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Abstract— We consider the problem of online dynamic channel
accessing in multi-hop cognitive radio networks. Previous works
on online dynamic channel accessing mainly focus on single-hop
networks that assume complete conflicts among all secondary
users. In the multi-hop multi-channel network settings studied
here, there is more general competition among different com-
munication pairs. A simple application of models for single-hop
case to multi-hop case with N nodes and M channels leads
to exponential time/space complexity O(MN ), and poor theo-
retical guarantee on throughput performance. We thus novelly
formulate the problem as a linearly combinatorial multi-armed
bandits (MAB) problem that involves a maximum weighted
independent set (MWIS) problem with unknown weights. To
efficiently address the problem, we propose a distributed channel
access algorithm that can achieve 1/ρ of the optimum averaged
throughput where each node has communication complexity
O(r2 +D) and space complexity O(m) in the learning process,
and time complexity O(Dmρr ) in strategy decision process for an
arbitrary wireless network. Here ρ = 1+ ε is the approximation
ratio to MWIS for a local r-hop network with m < N nodes, and
D is the number of mini-rounds inside each round of strategy
decision.

I. INTRODUCTION

Available spectrum is being exhausted, while a lot of fre-

quency bands are extremely under utilized. As a promising

solution to improve dynamic allocation of the under-utilized

spectrum, cognitive radio technology allows secondary users

(SUs) to opportunistically access vacant channels in temporal

and spatial domain when the primary user is idle. However, the

available channel qualities to SUs are unknown at the start of

transmissions because of uncontrollable external disturbances

and primary users’ occupancies. Meanwhile, due to resource

and hardware constraints, cognitive radios (CRs) can sense

only a part of heterogeneous channels at a given time. Thus,

it is vital for secondary users to learn and select the best

possible channels to access. Several recent results [1], [2],

[3], [4], [5], [6], [7], [8] are proposed to take the dynamic

spectrum sharing problem as the multi-armed bandits problem,

and attempt to find a dynamic channel access policy that

results in almost optimal expected throughput (or zero-regret)
through learning history, compared with the optimal fixed

channel policy. Unfortunately, these methods generally adopt
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the simplest form of MAB where only single-hop cognitive

radio networks (CRNs) fit the model.

In dynamic channel accessing of multi-hop CRNs, the first key

challenge is to model general interference among SUs into a

more sophisticated MAB formulation. As a consequence of

general interference, a naive extension from the single-hop

case to multi-hop case will lead to regret, time and space

complexity that is exponential with the number of users in

the learning process. More specifically, taken as an arm a

strategy consisting of decisions from each of the N users

with M available channels, there will be totally O(MN )
combinations. Since all these aforementioned works adopt a

UCB-type learning policy [9] [10] [11], the upper bound of

regret as well as time and space complexity is linear with the

number of arms, thus linear with O(MN ). Such theoretical

results are extremely poor in large scale multi-hop CRNs.

As practical efficiency is always the most concerned bench-

mark in multi-hop networks, another obstacle lies in devising

decentralized methods with low computation and communica-

tion complexity. Previous decentralized MAB methods [4] [2]

[12] pay little attention to these practical challenges around

multi-hop networks. Though there is no communication cost

in [4] [2], they require exponential computation time in a

single learning round, resulting in serious throughput loss.

Additionally, [2] assumes multiple users can access the same

resource, which does not capture conflicts among near-by

SUs. General conflicts in multi-hop CRNs cause severely

throughput loss as well. Therefore, it is imperative to design

efficient channel accessing policies to overcome these practical

challenges.

In this paper, we focus on investigating the zero-regret on-

line channel access problem in multi-hop CRNs. It involves

competition among adjacent users, and cooperation for max-

imum throughput network wide, combined with classical

exploration-exploitation tradeoff in learning unknown channel

qualities. We give a first attempt to mathematically formulate

the challenging problem for theoretical analysis, and provide

efficient decentralized solutions for practical benefits. Our

main contributions are two fold.

• We formulate the problem into a linearly combinatorial



MAB problem that shall find a maximum weighted

independent set of vertexes where weight is unknown

channel quality. This novel formulation facilitates us to

utilize a zero-regret learning policy where it only costs

time and space complexity O(MN) for a network with

M channels and N SUs. The other benefit is that it gives

us freedom to design efficient methods on our demands

to solve the MWIS problem and retain zero-regret.

• We propose an efficient decentralized channel access

scheme with provable theoretical performance. Our de-

centralized implementation achieves the same approxi-

mation ratio of ρ = 1 + ε as the centralized form, but

significantly reduce time complexity from O(Nρr

) to

O(Nmρr

). Here r = O(logρ M) is the hop number

required to achieve a PTAS. Our simulation results show

that our new distributed learning policy indeed outper-

forms previous policies in terms of average throughput

and time.

Remark on assumed models: We realized some apparent

limitations that might lead to misunderstanding of our contri-

butions, i.e., i.i.d channel qualities and unit-disk interference

models. We argue that our first contribution gives a general

model to study zero-regret online channel access problems

in various multi-hop CRNs, such as CRNs with Markov

or nonstochastic channel qualities, and other graph-based or

physical interference models. For general graph-based interfer-

ence models, it becomes a linearly combinatorial MAB under

stochastic/Markov/nonsotchastic unknown variables, while for

physical interference models, it becomes a non-linearly com-

binatorial MAB under stochastic/Markov/nonsotchastic un-

known variables. The remaining challenges are to solve the

linearly/non-linearly combinatorial MAB with involved MWIS

efficiently.

Organization: We present the network model in Section II,

problem formulation in Section III, our distributed access

policy in Section IV, and our simulation results in Section

V. We review related work in Section VI, and conclude the

work in Section VII.

II. NETWORK MODEL

Consider a network denoted by conflict graph G = (V,E,C)
with a set V = {vi|i = 1, . . . , N} of N nodes (SUs), a set E
of edges denoting conflicts, and a set C = {cj |j = 1, . . . ,M}
of M channels. We assume M is a constant as the number

of available frequency bands is fixed in a given network.

We use unit disks to reflect conflicts between two nodes,

where each node is treated as a disk centered on itself. There

is a conflict edge in E if any two intersected disks access

the same channel simultaneously. The network is time-slotted

with global synchronization. At each round t, node vi has M
choices of channels, where channel cj having data rate drawn

from an i.i.d stochastic process ξi,j(t) over time with a mean

μi,j ∈ [0, 1], as done in many previous works [13] [5] [6] .

Without loss of generality, we assume the same channel may

TABLE I: Summary of notations

Variable Meaning
N number of SUs
M number of channels

JG,r(v) r-hop neighborhood of node v in G
JH,r(v) r-hop neighborhood of vertex v in H
Ar(v) set of Candidate vertexes in r-hop neighborhood of v

MWIS(I) maximum weighted independent set for vertex set I
W (I) summed weight of all vertexes in vertex set I
sx(t) strategy decision for round t

Tx(n)/Tβ,x(n) number of times that strategy sx/sβ,x has been played so far

Δx/Δβ,x distance between R1/ 1
β
R1 and mean throughput of strategy sx

Δmin/Δβ,min minimum of Δx/Δβ,x

ξi,j(t) data rate for channel cj experienced by user vi
μi,j mean of ξi,j(t) over time

demonstrate different channel quality for different users. For

the same channel cj , the random process ξi,j(t) is independent

from ξi′,j(t) if i �= i′.

At each round t, an N -dimensional strategy vector sx(t) =
sx = {sx,i|i = 1, . . . , N} is selected under some policy from
the feasible strategy set F . Here sx,i is the index of channel
selected by node vi in strategy sx. We use x = 1, . . . , X to
index strategies of feasible set F in the decreasing order of

average throughput λx =
∑N

i=1 μi,sx,i . By feasible we mean
that all nodes can transmit simultaneously without conflict.
When a strategy sx is determined, each node vi observes
the data rate ξi,sx,i(t) of its selected channel, and then the
total throughput of the network at t is defined as, Rx(t) =∑

i∈sx ξi,sx,i(t). We evaluate policies using regret, which is
defined as the difference between the expected throughput
that could be obtained by a static optimal policy, and that
obtained by the given policy. Let R1 = λ1 be the optimum
fixed channel access strategy, then regret up to current round
n can be expressed as

R(n) = nR1 − E

[ n∑
t=1

Rx(t)

]
=

∑
x:Rx<R1

ΔxE
[
Tx(n)

]
.

III. PROBLEM FORMULATION

To model the multi-channel scenario, we remodel the original

conflict network G = (V,E,C) as an extended conflict graph

H = (Ṽ , Ẽ), where Ṽ = {vi,j | i ∈ [1, N ], j ∈ [1,M ]},

and show that the problem can be reformulated as a MWIS

problem in extended conflict graph H . For each node i, define

a set of virtual vertices {vi,j , j = 1, . . . ,M} and connect vi,j
with vi,k(j �= k) for all j, k. Node vi is master node of virtual

vertex vi,j , while vi,j is slave of vi. Connect vi,j with vp,j
if i and p has an edge in original network G. Then graph H
has N ×M vertexes. We give an instance in Fig. 1 where the

original network G has 3 available channels and 3 nodes.

We first analyze the optimum solution assuming each random
variable is known. Let each vertex associate with a weight of
ξi,j(t). As each node of G has a clique of virtual vertexes in
H , and vertexes with the same channel index retain the conflict
relationships of master nodes in G, then it is straightforward
that a MWIS of H is a throughput-optimal allocation of
channels in G. Moreover, an IS of H one-to-one maps to a



Fig. 1: Original conflict graph G to extended conflict graph H

feasible strategy in F . Therefore, the feasible strategy set F
consists of all independent sets (IS) of vertexes in H . Here
note that the independence number1 of H is less than N if the
chromatic number of G is greater than M , and is N otherwise.
The actual length of a feasible strategy may be smaller than
N if some nodes do not choose any channel. If the mean of
ξi,j(t) is known, the optimum strategy is to find a MWIS from
H as choices made by nodes in G, i.e,

R1 = max
sx∈F

N∑
i=1

μi,sx,i

s.t. F is feasible strategy set. (1)

Recall that these random variables are unknown actually, each

user needs to learn and estimate the weight of each strategy,

denoted by Wx(t) =
∑

xi∈sx
wi,sx,i(t), where wi,sx,i(t) is

estimated weight of random variable ξi,sx,i(t). Thus, our prob-

lem becomes a NP-hard combinatorial multi-armed bandits

problem that selects at most N arms (i.e., vertexes in H) out of

K = NM ones to minimize the regret R, such that these arms

are independent from each other in H . For brevity, we map the

channel index sx,i of node vi to arm index k = (i−1)N+sx,i.

For NP-hard combinatorial multi-armed bandits problems, a
weaker vision of regret, called β-regret [14], is defined as
the difference between the expected throughput that is 1/β of
the optimum, and that gained throughput (a β-approximation
policy which instead yields a strategy with learned weight at
least 1/β of the maximum possible weight) . Let Rβ,x(t) be
the reward of strategy sβ,x generated by the β-approximation
policy, then β-regret can be expressed as

Rβ(n) =
∑

Rβ,x<R1/β

Δβ,xE
[
Tβ,x(n)

]
+

∑
Rβ,x≥R1/β

Δβ,xE
[
Tβ,x(n)

]
.

Here in feasible strategy set of a β-approximation policy,

strategies can be divided into two sets, i.e., a set of β-

approximation strategies and a set of non-β-approximation

strategies. A β-approximation strategy is a strategy with mean

throughput of R1/β at least, and a non-β-approximation

strategy is one with mean throughput less than R1/β. Thus we

have negative Δβ,x for β-approximation strategies and positive

Δβ,x for non-β-approximation strategies.

IV. CHANNEL ACCESS

We divide each round of channel accessing into two sequent

parts, one for strategy decision and the other for data trans-

mission. In the former part, we learn to select the best strategy

for current time. In the later part, users access corresponding

1The cardinality of the maximum independent set that is an independent
set of largest possible size for a given graph.

channels to transmit data, and observe real data rate after trans-

mission. We assume a common control channel for control

message passing in strategy decision.

A. The learning policy

Though the learning policy in [12] achieves zero-regret, the
upper bound of regret R (or β-regret Rβ) including a factor
of 1

Δmin
(or 1

Δβ,min
) becomes vacuous if Δmin (or Δβ,min)

→ 0. Thus we adopt the learning policy in [14], where
the upper bound of regret is independent with Δmin (or
Δβ,min). The centralized form of the learning policy is shown
in Algorithm 1, where in (3) a independent set of vertexes

with maximum estimated weight are selected among Ṽ as
the strategy decision. The estimated value for actual weight
ξsx,i(t+ 1) of vertex vsx,i is

wsx,i(t+ 1) = μ̃sx,i(t) +

√√√√max (ln t2/3

Kmsx,i
, 0)

msx,i

. (2)

where μ̃sx,i is observed mean of ξsx,i up to the current round,

and msx,i is the number of times that channel ξsx,i has been

selected so far.

Algorithm 1 Learning policy

1: For each round t, select a strategy sx by maximizing

max
sx∈F

∑
sx,i∈sx

(
μ̃sx,i(t) +

√√√√max (ln t2/3

Kmsx,i
, 0)

msx,i

)
. (3)

Clearly, it only requires to store and update estimation for
MN vertexes that costs storage and computation linear with
MN , instead for MN strategies in F that costs storage and
computation linear with MN . It costs two 1 × K vectors to
store and update the estimated weight. One is (μ̃k)1×K , and
the other is (mk)1×K . After data transmission on the channels
of chosen strategy sx in round t, actual weight ξsx,i(t) is
observed for all sx,i ∈ sx. Then (μ̃k)1×K and (mk)1×K are
updated in the following way:

μ̃k(t) =

{
μ̃k(t−1)·mk(t−1)+ξk(t)

mk(t)
if k ∈ sx,

μ̃k(t− 1) else.
(4)

mk(t) =

{
mk(t− 1) + 1 if k ∈ sx,
mk(t− 1) else.

(5)

Due to NP-hardness of the MWIS problem in (3), it is

desirable to solve it approximately while retaining zero-regret.

The following theorem shows that, for any algorithm with

approximation ratio at least 1/β, the regret on the achieved

throughput is bounded.

Theorem 1: [14] The β-approximation learning policy has

supRβ(n) ≤ 1

β
NK +

(√
eK +

16

eβ
(1 +N)N3

)
n

2
3

+
1

β

(
1 +

4
√
KN2

eβ2

)
N2Kn

5
6 (6)



without dependency on Δβ,min. The supremum is taken over

all X-tuple of probability distributions on [0, 1].

B. Centralized approximation solution for channel access

Intuitively, the greater the value β is, the more loss on overall

throughput it causes, compared to the optimal throughput.

Given that, it is beneficial to employ a PTAS to solve the

MWIS problem. Compared with other existing PTAS schemes

[15] [16], the robust PTAS in [17] seems the most suitable

candidate for its elegance and non- requirement on geometric

information. The key problem is that the theoretical results are

no longer directly applicable to the extended conflict graph

H because of its complex structures. We need to prove the

correctness and new theoretical bounds of the robust PTAS

in H . For better understanding, first we summarize the basic

idea of robust PTAS for unit disk graphs.

Robust PTAS. We begin with some notations. Given a unit

disk graph G = (V,E) with a set V of nodes and a set E of

edges, an edge (u, v) ∈ E if the Euclidean distance ‖u, v‖ <
2. For a subset I of nodes in V , let W (I) denote the total

weight of I , i.e., W (I) =
∑

vi∈I wi, and MWIS(I) denote a

maximum weighted independent set for I . Let dG(u, v) be the

minimum hop of any path connecting u and v in G. Define

JG,r(v) := {u ∈ V | dG(u, v) ≤ r}
be the r-hop neighborhood of v in G. The r-hop distance of
G, LG,r(v), is the maximum Euclidean distance between v
and neighbors in JG,r. Clearly LG,r(v) < 2r.

Let ε > 0 and ρ := 1 + ε denote the desired approximation

guarantee. In graph G, the algorithm starts with a node

of maximal weight wmax = {maxwv|v ∈ V }, and then

computes MWIS(JG,r) as long as W (MWIS(JG,r+1)) >
ρW (MWIS(JG,r)) holds. Let r̄ denote the smallest r for

which the criterion is violated. It has been proved that r̄ is

a constant for a specific ρ, i.e., ρr ≤ (2r + 1)2. We then

remove MWIS(JG,r̄(vmax)) and all the adjacent vertices from

G, and repeat the above process on the remaining graph. Then

the union of all removed independent sets form an independent

set, and it is proved that it is ρ-approximation for the MWIS

of unit disk graph G.

As the extended conflict graph H is not a strict unit disk graph,

we distinguish some notations. Define r-hop neighborhood in
extended graph H as

JH,r = JH,r(v) := {u ∈ Ṽ | dH(u, v) ≤ r},
where dH(u, v) be the minimum hop of any path connecting

u and v in H . The r-hop distance of H , LH,r(v), is the

maximum Euclidean distance between v and neighbors in

JH,r. Note that two vertexes that belong to the same master

node of G has 0 Euclidean distance geometrically, but they are

1-hop neighbors in H . The r-hop distance of H also satisfies

LH,r(v) = LH,r < 2r. We then have the following theorem

on approximation ratio achieved by robust PTAS in H .

Algorithm 2 Main framework of distributed channel access

1: for Round t = 1, . . . , n, ∀v ∈ Ṽ do
2: if v belongs to strategy decision sx(t− 1) in previous round

then
3: Broadcast its new weight in (2r + 1)-hop neighborhood.
4: end if
5: Receive all updated weight on (2r + 1)-hop neighbors, and

update corresponding weight.
6: Perform distributed Robust PTAS as Algorithm 3 within D

mini-rounds.
7: if v is marked as Winner then
8: Access the channel to transmit data.
9: Observe actual data rate.

10: Update estimated weight using Equation (4), (5) and (2).
11: end if
12: end for

Fig. 2: Structure of a single round:WB-weight update; LS-

LocalLeader selection; LD-LocalLeader declaration; LMWIS-

local computation of MWIS; LB-local broadcast of status

determination.

Theorem 2: Robust PTAS applies to extended conflict graph

H with approximation ratio ρ, where ρr = M · (2r + 1)2.

Proof: We note that Robust PTAS can be extended to

other intersection graphs as long as the graph is growth-

bounded, i.e., the number of independent vertexes in a vertex’s

r-hop neighborhood is constantly bounded [18] [17]. As H
is not a strict unit graph, we then verify that H is growth-

bounded. Note that a set of virtual vertexes that belong to the

same master node form a clique in H . For a node vi ∈ V in

G, the independent number of JG,r(vi) is upper bounded by

(2r + 1)2. As each node in G will define M slave vertexes

in H , a simple pigeonhole principle shows that the number of

independent vertexes in the r-hop neighborhood JH,r(v) of

graph H is bounded from above by M · (2r + 1)2. Thus we

say H is also growth-bounded, and the approximation ratio

achieved in H satisfies ρr ≤ M · (2r + 1)2.

C. Distributed channel access

As the centralized form of robust PTAS algorithm re-

quires centralized computation and global collection of

weight/observed information, it costs high computation (i.e.,

O(Nρr

)) and communication complexity that is unwelcome

in multi-hop networks. We design a distributed PTAS that can

achieve the same approximation as the centralized form, but

with much lower cost.



1. Main framework

The main framework of our distributed design is shown in

Algorithm 2. For better explanation, we describe it in the

role of virtual vertexes, actual computations can be executed

by their master nodes instead. Each virtual vertex maintains

information on local neighbors in H from the initial round.

In the strategy decision part, Algorithm 2 includes an initiation

step called Weight Broadcast (WB), where each vertex broad-

casts its new weight if it accessed channel in previous round

(i.e., included in previous strategy decision sx(t−1)), to ensue

computation of MWIS with newest weight. These vertexes in

sx(t − 1) require to broadcast updated weight information

within hops (2r + 1) to ensure independence of the final

output, for which we will explain later. Let mini-timeslot be

the time unit required for a round of communication between

two connected vertexes. In the first round, the initial weight

of each vertex is 0, so vertexes can be randomly selected

as LocalLeader, or they can use their IDs as weight. In the

later case, it will cost O(N) mini-timeslots to collect IDs of

all neighbors even in a local neighborhood. In next rounds,

however, it costs only O((2r+1)2) mini-timeslots to finish the

WB process. The key observation is that within any (2r+1)-
hop neighborhood of any vertex, at most O((2r + 1)2) ver-

texes are selected as independent vertexes. Only independent

vertexes included in a strategy decision observe new values,

and utilize the observation to update estimated weight (i.e.,

plugging (4) and (5) into (2)). If each vertex performs weight

broadcast sequently, obliviously it will take O((2r+1)3) mini-

timeslots to finish the whole procedure in a (2r + 1)-hop

neighborhood. As an alternative, these selected vertexes can

efficiently broadcast their weight using pipeline methods such

as constructing a connected dominating set or scheduling local

broadcast [19] [20] [21], by which number of mini-timeslots

can be reduced to O((2r + 1)2).

After WB, each vertex then runs distributed Robust PTAS

presented in Algorithm 3 to compute MWIS with updated

weight. In our protocol, we will run D mini-rounds to output a

final IS with a good approximation ratio to the optimum. When

finishing execution of Algorithm 3, the vertexes included in

current strategy decision access channels for data transmission,

where they obtain new observation to update estimation of

weight for the next round. Until now a full round of Algo-

rithm 2 completes, and a new round follows.

2. Distributed robust PTAS

Now we describe distributed Robust PTAS in Algorithm 3.

We introduce four statuses in Algorithm 3: Candidate, Local-
Leader, Winner and Loser. A Candidate is one vertex that is

not marked as Winner or Loser, and thus has opportunity to

be a Winner. Initially, at the start of each round, each node

is marked as Candidate. A LocalLeader is a Candidate that

has the maximum weight among all its Candidate neighbors in

(2r + 1)-hop neighborhood. Each LocalLeader will compute

Algorithm 3 Distributed robust PTAS for strategy decision at

each vertex

Initialization: ∀ vertex v ∈ Ṽ , marked as status Candidate,
have collected newest weights of all (2r + 1)-hop neighbors
JH,2r+1(v).

1: for mini-round τ = 1, 2, . . . , N do
2: if v is Candidate then
3: if wv ≥ max{wu|u ∈ A2r+1(v)} then
4: v is marked as LocalLeader and declare in (2r+1)-hop

neighborhood.
5: end if
6: end if
7: if v is LocalLeader then
8: Compute a local MWIS(Ar(v)) using enumeration.
9: Determine status of r-hop neighbors. For any Candidate

vertex in Ar(v), marked as Winner if it is in MWIS(Ar(v)),
or marked as Loser otherwise.

10: Locally broadcast the results within (3r+1)-hop neighbor-
hood of the LocalLeader.

11: Update its own status accordingly.
12: else if v is Candidate then
13: if v receives determination messages then
14: Update status of itself and (2r + 1)-hop neighbors

accordingly.
15: end if
16: end if
17: end for

Fig. 3: Illustration of Algorithm 3 in two sequent mini-rounds,

where vertexes vi, i = 1, 2, 3, 4 are selected as LocalLeader at

mini-round 1, and vertexes ui, i = 1, 2, 3 become LocalLeader

at mini-round 2 after neighbors with bigger weight excluded.

the maximum weighted independent set using all Candidate
vertexes in its r-hop neighborhood. A Winner is a vertex that is

included in the final resulting IS computed from LocalLeader,

while a Loser is a vertex that is neither Candidate nor Winner.

Notice that here we use the (2r+1)-hop neighborhood to find a

LocalLeader while use r-hop neighborhood to compute an IS.

This approach will assure that the union of all the independent

sets computed by all selected LocalLeaders form an indepen-

dent set, as the hop-distance between any two LocalLeaders is

at least 2r+2 and the hop-distance between any two vertexes

from the computed independent sets by two LocalLeaders is

at least 2. It is straightforward that the hop-distance between

any two LocalLeaders is at least 2r+2, as a LocalLeader has



the maximum weight in its (2r+1)-hop neighborhood. For the

case that there are more than 1 maximum weighted vertexes,

they can further use IDs to break the tie. As to the minimum

2-hop distance between any two vertexes from the computed

independent sets by two LocalLeaders, it ensures that, in the

case where the two vertexes are selected to access the same

channel, the two vertexes can still keep independent form each

other, i.e., they are not in each other’s 1-hop neighborhood.

Please note that here the hop-distance between two vertexes

u and v is dG(u, v), not Euclidean distance geometrically.

Our distributed implementation preserves the merit of Robust

PTAS that does not require any geometrical information.

Let Ar = Ar(v) be the set of all Candidate vertexes in JH,r(v)
to exclude vertexes that have been marked as Winner or Loser.

The algorithm begins with the process called LocalLeader

selection (Line 2 − 6). To ensure independency of the union

of all local computed results, each LocalLeader compute local

MWIS within r-hop neighborhood. A LocalLeader has to

broadcast its computed MWIS results among (3r + 1)-hop

neighborhood (Line 10), so that Candidate vertexes in the next

round have complete status information on its (2r + 1)-hop

neighbors to correctly continue the algorithm. Notice that a

Candidate vertex, say u, in the current round could become a

LocalLeader in the next round. For this to happen, it must be

the case that 1) at current round, there is a virtual vertex,

say x, within its (2r + 1)-hop whose weight is larger, 2)

after this round, the virtual vertexes with larger weight change

their status (either they are LocalLeaders or they are decided

by other LocalLeaders as Winner or Loser). Thus, to assure

correct operation, the status of a virtual vertex, say u, should

be broadcast by its LocalLeader, say v, to the 3r+1 hops, as

the hop distance between u and v could be as large as 3r+1.

For better understanding, we illustrate distributed execution of

Algorithm 3 in two sequent mini-rounds in Fig. 3, and local

computation in a single mini-round in Fig. 4 for the network

presented in Fig. 1. In Fig. 3, vertex v1, v2, v3, v4 (in black) are

initially selected as LocalLeader since they have the maximum

weight in their (2r+1)-hop neighborhood. After LocalLeader

declaration, the four LocalLeader vertexes respectively com-

pute local MWIS and determine status for candidates within

their r-hop neighborhood, i.e., white vertexes in gray circles.

As shown in figure of mini-round 2, these white vertexes

as well as LocalLeader vertexes changed their status, and

new LocalLeader vertexes are selected among those remaining

Candidate vertexes. For example, we can see that u1 becomes

LocalLeader when (2r + 1)-hop neighbors (e.g., v1 and v2)

that have greater weight changed their status from Candidate

to Winner after mini-round 1. The same happens for u2 and

u3, which shift their status from Candidate to LocalLeader.

At each mini-round, vertexes either marked as Winner or

Loser will be excluded and stop executing the algorithm.

The algorithm terminates when no Candidates exist, i.e., all

vertexes are marked as either Winner or Loser. The following

Fig. 4: Local computation of Algorithm 3 in extended graph

H with estimated weight: black vertex-LocalLeader, white

vertex-Candidate, stripe vertex-Loser, gray vertex-Winner.

theorem shows the theoretical bounds of Algorithm 3.

Theorem 3: Algorithm 3 achieves the same approximation

ratio ρ as the centralized robust PTAS in H .

Proof: Let vi(τ) be a LocalLeader selected at mini-

round τ . In each mini-round, a LocalLeader vi(τ) utilizes

the robust PTAS to find MWIS(Ar) in its effective r-hop

neighborhood. Thus, each MWIS(Ar) computed by a Local-

Leader is ρ-approximation to MWIS(Ar+1). Let MWIS(Ṽ ) be

the global optimum, and I be intersection of MWIS(Ṽ ) and

Ar+1(vi(τ)), we have W (I) ≤ ρW (MWIS(Ar+1)). As union

of Ar in all mini-rounds is exactly Ṽ and any two distinct Ar

do not intersect, we have the union of all MWIS(Ar) output

by all LocalLeaders is ρ-approximation to the global optimum

MWIS(Ṽ ) in weight.

3. Complexity analysis

We summarize complexity in a complete round.

Communication complexity: As shown in Fig. 2, local

broadcast happens 3 times in each round, respectively for

WB, LD, and LB. WB could be finished within mini-timeslots

O((2r + 1)2), which costs each vertex O((2r + 1)2) number

of messages in worst case. LD is done by a LocalLeader

in its (2r + 1)-hop neighborhood, then it costs O(2r + 1)
mini-timeslots, and each vertex O(1) passing messages.

In LB, each LocalLeader has to broadcast the results

within its (3r + 1)-hop neighborhood. There are at most
2π·2r
2r+1 = O(1) number of LocalLeaders within any (2r + 1)-
hop neighborhood of any vertex. Thus it costs mini-timeslots

O(3r + 1), and communication complexity O(1). Totally, it

requires mini-timeslots O(r2 +Dr), and each vertex number

of passing messages O(r2 +D).

Computation complexity: The main computation cost is caused
by LMWIS, as LS can be finished instantly. In every mini-
round, we use complete enumeration to compute local MWIS
in each Ar(v). Suppose there are m nodes in corresponding
r-hop neighborhood of G, then |Ar(v)| ≤ Mm. Since

|MWIS(Ar(v))| ≤ M(2r + 1)2, there are totally C
M(2r+1)2

Mm
enumerations. Using M(2r + 1)2 < ρr for r < r̄, we have

C
M(2r+1)2

Mm ≤
(

Mme

M(2r + 1)2

)M(2r+1)2

≤
(

me

(2r + 1)2

)ρr

. (7)



Hence, it requires polynomial time O(mρr

) per mini-round,

and O(Dmρr

) per round. In practice, we can use more

efficient constant approximation algorithm instead, the

communication complexity reduces to O(D) with a worse

approximation ratio.

Space complexity: Each vertex has to store information on

weight and status of neighbors within (2r+1)-hop neighbor-

hood, therefore the space complexity is O(m) at each vertex.

D. Practical regret

Now we analyze practical regret (or effective throughput) that

considers the missed throughput due to time spent on learning.

Let ta and tm respectively be length of a single round and

mini-round. Time for strategy decision and data transmission

denoted by ts and td. In the strategy decision, supposing

it requires c mini-rounds, one for weight update, others for

strategy decision, then ta = ts + td = ctm + td. The actual

data rate gained at each round is Rx(t) · td/ta = θRx(t),
where θ = td/ta. The actual distance between R1/α and a

strategy sx is R1/α − θλx = θΔθα,x. Thus in a round, the

more time for learning, the larger regret it will be. In practice,

we cannot use very long round as ta shall be smaller than

channel coherence time.

Using β = θα as the approximation ratio, and Δβ,X = θΔX

as the maximum distance between the actual mean throughput

of R1/θα and sX , we obtain the practical regret is less than

θ ·Rθα(n) according to [14], i.e.,

Theorem 4: The practical regret of Algorithm 2 satisfies

sup θRθα(n)≤ 1

α
NK +

(
θ
√
eK +

16

eα
(1 +N)N3

)
n

2
3

+
1

α

(
1 +

4
√
KN2

e(θα)2

)
N2Kn

5
6 . (8)

Then our channel allocation scheme can guarantee an effective

throughput of R1/(θα)− θRθα(n).

V. SIMULATIONS

Now we conduct simulations for our proposed channel access-

ing scheme under various networks. In all simulations we run

Algorithm 3 with r = 2. We set 8 types of channels with data

rates (units kbps) 150, 225, 300, 450, 600, 900, 1200, and

1350 respectively [8]. Each channel evolves as a distinct i.i.d

Gaussian stochastic process over time. We set each round as

length of a unit time slot. Referring to a cognitive radio system

[8], we list the values of time parameters of a round in Table

II. We set decision time ts = 4tm. Let tb be time to finish

local broadcast and tl be the total time for local computation,

we then have tm = 2tb+ tl = 250ms. According to Fig. 2, in

our setting the actual throughput gained at each round would

be at most td
td+4tm

Rx(t) = 0.5Rx(t) even if we can compute

optimal MWIS in the limited time.

TABLE II: PARAMETER VALUES FOR SIMULATION

round ta 2000ms local broadcast tb 100ms
local computation tl 50ms data transmission td 1000ms

We also do comparison with LLR learning policy [12]. The

LLR learning policy works as follows. At each round, the LLR

policy select a strategy maximizing

max
sx∈F

∑
sx,i∈sx

(
μ̃sx,i(t) +

√
(MN + 1) ln t

msx,i

)
.

A. Regret analysis

We will study ideal regret/β-regret, and practical regret/β-

regret of our proposed algorithm, and compare these metrics

with LLR learning policy [12]. According to definition of

regret and β-regret, we need to compute the static optimal

throughput. As the MWIS problem is NP-hard, we construct a

small network where we could find the optimum by brute force

easily. Here we randomly generate a connected network with

15 users, each having 3 channels available. Using mean data

rate of each channel as weight, we obtain the static optimum

of 7282.90.

We then compare the optimal throughput, 1/β of the optimal

throughput, respectively with the observed throughput for

ideal regret without consideration of loss by time on strategy

decision, and with effective throughput for practical regret

with consideration of loss by time on strategy decision. The

results of ideal regret/β-regret are shown in Fig. 6, and that

of practical regret/β-regret are shown in Fig. 7, both of

which plots changes of corresponding regret/β-regret as time

increases, In both figures, our proposed algorithm outperforms

the LLR learning policy. The ideal regret of our algorithm

converges to 0 much faster than the LLR learning policy, and

thus produces much less regret than it, e.g., the regret by our

learning policy is around 0 after 200 time slots, while it is

more than 1000 by the LLR learning policy. For the practical

regret, it is far beyond 0 for both of the learning policies,

which indicates a significant impact caused by the time on

learning. However, the result of our policy coincides with the

theoretical analysis that the effective throughput is half of the

idea optimal throughput in our setting. The regret of LLR

policy is much greater than ours, indicating a smaller practical

throughput. As to β-regret and practical β-regret, recall that

when the reward of selected strategy is greater than 1/β of

the best reward, the corresponding regret could be negative.

Fig. 7 (b) also shows that the practical β-regret converges to

a negative value, indicating that the achieved throughput by

both algorithms is much better than 1/β of the idea optimum,

even considering missed throughput on learning.
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Fig. 6: Practical regret/β-regret with every-time-slot update

B. Throughput performance under unfrequent update

We evaluate the effective throughput under different frequen-

cies of weight update in this series of simulation, where

meanwhile we compare performance of our learning policy

with LLR policy. We conduct experiments in two networks,

one is a uniformly random located network with 100 users

and 10 channels, the other is a part of Citysee wireless

network that has been deployed in City Wuxi, China. The

part of Citysee topology we adopt has 446 users, and each

one is assumed to have 5 available channels. In the random

network, as the distribution and density is well controlled, we

can finish local MWISL using enumeration within short time.

While in the Citysee topology, as it is not a regularly random

network with uniform and low density, we have to choose

faster greedy algorithm in computation of local MWISL for

each LocalLeader, so that time spent on local computation of

MWIS is in tl.

In our proposed algorithm, initially each vertex has to collect

weight of neighbors inside (2r + 1)-hop neighborhood. If

weight as well as corresponding strategy decision is updated

at every time slot, it will cause high communication and com-

munication cost that significantly affects effective throughput

of data transmission. Instead, we can update weight every

period P that consists of y time slots. Then we just need to do

strategy decision at the beginning, and repeat data transmission

y times. The length of a period is tP = yta. The actual

average throughput gained at the zth period is RP (z) =

Rx(zy+1)td+
(z+1)y∑
t=zy+2

Rx(t)ta

yta
. For large scale networks, we will

not compute the best static strategy as it can not be finished

instantly. Instead, we record the average observed throughput

up to z period R̃P (z), where R̃P (z) = (z−1)R̃P (z−1)+RP (z)
z

,

and average estimated throughput W̃P (z) (i.e., average es-

timated weight of all selected strategies throughput up to

z). Let WP (z) be average estimated throughput at zth pe-

riod, we have WP (z) = [(y−1)ta+td]Wx(zy+1)
yta

, and W̃P (z) =
(z−1)W̃P (z−1)+WP (z)

z
. The difference between R̃P (z) and

W̃P (z) can also indicate the throughput performance of al-

gorithms.

We study the frequent case with y = 1, and unfrequent

cases with stale weight that is updated periodically with y =
5, 10, 20 time slots. We conduct each experiment respectively

in 1000, 5000, 10000, 20000 time slots, each updating weight

1000 times. The actual effective throughput will be around

1/2, 9/10, 19/20, 39/40 of the ideal throughput without time

consuming on strategy decision. In Fig. 8 and Fig. 9, we can

find that the average actual throughput achieved by both of

the algorithms grows to the ideal throughput as a period lasts

more time slots. For instance, in Fig. 8, the average actual

throughput by our algorithm grows along 31535, 54757, 56245
to 56554, and that by LLR policy grows along 21165, 39446,

42378 to 42490, when the number of time slots in a period

increases from 1 to 20. Especially, a significant improvement

can be seen between the frequent case (Fig. 8(a) and Fig. 9(a))

and the unfrequent case of y = 5 (Fig. 8(b) and Fig. 9(b)).

In the later two cases, further improvement is not so obvious

as the proportion of time on learning decreases much more

slowly. They collaboratively show that unfrequent update has

negligible impact on accuracy of estimation, but significantly

improvement on effective throughput.

We then analyze throughput performance of the two learning

policies. In each case, we can find that our adopted learning

policy is much more accurate than the LLR learning policy.

The difference between the estimated average throughput and

the actual throughput is quite small in our adopted learning

policy, while it is large in the LLR policy. In the figures, the

difference between estimated throughput and actual throughput

of our algorithm is not clear. Thus we show a zoom-in part of

the difference on the upper right of each figure, where we can

see small divergency in the last 200 updates. In these figures,

it shows that the actual throughput achieved by our learning

policy is much better the LLR policy. The huge difference

between our policy and LLR policy may be contributed by

the convergence speed of the two learning algorithms. From

these figures and theoretical design of the two algorithms, it is

straightforward that the learning policy we adopted can distinct

better strategies much more quickly, while the LLR policy

needs much longer time on learning for the best strategy.

VI. RELATED WORKS

There is a rich body of results on dynamic spectrum access in

CRNs. As channel availability and quality is unknown to SUs,

they need to conduct a learning process to select good chan-

nels. Several literatures address this problem from sequential
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Fig. 8: Estimated v.s. actual average effective throughput different period update under Citysee topology

decision perspective by MAB approaches, and several from a

game theoretic perspective by convergence of equilibrium.

The results using MAB start from single-user play [22] [23],

where each channel evolves as independent and identically

distributed Markov process with good or bad state. The

results are then extended to multi-user play where N > 1
secondary users select channels among M ones [1], [2], [3],

[4], [5], [6], [7]. These works basically assume channel quality

evolving with i.i.d stochastic process over time, and a single-

hop network setting where conflict happens if any pair of

users choose the same channel simultaneously. For instance,

Shu and Krunz [13] propose a throughput-optimal decision

strategy with stochastic homogeneous channels. This optimal

strategy has a threshold structure that indicates whether the

channel is good or bad. Anandkumar et al. [6] propose two

distributed learning and allocation schemes respectively for

the case of pre-allocated ranks among SUs and non such prior

information.

On the other hand, some results consider dynamic spectrum

access from an adaptive, game theoretic learning perspective.

M. Maskery, et al. [24] model the dynamic channel process as

a non-cooperative game for stochastic homogeneous channels,

and basically rely on CSMA mechanism to estimate probabil-

ity of channel contention. In the case of heterogeneous channel

quality, Xu et al. [25] construct a potential game to maximize

the expected throughput of all secondary users. They implicitly

assume a single-hop network case where all users have the

same probability to access channels.

We also review the results on network capacity, and related

link scheduling problem that maximizes the channel capacity.

There are numerous literatures in this line of work [26], [27],

[28], [29], originating from the milestone work by Tassiulas

et al. [30]. Though both maximizing throughput, the main

difference of capacity problems is that they study throughput

performance under a known environment with fixed channel

quality. While the problem considered in our work focuses on

throughput maximization under unknown and changing link

quality. We need to minimize loss of throughput caused by

learning, as well as time and communication complexity of

learning and their impact on throughput performance.

VII. CONCLUSION

We conduct a throughout study on online throughput optimal

channel accessing scheme for multi-hop CRNs. We believe

that the generalization of our model sheds light on studying

various visions of the problem regarding to different channel

state and interference models. For the specified models in our

paper, we successfully tackle the challenges of distributed de-

sign and exponential computation/communication/space com-

plexity that severely impair efficiency and actual throughput

performance of dynamic channel accessing schemes. It re-

mains hard to address these practical challenges in other types

of multi-hop CRNs. Besides, it is of much significance to

optimize other performance metrics such as delay or fairness,

and characterize tradeoff among these benchmarks. We leave

these as future works.
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