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ABSTRACT
GPS is the most widely used solution for localization and
navigation. However, it often works poorly in area with tall
buildings in metropolises. We present SmartLoc, a system to
estimate the location and the traveling distance by leveraging
the lower-power inertial sensors embedded in smartphones.
To minimize the negative impact of sensor noises, SmartLoc
exploits the intermittent strong GPS signals and uses the lin-
ear regression to build a prediction model which is based on
the trace estimated from inertial sensors only and the one
computed from the GPS. Furthermore, we extensively re-
ly on automatically detected landmarks (e.g., bridge, traffic
lights) and special driving patterns (e.g., turning, uphill, and
downhill) from inertial sensor data to improve the localiza-
tion accuracy when the GPS signal is weak. Our evalua-
tions of SmartLoc in a large city demonstrates its technique
viability and significant localization accuracy improvement
compared with GPS and other approaches: the error is ap-
proximately 20m for 90% of time while the mean error of
GPS is 42.22m. SmartLoc system can also reduce the en-
ergy consumption by at least 10% for localization in other
scenarios by carefully turning on GPS periodically without
sacrificing localization accuracy.

Keywords
SmartLoc, Inertial Sensor, Localization, Smartphone.

1. INTRODUCTION
Localization have attracted significant attentions in the past

few decades, and numerous techniques have been proposed
to achieve high accuracy localization. In outdoor scenar-
ios, GPS (Global Positioning System) or its variants are the
most common technologies to provide accurate position [9]
for various applications, such as trace and tracking [40, 48]
in the wild, and environmental monitoring [27]. However,
problems regarding low accuracy of GPS in critical regions
such as metropolises have proposed the idea of war-driving
and created the state of art large scale WiFi/GSM fingerprint
database for positioning, like Skyhook [1]. These methods
often sample and establish fingerprint databases, which are
computationally intensive.

To study the severity of the GPS localization errors in

metropolises, we conducted comprehensive experiments to
evaluate the location accuracy through integrated GPS in s-
martphones. We collected the GPS information (location,
and the location accuracy) in all road segments in downtown
Chicago. Our measurement demonstrates that, due to com-
plicated road structures(e.g., tunnels, highrises, and under-
ground), the GPS signals are very weak and unstable, or even
totally blocked. In addition, the largest location error is over
100m on the ground, and nearly 400m in the underground
segments (see Fig. 1 for more details). Thus, improving the
location accuracy is imperative when the GPS signal is weak
in metropolises.

A number of novel techniques have been proposed in the
literature to remedy the inaccuracy of GPS localization in
metropolises [1,9,15,32,42], to reduce the energy consump-
tion of GPS process [23,25] or time complexity [17]. In this
work, we leverage existing sensors (e.g., GPS, accelerome-
ter, gyroscope, and magnetometer sensors) that are already
integrated in most smartphones to provide more accurate lo-
calization. Exploiting the data collected from these inertial
sensors has been used in the literature to address a number
of challenging and interesting tasks, e.g., indoor localiza-
tion [10,24,43,45], road condition monitoring [12,28], prop-
erty tracking [15], activity recognition [4,20,39], measuring
walking speed [10], gaming [26, 49], and outdoor localiza-
tion [15, 18, 33]. In contrast to these novel solutions for var-
ious purposes, the main challenges in providing an accurate
location (or trajectory) in metropolises for vehicles using in-
ertial sensors include:

1. The inherent noise, inaccuracy, and imprecision in the
sensor data [15,43] cause significant drift (from cumu-
lative errors) in estimated location or trajectory when
simple dead-reckoning methods are used.

2. The coordinating systems on the smartphone (called
body frame coordinate (BFC)) and earth (called earth
frame coordinate (EFC)) are different. The conversion
and extraction of linear acceleration from BFC to E-
FC introduces additional noise, which will incur large
localization errors if not carefully addressed.

3. Even we mount the smartphone on the windshield dur-
ing the navigation, its dynamic rotation (caused by driv-
ing vibration) still introduces additional errors in lo-
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cation estimation.1 It is thus extremely challenging to
calculate the linear acceleration in EFC while minimiz-
ing the introduced errors.

Note that accelerometer has been used to measure the walk-
ing speed and distance of pedestrian in outdoor environmen-
t [7, 10, 37, 43]. Such applications exploit walking steps to
estimate the distance using step counts and stride-length, and
then use compass to estimate the direction. However, pro-
viding realtime localization of driving cars in metropolises is
far more challenging as such activity does not have a cyclic
pattern in sensor data, in contrast to people walking. To ad-
dress these challenges, during the dead reckoning process
for calculating the current position of a car using previous-
ly estimated location and the data from sensors, we propose
a novel strategy to reduce the impact of inherent noise and
inaccuracies of sensor data, and improve the estimation of
driving speed and moving distance consequently.

In order to further improve the localization accuracy, in
SmartLoc we design a calibration strategy based on road in-
frastructures (e.g., bridge, traffic lights, uphill, and downhill)
and driving status (e.g., turns, stops), which are inferred from
the sensor data, such as accelerometer, gyroscope, and mag-
netometer. Our extensive evaluations show that using iner-
tial sensors can accurately identify special road infrastruc-
tures using either fingerprint based approaches or pattern-
matching technique. Note that unlike the traditional fin-
gerprint based localization, SmartLoc exploits the current
coarse-grained estimation of location from dead-reckoning
to confine the search space which often has only one candi-
date matching left. Based on the matched road infrastruc-
tures or driving status, SmartLoc can provide a much ac-
curate localization. Our evaluations show that turning (left
or right), uphill and downhill provide localization accuracy
within a few meters while traffic lights and stop signs pro-
vide less accurate localization: the curve of ‘SmartLoc’ is
closer to the ideal diagonal line than the one of ‘Inertial Sen-
sor & Traffic Light’ in Figure 9(e).

In this work, we implement a prototype, SmartLoc on
Android, and evaluate the localization performance in both
downtown Chicago and highway. Our extensive test results
in the majority of blocks in Chicago indicate that SmartLoc
improves the location accuracy significantly: 1) the mean lo-
calization error in each time slot is 11.65m; 2) the proportion
of “good” road segments, where the localization error is less
than 20m, is increased from ≤ 50% (by purely using GPS)
to ≥ 90% using SmartLoc in downtown area. When testing
SmartLoc on highway, the localization error is at most 12m
for 95% of the time. In comparison the state-of-the-art local-
ization scheme for driving vehicles, AutoWitness [15], only
produces the error of distance estimation less than 10% for
1The accelerometer values are the acceleration speeds in three axes
of the BFC (coordinate is uniquely determined by the orientation
of the smartphone). On the other hand, for localization, we need
compute the integration of acceleration in EFC. It has been well-
documented in the literature (e.g., [15]) that the rotation of smart-
phones will introduce large errors in speed and location estimation.

most of the cases, which could be large when the estimated
distance is long (e.g., 10% of the 2 miles driving is 320m).
Our results also imply that SmartLoc can save the energy
consumption by turning off the GPS periodically.

The rest of paper is organized as follows. We demonstrate
our measurement results and observations on the GPS accu-
racy in Section 2. We then present the overview of SmartLoc
in Section 3 and the backgrounds for our system presentation
in Section 4. In Section 5, Section 6 and Section 7, nov-
el calibration techniques of SmartLoc are presented one by
one. We report our detailed real world experiment results in
Section 8, review the state of the art localization techniques
in Section 9, and conclude the work in Section 10.

2. GPS ACCURACY MEASUREMENT
To study how bad the GPS location accuracy could be, we

first conduct a comprehensive measurements of GPS accura-
cies within the red rectangular area in Downtown Chicago,
as shown in Figure 1(a). We find that in the test area, the
largest location error reaches 400m, and the distance of the
longest road segment between two GPS location with rea-
sonable accuracies (≤ 30m) is about 1km.

(a) Downtown Chicago (b) Proportion of Error

Figure 1: GPS localization accuracy in Chicago.

2.1 Measurement in Chicago Downtown
We drive through every road segment in the area, and

record the location information including Longitude, Lati-
tude, Accuracy, and speed in every 50ms from smartphone.
Meanwhile, we also collect all the sensory data with same
frequency, which will be used to identify the driving con-
dition. To remove time dependent GPS location errors, we
conducted three independent measurements at three differ-
ent times. The results reported here are the average of these
three measurements.

2.2 Original Location Results
The location accuracy is not so high as expected based on

our preliminary measurement. The smallest error we col-
lect from GPS is 5m, while the largest error reaches 400m,
which is nearly the length of three blocks in downtown, and
the mean error in the Chicago downtown area is 42.22m.
Such high errors will lead to wrong instruction for turning
or stopping in navigation.

We also plot the localization accuracy information of down-
town Chicago based on the measurement in Figure 1(b). Ac-
cording to the statistic data, only about half of the sampling
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points endure the error of less than 20m, over one quarter of
the location have an error of about 50 m, and the rest quarter
have an error larger than 50m.

As a fundamental step for navigation and location based
services, we assume that the largest location error we could
accept in the metropolis should be less than 30m, which is
about a quarter of one block. For simplicity, we denote the
position with GPS location error less than 30m as the loca-
tion with good GPS signal, and the rest as bad GPS signal.

Typically, the navigation system works poorly only under
the circumstance that a segment of roads are with bad GPS
signal, and such high error will lead to wrong instruction for
turning or stopping in navigation. Therefore, we found 182
bad segments of roads, see Figure 2(a), from our statistical
information, with the longest length being almost one kilo-
meter. Although the average length of these bad road seg-
ments is approximately 200m, as shown in Figure 2(b), the
bad segment roads with length over 400m are concentrated
in the center of downtown.

(a) Bad road segments. (b) Number of bad segments.

Figure 2: Road segments with poor GPS

Numerous techniques have been proposed in the literature
to improve the GPS localization accuracy, such as A-GPS,
D-GPS (Differential GPS) [34], and WAAS (Wide Area Aug-
mentation System) [11]. WiFi signal [1, 9] and cellular sig-
nal [6, 42] have also been used to find the location. Unfor-
tunately, these solutions are either prohibitive or inapplica-
ble for navigation in metropolises. The localization based
on cellular signal has the worst location accuracy (median
error at 100m for downtown environment [6]), the localiza-
tion based on WiFi signals also has poor location accuracy
and it relies on nearby WiFi APs’ locations. Unfortunately,
for many critical road infrastructures, such as under ground
roads and multilayered roads, the GPS signal is often lost,
the GSM signal is weak, and there are no WiFi access points.
Thus, traditional GSM or WiFi based approaches [9, 14] are
all impractical for metropolises.

3. SYSTEM OVERVIEW
The purpose of SmartLoc is to use inertial sensors in the

smartphone to estimate the movement of the vehicle, and
lively provide locations based on the traveling distance and
orientation with high accuracy but low energy consumption.
Remarkably, we not only address the inaccuracy caused by
the complex infrastructures in downtown area, but also ex-
ploit them to improve the localization accuracy in turn.

3.1 Main Idea
Our main idea is to propose a newly developed localiza-

tion model to compensate the inaccurate localization in down-
town area. SmartLoc collects both GPS information and sen-
sor data, and conducts coarse noise reduction by computing
the moving average with a certain sliding window. Since
the large inherent error from sensors will lead to poor dis-
tance estimation, our system uses Extended Kalman Filter
(EKF) to estimate the orientation before extracting the lin-
ear acceleration of the vehicle. In the following stage, we
propose a self-learning predictive regression model to esti-
mate the moving distance based on the extracted accelera-
tion, in which the accumulated errors are minimized in the
following way: SmartLoc switches to the training process
when GPS signal is good, and train the predictive model.
WHen GPS signals are unreliable, it uses the trained model
to predict the travelling. Due to the complex road condition-
s and unpredictable driving behaviors, the training process
should be updated periodically in our model. In addition,
SmartLoc also detects the landmarks by finding special pat-
terns from sensor data when the car drives through bridges,
tunnels, traffic lights or turning points, and it calibrates the
estimation accordingly.

3.2 Challenges
Many technical issues should be considered here. The

first issue is how to deal with the huge noise in the mag-
netometer, which hinders correct estimation on the smart-
phone’s orientation. The second one is how to minimize the
errors caused by the noises coming from the accelerome-
ter since naive method using Newton’s Law will accumulate
the noises (double integral on acceleration results in the dis-
placement, but the noises are doubly accumulated also). The
last challenge is how to detect and recognize the landmarks
which will be used to improve the localization accuracy in
our system.

4. BACKGROUNDS

4.1 Sensor Characteristics and Data Extrac-
tion

The behavior of the integrated accelerometer acts like a
damped mass on a spring. Essentially, the mass will en-
dure the force coming from both the gravity and the external
force, and the readings reflect the resultant force. Therefore,
we employ a low-pass filter to remove the gravity recursive-
ly and obtain the external force and thus its linear accelera-
tion simultaneously. The gyroscope is used in smartphones
to measure the angular velocity of the devices based on the
principles of angular momentum. The magnetometer moni-
tors the changes of the magnetic field surrounding the smart-
phone, and provides raw field strength data (in μT) for each
of the three axes in BFC.

4.2 Mechanical Noise of Sensors
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Although the sensors provide acceleration, angular veloc-
ity and the magnet strength, the intrinsic mechanical noise
of the sensors make the naive distance estimation based on
Newton’s Law impossible due to the accumulated noises.

We put a smartphone on the ground in three different pos-
tures to analyze the noises in three sensors. We also calculate
both the mean value and the standard deviation for all three
axes for all the sensor (Figure 3). The readings from the ac-
celerometer in three axes fluctuate frequently over the time
domain, and the errors also change in different orientations.
The fluctuation of the magnetometer is much larger than the
one of the accelerometer even if the smartphone is deployed
in the same posture. Meanwhile, we observe from our tests
in inside and outside scenarios (of a car) that the magne-
tometer is sensitive to the environment. Both the mean and
the standard deviation inside the car are approximately over
100 times larger than that of the outside case because of the
engine. We have also found that the readings fluctuate more
irregularly when the car is being driven, thus the traditional
method which converts the linear acceleration from BFC to
EFC by a rotation matrix brings huge errors consequently.

Surprisingly, the gyroscope is much stabler than the other
two sensors with less standard deviation (Figure 3(e), Fig-
ure 3(f)). The readings from all three scenarios (outdoor,
engine off, engine on) are similar, which provide us a good
opportunity to improve the orientation estimation.

4.3 Obtaining Orientation
Although smartphones are usually fixed in cars when they

are used as navigators, the orientation of the smartphone
changes irregularly because of both the driving direction and
the vehicle vibration. The orientation calculation is the ba-
sic component of any localization scheme, and it has more
significant role in SmartLoc because our system detects the
movement conditions (e.g., turning, downhill, uphill) and
the landmarks (e.g., tunnel, bridge) based on the orientation-
s. Therefore, orientation estimation is a key component in
our system.

As a rigid body, smartphones’ orientation can be consid-
ered as the space status of the phone in respect to the earth.
Then, the orientation of any smartphone can be character-
ized by the readings extracted from the sensors, which can
be further converted from the Body Frame Coordinate(BFC)
to the Earth Frame Coordinate(EFC). Generally, the orien-
tation of a smartphone is the posture relative to the EFC, or
more specifically, the magnetic north. Theoretically, the ori-
entation can be determined by the magnetometer combined
with the accelerometer, represented by the Euler Angle pitch
(θ), roll (φ), and yaw (ϕ) respectively, where

θ = arctan
Gux

Guz
, φ = arcsinGuy, ϕ = arctan

Euy

Nuy
(1)

In these equations, the unit vectors of the EFC project to
the BFC for three axes are Gu d, Eu d, and Nu d, where d
refers to the three axes x, y, and z. G denotes the gravity
extracted from the accelerometer, and B represents the read-

ings from the magnetometer. E, in addition, illustrates the
cross product as Eu = Gu × Bu while Nu = Eu × Gu =
(Gu ×Bu)×Gu.

5. ORIENTATION CALIBRATION
Although the differences of the orientations in different

timeslots are computable from the above equations in Sec-
tion 4.3, the actual orientation of the smartphone in regard to
the earth is hard to achieve because of the noise of the mag-
netometer. Therefore, we propose an improved method by
getting an initial orientation estimation based on accelerom-
eter and magnetometer, and then building an estimation mod-
el through gyroscope and calibrate through Extended Kalman
Filter (EKF).

In order to eliminate the device-dependent error and the
fluctuation on the sensory data, we take a 10 seconds’ initial
orientation measurement by sampling average sensor read-
ings, and then subtract the average readings from the conse-
quent readings to calibrate them.

In the following sensor fusion process, the orientation at
the time k is related to the posteriori estimation of the orien-
tation at the time k-1. We present the non-linear stochastic
difference equation as:

qk = q̃k +A(Qam − hk q̃k); q̃k = Rk + qk−1 (2)

where qk indicates the estimated orientation at time k, Qam

denotes the orientation based on current accelerometer and
magnetometer, and q̃k presents the priori estimate at the time
k, which is calculated from the last orientation and the rota-
tion increment. Here A, hk, and Rk are Kalman gain, mea-
surement matrix, and rotation increment respectively. The
rotation increment Rk is the angle increment at the time k,
which is given as:

Rk = Ω · [pitch roll yaw]T ·Δt (3)

where Δt is the time interval of our sampling, and Ω is

Ω =

⎡
⎣ 1 sinφ · tan θ cosφ · tan θ

0 cosφ − sinφ
0 sinφ/tan θ cosφ/tan θ

⎤
⎦ (4)

The EKF brings a continuously changing orientation of the
smartphone, and the improved orientation in the consequent
time slot can be achieved from:

q̃k = qk−1 +Rk (5)

6. DISTANCE CALIBRATION

6.1 Self-learning Predictive Model
According to the Newton’s Law, we can achieve the dis-

tance after applying a double integration on the acceleration.
However, the noises from the accelerometer are accumulat-
ed during the integral, and the error gets enormously huge
in just several minutes. However, we observe from our pre-
liminary experiment (Section 2) that the majority of the road
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(a) Mean Acc. (b) SD Acceleration (c) Mean Magnetic (d) SD Magnetic (e) Mean Gyroscope (f) SD Gyroscope
Figure 3: Mean value and Standard Deviation for Accelerometer, Magnetometer, and Gyroscope respectively

segments with bad GPS signals (error ≥ 30m) are shorter
than 400m, which takes only 20-30 seconds to drive through.
This distance is long enough to navigate drivers to wrong
places, but is also short enough to endure the errors to some
extent. Therefore, we propose the following predictive lin-
ear regression model which adaptively calibrates itself using
the GPS signals and the dead reckoning model.

Speed Estimator: The velocity Vi at the end of a timeslot
i can be represented as

Vi = Vi−1 + β · ai ·Δt+ μ (6)

where β is the parameter to be learned and adjusted in real
time, ai is the mean of the measured acceleration during the
timeslot i, and μ is the noise.

When GPS signals are strong, we achieve Vi and Vi−1

from the GPS, and the mean acceleration ai is computed
from the accelerometer. Then we regress the model to find
the best β.

When GPS signals are weak, we use the trained model
above to predict the velocity Vi, where μ is sampled from a
normal distribution with mean 0.

Distance Estimator: When GPS signals are strong, let
G(Δti) be the distance during a timeslot i read from GP-
S, which also contains errors (denoted as η). The distance
provided by GPS can be denoted as

G(Δti) = λ1 · Vi−1 ·Δt+
1

2
· âi ·Δt2 + η

where âi is the actual acceleration in the time slot i. Here
λ1 is multiplied to reflect the error in the estimated speed
Vi−1 for the time slot i − 1. We only know the measured
acceleration ai, which is defined as

ai = (1 + ε)âi + δ

Then, we use the following formula to estimate the distance
G(Δti):

G(Δti) = λ1 ·Vi−1 ·Δt+λ2

1

2
·ai ·Δt2+λ3 ·Δt2+λ4 ·Δt+η (7)

where λi’s are the parameters to be learned by our regres-
sion model. When GPS signals are strong (GPS error is
≤ 20m), based on the Vi−1, ai computed from the sensor
data and the distance from GPS, we train the model Eq. (7).
This model is in turn used to predict the distance G(Δti) in
the time slot i when GPS signals are weak. From the pre-
dicted moving distance G(Δti), we can predict the location
at the time slot i.

6.2 Movement Detection
One important problem should be tackled before using our

predictive regression model. Remember that the speed esti-
mator estimates the speed based on the accelerometer, and
the speed contains noises accumulated from the integral on
the acceleration. Therefore, when the vehicle stops, the esti-
mated speed is highly likely to be non-zero, which leads to
a huge error in the final prediction. Therefore, determining
whether the vehicle is moving or static further reduces the
negative impact of the mechanical noises.

During our preliminary experiments, we discovered that
the movement can be reflected precisely from the accelerom-
eter and the gyroscope. We drove a few blocks, and plot the
readings of both gyroscope and acceleration in Figure 4. The
acceleration fluctuates frequently when the vehicle is be-
ing driven, and remains relatively stable when it stops (Fig-
ure 4(a)). We compute the variance for both cases. When the
car stops, the variance is less than 0.01. the variance when
the car is driven is much larger, which is over 0.6 most of
time. Even in the cruise mode, which makes a car drive at
a constant speed (in Figure 4(c)), due to the vibration of the
car, the variance of the acceleration is still greater than 0.4.
Although the smartphone is usually mounted to the wind-
shield2, due to the inertia while driving, especially speeding
up and brake, the angle between BFC and EFC will change.
In Figure 4(b) and 4(d), we found that the angle reflects
the vehicle’s movement as well. The variance for stopping,
moving, and the cruise mode are 0.0228, 28.2620, and 5.638
respectively. SmartLoc continuously calculates the variance
for both accelerometer and gyroscope sensors using a slide
window, and calibrate the speed whenever the vehicle stops.
In our experiment, we found that SmartLoc can distinguish
between moving and stopping precisely.

7. CALIBRATION BY LANDMARKS
As we mentioned above, the road infrastructures, includ-

ing tunnels, bridges, crossroads and traffic lights, cause large
noises in the GPS data, which results in large drift in the
distance estimation if it is not treated rigorously. In this
work, we exploit the precise location of these infrastructures
that are available in Google Map to calibrate the localization
without any extra cost.

2In this case, the rotation of smartphone has only one degree of
freedom. Thus we only report one relative angle between the BFC
and EFC. The angle is computed using data from accelerometer,
gyroscope, and magnetometer as in Section 4.3.
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(a) Acceleration (b) BFC/EFC angle (c) Acceleration in Cruise (d) BFC/EFC angle in Cruise

Figure 4: The Acceleration and Angle while driving in city or Cruise model.

(a) Traffic lights (b) Centripetal force (c) Angular velocity (d) Magnetometer (e) Bridge

Figure 5: Pattern of the sensor data collected in different road infrastructures when driving: (a) car stopping and
crossing a traffic light; (b), (c), and (d) car turning 90o; and (e) car crossing a bridge.

Traffic Light: Driving in many large well organized c-
ities, such as Chicago, one often encounters lots of traffic
lights. When the vehicle stops at the traffic lights and drives
through the crossroad, unique patterns appear in the readings
from the sensors (Figure 5(a)). When vehicles encounters
traffic lights, the whole process can be divided into braking
and speeding up. The acceleration falls below zero when
the car brakes, reaching the lowest point at the very moment
when vehicle stops, and gets back to zero swiftly. As soon as
the green light turns on, vehicle speeds up with the increas-
ing acceleration. However, in rush hours with terrible traffic,
the location where cars stop may not be near the crossroad,
but with a certain distance from the crossroad. In this case,
SmartLoc adjusts the moving distance based on the estimat-
ed stopping location from the empirical data, i.e., subtracting
the distance from the car to the crossroad. Empirically, the
distance between the car and the crossroad is determined by
the traffic condition. However, it is difficult to measure the
exact distance from the car to the crossroad. The main ap-
proach adopted by SmartLoc is to subtract the n·L

2 , where
L indicates the average length of a vehicle, and n represents
the current possible number of vehicles waiting for the green
light. We calculate the number of vehicle based on the ob-
served data, and n is also related to different time periods.

Turning: Sometimes, vehicles may need to turn at the
traffic light, and during the turning, all the sensors can de-
tect the turning. Figure 5(b) indicates the centripetal force
sensed by the accelerometer, and the scale of the accelera-
tion depends on the speed at which the vehicle is turning. Si-
multaneously, the angular velocity sensed by the gyroscope
also reaches up to 0.5 rad/s in our test case (Figure 5(c)),
and the data from the magnetometer changes as well with a
large fluctuation. Finally, the orientation of the smartphone
also changes approximately 90 degrees when turning left or

right. Such angle change is observed mainly along the Z axis
on EFC, and the reading 0, 90, 180, 270 represent north, east,
south, and west respectively. Although the angle may not be
accurate enough due to the large noise in the magnetome-
ter (the maximum error we experienced was approximately
30o), we are still able to correctly determine the road seg-
ment to which the car is turning. In Figure 6(a), vehicle turns
from the north, the angle is from about 350o to 100o, which
is east. We also compare the measured angle difference for
turning and lane changing (Figure 6(b)) since lane changing
can be wrongly detected as a turning. The angle difference
when a car changes its lane is much smaller than the one
when a car make a turn. In addition, we also calculated the
standard deviation for the angle differences in lane chang-
ing, which is less than 10. Thus, distinguishing the turning
and the lane changing is possible. We conducted more study
on the driving orientation estimation. Figure 6(c) plots the
raw trace of the vehicle achieved from the GPS with good
signals, and Figure 6(d) illustrates the raw orientation gener-
ated only by the inertial sensors. We employ moving average
to cancel some noises and calculate the driving orientation,
which matches the ground truth.

Other possible road infrastructures that a vehicle may ex-
periences are bridges, and tunnels. In our measurement, such
patterns are more obvious and easier to be detected. After
being converted from the BFC to the EFC, the acceleration
along the gravity is less than 1G when the car is driving up-
hill and greater than 1G when driving downhill. A bridge or
a tunnel often has both uphill and downhill patterns as shown
in Figure 5(e).

In fact, certain driving patterns, such as turing left or right
and stopping for traffic lights or stop signs, can be more ac-
curately detected and thus classified. To classify other road
infrastructures, we collect the sensor readings of those pat-
terns to store as the fingerprints, and then match the real-
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(a) Turning (b) Changing Lane (c) Driving Trace (d) Estimated Orientation
Figure 6: Turning or changing lanes, and Driving Trace

time sensor readings with the trained fingerprints. To im-
prove the classification and the matching accuracy, we rely
on the coarse-grained estimation of the location from dead-
reckoning first, and then we further use our predictive regres-
sion model (Section 6) to confine the search space: only the
road infrastructures (stored fingerprints) I within a certain
distance δ from the estimated location x will considered as
the matching candidate for the real-time pattern P achieved
from the sensor data. We select the infrastructure that maxi-
mizes the weighted matching score:

αM(I, P ) + (1 − α)e−D(x,L(I))

where M(I, P ) is the matching score between the finger-
print of an infrastructure I and the observed pattern P , α ∈

(0, 1) is a constant, and D(x, L(I)) is the geodesic distance
between the location x and the location L(I) of infrastruc-
ture I . Then, the estimated location x is updated as the lo-
cation L(I∗) of the infrastructure I∗ which maximizes the
weighted matching score.

8. EXPERIMENTS AND EVALUATIONS
We conduct extensive evaluations of SmartLoc in differ-

ent scenarios, both in downtown Chicago, and the highway.
In our evaluation, Samsung Galaxy S3 with latest Android
4.1.2 is mounted to the windshield, and we drive for over
100 different road segments in downtown Chicago ranging
from 1km to 10km and over 30km in highway. Since the in-
ertial sensors provide the driving orientations, we can com-
pute the real-time location easily if we know the driving
distance from the starting point and the driving orientation.
Thus, the key problem becomes estimating the driving dis-
tance. We evaluate the travelling distance, road infrastruc-
ture recognition, accuracy, and energy consumption.

8.1 Traveling Distance Estimation
First of all, the typical frequency of the GPS update in a

smartphone (0.5Hz) is much lower than that of the sensors
(1Hz-20Hz). We denote the driving distance in a time slot
as a traveling segment. We focus on the evaluation of the
traveling distance estimation in two aspects: (1) the accura-
cy in distance estimating in traveling segments, and (2) the
accuracy in final distance estimation of long road segments.
Then, we analyze the performance in details in the rest of
the section.

8.1.1 Prediction in City Without Using Landmarks

(a) Mean error in each slot (b) Mean overall distance error
Figure 7: Accuracy vs. Learning Distance.

We first test SmartLoc in a city scenario. We drive in
downtown Chicago for over 30 different roads, where some
roads have reliable GPS signals and some do not. We sep-
arate these roads into road segments (more than 100 seg-
ments) whose sizes are determined by our evaluations pre-
sented in the rest of the section. Similarly, we analyze the
performance of SmartLoc in two phases as aforementioned.

Before we describe the performance of SmartLoc in a c-
ity, we note that the GPS signals in downtown Chicago are
relatively poor and also time dependent. It is difficult to get
the ground truth of all locations using smartphones. To ad-
dress this, we evaluate SmartLoc in the peripheral area of
downtown Chicago, where the buildings are not so high as
in the center of the downtown, and GPS signals are relatively
good. It is much easier to get the ground truth through GP-
S data, and in our evaluation, we simulate a bad GPS area
by removing the GPS values and apply SmartLoc to calcu-
late the location in those area to compare our results with the
ground truth.

Obviously, the driving habit and road conditions in a city
are different from those in the highway, and slight decel-
eration makes the predicted result deviate from the ground
truth. We first evaluate the reliability of SmartLoc when dif-
ferent driving distances are used to train the system, ranging
from 0.5km to 3.5km. Generally speaking, the accuracy in-
creases when the learning distance increases as illustrated in
Figure 7(a). In this figure, the X axis indicates the driving
distance used for training our predictive regression model in
SmartLoc, and the Y axis represents the mean distance (be-
tween the actual location reported by the GPS and the loca-
tion estimated by our SmartLoc) in every time slot when we
sample GPS locations (i.e., every 2 seconds, or about every
22m when driving at the speed 40km/h). This experiment
measures the accuracy of the prediction when we drive for
over four different road segments with length from 0.5km to
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2km (24 different cases in total). Due to the unstable driving
behavior, short road segments for training SmartLoc leads to
a large estimation error in each time slot. When SmartLoc
learns only using the trace of 1km, the mean error in every
time slot in different scenarios is around 15m, and the largest
one is nearly 30m. When SmartLoc trains our predictive re-
gression model using a longer trace, the mean estimation er-
ror decreases in all the test cases. The smallest error is less
than 6m, which is less than half of the error when the train-
ing trace is 1km. We also observe that the error grows with
the increase of the length of the test road segment in most
scenarios. For example, by training SmartLoc using a trace
of 3.5km, the mean error of the estimation in a 2km road
segment is nearly twice of that when testing a 0.5km road
segment.

We then evaluate the error on estimating the overall driv-
ing distance (Figure 7(b)). We evaluate SmartLoc for all the
road segments and measure the error between the predict-
ed driving distance and the actual driving distance for each
segment (of all segments with distance from 0.5km to 2km)
under different training traces. If SmartLoc learns the model
for only 1km, the parameters in Eq. (7) cannot be computed
accurately enough. Thus, the estimation errors increase to
180m in all our tests. When SmartLoc learns enough sam-
ples, the parameters are much more reliable, and the average
accumulated error is below 30m, which is significantly bet-
ter than the GPS in Chicago downtown.

8.1.2 Prediction in City Using Landmarks
SmartLoc calibrates the location as soon as it detects spe-

cific patterns, especially traffic lights and turnings. We test
the performance of SmartLoc in a real drive route with the
calibration using landmarks, and the result is presented as
Figure 8. which is a bird’s-eye view of the driving trajectory.

Figure 8: Localization In the Street.
The blue dots are the ground truth samples that we achieved
from the GPS (where the GPS signals are good), and the red
dots are the predicted locations from our SmartLoc with al-
l calibration techniques. Both of them almost overlap with
each other, and Figure 9(c) also shows the significant im-
provement brought by our landmark calibration.

We then compare the performance of three different meth-
ods: using inertial sensors only, using sensors and traffic
lights calibration, and using SmartLoc with all calibration.
In this experiment, we assume the first 3400m is with reli-
able GPS signals, and the precise locations are accessible.

(a) Error of location estimation
in every sampling timeslot

(b) Error in locating the final
destination in different blocks

Figure 11: Navigation performance evaluation.
The estimation starts from 3400m, and the first three figures
in Figure 9 indicate the driving distance from the starting
point versus the elapsed time.

In Figure 9(a), we conducted the experiment based on sen-
sors only, without any calibration or noise canceling. The
double integration on acceleration leads to the final deviation
of over 400m after driving about 1200m. When the road pat-
tern detection is introduced, the location is calibrated when
SmartLoc senses the road infrastructure pattern. During the
same experiment, our vehicle crossed 5 traffic lights in total,
and successfully detected all 5 traffic lights. The estimat-
ed locations are all then adjusted accordingly. The error in
Figure 9(b) is still high, especially in the crossroads. Sur-
prisingly, after combining our predictive regression model
and the noise canceling technique, SmartLoc’s result almost
coincides with the ground truth, as shown in Figure 9(d). For
the first 900m, the curve of SmartLoc nearly overlaps with
the curve of the ground truth. For the first 450m, the vehicle
passes three crossroads with all green lights, and the error is
less than 20m in most of the time. After the final traffic light-
s, the vehicle has to drive at a relatively low speed because of
the road construction. The predicted distance consequently
deviates from the ground truth a little, but at the end of the
road, the errors remain small. We plot all the estimated dis-
tances by three methods in Figure 9(e), with the X axis being
the ground truth distance and Y axis being the predicted dis-
tance, i.e., the perfect prediction will have a diagonal line.
SmartLoc results are distributed almost along the diagonal
line, and pure sensor approach deviates greatly.

The deviation of the results from the ground truth comes
from the accumulated errors from all time slots. Based on
the previous experiments, we plot the error in every time s-
lot in Figure 10(a). SmartLoc with landmarks calibration has
the smallest mean error of the estimated locations for all time
slots: 90% of them are lower than 20m from the CDF in Fig-
ure 10(b). The other two approaches have larger errors, and
the last figure describes the CDF of the total driving distance
error.

8.1.3 Prediction in Highway
In addition, we evaluate the SmartLoc on the highway to

see whether our system works well when the velocity is rel-
atively high. In the highway, GPS signals are almost always
good, so the GPS data served as the ground truth only in this
evaluation.
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(a) Sensors Only (b) Sensors and Traffic
Lights

(c) Landmark vs No-
Landmark

(d) SmartLoc (e) Overall Comparison

Figure 9: Distance prediction comparison among three methods and ground truth.

(a) Error of driving distance in every time
slot for three methods

(b) Error of driving distance in every time
slot for three methods

(c) Error of long distance estimation for
three methods

Figure 10: Comparison of three methods.

We drive over 10 different highway segments, and the
total distance is over 60km (with driving speed 100km/h-
120km/h approximately). The smartphone has access to the
precise location information from the GPS, which is updated
every 2 seconds and can be considered as the ground truth.
Meanwhile, we collect the readings from the sensors and
train our predictive regression model for 3km. Then, we pre-
dict the traveling distance for the next 2km and compare the
distances from the ground truth, SmartLoc and the pure sen-
sors.

Figure 12(a) illustrates the comparisons of driving dis-
tance estimation using SmartLoc (with sensors) and the G-
PS. The ground truth (GPS readings) is plotted by the green
curve. It is obvious that the error between SmartLoc and the
ground truth is becoming larger along the time. This is due
to the accumulated errors without any calibration. By using
our predictive regression model, SmartLoc calculate suitable
parameters and apply them into the prediction. The estima-
tion errors gets much smaller after then. Figure 12(b) indi-
cates that the largest error is only 12m among the 10 differ-
ent highway segments (each of length 2km), and in over 80%
cases, the errors are less than 5m. Compared with the actu-
al distance extracted from the ground truth (Figure 12(c)), at
over 95% locations (among all locations where GPS location
can be extracted), the errors are less than 1% of the actual
driving distance, and the largest error is less than 2% of the
actual driving distance. We also notice that the accuracy of
the prediction decreases with the increase of the driving dis-
tance. We predict the driving distance for both 1km and 2km
after taking the data of the first 3km to build a dead reckon-
ing model. In our experiments, 80% of the errors in the first
prediction (1km) are less than 10m, but they become 15m
in the second prediction (2km). The largest error is around

19.8m and 23m respectively. We plot the results in CDF as
Figure 12(d).

However, based on the evaluation, we discover that the es-
timation results cannot maintain high accuracies for a long
distance. The main reason comes from the user dependen-
t driving behaviors and the unpredictable road conditions.
We also find that SmartLoc has a better estimation accuracy
when the driving speeds remain stable, and when the driving
speed fluctuates frequently, the SmartLoc’s predicted results
divert from the ground truth. Calibrating the location peri-
odically is a feasible way to improve the location accuracy
in real life applications.

8.1.4 Evaluations Analysis
Based on the evaluation results presented in this section,

an obvious conclusion is that SmartLoc provides precise driv-
ing distance estimation in certain scenarios. In every time
slot, the driving distance is estimated from the current sen-
sor data as well as our predictive regression model. Suppose
the error (denoted as Di) in the estimation of each time slot
i follows normal distribution: Di ∼ N (μ, σ2), with mean μ
and variance σ2. Then, the estimation of the total traveling
distance St in t timeslots is the summation of the traveling

distance in all time slots: St =

t∑
i=1

Di. In this case, the error,

from a long term perspective, will be accumulated. Obvious-
ly, St ∼ N (tμ, tσ2). The variance of the variable St will be
tσ2. Thus, the mean error increases along the time, which
leads to the conclusion that it is difficult to predict the trav-
eling distance precisely in a long term, although sometimes
the deviation in some continuous timeslots may be neutral-
ized. For a given error bound δ, Pr(St ≥ δ) is higher when
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(a) Traveling Distance (b) Absolute error (c) Relative error (d) Long Distance Estimation
Figure 12: Traveling in a highway.

t is larger.

8.2 Localization in the City
We then present the localization results in Chicago down-

town. As aforementioned, it is difficult to get the ground
truth for the majority of the sampling locations.

We set the experiments of estimating the final location.
Since, Section 2 has demonstrated that there are 9 bad road
segments with lengths over 400m, which is less than 3 block-
s in downtown Chicago. The goal of SmartLoc is then to
obtain a relatively accurate distance estimation within three
blocks. We randomly select 100 points as destinations in
the experiment, and a destination could be one block, two
blocks, or three blocks away from the starting point. We
drive to these destination points to evaluate if the destination
is precisely calculated by SmartLoc. We assume that the G-
PS signals are good before the starting point, and SmartLoc
will train the dead-reckoning model during the driving. In
this experiment, we test the accuracy of estimating the trav-
eling distance in every time slot and of estimating the overall
driving distance (i.e., locating the final destination) as shown
in Figure 11(a) and Figure 11(b) respectively. When Smart-
Loc only navigates to the destination within one block, with
probability 70%, the error of estimating the location for each
sampling slot is less than 10m, and with probability 85%,
the mean error is less than 30m. When the destination is t-
wo blocks away, about 75% of the errors are less than 30m;
when the destination is three blocks away, about 80% errors
are less than 50m. From these figures, the error of destina-
tion locating within a few blocks is acceptable. We also plot
the localization results for one road segment with length over
6400m in Figure 8. In this figure, the red spots denote the
ground truth generated from GPS, and the blue spots rep-
resent the localization calculated by SmartLoc, where the
green line between them is the localization error for every
location.

8.3 Energy Consumption Analysis
SmartLoc provides the localization using both GPS and

sensors. Empirically, the profiles of energy consumption for
the GPS module and the sensors in smartphones are differ-
ent. The average electric current of GPS modules in Android
smartphones is approximately 135mA, which is larger than
that of the sensors [47]. In addition, Android API provides
four rate modes to sample the data, which are Fastest, Game,

UI and Normal. The Fastest mode delivers the sensory data
without any delay, thus the energy consumption is the largest
(95mA [47]), while the Normal is the slowest, and also the
most energy efficient one (15mA [47]). Then, SmartLoc is
also able to reduce the energy consumption compared with
the traditional approach using only GPS.

Figure 13: Working Pattern for SmartLoc.
Suppose the energy cost of a GPS module for every time

slot is EGPS , and the energy cost of the sensors are EAMG.
Obviously, EAMG � EGPS . As shown in Figure 13, where
GPS indicates the localization through the GPS, and AMG
denotes the location estimation through the sensors. Initial-
ly, during T1, the system will train our predictive regression
model, and the trained model will be used to estimate the
trajectory in T2. Periodically, SmartLoc will calibrate the lo-
cations when GPS signals become good again in T3, and our
model is adaptively updated. Then, the ratio of saved energy
is (EGPS−EAMG)·T2

EGPS ·(T2+T3)
. The duration of both T1 and T2 affect

the localization accuracy of SmartLoc. Our first experimen-
t is taken under the circumstance in which all the sensors
and the GPS is activated. The driving lasted for 30 minutes,
and the battery of smartphone discharged from 84% to 70%.
Similarly, GPS localization for half an hour led to the battery
drop from 70% to 61%. In most of our cases, in order to get
higher accuracy, the ratio between the training and the esti-
mating should be between 6:3 - 8:3. In the first experiment,
the training distance is approximately 3400m and SmartLoc
estimates the following 1200m, which reduces the energy by
approximately 10% without affecting the localization accu-
racy.

9. RELATED WORKS
Our work intersects with several techniques, and we main-

ly focus on the wireless localization, and dead-reckoning [22].

9.1 Wireless Localization
GPS [25], being the most popular outdoor localization

method, provides extremely accurate location information to
the user, and more improved techniques such as WAAS [11],
and Differential GPS (DGPS) [34] have been adopted in gen-
eral civilian devices. Another feasible method is GSM-based
localization [42] such as Nericell [28], which is widely avail-
able but with low accuracy (up to hundreds of meters). It
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also needs to know the exact position of cellular towers in
advance.

Other techniques for both outdoor and indoor localiza-
tion mainly fall into two categories: Fingerprint-based and
Modeling-based approaches. The main idea of the finger-
print is to first establish a database of signal fingerprints
based on surrounding environment, and then match the mea-
sured pattern to the fingerprints in the database. The map-
ping returns the location with the most similar fingerprint.
Modeling-based techniques rely on some theoretical or ex-
perimental signal propagation models, relating delay or strength
to distance.

In indoor environment, Radar [3] collects WiFi finger-
prints beforehand at known locations inside a building, and
identifies the user’s location using the matching fingerprint.
It could achieve relatively high accuracy: with median er-
ror 2.94 meters. Similar systems using RF signals includ-
ing Horus [46], LANDMARC [30]. Fingerprints generated
through the combination of WiFi and FM are studied in [8],
which increases the accuracy by 83% compared with WiFi
fingerprint only. Unlike other systems mentioned above,
SurroundSense [2] estimates the location in indoor environ-
ment through multiple ambience features, including the light,
the color of the floor, the WiFi, and the sound. LiFS [45]
does not have to know the APs’ location in prior, and the
high location accuracy is achieved through exploiting user’s
motion from crowdsourcing. PinLoc [38] uses physical lay-
er information to locate users with the accuracy of 89%.

In outdoor environment, both PlaceLab [9], and Active-
Campus [14] make full use of both WiFi and GSM signal
for location. The former creates a map by war-driving a re-
gion and maps both APs and cell tower’s signal against the
wireless map. The latter is quite similar except it assumes
the APs’ location is known prior. Taking advantages of both
systems, CompAcc [10] uses dead-reckoning combined with
AGPS to calibrate rather than preliminary war-driving. All
these systems demand time-consuming calibration, and are
not suitable for large scale area. Skyhook [1] could supply
high accuracy location by hiring over 500 drivers to create
the WiFi/GSM map in certain region.

Other common ways to calculate location are based on
the geometric model. In time-based techniques, Time of Ar-
rival (ToA) [21], Time Difference of Arrival (TDoA) [35],
and Angle of Arrival (AoA) [31, 50] establish geometric re-
lationship between two separate devices, and calculate the
location. Although pleasing accuracy is achieved, the high
cost can not be neglected. In acoustic ranging, the distance
of transmitter and receiver is estimated more precisely. Ex-
isting work includes Active Bat [16], Cricket [35], ENS-
Box [13], and WALRUS [5]. Liu et al. [24] calibrate the
location accuracy in the WiFi fingerprint, using a more accu-
rate distance estimation from acoustic ranging. Centaur [29]
combined acoustic ranging and RF measurement to locate a
device in office environment with acceptable accuracy.

Several promising techniques such as crowdsourcing are

introduced in localization recently, such as Zee [36], which
also uses inertial sensors to track users’ movement.

9.2 Dead-Reckoning
Recently, dead-reckoning using internal sensors to esti-

mate motion activities attracts a lot of research interests. S-
trapdown Inertial Navigation System (SINS) [41] and Pe-
dometer System [19] use MEMS to estimate the moving
speed and trace. The key issue is to deal with the noise of in-
ternal sensors, and the accumulated error, which sometimes
grow cubically [44]. Personal Dead-reckoning (PDR) sys-
tem [32] uses “Zero Velocity Update” to calibrate the drift.
The majority of the dead-reckoning results focus on walking
estimation, such as UnLoc [43], and CompAcc [10]. They
mainly use accelerometer to estimate the number of steps,
and then measure the distance through estimated step length.
AutoWitness [15] is the system with an embedded wireless
tag integrated with vibration sensors, accelerometer, and gy-
roscope. The tag is attached to a vehicle, and accelerometer
and gyroscope are used to track the moving trace.

10. CONCLUSION
This paper presented SmartLoc, a metropolis localization

system by using the inertial sensors and the GPS module of
smartphones. We showed that pure dead-reckoning cannot
provide acceptable localization accuracy. We established a
predictive regression model to estimate the trajectory using
linear regression, and our SmartLoc detects the road infras-
tructures and driving patterns as landmarks to calibrate the
localization results. Our extensive evaluations shows that S-
martLoc improves the localization accuracy to less than 20m
for more than 90% roads in Chicago downtown, compared
with ≥ 50% with raw GPS data.

This is only the first step stone for the localization in metropolis-
es. Additional functionality and techniques could further im-
prove the utility of SmartLoc. For instance, for long road
segments without good GPS signals, additional data such
as GSM signal and driving history can be used to improve
the accuracy. A cloud based social network may also pro-
vide drivers more traffic information, which might further
improve the accuracy on unpredictable roads.
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