is based on per packet or per session, whichever
is appropriate. If the cost is per packet and a node ¢; wants to send s packets
to the access point gg in one session, then the actual payment of ¢; to a node
qr will be s pf

If the payment scheme is not well-designed, a node g; may improve its
utility by lying its cost, i.e., declares a cost d; such that d; # c;. Our
objective is then to design a payment scheme such that each node g; has to
declare its true cost, i.e., d; = ¢;, to maximize its utility. Using the standard
assumption from economic model, we assume that the wireless nodes do not
collude with each other to improve their utility.

3.5.2 Pricing for Unicasting

For unicast problem, the output function o(c) is just the LCP connecting ¢;
and go. The valuation v’(c;,0(c)) of a node ¢; on the output o(c) is —¢; if
node g; is on the path and 0 otherwise. In other words, if node g; is on the
path, then node ¢; will incur a cost ¢; to carry the transit traffic for node g;.
We require that the pricing mechanism be strategyproof and nodes carrying
no transit traffic receive no payment. Node g; always prefers to find a path
that maximizes the total valuation of all nodes, i.e., to find a path with the
minimum total cost. In other words, given a path Il(c,i,0), the objective
function is Ejen(c,i,o) ¢; = > xj(c,1,0) - ¢j, where z;(c,i,0) = 1 if node j
belongs to the path II(c,i,0) and z;(c,4,0) = 0 otherwise. The payment
p¥(c) to a node g; on the LCP from ¢; to node go by node g¢; is

n—1 n—1
p¥(e) = (e, ,0) e + [Z zj(c|Foo,i,0)c; — ij(c,i,())cj]. (1)
j=1 1

11



Here Z;:ll z;(c|Foo,i,0)c; is the cost of LCP without g, and Z;:ll zj(c,1,0)c;
is the cost of LCP using gy.

This payment pf(c) can then be interpreted as follows: the payment to
a node ¢; in the LCP equals to ¢, plus the improvement of the least cost
path from ¢; to gy due to the existence of node ¢i. Notice that if node ¢
does not belong to the least cost path, clearly, its presence does not improve
the cost of LCP, thus its payment is 0. From now on, we use the term
qr-avoiding-path to refer to a path that does not pass through node ¢, and
denote the least cost such path by LCP~%(c,i,0). Let c(i,0) be the cost
of LCP(c,i,0) and ¢ %(i,0) be the cost of the least cost gi-avoiding-path
LCP~*(c,i,0). Notice this payment falls into the VCG mechanism, so it is
strategy-proof.

3.5.3 The Distributed Algorithm

In the previous subsection, we presented a strategyproof pricing mechanism
for unicast routing. Now we focus our attention on how to compute this
price pf in a distributed manner.

The algorithm has two stages. First, all nodes together find the Shortest
Path Tree T rooted at qg. Second, every node ¢; computes its payment pf’
in a distributed manner which is based on the algorithm in Feigenbaum et.
al [15].

In the first stage, the shortest path tree T rooted at ¢o can be easily
implemented using Dijkstra’s algorithm, so we omit the details of the im-
plementation here. In the second stage, based on the tree T found in the
first stage, every node knows its parent and children in tree T'. Initially at
node ¢;, entry pf” is set to oo, if g is on LCP(c, 4,0); otherwise, pf is set
to 0. Every node now broadcasts its pf to its neighbors. When a node ¢;
receives an updated price from its neighbor ¢;, it updates the price entries
as follows:

1. If g; is the parent of g;, node ¢; updates
pr = min(pf,p?) if ¢ € LCP(c,1,0).
2. If ¢; is the parent of ¢;, node ¢; updates
pr = nnin(pf,pgC +c¢; +¢j) if g € LCP(c,4,0).

3. Ifnodes g; and ¢; are not adjacent in tree T', for every ¢;, € LCP(c, ,0),
node ¢; updates

p; = min(p},p} + ¢j + ¢(4,0) — ¢(4,0)) if g, € LCP(c,i,0),

12



pf = min(pf, cx + ¢; + ¢(4,0) — ¢(i,0)) if g € LOP(c,i,0).

Whenever any entry pf changes, the entry p,’f is sent to all neighbors of
g; by node ¢;. When the network is static, the price entries decrease mono-
tonically and converge to stable values after finite number of rounds. Notice
that, here we assume that all nodes will forward these control messages,
used to calculate the payment later, for free.

3.5.4 Truthful Implementation

The algorithm presented in the previous section is simple and efficient, but
notice that this algorithm relies on the selfish node ¢; to calculate the pay-
ment pf for itself, which cannot prevent node ¢; from manipulating the
calculation in its favor. In [15], the authors pointed out that if agents are
required to sign all of the messages that they send and to verify all of the
messages that they receive from their neighbors, then the protocol can be
modified so that all forms of cheating are detectable. Notice that even using
this approach, all nodes must keep a record of messages sent to and received
from its neighbors so that an audit can be performed later if a disagreement
happens. Further more, their method only applies to the edge weighted
graph. Thus, in this section, we focus our attention on how to design a new
distributed algorithm based on the previous algorithm to guarantee truthful
price calculation. The following method is a review of approach [16].

While it is quite obvious to conceive that the node ¢; has the incentive
to not correctly calculate its payment pf in the second stage, it is not so
straightforward to notice that the node g; also has the incentive to lie about
his shortest path even in the first stage. We give an example to show that
even we can guarantee that the node g; calculates his payment correctly in
the second stage, it is still necessary for us to worry about nodes’ lying in
the first stage.

In Figure 1, the shortest path between g9 and ¢; should be qyg293q4q1, it
is easy to compute the payments of node ¢g; to nodes g2, ¢3, and g4 are both
2. Thus, its overall payment to send a packet to qg is 6. However, if node ¢;
lies that it is not a neighbor of q4, then the shortest path becomes gygs5q;.
Now node ¢ only needs to pay g5 to send the packet and the payment is
5. Consequently, node ¢ benefits from lying about the connection of the
network. This rises from the fact that the least cost path doesn’t necessary
to be the path that you pay the least. This example also shows that there
s no truthful mechanism for directed edge weighted graph when we assume

13



that the nodes are agents since each node can choose which links to report
to minimize its total payment.

Figure 1: The node has the incentive to lie about its shortest path

We then modify the first stage of the algorithm as follows.
Algorithm 1 Modified Distributed Algorithm
First Stage:

1. For every node g;, it has two entries: Dis(g;) which stores the shortest
distance to go and its corresponding first hop neighbor F'H(g;) on the
least cost path. Initially, if go is ¢;’s neighbor then set Dis(g;) to 0
and F'H(q;) to qo; else set Dis(g;) to oo and FH(g;) to NULL. Every
node broadcasts its information to its neighbors.

2. For every node ¢;, when it receives a broadcasting information from its
neighbor g, first it compares Dis(q;) with Dis(q;) + ¢;: if Dis(q;) >
Dis(q;) + c¢; then sets Dis(g;) to Dis(q;)+¢j and F'H(g;) to g;. After
that it compares ¢; and FH(q;):

(a) Case 1: g¢; is not F'H(q;). If Dis(¢;) + ¢; < Dis(gj) then node
q; contacts g; directly using a reliable connection, asking g¢; to
update Dis(q;) = Dis(q;) +¢; and FH(q;) = g;. After updating,
node ¢; should rebroadcast this information.

(b) Case 2: ¢; is F'H(q;). If Dis(¢;) + ¢; # Dis(g;) then node g;

contacts g; directly using reliable connection, asking ¢; to update

14



Dis(q;) = Dis(¢;) + ¢; and FH(q;) = ¢i, after that ¢; should
rebroadcast this information.

Second Stage:

1. When ¢; receives a broadcasting information pg? from its neighbor g;,
it updates the pf using the payment updating algorithm presented in
subsection 3.5.3. Additionally, if ¢; triggers the change for pf, it should
recalculate p? for node ¢; using the payment updating algorithm in
previous section to verify it. If it is not correct, then node ¢; notifies
node ¢; and other nodes.

2. For every node ¢;, when its entry for pf changes, it not only broadcasts
the value of pf, but also broadcasts the information of the node that
triggers this change.

It has been shown in [16] that the above approach can prevent nodes
from misreporting its link information and its cost, and miscalculating the
payment.

3.5.5 Collusion

Using the standard assumption from economic model, we assumed that the
wireless nodes do not collude to improve their utility. But in practical situa-
tion, the collusion could happen very often and much disaster than the single
node lying case. For example, if two nodes g, and g, know that the removal
of them will disconnect some nodes from the access point, then these two
nodes can collude to declare arbitrarily large costs and charge a monopoly
price together. Notice that, by declaring much higher costs together, one
node’s utility may decrease, but the sum of their utilities is guaranteed to
increase (thus, they share the increased utilities). So the collusion of nodes
discussed here is different from the traditional group strategyproof concept
studied in [17, 18]. A pricing mechanism is said to be group strategyproof
in [17, 18] if any subset of agents colludes, then each agent of this sub-
set cannot improve its utility without decreasing the utility of some other
agent. Clearly, this formulation of group strategyproofness cannot capture
the scenario we described before. We say that a mechanism is k-agents
strategyproof if, when any subset of k agents colludes, the overall utility of
this subset is made worse off by misreporting their types; a mechanism is
true group strategyproof if it is k-agents strategyproof for any k. Clearly,
we cannot design a true group strategyproof mechanism for the unicasting

15



routing problem studied here: if all nodes but node g; collude and declare
arbitrarily high cost, then node ¢; has to pay a payment arbitrarily higher
than the actual payment it needs to pay if these nodes do not collude. Thus,
it is interesting to design some mechanism that is k-agents strategyproof for
some small integer k. Clearly, a k-agents strategyproof mechanism exists
only if the underlying network topology is at least k 4+ 1 node connected.

For k-agents strategyproof problem, it is usually divided into two general
categories: anonymous k-agents strategyproof problem and specific k-agents
strategyproof problem. For the first category, what we only know is that k
agents will collude, but we don’t know exactly which the k agents are. It
was conjectured that ever for k = 2, there are no strategy-proof mechanism,
which means that two nodes can collude together and ask for arbitrary high
price. So usually, we focus our attention on the second category. A simple
case is that if we know exact which k agents probably will collude. Similar to
finding the ¢i-avoiding path, we can find a path that avoid these k nodes. It
is easy to verify this method is strategy-proof. More sophisticated cases are
these collusion nodes have some special property, for example, they should
be neighbors in the wireless ad hoc. It is an open problem whether can
design a k-agents strategyproof when knowing that possible colluding nodes
are neighbors of each other.

3.5.6 Over Payment

Remember that the payment of a node ¢; to a node g on the LCP(c,1,0)
is

n—1 n—1
ok + 1) wj(effo0,i,0)c; = Y wi(e,d,0)cj].
=1 j=1

Clearly, node ¢; overpays the nodes on the LCP(c,,0) to make sure that
they will not lie about their costs. The overpaid value is the value of
Z;l:_ll zj(c|Foo,i,0)c; — E;:ll z;(c,i,0)c;. In theory, it is not difficult to
construct a network example such that the over-payment of a node ¢; could
be arbitrarily large. But in practice, after conducting extensive simulations
when the cost of each node is chosen independently and uniformly from a
range and the network topology is a random graph, we find out that the
over-payment is small compared to the cost of LCP.

The metrics of the overpayment used in our simulations are Total Over-
payment Ratio (TOR), Individual Overpayment Ratio (IOR), and Worst
Overpayment Ratio (WOR). The TOR of a graph is defined as >, p;/ >, ¢(4,0),
i.e., the total payment of all nodes over the total cost of all LCPs. The IOR

16



of a graph is defined as %lel /¢(i,0), i.e., the average overpayment ratio
over all n nodes. The worst overpayment ratio is defined as max; p;/c(i,0),
i.e., the maximum overpayment ratio over all n nodes. Remember that here
p; is the total payment of node ¢; to all nodes on the LCP from ¢; to go and
¢(7,0) is the total cost of nodes on the LCP from ¢; to go. We found that
the IOR and TOR are almost the same in all our simulations and they take
values around 1.5. In all of our simulations, the average and the maximum
are taken over 100 random instances.

In the first simulation, we randomly generate n nodes uniformly in a
2000m x 2000m region. The transmission range of each node is set as 300m.
The cost of each node ¢; to forward a packet to another node g; is |/gig;||"
where k varies between 2 and 2.5. The number of nodes in our simulations
varies among 100, 150, 200, ---, 500. Figure 2 (a) illustrates the difference
between IOR and TOR when graph model is UDG and « = 2. We found
that the values of IOR and TOR are almost the same and both of them
are stable when the number of nodes increases. Figure 2 (d) illustrates
the overpayment with respect to the hop distance to the source node. The
average overpayment ratio of a node stays almost stable regardless of the
hop distance to the source. The maximum overpayment ratio decreases
when the hop distance increases, which is because large hop distance to the
source node will smooth off the oscillation of the relay cost difference: for
node closer to the source node, the second shortest path could be much larger
than the shortest path, which in turn incurs large overpayment; for node
far away from the source, the second shortest path has total cost almost the
same as the shortest path, which in turn incurs small overpayment. Keep in
mind that the IOR and TOR indeed increase when the hop distance to the
source increases. Figure 2 (b) and (c) illustrate the overpayment for UDG
graph when k = 2 and k = 2.5 respectively.

In our second set of simulations, we vary the transmission range of each
wireless node from 100m to 500m, and the cost ¢; ; of a node ¢; to send a
packet to another node ¢; within its transmission range is ¢1 + ca2||qig;||”,
where ¢; takes value from 300 to 500 and cy takes value from 10 to 50.
The ranges of ¢; and ca we used here reflect the actual power cost of a
node to send data at 2Mbps rate in on second. When node g; is not within
the transmission range of node g;, cost ¢;; is set to co. Figure 2 (e) and
(f) illustrate the overpayment for random graph when x = 2 and k = 2.5
respectively.

17



155 T T T T T T T i
—=— TOR
—— IOR
6 Worst | |
s 4
z €
5 §
£ £
g1 gar q
g g
8 S
3k 4
15- 4 2F 4
1 . . I . I . I 4 I I . . I . .
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Number of nodes Number of nodes

~—

(a) IOR and TOR’s difference for UDG with x = 2 (b) IOR, TOR and WOR for UDG with x = 2

‘ T T 32 T
—— TOR —— TOR
9 —— IOR |4 3f —— IOR
Worst Worst
8 B 28
e 1 26
5 o Bl 524l
& st g 822
ab - 2
3+ I 18
2 b 16
\ R 9y ‘ ‘ ‘ ‘ ‘
100 150 200 250 300 350 400 450 500 0 5 10 15 20 25 30
Number of nodes Number of hops
(¢) IOR, TOR and WOR for UDG with x = 2.5 (d) the affect of hops on IOR, TOR and WOR
11 T T T T T T T T T T T T T T T
—— TOR —=— TOR
10 —— IOR |] - —— I10R ||
Worst Worst
9 4
12 -
o ]
101 -
=T 7 =
£l ] £ ol ]
o o
o ]
o ]
o ]
o ]
. SN
o ]
]1.00 l."lO 260 2;0 3‘00 3‘50 4(‘10 4;0 500 100 1;0 ZéO Z.")D 360 3‘50 4&0 4;0 500
Number of nodes Number of nodes

(e) IOR, TOR and WOR for random graph with k =2  (f) IOR, TOR and WOR for random graph with x = 2.5

Figure 2: Overpayment ratios IOR, TOR and WOR for UDG and random
graphs.

18



3.6 Multicast

3.6.1 Statement of problem and related works

Assume that there is a set of users R C () that wants to receive information
from the access point qp. Each receiver node g; from R has a valuation v; > 0
of receiving the information, and which is the actual payment the node is
willing to pay to receive the information. In addition, each node ¢; € @) in
the network has a cost ¢; to forward data packets for other node.

Assume that each node ¢; declares a valuation w; > 0 if it receives the
information and a cost d; > 0 for forwarding the data to the access point
qo- The access point gg will then decide a subset of nodes R’ to receive the
information, compute a multicast tree spanning this set of nodes R’, and
compute a payment p; for each node g;. Notice that, if p; > 0, then we say
that the access point pays the node g; for forwarding the data packets; if
p; < 0, then we say that the access point charges the node g; for receiving the
data packets. Clearly, we should have non-receiver relay nodes get positive
payments. Notice that a receiver node may misreport its valuation of the
data also.

The above multicast question is different from the question studied by
Feigenbaum et. al [19]. They assumed that there is a multicast infrastruc-
ture, given any set of receivers R C (), connects the source node to the
receivers. Additionally, for each user ¢; € R, they assumed a fixed path
from the source to it, determined by the multicast routing infrastructure.
Then for every set R of receivers, the delivery tree is merely the union of
the fixed paths from the source to the receivers R. They also assumed that
there is a link cost associated with each communication link in the network
and the link cost is known to everyone. For each receiver g;, there is a val-
uation v; that this node values the reception of the data from the source.
This information v; is only known to ¢;. Node ¢; will report a number v,
which is the amount of money he/she is willing to pay to receive the data.
The source node then selects a subset R’ C R of receivers to maximize the
difference ), p v — C(R'), where C(R’) is the cost of the multicast tree
T(R') to send data to all nodes in R’. The approach of fixing the multicast
tree is relatively simple to implement but could not model the greedy nature
of all wireless nodes in the network since it requires that the link costs of
the tree are known to every node.

19



3.6.2 Computational Hardness and Strategy-proof Hardness

The Prize Collecting Steiner Tree problem (PCST) is closely related to the
problem of finding a maximum efficiency multicast tree. Given a graph
G = (Q,FE), a cost vector ¢ for all nodes, a valuation function v for all
nodes, and a subset of receiver nodes r, the objective of PCST is to find a
tree T', which minimizes PC(T) = ¢(T) + v(T), where v(T) is the sum of
valuations of nodes not in the tree 7. Let V = } .y v(i). For any tree
T, we have PC(T) =V + ¢(T) — v(T). Since v(T) — ¢(T) is the revenue
of the network by performing the multicast using the tree 7', minimizing
PC(T) is equivalent to maximizing the total revenue of the multicast. It is
well known that although the PCST problem can be approximated within
2 — 1/n, but the revenue maximizing multicast problem is NP-hard, and it
cannot be approximated within any constant factor.

For some specific problems, there exist some constant approximation
algorithms. If gy should send data to all nodes in R regardless of the value
of w;, the problem become the Minimum Steiner Tree Problem: finding a
minimum cost tree spanning all receivers. It is well-known that finding the
minimum cost Steiner tree the both general node weighted and edge weighted
graphs are NP-Hard, and even in the Euclidean or rectilinear metrics [20].
There are several polynomial time approximation algorithm presented in
[21, 22, 23, 24].

In [25], they gave an approximation algorithm with the best known ap-
proximation ratio approaching 1 + ”‘73 ~ 1.55. However, this heuristic may
be not practical for ad hoc wireless networks due to its implementation
complexity. Takahashi and Matsuyama [22] gave a simple 2-approximation
algorithm for Steiner minimum tree in edge weighted graphs. This algo-
rithm maintains a tree T which initially contains only the source node. At
each iterative step, the tree T is grown by one path from T of least cost
can reach a destination not yet in 7. Such path can be found by collapsing
the entire tree T into one artificial node and then applying the single-source
shortest-path algorithm. This procedure is repeated until all required nodes
are included in 7T'. This algorithm can be regarded as an adaptation of the
Prim’s algorithm for MST.

Even we can find the polynomial time constant approximation algorithm,
it is still difficult to find a strategy-proof mechanism based on this constant
approximation algorithm easily. In [13], they have already pointed out that
Replacing the optimal algorithm with a non-optimal approrimation usually
leads to untruthful mechanisms. For example, if we using Takahashi and
Matsuyama’s 2 approximation algorithm and VCG mechanism to calculate

20



the payment: denote TPk as the tree without the node p; and W(T') as the
sum of the node weight of this tree, then py’s payment is W (T') — W (T ~Px) 4
ci. Figure 3 gives an example that a node may lie its cost to improve its
utility. Here, qo is the access point and r1, 79 are receiving nodes. It is easy
to calculate that W(T') = 8 and W (T Px) = 5. Thus, the payment to node
q* is 5 — 8 +4 = 1, which is less than ¢*’s true cost 4. This violates the
individual rationality (IR).

ry r,

Figure 3: Non-optimal approximation usually leads to untruthfulness

Given any algorithm that approximates the minimum cost spanning tree
with a factor o, we may design a payment function

a-W(T) = W(T™P) + c.

However, it is unknown whether this payment function will satisfy the IR
property. We suspect so and believe that counter-examples can be con-
structed such that W(TPr) = «- W(OPTPk) and W(OPTPx) > W(T).
Notice that the first condition can be satisfied since we only have an a-
approximation algorithm, and the second condition can be satisfied easily if
W(OPT) =W(T) since W(OPT~Pk) > W(OPT). In other words, we need
design an example such that the alpha-approximation algorithm produces
the best solution with node g; and produces the worst solution without node

dk-

21



3.6.3 Node Weighted receiving relay free UDG graph cases

In this subsection, we study a special case of multicast routing and propose
an optimal computable truthful method. We assume that (1) it is node
weighted and with ¢; = 0 if p; € @, i.e., all receiver nodes will relay the
message for free; (2) all receiver nodes must receive the data; (3) the graph
is a UDG graph. The truthfulness of our mechanism actually does not
depend on the third assumption. The third assumption only guarantees
that the spanning tree (discussed later) found by our method approximates
the minimum cost spanning tree with a constant factor. To achieve constant
approximation of the minimum cost spanning tree, the last assumption can
actually be relaxed to: the underlying communication graph G has a degree
bounded spanning tree. We [26] showed that if graph G has a spanning tree
with bounded degree A, then the spanning tree constructed for multicast
is Ap-approximation of the minimum cost spanning tree. Given a graph
G, there is a polynomial time algorithm [27] to find a spanning tree whose
degree is at most Appr + 1, where Appr is the minimum degree bound
such that graph G has a spanning tree with degree bounded by Appr.

Consider a weighted graph G = (V, E, ¢), where ¢ represents the cost of
a node relaying message for other nodes. There is a set of receivers Q C V
that want to receive a data from a fixed source node ¢gy. For the simplicity
of notation, we also assume that () also includes the fixed source node. We
then present the algorithm to construct a tree spanning all receivers and its
cost is no more than 5 times of the minimum cost.

Algorithm 2 Reduction MST Algorithm

1. First, we calculate the pairwise shortest path LCP(g;,q;,c) between
any two nodes in ¢;, q; € @ when the node costs vector is c. Construct
a complete graph K (Q, E') using @ as its vertices, and edge g;q; corre-
sponding to LC'P(g;, qj,c¢), and its weight is the cost of LCP(g;,qj, c)
in G.

2. Calculate the minimum spanning tree on K (Q, E’). The resulting tree
is denoted as RM ST(G).

For convenience of our analysis, we assume that no two nodes in G(V, E, ¢)
have the same cost, and also there are no two paths in G(V, E, ¢) with the
same length. Dropping this assumption doesn’t change the result of our
analysis.

22



Theorem 3.1 [26] The RMST(G) is a Ap-approximation of the minimum
cost tree spanning all receivers if G has a spanning tree of degree bound Ar.

Corollary 3.2 [26] The RMST(G) is a 5-approximation of the minimum
cost tree spanning all receivers if G is a unit disk graph.

Based on the RM ST (G) constructed by Algorithm 2, we [26] designed
a truthful mechanism for calculating the payment. Before presenting the
payment definition, we define some terms first.

If we change the cost of a node vy, € V to di, we denote the new graph as
G|*dy,. If we remove one vertex vy from G, we denote the resulting graph as
G\vg. If we apply Algorithm 2 on a graph G after removing a node vy, we
denote the resulting MST as RMST(G\vg). Obviously, RMST(G\v) =
RM ST (G|Foo).

Given a spanning tree T', and a pair of nodes p and ¢ on T, clearly there
is a unique path connecting them. We denote such path as IIr(p, q), and the
edge with the maximum length on this path as LE(p,q,T). For simplicity,
we use LE(p,q,c) to denote LE(p,q, RMST(G)) and use LE(p,q,c|*dy) to
denote LE(p,q, RMST(G|*dy,)).

Now we present the truthful mechanism to calculate the payment.

1. First each node v € V is required to report a cost, say dj.

2. For every node g, € V\Q in G, first calculate RM ST(G) and RM ST (G|*¥o0)
according to the nodes’ declared costs vector d.

3. For any edge e = ¢;q; € RMST(G) and any node v, € LCP(qg;, q;, ¢),
we define the payment to node v;, based on the virtual link g;q; as

p"(¢:9;) = |LE(g;, 45, d|*o0)| — |[LCP(g;,q;,d)| + di.

Here |II| denotes the total cost of a path II. If a node vy is not on
LCP(g;,qj,¢), then the payment p*(g;q;) to node vy based on the vir-
tual link g;q; is 0. If the path LCP(g;, g5, ¢) is not used in RM ST(G),
then the payment to any node on path LC'P(g;,q;,c) based on edge
¢iq; is also 0. The final payment to node v based on RMST is

p"(d) = max p*(qiq;).

It is proved in [26] that this algorithm is not only truthful, but also
it is optimal regarding the individual payment among all these truthful
mechanisms based on the spanning tree RM ST. For details of this algorithm
please refer to [26].

23



3.6.4 Sharing Cost and Payment

Under some circumstance, if we have fixed the architecture of the multicast
tree, it is also not trivial to design a reasonable cost-sharing mechanism
to determine which users receive the transmission and how much they are
charged. Here reasonable means at least:

1. Receivers cannot be charged more than what they are willing to pay.

2. The transmission costs of shared network links cannot be attributed
to any single receiver.

3. The source node would not broadcast if the total payment received
from the receiving node is less than what it should pay the relaying
nodes (or links).

This problem has been formalized as the multicast cost-sharing prob-
lem(MCSP): For a graph G = (V, E) and a tree T spanning the receiving
nodes R, each receiving node has a utility u; for receiving the information
and known only to itself, so it can declare his utility as u; # u;. Every
internal node in the tree has a cost ¢; to relay the data, so the access point
qo should pay these nodes for relaying transit traffic. We let x; > 0 denote
how much user ¢ is charged and o; denote whether user ¢ receives the trans-
mission; o; = 1 if the user receives the multicast transmission, and ¢ = 0
otherwise. We use u to denote the input vector (uq,ug, - - ,u‘R|). The mech-
anism M is then a pair of functions M (u) = (z(u);o(u)). The receiver set
for a given input vector is R(u) = {ilo; = 1}. A user’s individual welfare
is given by w; = o;u; — ;, The cost of the tree T'(R(u)) reaching a set of
receivers R(u) is W(T'(R(v))) = >_,.er(r(u) Ci» and the overall welfare, or
net worth, is NW(R(u)) = X e g wi — w(T'(R(u))).

The goal of MCSP problem is to find a strategy-proof mechanism M (u)
subject to:

1. No Positive Transfers (NPT), which means that the mechanism
cannot pay receivers to accept the transmission,

2. Voluntary Participation (VP), which means that no receiver can
be forced to pay more than what it is willing to pay.

3. Efficiency: a configuration that will maximize NW (R(u)).

It may also has some additional desirable properties like:

24



1. Consumer Sovereignty: A receiver is always able to guarantee ac-
ceptance of the information if his price is increased to a sufficiently
large value.

2. Budget Balance: the amount paid by the receiver exactly equals the
cost of transmission.

The multicast cost-sharing problem has been studied extensively in re-
cent years, first from a networking perspective in [28], then from a mechanism-
design perspective [29], and most recently from an algorithmic perspective
[19], [30], [31], [32].

Two mechanisms can be used to solve this problem: marginal cost (MC)
and Shapley value (SH). MC mechanism satisfies strategy-proof, NPT, VP,
CS and can be computed by a simple, distributed algorithm that uses only
two modest-sized messages per link of the multicast tree in [19], [30], but
one drawback is that it is not budget balanced, which means that sometimes
it will have a budget surplus and sometimes it will have a budget deficiency.
Shapley Value is to share the node ¢;’s cost within all its downstream re-
ceiving nodes. It is budget balanced and group-strategyproof and, among
all mechanisms with these two properties, minimizes the worst-case welfare
loss. But the SH method has a bad network complexity, computing the SH
mechanism requires, in the worst case, that O(]P|) bits be sent over O(|N|)
links, where P is the set of potential receivers, and N is the set of tree nodes.

The other interesting question is when the multicast infrastructure is
not fixed, as the questions studied in previous subsection, and the receivers
have to pay some other nodes to get data from the source. The mechanism
described in the previous subsection provides a payment scheme to relay
nodes such that they will not lie about their relay costs, but did not specify
how the payment will be shared by all the receivers. We would like to
design a payment sharing method such that it is better for each individual
receivers to use multicast than to use unicast individually. In other words,
the payment shared by a receiver node g; should be no more than the total
payment of receiver ¢ when it uses unicast to connect with the source node.

4 Other problems

Besides wireless ad hoc network, game theory has been used extensively in
computer science, we briefly discuss some of the applications in this section.

25



4.1 Non-cooperation of Topology Control

In wireless ad hoc networks, usually the nodes can adjust their transmission
ranges to achieve some desired properties, which is known as the topology
control. Several topology control issues in a non-cooperative environment
have been addressed before in [33]. In order to meet the connectivity re-
quirement, we are given node pairs (s1,%1), -+, (Sg, tx), and each s; needs to
connect to t;. Each node s; has to choose a radius so that it gets ¢; while
keeping the radius as small as possible. If the radius of s; cannot reach the
target t;, it relies on some other nodes s; to relay the message and it is
assumed that these nodes on the chosen path will relay. Notice that node
s;’s only purpose is to connect to ¢;, so it wouldn’t care about whether other
nodes can connect to their destinations or not. But the complication of the
problem comes from the fact that the path connecting the source and target
may contain several intermediate nodes. If a node enlarges its transmission
range to connect more nodes, it is possible that it will have more choices
for the intermediate nodes, which will in turn result in a smaller overall
energy expenditure. Modelling the cost of a radius vector 7 for all nodes
as C(T) = ), ry where a is a constant between 2 and 5, they define the
utility as U(v) = fr(v) — r$ where fr(v) denoted the number of vertices w
that v can reach. Their goal is to find a Nash Equilibria in this game, but
unfortunately the existence of the Nash Equilibria and even approximate
one is not guaranteed, the figure below is a graph falling into this category.

Figure 4: No Nash Equilibria

There are lots of other issues left untouched in this category, includ-
ing min-power assignment problem, k-connectivity (node or edge) problem,

26



undirected path problem and connected dominate set problem.

4.2 Incentives for Cooperation in Peer-to-Peer Networks

Peer-to-peer (P2P) file-sharing systems combine sophisticated searching tech-
niques with decentralized file storage to allow users to download files directly
from one another. The first mainstream P2P system, Napster, attracted
public attention for the P2P paradigm as well as tens of millions of users for
itself. Now P2P networks become a new platform for distributed applica-
tions, allowing users to share their computational, storage, and networking
resources with their peers to the benefit of every participant. Most p2p sys-
tem designs focus on traditional computer science problems including scal-
ability, load-balancing, fault-tolerance, and efficient routing. While many
peer-to-peer systems have implicitly assumed that peers will altruistically
contribute resources to the global pool and assist others, recent empirical
studies have shown that a large fraction of the participants engage in freerid-
ing [34], [35]: 20% to 40% of Napster and almost 70% of Gnutella peers share
little or no files [1, 2]. So it has been wildly acknowledged that the P2P file
systems should take the user incentives and rationalities into consideration.
So some recent literatures have been focus on how to solve this issue.

In [36], they define a game that models the file sharing scenario of P2P
networks: n agents a1, ..., a, participate in the system. Each agent a;’s strat-
egy, denoted S; = (o,0), consists of two independent actions: o describes
what proportion to share with other users, with og(none), o1 (moderate) or
oy (heavy); § determine how much to download from the network in each
period. Each user can choosing between three levels: dy (none), é; (moder-
ate) or 02 (heavy). Using this model, they propose several payment schemes:
Micro-Payment Mechanisms, Quantized Micro-Payment Mechanism. Both
schemes use Nash FEquilibrium to find the agents’ rational strategies and
involve monetary transfer.

In [37], they use a rating scheme whereby a user is given a level in the
P2P system to alleviate the free-rider problem. They discuss several issues
of how the rating system should be, and based on the idea that when a
user a receives a request from a user b, it uses user a’s reputation to decide
whether he will provide the service or not to. They give two distributed
rating scheme to incentivize cooperation: Structured Verification Scheme
(SVS) and Lightweight Unstructured Verification Scheme (LUVS). In SVS
Scheme, every user ¢ should have a supervisor and the supervisor should be
chosen so there won’t be easy collusion. (They use the ring structure Chord
[38] to achieve that). User b gets user a’s information and updates user a’s

27



reputation involving user a’s supervisor. In LUVS scheme, every user will
keep a list of the customers she has served and a list of servers from whom
she has been served, along with the details of the transactions. Now, when
a user a wants some service from a user b, a sends the list of its customers
along with the request. If user b decides to verify a’s rating, it samples
a subset of a’s customer list to confirm if they have received the claimed
service from a or not. If most members in this sample say a yes, b trusts
a and provides service depending on the rating of a. But they also pointed
out that these schemes may suffer from the collusion problem.

4.3 Resource allocation

With the advances in computer and networking, especially the Internet,
thousands of heterogeneous computers have been interconnected to provide
a great resource including computing, storage, etc. Because of the het-
erogeneity of these resources, it is challenging to design an architecture to
accommodate all. Further more, in many cases, the resources are owned
by multiple organizations and it is often required to allocate the limited
resource to maximize the total user satisfaction (called Social Choice).

Resource allocation problem has been studied in human economies for
a long time. In economic model of a computer system, the consumers are
applications such as web clients, computational tasks, multimedia entertain-
ment consumers, and ISP users. The suppliers are these computer systems
who control the resources like CPU time, memory, cache, disks, network
bandwidth, etc. Suppliers control access to their resource via prices, and
consumers buy resources from the suppliers to satisfy their needs. The price
is decided by a way similar to that in economic world: the demand and
supply curve.

4.4 Cooperation in MAC Layer

Wireless MAC protocols such as IEEE 802.11 use cooperative contention
resolution mechanisms for sharing the channel, it is usually based on a fully
distributed mechanism to control the access to the network. For example, in
the CSMA protocol, a wireless node senses whether the channel idle every
DIFS (Distributed Inter Frame Space) seconds. If the channel is idle, then
the node transmits the frame. Otherwise, it does a binary back-off with
NAV (Network Allocation Vector) seconds which specifies the minimal time
of deferral. This mechanism guarantees the fair use of the bandwidth if all
nodes conform to this protocol.

28



But some nodes can modify their behavior in order to gain some advan-
tage over other nodes. In stead of doing a binary back-off with NAV when
collision is detected, some nodes can keep the DISF a constant in order to
gain more chances to transmit a package. If one node or a few nodes play
this trick, other nodes will suffer from unfair bandwidth share. The more
disastrous scenery happens when the majority of the nodes or all nodes play
this trick, which would result in a situation that every node (including these
nodes playing this trick) share a much lower bandwidth than when no nodes
play this trick. Thus, some truthful methods must be designed to deal with
cooperation issue in the MAC layer also.

4.5 Cooperation for TCP/IP on end-node

For years, the conventional wisdom has been that the continued stability of
the Internet depends on the widespread deployment of ”socially responsible”
congestion control. But what about if network end-points behaved in a
selfish manner? Under this assumption, each flow attempts to maximize the
throughput it achieves by modifying its congestion control behavior. In [39],
they use a combination of analysis and simulation to determine the Nash
Equilibrium of this game. They also addressed the efficiency of the network
operating at these Nash equilibria.

Unlike the MAC layer scenery where the protocol contained in some
hardware, which are very hard to manipulate, TCP/IP stacks in some op-
erating systems like Linux, FreeBSD, is very easy to modify. So it is more
desirable to design some truthful methods to prevent the misbehavior from
happening in the TCP /IP layer.

5 Conclusion

In this Chapter, we assume that all wireless nodes are possibly owned by
individual users and the users are able to modify the algorithms deployed on
them for the sake of their own interests. We also assume that each wireless
node has a cost to forward the data for other nodes and a node will only
relay the data if it got a payment to cover its relay cost. We studied how
the source node can design a payment scheme to all relay nodes such that
the relay nodes have to report its cost truthfully to maximize their profits
both for the case of unicast and the case of multicast. We also discussed the
selfishness of wireless nodes in other layers including MAC layer, TCP/IP
layer, and application layer.

29



References

1]

2]

[7]

[9]

[10]

[11]

V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao, “Coop-
eration in wireless ad hoc networks,” in IEEE Infocom, 2003.

L. Buttyan and J. Hubaux, “Stimulating cooperation in self-organizing
mobile ad hoc networks,” ACM/Kluwer Mobile Networks and Applica-
tions(MONET), vol. 8, no. 5, October 2003.

M. Jakobsson, J.-P. Hubaux, and L. Buttyan, “A Micro-Payment
Scheme Encouraging Collaboration in Multi-Hop Cellular Networks,”

in Proceedings of Seventh International Financial Cryptography Con-
ference (FC), 2003.

S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbe-
havior in mobile ad hoc networks,” in Proc. of MobiCom, 2000.

L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, J. P. Hubaux, and
J. Y. Le Boudec, “Self-organization in mobile ad-hoc networks: the

approach of terminodes,” IEEE Communications Magazine, vol. 39,
no. 6, June 2001.

L. Buttyan and J. P. Hubaux, “Enforcing service availability in mobile
ad-hoc wans,” in Proc. of IEEE/ACM Workshop on Mobile Ad Hoc
Networking and Computing (MobiHOC), 2000.

V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao, “Energy
efficiency of ad hoc wireless networks with selfish users,” in Furopean
Wireless Conference 2002 (EW2002), 2002.

N. B. Salem, L. Buttyan, J. Hubaux, and M. Kakobsson, “A charg-
ing and rewarding scheme for packet forwarding in multi-hop cellular
networks,” in Proc. of IEEE/ACM Workshop on Mobile Ad Hoc Net-
working and Computing (MobiHOC), 2003.

W. Vickrey, “Counterspeculation, auctions and competitive sealed ten-
ders,” Journal of Finance, pp. 8-37, 1961.

E. H. Clarke, “Multipart pricing of public goods,” Public Choice, pp.
17-33, 1971.

T. Groves, “Incentives in teams,” FEconometrica, pp. 617-631, 1973.

30



[12]

[16]

J. Green and J. J. Laffont, “Characterization of satisfactory mecha-
nisms for the revelation of preferences for public goods,” Econometrica,
pp. 427438, 1977.

N. Nisan and A. Ronen, “Algorithmic mechanism design,” in ACM
Symposium on Theory of Computing, 1999.

K. Roberts, Aggregation and Revelation of Preferences, edited by J. J.
Laffont, chapter The characterization of implementable choice rules, pp.
321-349, North-Holland, 1979, Papers presented at the 1st European
Summer Workshop of the Econometric Society.

J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker, “A BGP-
based mechanism for lowest-cost routing,” in Proceedings of the 2002
ACM Symposium on Principles of Distributed Computing., 2002.

Y. Wang X.Y. Li, W.Z. Wang and O. Frieder, “Truthful low-cost rout-
ing in selfish ad hoc networks,” 2003, Working paper, submitted for
publication.

K. Jain and V. V. Vazirani, “Group strategyproofness and no subsidy
via lp-duality,” 2002.

H. Moulin and S. Shenker, “Strategyproof sharing of submodular costs:
Budget balance versus efficiency,” in Economic Theory, 2002, Available
in preprint form at http://www.aciri.org/shenker/cost.ps.

J. Feigenbaum, C. H. Papadimitriou, and S. Shenker, “Sharing the cost
of multicast transmissions,” Journal of Computer and System Sciences,
vol. 63, no. 1, pp. 21-41, 2001.

M. R. Garey and D. S. Johnson, “The rectilinear steiner problem is
np-complete,” SIAM Journal of Applied Mathematics, vol. 32, pp. 826—
834, 1977.

P. Berman and V. Ramaiyer, “Improved approximations for the steiner
tree problem,” J. of Algorithms, vol. 17, pp. 381-408, 1994.

H. Takahashi and A. Matsuyama, “An approximate solution for the
steiner problem in graphs,” Math .Jap., vol. 24, pp. 573-577, 1980.

A. Zelikovsky, “An 11/6-approximation algorithm for the network
steiner problem,” Algorithmica, vol. 9, pp. 463-470, 1993.

31



[24]

[25]

A. Zelikovsky, “Better approximation bounds for the network and eu-
clidean steiner tree problems,” Technical report ¢s-96-06, University of
Virginia, 1996.

G. Robins and A. Zelikovsky, “Improved steiner tree approximation in
graphs,” in Proceedings of ACM/SIAM Symposium on Discrete Algo-
rithms, 2000, pp. 770-779.

W.Z. Wang and X.-Y. Li, “Truthful low-cost multicast in selfish net-
works,” 2003, Working paper submitted for publication.

B. Raghavachari, “Algorithms for finding low degree structures,” in
Approximation Algorithms for NP-Hard Problems, D. Hochbaum, Ed.,
pp- 266-295. PWS Publishers Inc., 1997.

S. Herzog, S. Shenker, and D. Estrin, “Sharing the “cost” of multicast
trees: an axiomatic analysis,” IEEE/ACM Transactions on Network-
ing, vol. 5, no. 6, pp. 847-860, 1997.

H. Moulin and S. Shenker, “Strategyproof sharing of submodular costs:
Budget balance versus efficiency,” Economic Theory, vol. 18, pp. 11—
533, 2001.

J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker, “Hardness
results for multicast cost sharing,” Tech. Rep. YALEU/DCS/TR1232,
June 2002, http://ftp.cs.yale.edu/pub/TR/tr1232.ps.

M. Adler and D. Rubenstein, “Pricing multicast in more practical net-
work models,” in Proceedings of the 13th Symposium on Discrete Algo-
rithms. 2002, pp. 981-990, ACM Press/SIAM , New York/Philadelphia.

K. Jain and V. Vazirani, “Applications of approximation to coopera-
tive games,” in Proceedings of the 33rd Symposium on the Theory of
Computing, New York ACM Press, Ed., 2002, pp. 364-372.

L. Anderegg and S. Eidenbenz, “Ad hoc-vcg: a truthful and cost-
efficient routing protocol for mobile ad hoc networks with selfish

agents,” in Proceedings of the 9th annual international conference on
Mobile computing and networking. 2003, pp. 245-259, ACM Press.

J. Sweeny, “An experimental investigation of the free-rider problem,”
Social Science Research, vol. 2, 1973.

32



[35]

[38]
[39]

G. Marwell and R. Ames, “Experiments in the provision of public
goods: I. resources, interest, group size, and the free-rider problem,”
American J. of Sociology, vol. 84, 1979.

P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge, “Incen-
tives for sharing in peer-to-peer networks,” Lecture Notes in Computer
Science, vol. 2232, 2001.

D. Dutta, A. Goel, R. Govindan, and H. Zhang, “The design of a
distributed rating scheme for peer-to-peer systems,” in Proceedings of
the Workshop on the Economics of Peer-to-Peer System, 2003.

E. Adar and B. Huberman, “Free riding on gnutella,” 2000.

A. Akella, S. Seshan, R. Karp, S. Shenker, and C. Papadimitriou, “Self-
ish behavior and stability of the internet:: a game-theoretic analysis of
tep,” in Proceedings of the 2002 conference on Applications, technolo-

gies, architectures, and protocols for computer communications. 2002,
pp- 117-130, ACM Press.

33



