
1

CBRBrain: Provide Content Based Routing Service
Over Internet Backbone

Wen-Zhan Song∗ Xiang-Yang Li∗

Abstract— Peer-to-peer(P2P) networking has come to a family
of technologies and techniques for organizing distributed applica-
tions, which takes advantage of resources available at the Internet
edges. In this paper, we propose an innovative P2P system archi-
tecture, calledCBRBrain, to implement the content based routing
(CBR) service over the backbone routers instead of at the termi-
nal hosts. Hence CBRBrain avoids some drawbacks in previous
P2P systems and significantly improves the efficiency and security.
Data locating process is easily implemented on CBRBrain by as-
sociating a hashed key with each data item and storing the (key,
address) pair in routers. The cost for topology update is neglect-
ful since the routers is almost static in Internet and the topology
is not affected by the frequent joining and leaving of hosts at all.
The traffic generated by CBRBrain system over Internet is also
expected to be significantly smaller compared with other P2P sys-
tems. The CBRBrain backbone adopts the self-routing structure
de Bruijn graph as the topology, which has a number of preferred
properties such as bounded degrees, low diameters and fault tol-
erance. As an illustration, we describe the mechanism of P2P file
sharing application under CBRBrain architecture.

Our work is a first step to provide an intelligent backbone as the
core of the next Internet. An implicit contribution of CBRBrain is
to facilitate the emergence of various intelligent applications over
Internet, besides P2P file sharing.

Index Terms— system design, P2P networking, content based
routing, de Bruijn graph, bounded degree, low diameter.

I. I NTRODUCTION

The term P2P comes to the force with the rise and fall of
Napster[1]. Although there are prior systems in this evolution-
ary phase of distributed computing, P2P system first emerges as
a significant social and technical phenomenon right after the de-
ployment of Napster. Currently most popular P2P systems are
aiming at the file sharing applications, where files are stored
at user hosts rather than at a central server in the traditional
client/server model.

The first widely used and well-known P2P system is Napster,
although it is not a pure decentralized P2P system. Napster[1]
uses a central server to store the index of all the files available
within its community. Assume that a user wants to download a
music file online, he needs first to browse the directory on the
central server to get the IP-address of the host that stores the re-
quested music. The user then contacts the target host and down-
loads the desired music files directly. The idea behind Napster
is simple and straightforward but very successful, however, the
central server is vulnerable to attacks, which intrigues massive
research on the decentralized P2P system. Napster has a revolu-
tionary impact on Internet applications due to its simple design

∗ Department of Computer Science, Illinois Institute of Technology, 10 W.
31st Street, Chicago, IL 60616, USA. Emailsongwen@iit.edu, xli@cs.iit.edu.
The work of the second author is partially supported by NSF CCR-0311174.

approach: after the initial search for material, clients connect
with each other and exchange data directly.

Gnutella[2] goes a step further than Napster and decentral-
izes the file location process as well. Users in a Gnutella net-
work self-organize into an application-level mesh on which re-
quests for a file are flooded within a certain number of hops.
Flooding on every request is clearly not efficient and scalable,
and thus it has to be curtailed at some point. Consequently,
flooding may fail to find a content that is actually in the system.

Several P2P schemes were proposed recently to replace the
flooding based query mechanism with smarter routing and/or
group communication mechanism, e.g., Chord [3], CAN [4],
Viceroy [5], Tapestry [6], Pastry [7], D2B [8]. These P2P
schemes build adistributed hash table(DHT) on top of the
overlay to provide efficient querying. In DHTs, keys are
mapped into a keyspace and assigned to all participated hosts.
Each host needs to take care of the related information of its
assigned keyspace. Then, a lookup request for a key simply
means finding the host which is responsible for the key’s hash
value. These systems can be categorized into the second gener-
ation P2P system,DHT-based P2P system. So far, much atten-
tion has been given to constructing large networks with some
nice properties such as bounded degrees and low diameters.

However, prior art on decentralized P2P system falls into one
extreme: the system is totally decentralized to the hosts at the
Internet edge, and each host has to act as a router to select
proper next-hop neighbors and relay the messages. Although
these DHT-based P2P systems enjoy several technical advan-
tage over the first generation of P2P systems, they still suffer
some drawbacks:

1) Bottleneck caused by the low-resource hosts.Each
host in these P2P systems acts the same role. However,
the network connections and computing resources of dif-
ferent hosts may have big difference. Hosts with low
resources become the bottleneck in the routing chains,
hence slow down the whole system.

2) High maintenance cost on the dynamic topology.The
number of end hosts in Internet is enormous and they
could join and leave a P2P system frequently, which in
turn causes the P2P topology changing frequently. Con-
sequently, the cost for dynamic maintenance is high and
this will cause a big performance oscillation of the sys-
tem.

3) Overload on hosts.In a pure decentralized P2P system,
each edge host needs to forward the data for others. In
practice, most users are consumers instead of providers in
a file sharing P2P system. Counting those consumer hosts
(without sharing files) into routing chain is not helpful at

2

all, since it will increase unnecessary path hops. On the
other hand, the consumers are irritated by such resource
overload, because they even cannot control its own re-
sources after they join those P2P networks.

4) Security problems on routing chains. In those DHT-
based P2P systems, each user host keeps a lookup table
for a subset of keys. An attacker can break the rout-
ing chain easily by joining the system then falsifying its
lookup table. In addition, since the transactions are per-
formed among individual hosts, it becomes difficult to
implement sophisticated security mechanisms.

5) Non-cooperative behavior of selfish hosts.Tradition-
ally, most current P2P systems assume that the end user
are eithercorrect/obedientor faulty (also called adver-
sarial). However, in P2P systems, the end user may not
follow the designed protocol, e.g., it may deny relaying
messages for other nodes since the user wants to save its
computing and network resources. We could assume that
the individual users arerational. The rational users re-
spond to well-defined incentives and will deviate from
the protocol if it does not improve its gain.

In this paper, we propose an innovative P2P system archi-
tecture, calledCBRBrain, which implements the content based
routing (CBR) service for P2P applications over the Internet
backbone instead of at the edges. Data locating process is eas-
ily implemented on CBRBrain by associating a hashed key with
each data item and storing the (key, address) pair in routers, so
edge hosts are not involved in the routing chains. Consequently,
the cost for topology update is neglectful since the routers is al-
most static in Internet and the topology is not affected by the
frequent joining and leaving of hosts at all. The traffic gener-
ated by CBRBrain system over Internet is also expected to be
significantly smaller compared with other P2P systems. The
CBRBrain backbone is built upon the self-routing structurede
Bruijn graph, which has a variety of properties such as bounded
degrees, low diameters and fault tolerance. As a running ex-
ample, we describe the implementation of a P2P file sharing
application underCBRBrainarchitecture. By constructing the
CBRBrain over the routers instead of hosts, we avoid the limi-
tations of previous P2P systems.

The rest of this paper is organized as follows. In Section
II, we describe our innovative P2P architecture CBRBrain. In
Section III, we give an introduction on de Bruijn graph that is
used to build the backbone of CBRBrain system and show how
to maintain the backbone topology. In Section IV, we discuss in
detail the implementation of P2P file sharing over CBRBrain.
In SectionV, we show how different CBRBrain networks can
work independently and cooperatively in the Internet. Finally,
we conclude our paper in Section VI.

II. T HE ARCHITECTURE OFCBRBRAIN SYSTEM

The design of P2P system can gain useful lessons from pre-
vious decentralized system in Internet evolution history. Usenet
is an instructive example of the evolution of a decentralized sys-
tem. Usenet propagation is symmetric: hosts share traffic. But
because of the high cost of keeping a full news feed, in prac-
tice there is a backbone of hosts that carry all of the traffic and

serve it to a large number of “leaf nodes” whose role is mostly
to receive news. Within Usenet, there was a natural trend to-
ward making traffic propagation hierarchical, even though the
underlying protocols do not demand. This form of “soft cen-
tralization” may prove to be economic for many peer-to-peer
systems with high-cost data transmission.

CBRBrain system builds a distributed logical network over-
lapping Internet backbone, allowing the discovery of data
and/or resources identified by keys in Internet. In the archi-
tecture, we still kept the content located at the edge of Internet,
while promoting the duty of content based routing(CBR) to the
Internet backbone.

The backbone of CBRBrain system is a content addressable
network, which can be described by a pair (K,G) whereK is
a set of keys andG = (V,E) is a logical graph or topology.
The setK is generated by hosts who hash each shared content
into a value, hereafter calledkey, and publish it to the back-
bone. Each nodeu in G is assigned a subset of keysKu such
that∪u∈V Ku = K. In practice, nodeu needs to store a lookup
table which contains necessary information related to each key
k ∈ Ku, such as the address of the host who published the
key and owns the content. The assignment of keys to nodes is
performed by mapping both keys and nodes’ labels to a real do-
main, then the key/value pairs are assigned to theclosestserver.
Here the termclosesthas different meaning in different system,
for instance, Chord[3] assigns a keyk to the first node whose
identifier is equal to or followsk in the identifier space. CAN[4]
assign a keyk to the node who owns the zone. In D2B[8], a key
k is assigned to the node whose label is the prefix ofk. As op-
posed to other networks, routing in a content addressable net-
work is not performed according to the destination address, but
according to the content key. More precisely, no one can know
the address of theclosestserver in advance. It is eventually
found out by content routing and key matching.

In CBRBrain system, IP routers act as contentROUTERS in
finding the best route from one point to another, and the user
host will not participate in any intermediate routing and for-
warding. Figure 1 illustrates such an architecture. The region
inside the cloud represents the CBRBrain backbone which over-
lays the backbone of Internet. The set of routers construct a
self-routing topology, whose detail will be addressed in Section
III. The end hosts connect to the network through those gate-
way routers inside the backbone. Notice that, we do not force
all routers to participate into CBRBrain network, as will see
later, the uninvolved routers are transparent to the system like
network cables; and any dedicated host can also act as arouter
in the system if it is authorized by the system coordinator. For
simplicity of presentation, here before and after, therouter al-
ways represent the backbone router or dedicated host who has
joined the routing chain by authorization.

By constructing the CBRBrain over the routers instead of
hosts, we can avoid the limitations of prior art described in
Section I. Firstly, the host with low bandwidth and low com-
puting resource will not affect the routing performance of the
P2P system since it is not in the routing chain. Secondly, the
routers rarely leave the networking, so the topology is almost
static once it is configured. Thirdly, the joining and leaving
of individual host is handled by its corresponding router and is

3

X

Y

w

v

u
��
��
��
��
��

��
��
��
��

����
��
��
��

��

����
��
��
��

Fig. 1. The architecture of CBRBrain system.

transparent to the system if it did not publish contents. In addi-
tion, the routing is performed on routers, so each host member
bares no maintenance and routing cost. Fourthly, we also get rid
of the non-cooperative problem of user hosts by letting only the
routers perform the content based routing, where the routers are
assumed to be obedient. In addition, we implement the look up
service on the Internet backbone instead of edges, which is ex-
pected to improve the search efficiency and to reduce the traffic
and workload of Internet.

From the viewpoint of users, CBRBrain network works like a
central server, where user could query to and get response from,
though the backbone is formed by many routers and the content
location is actually decentralized to individual user hosts. From
the viewpoint of Internet, CBRBrain backbone is an overlayed
logical network over Internet backbone, which provides addi-
tional service,Content Based Routing, to sustain various peer-
to-peer applications and other intelligent services in the future.

For illustration, we briefly discuss how to retrieve a file in
P2P file sharing application under the CBRBrain system. No-
tice that the CBRBrain architecture itself is not restricted to the
file sharing. Figure 1 illustrates an example that follows:

1) A host X inquires the CBRBrain system about a fileΩ
stored in Internet. HostX first uses the globally prede-
fined DHT function to mapΩ to a keyk, then sends it to
the gateway routeru.

2) The CBRBrain backbone performs the content based
routing service, which will be described in Section III,
and finds the target routerv who has the keyk in its
lookup table. The routerv then finds the corresponding
IP address(es) of the target hostY if it exists. There are
two options here: 1) the router could then retrieve the
content and feed it to the requesting host, or 2) the router
gives the IP address ofY to the requesting host and let
it retrieve the content. The first approach makes the tar-
geting host anonymous to the requesting host, while the
second approach alleviates the burden of the router.

III. T HE CONSTRUCTION OFCBRBRAIN BACKBONE

In building DHTs, the system needs to design the overlay
topology carefully to ensure the efficiency of publish/retrieve.
Several objectives should be met in designing the backbone for
a DHT-based P2P system [8]. Firstly, all nodes in the system are

mutually reachable, i.e., the topology is connected. Secondly,
keys are evenly distributed among nodes with high probability.
Thirdly, lookups are performed on a key-basis, i.e., the route
from the query host to a supplier host is set up according to the
knowledge provided by the key of the resource only. Fourthly,
the lookup latency should be small. From any given query node
to reach a node responsible for any given key, the lookup path
must be short, i.e., the constructed topology has low diameter.
Fifthly, the traffic load incurred by lookups routing through the
system should be evenly distributed among nodes, i.e., the con-
gestion is evenly distributed. Last, but not least important, the
redistribution of keys due to node’s leaving or joining must be
fast, i.e., the update can be performed efficiently.

CAN [4] uses ad-dimensional Cartesian coordinate space to
implement a distributed hash table that maps keys onto values.
Thus, each node maintainsO(d) states and the lookup cost is
O(dN1/d). Chord [3] is based on the a ring topology with long-
distance hop pointers (hypercube). Both the expected node de-
gree and diameter areO(log n). Viceroy [5] uses the same key
set as Chord, but adopts the butterfly graph as the underlying
topology. The simplified version of Viceroy has expected de-
greeO(1) and diameterO(log n). Recent work in D2B [8]
proposed a novel topology based on de Bruijn graph. It has ex-
pected degreeO(1) and diameterO(log n) in high probability.
All these systems build the topology on the set of individual
hosts, i.e., the Internet edge. Table I summarizes the compari-
son of expected performance measures.

TABLE I
PERFORMANCE MEASUREMENTS OF DIFFERENT TOPOLOGIES.

Update Lookup Congestion
CAN O(d) O(dn1/d) O(dn1/d−1)
Chord O(log n) O(log n) O(log n

n)
Tapestry O(d log n

log d) O(log n
log d) O(log n

n)
Viceroy O(1) O(log n) O(log n

n)
D2B O(1) O(log n) O(log n

n)

The CBRBrain system doesnot put constraint on the under-
lying topology over its backbone. However, it is preferred to be
a self-routing structure with low degrees, low congestions, and
low diameters. Under the careful analysis on different graphs
and topologies and the inspiration from the work in [8], in this
paper, we recommend the underlying topology to be built upon
de Bruijn graphsince it has all nice properties mentioned above
and can be easily constructed. For easy presentation, we first
review the property of de Bruijn graph here.

A. de Bruijn Graph

The de Bruijn graph [10]B(d, k) is the directed graph whose
nodes are all strings of lengthk on the alphabet{0, · · · , d −
1}, and there is an edge from any nodex1x2 · · ·xk to node
x2 · · ·xky for any y ∈ {0, · · · , d − 1}, which enables self-
routing. Figure 2 illustratesB(2, 3). Routing fromx1x2 · · ·xk

to y1y2 · · · yk is achieved by the following routex1x2 · · ·xk

→ x2 · · ·xky1 → x3 · · ·xky1y2 → · · · → xky1 · · · yk−1

→ y1 · · · yk. A shorter route is obtained by looking for the

4

longest sequence that is suffix ofx1x2 · · ·xk and prefix of
y1y2 · · · yk. Suppose thatxi · · ·xk = y1 · · · yk−i+1, then
the shortest path from nodex1x2 · · ·xk to nodey1y2 · · · yk is
x1 · · ·xk → x2 · · ·xkyk−i+2 → x3 · · ·xkyk−i+2yk−i+3 → · · ·
→ xi−1 · · ·xkyk−i+2 · · · yk−1 → y1 · · · yk. The route from any
node to any other node is at mostk hops. That is to say, the
graphB(d, k) with n = dk nodes has a diameterk = logd n.

111

001 011

010

100 110

000 101

Fig. 2. The de Bruijn graphB(2, 3).

The classical de Bruijn graph isbalancedin the sense that all
node labels have the same length. The de Bruijn graph can be
generalized to any set of vertices whose labels form a universal
prefix set [8]. A universal prefix set is a setS of labels on an
alphabetΣ such that, for any infinite wordw ∈ Σ?, there is
a uniqueword in S, which is a prefix ofw. A generalized de
Bruijn graph ispseudo-balancedif the lengths of the labels are
different by at most one. In geometry viewpoint, the node labels
in a pseudo-balanced de Bruijn graph correspond to the leaf
node labels in afull binary tree, in which the depth difference
of any two leaf nodes is at most one and any non-leaf node has
2 children. Figure 3 illustrates the correspondence between a
pseudo-balanced de Bruijn graph and a full binary tree. In the
figure, the pseudo-balanced de Bruijn graph is defined on the
leaf nodes with directed edges.

root

0000 0001 0010 0011

001000 011010 100 101 110 111

10 110100

10

Fig. 3. The correspondence between full binary tree and pseudo-balanced de
Bruijn graph.

For simplicity, we still denote a pseudo-balanced de Bruijn
graph on alphabet{0, 1} by B(2, k) if the node labels have
length at leastk bits and at mostk + 1 bits. We will only
consider pseudo-balanced de Bruijn graph. InB(2, k), each
node has2 in-neighbors and at most4 out-neighbors. To route
a packet from a nodeu with labelx1x2 · · ·xs−1xs to another
node v with label y1y2 · · · yt−1yt, wheres, t ∈ [k, k + 1].
Nodeu will forward the packet to its neighbor node with la-
bel x2 · · ·xs−1xs, or x2 · · ·xs−1xsy1, or x2 · · ·xs−1xsy1y2.
Notice that since the labels of the nodes are a universal pre-
fix set, we know thatexactlyone of these three labels does ex-
ist. The following nodes keep forwarding the packet similarly
until it reaches nodev. Consequently, the diameter of a pseudo-
balanced de Bruijn graph is stillO(log n).

B. CBRBrain Backbone Construction

The routers in CBRBrain backbone form a pseudo-balanced
de Bruijn graph as its logical topology. Each router is assigned a
labelx1x2 · · ·xt with t = k or k + 1 from the de Bruijn graph.
To enable the data locating and content based routing service
in CBRBrain network, each serving router keeps two tables:
label-routing tableand lookup table. The label-routing table
records the label and IP-address of all logical out-neighbors in
de Bruijn graph, and thelookup tablerecords those (key, ad-
dress) pairs whose key has its label as prefix and other addi-
tional information such as the network bandwidth or the com-
puting resource at that host.

For instance, in Figure 3, node100 has 4 out-neighbors
0000,0001, 0010 and0011, its label-routing tableis illustrated
in Table II. A query with a key0011...101 will simply be for-
warded to the router192.47.152.27, whose label matches the
key’s prefix. Itslookup tableis illustrated in Table III. Hosts
172.56.185.29, 175.45.182.11 and173.12.257.32 all own same
content-key but have different network bandwidth. To reply
a query with key100...0011, node100 could choose the host
172.56.185.29 with a higher probability if our strategy is to bal-
ance the traffic flow. In practice, we may use some sophisticated
technique to store (key, address) pairs to improve the search ef-
ficiency on the table, which is out of the scope of this paper.

TABLE II
THE LABEL-ROUTING TABLE IN THE ROUTER100.

Neighbor-Label IP-Address
0000 147.29.215.92
0001 216.47.152.81
0010 225.98.151.26
0011 192.47.152.27

TABLE III
THE LOOKUP TABLE IN THE ROUTER100.

Content-Key IP-Address Bandwidth
100...0001 216.47.152.88 64K
100...0011 172.56.185.29 100M

175.45.182.11 10M
173.12.257.32 64K

100...0100 185.45.181.27 10M
...

...
...

100...1110 175.45.182.11 10M
173.12.257.35 64K

The adoption of balanced or pseudo-balanced binary de
Bruijn graph enjoys at least the following nice properties:

1) Keys can be uniformly distributed in all routers in CBR-
Brain backbone with high probability, since the length
difference of node labels is at most one.

2) The size of thelabel routing tablein each router is at
most 4 due to the number of out-neighbors is at most 4.
That is to say, each router only keeps at most 4 live links,
hence the workload for maintaining links is small and the

5

router’s joining or leaving only affects 2 in-neighbors and
at most 4 out-neighbors.

3) Reduce the congestion in whole network since the work-
load is uniformly assigned in high probability.

4) The diameter of the topology isO(log n) wheren is the
number of serving routers in CBRBrain system.

In CBRBrain system, the backbone topology is formed by the
routers, so the topology is relative stable and static. In addition,
the number of routers is limited and they usually are configured
before using. We suggest to use acertificate server1 to build
and maintain the logical topology, i.e., assign/change/delete la-
bels due to routers joining/leaving, though it is possible to main-
tain a dynamic de Bruijn graph[8], [11] in a distributed manner.
The reasons are follows:

1) Security control. Attacker can join in CBRBrain network
as a falsified router and hence break the P2P system by
malicious routing or denying to relay messages. Using
a certificate server to verify each joining/leaving router
could diminish this kind of attack.

2) Easy to maintain a pseudo-balanced de Bruijn graph. As
mentioned in Section III-A, a pseudo-balanced de Bruijn
graph enjoys many nice properties, however, it is expen-
sive to be maintained in a distributed way.

3) To achieve high efficiency and reduce communication
cost. According to the experiment in [12],55% of all traf-
fic generated by early Gnutella network is for the topol-
ogy maintenance, though it is decreased to8% in the im-
proved version. Most DHT-based P2P systems have strict
constraint on topology, so the cost for topology mainte-
nance is probably even higher. A certificate server can
update the topology faster with less communication cost.

The logical topology and router labels is updated if and only
if routers joining or leaving, which is not affected by any user
hosts at all. In the certificate server, the full binary tree2 cor-
responding to the current topology is recorded, so are the (la-
bel, address) pairs of those routers. Letn be the number of
routers currently in the CBRBrain backbone, then the label
length should be in the range[m,m + 1] wherem = blog2 nc.
The backbone construction and maintenance are controlled by
the certification server as follows:

1) Router joining. The joining routeru first sends a request
to the certificate server for authorization. If it passes ver-
ification, the server first splits the smallestm-bits label
x1...xm into two new onesx1...xm0 andx1...xm1; then
returns the new labelx1...xm1 to the joining routeru and
records its IP-address. At the same time, the server no-
tifies the routerv, having the old labelx1...xm, its new
labelx1...xm0. After that, routersu andv and their logi-
cal neighbors update theirlabel-routing tables according
to the connection rules in de Bruijn graph. Routerv then
moves those (key, address) pairs with key prefixx1...xm1
in its lookup tableto routeru.

2) Router leaving. The leaving routeru sends a request to
the certificate server. After verification, the system per-
forms the update as follows:

1In practice, we may use a group of servers instead of a single server to
increase fault tolerance and security, which is beyond the scope of the paper.

2Actually, the server only need store the leaf node labels in a list.

a) If u has a(m + 1)-bits labelx1...xmxm+1, then
the server simply asks the routerv with label
x1...xmxm+1 to shrink tox1x2...xm. After that,
routersu andv and their logical neighbors update
their label-routing tables according to the connec-
tion rules in de Bruijn graph. Routeru moves all
(key, address) pairs in itslookup tableto routerv
then leaves safely.

b) If u has am-bits label. Assume there exists a
(m+1)-bits label in the tree. Otherwise, it is similar
to the case a). The server then asks the routerv with
the largest(m + 1)-bits labely1...ym1 to replace
the position left byu, and requests the routerw to
replace its labely1...ym0 by y1...ym. After that,
routersu, v, w and their logical neighbors update
their label-routing tables according to the connec-
tion rules in de Bruijn graph. Routerv moves all
(key, address) pairs in itslookup tableto routerw.
Routeru moves all (key, address) pairs to routerv
and leaves safely.

In case of router leaving due to power off, the detection
mechanism can be implemented by the periodicalPING

from the certificate server, or from its in-neighbors who
then reports the connection loss to the server.

IV. P2PFILE SHARING APPLICATION IN CBRBRAIN

SYSTEM

In this section, we describe an implementation of the P2P file
sharing application in our system. The other P2P applications
or intelligent Internet applications could be developed similarly
under this architecture. In CBRBrain system, the joining or
leaving of hosts is transparent to the system, unless they did
one of the following: (1) publish content (2) retrieve content
(3) leave the system after publishing something.

A. User Host Publishes and Retrieves Content

In CBRBrain system, the publishing and retrieving operation
by a user host works as follows:

1) Publish Content
a) A host X hashes its sharing file into am-bits key

k = c1c2...cm and sets its sharable bandwidthB,
then sends a messagePUBLISH(k,IP (X),B) to the
nearest gateway routeru that participates in the
CBRBrain backbone.

b) Content based routing service over backbone even-
tually forwards the message to the routerv whose
label matches the prefix ofk, as shown in Figure 1.

c) Router v inserts the (key, address) pair
(k,IP (X),B) to its lookup table; see Figure
III.

2) Retrieve Content
a) A host Y hashes its query into am-bits keyk =

c1c2...cm, then sends a messageQUERY(k,IP (Y))
to the nearest gateway routerw that participates in
the CBRBrain backbone.

6

b) Content based routing service over backbone even-
tually forwards the message to the routerv whose
label matches the prefix ofk.

c) Routerv searchesk thoroughly in its lookup table.
If found, then return3 one or all of the correspond-
ing IP-address(es) to the hostY depending on the
strategy. Otherwise it returns aFALSE message.

B. User Host Joins and Leaves

The user host’s joining and leaving will not affect the CBR-
Brain network topology at all, unless the leaving host has pub-
lished content in the network. Hence our architecture can sig-
nificantly reduce the computation and communication cost. The
leaving hostX which has content published should first notify
the system before it leaves. However, if it leaves impolitely, the
system will detect it once a report on failed retrieve or failed
periodicalPING is received by thehostingrouter. When a host
X leaves and it already published some contents, the follows
will be performed:

1) For each published content, hostX sends a message
LEAVE(k, IP (X)) to the nearest routeru.

2) Content based routing service over backbone eventually
forwards the message to the routerv whose label matches
the prefix ofk.

3) Routerv simply deletes the matching (key, address) pair
from its lookup table.

V. THE SCALABILITY OF CBRBRAIN NETWORK

The CBRBrain system also enjoys good scalability. Sev-
eral CBRBrain systems may connect with each other without
conflict because one CBRBrain system could act like a user
host to retrieve content from another CBRBrain system. They
would even be overlapped in the Internet physically. Figure
4 illustrates such an idea. If the CBRBrain systemA can not
find the content for a special query, then it forwards the query
to some CBRBrain systemB through the connection between
their gateway routersu andv. The routeru works as a host to
retrieve content from the systemB.

vu

BA ����
��
��
��

��
��
��
��
��

��
��
��
��
�� ����

��
��
��

����
��
��
��

����
��
��
��

Fig. 4. The scalability of CBRBrain model.

The clustering technique is expected to significantly improve
the search efficiency and reduce the cost in practice. Users are
usually interested with different contents. Hence it is better
to build different subject-oriented CBRBrain systems and then

3Again, the routerv may simply return the IP address or retrieve content then
feed back, as discussed in Section II.

connect them with each other. A user in one CBRBrain system
can query any content in other CBRBrain systems without ac-
tually joining them as a client since all CBRBrain systems can
work together cooperatively.

VI. CONCLUSION

In this paper, we propose an hierarchical architecture, called
CBRBrain, which implements the content based routing (CBR)
service for P2P applications over the Internet backbone instead
of at the edges. The concept P2P itself is far more signifi-
cant than the P2P file sharing applications. P2P networking ap-
proaches the dream that “Internet is a big intelligent computer”.
The brain of the “Computer” needs to be integrated with effi-
cient resource locating and sharing functions besides IP routing.
The goal of our CBRBrain architecture is to facilitate the emer-
gence of various intelligent applications over Internet, besides
P2P file sharing.

The architecture of the Internet has caused the largest trans-
fer of power from organizations to individuals the world has
ever seen, and it is only getting started. Millions of passive
consumers are replaced by millions of one-person media chan-
nels. This is not to say that all contents are going to the edges
of the Internet, or that every user is going to be an enthusias-
tic media outlet. But enough consumers will become providers
as well to blur present distinctions between producer and con-
sumer. This social shift will make the next generation of the
Internet, currently being assembled, a place with greater space
for individual contributions that people accustomed to the cur-
rent split between client and server, and therefore provider and
consumer, had ever imagined.

REFERENCES

[1] NAPSTER, “http://www.napster.com,” .
[2] GNUTELLA, “http://www.gnutella.com,” .
[3] I.Stoica, R.Morris, D.Karger, M.Kaashoek, and H.Balakrishnan, “Chord:

a scalable peer-to-peer lookup service for internet applications,” inACM
SIGCOMM, 2001.

[4] S.Ratnasamy, P.Francis, M.Handley, R.Karp, and S.Shenker, “A scalable
content-addressable network,” inACM SIGCOMM, 2001, pp. 167–172.

[5] D.Malkhi, M.Naor, and D.Ratajczak, “Viceroy: a scalable and dynamic
lookup network,” in21st ACM Symposium on Principles of Distributed
Computing(PODC), 2002.

[6] B.Zhao, J.Kubiatowicz, and A.Joseph, “Tapstry: an infrastructure for
fault-tolerant widearea location and routing,” Tech. Rep. UCB/CSD-01-
1141, UC Berkeley, 2001.

[7] A.Rowstron and P.Druschel, “Pastry: a scalable and dynamic lookup
network,” in 21st ACM Symp. on Principles of Distributed Computing
(PODC), 2002.

[8] Pierre Fraigniaud and Philippe Gauron, “The content-addressable net-
work d2b,” in Technical Report TR-LRI-1349 (also appeared in 22nd
ACM Symp. on Principles of Distributed Computing (PODC)), 2003.

[9] P.V.Mockapetris and K.J.Dunlap, “Development of the domain name sys-
tem,” in ACM SIGCOMM, 1988, pp. 123–133.

[10] N. de Bruijn, “A combinatorial problem,” inKoninklijke Nederlandse
Academie van Wetenschappen, 1946, 49, pp. 758–764.

[11] Wen-Zhan Song, Xiang-Yang Li, Yu Wang, and Weizhao Wang, “db-
blue: Low diameter and self-routing bluetooth scatternet,” inACM Dialm-
POMC Joint Workshop on Foundations of Mobile Computing, 2003.

[12] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design,” IEEE Internet Computing Journal, vol. 6, no. 1, 2002.

