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ABSTRACT
In this work, we address a fundamental and critical task of

detecting the behavior of driving and texting using smart-

phones carried by users. We propose, design, and implemen-

t TEXIVE that leverages various sensors integrated in the

smartphone and realizes our goal of distinguishing drivers

and passengers and detecting texting using rich user micro-

movements and irregularities that can be detected by sensors

in the phone before and during driving and texting. With-

out relying on external infrastructure, TEXIVE has an ad-

vantage of being readily implemented and adopted, while at

the same time raising a number of challenges that need to be

carefully addressed for achieving a successful detection with

good sensitivity, specificity, accuracy, and precision. Our

system distinguishes the driver and passengers by detecting

whether a user is entering a vehicle or not, inferring which

side of the vehicle s/he is entering, reasoning whether the

user is siting in front or rear seats, and discovering if a user

is texting by fusing multiple evidences collected from ac-

celerometer, magnetometer, and gyroscope sensors. To val-

idate our approach, we conduct extensive experiments with

several users on various vehicles and smartphones. Our e-

valuation results show that TEXIVE has a classification ac-

curacy of 87.18%, and precision of 96.67%.

1. INTRODUCTION
Distracted driving diverts driver’s attention away from driv-

ing, which will endanger the safety of driver, passenger, and

even pedestrian [1]. One recent study indicates that every

year, at lease 23% of all motor vehicle crashes or 1.3 million

crashes involve using cell phones and texting [3]. In United

States, on a hand-held cell phone while driving is consid-

ered illegal in 10 states and the District of Columbia [2, 22],

and over 30 states and District of Columbia forbid texting

message while driving.

The prevalence of cell phone and severe negative impact

of driving and texting on safety have stirred numerous re-

searches and innovations on detecting and preventing the be-

haviors of driving and texting. The majority effort has been

on detecting this behavior using various technologies, such

as mounting a camera to monitor the driver [12, 33], rely-

ing on acoustic ranging through car speakers [36], or lever-

aging sensors and cloud computing to determine driver [9].

Another line of innovations is to prevent driver from using

phones [31] via signal jammer. Recently, a number of apps

have been developed to report driving and texting, e.g., Rode

Dog [4]. These apps could not distinguish between the driv-

er and passengers. These techniques have been shown to

perform well under various circumstances and assumption-

s, but not without some limitations, e.g., using extra infras-

tructures such as cameras or radio interceptor [12, 31, 33],

requiring special vehicles (Bluetooth and special layout of

speakers [36]), or collaboration of multiple phones in the

vehicle and cloud computing [9].

In this work, we address the fundamental and critical task

of detecting the behavior of driving and texting by leveraging

the smartphones carried by users. Our system leverages var-

ious sensors (e.g., accelerometer, gyroscope, magnetometer

sensor) integrated in the smartphone and realizes our goal

of distinguishing drivers and passengers and detecting tex-

ting using rich user micro-movements and irregularities that

can be detected by these sensors before and during driving

and texting. Our system distinguishes the driver and passen-

gers by performing the following tasks by fusing multiple

evidences collected from accelerometer, magnetometer, and

gyroscope sensors: 1)detecting whether a user is entering

a vehicle or not, 2)inferring which side of the vehicle s/he

is entering, 3)reasoning whether the user is siting in front

or rear seats, and 4)discovering if a user is texting. With-

out relying on external infrastructure, our system has an ad-

vantage of being readily implemented and adopted, while at

the same time raising a number of challenges that need to

be carefully addressed for achieving a successful detection

with good sensitivity, specificity, accuracy, and precision. A

common challenge is to minimize or even remove the neg-

ative impact of the inherent noise of the data collected by

these sensors. Another challenge is to increase the sensitiv-

ity, accuracy, and precision of detection, which is extremely

difficult because of the potential pattern similarities among

different user activities and the vast possibilities of how a us-

er will drive and text (e.g., how a user will carry the phones,

where the user will put the phone, how a user will enter the

car, how will a user sit in the car). The third challenge is

to design a real-time activity detection and recognition with
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high accuracy and energy efficiency.

To detect whether a user starts entering a vehicle as a

driver, or is doing some other activities (such as walking,

siting, or entering a public transportation), we collected the

data from accelerometer and magnetometer when users are

performing various activities and observed some unique pat-

terns (by converting the signal to the frequency domain using

DCT and wavelet). To infer whether a user enters the vehicle

from left side or right side of the vehicle, or sits in front or

rear seats, we exploit the unique patterns in the accelerome-

ter and magnetometer data observed from respective action-

s and make cognitive decision based on machine learning

techniques. Our system carefully exploits some unique ex-

ternal phenomena: 1) when vehicle engine is started, the data

from magnetometer exhibits different patterns when users sit

in front or back seats; 2) the accelerometer data experiences

different curves when the phone is placed in the front seat-

s and back seats when the vehicle passes through a bump

or pothole; 3) the accelerometer data showed different and

distinguishable patterns when user enters the vehicle from

different sides even the user has the phone in different pock-

ets. To validate our approaches, we conduct extensive ex-

periments of our system with several kinds of vehicles and

smartphones. Our evaluation results show that our approach

had a classification accuracy of 87.18%, and precision of

96.67%.

The rest of paper is organized as follows. In Section 2 we

briefly review the exiting work on distinguishing driver and

passengers, and in general activity detection and recognition

using inertial sensors. We present the system design in Sec-

tion 3 by discussing how we tackle several critical tasks for

detecting texting by driver. Section 4 presents the energy

consumption strategy of TEXIVE. We report our extensive

evaluation in Section 5 and conclude the paper in Section 6.

2. STATE OF THE ART
A number of innovative systems have been proposed and

developed in the literature to distinguish between the driv-

er and passenger, or prevent the driver from using the cell-

phone. The first line of work is to use some external devices

to detect whether the driver is distracted or whether the driv-

er is using a phone [10,30,36]. Bergasa et al. [7] designed a

feasible prototype to detect the driver distraction using spe-

cial wearable equipment, a circuit equipped with a camera to

monitor the driver’s vigilance in real time. Kutila et al. [15]

developed another smart human-machine interface to mea-

sure the driver’s momentary state by fusing stereo vision and

lane tracking data [15]. Although these two systems could

detect the driver’s distraction, they do not take the hand held

devices into account, and the detection accuracy is approx-

imately 77% on average. Salvucci [29] built a cognitive ar-

chitecture to predict the effects of in-car interface on driver’s

behavior based on cell phone. With the increasing number

of accidents caused by using cell phone while driving, many

efforts focus on reducing the dangerous driving distraction,

but allowing drivers to deal with the devices with less effort,

such as Blind Sight [19], Negotiator [34], Quiet Calls [25],

and Lindqvist [20]. Most of the aforementioned designs re-

quire extra equipments or modifying cars to assist detecting

the drivers’ activity, which will increase the system cost and

coordination difficulty, or fail to take the presence of hand

held smartphones into account.

Other existing solutions for distinguishing driver and pas-

senger rely on specific mechanisms to determine the location

of the smartphones. For example, recently, Yang et al. [36]

present an innovative method by leveraging the high fre-

quency beeps from smartphone over Bluetooth connection

through car’s stereo system, and calculate the relative delay

between the signal from speakers to estimate the location of

smartphone [36]. However, a possible obstacle to this sys-

tem is the requirement of using Bluetooth, which may be

not available in most old cars as well as new models either.

Even with Bluetooth, because of the varying cabin sizes and

stereo configurations, the accuracy may be compromised in

some extent. Chu et al. [10] presented a phone based sensing

system to determine if a user in a moving vehicle is a driver

or a passenger without relying on additional wearable sen-

sors or custom instrumentation in the vehicle. They relied

on collaboration of multiple phones to process in-car noise

and used a back-end cloud service in differentiating the front

seat driver from a back seat passenger. Compared with these

systems, our system will only use the smartphone carried by

the driver and does not require special devices in the car.

Our approaches involve a number of activity detection and

recognition using inertial sensors integrated in smartphones,

which has been studied for various different purposes [16].

Bao et al. [6] performed activity recognition based on multi-

ple accelerometer sensors, deployed on specific parts of hu-

man body, such as wrist, arm, ankle, or thigh. Parkka et
al. [26] proposed a system embedded with 20 different wear-

able sensors to recognize activities. Tapia et al. [32] present-

ed a real-time algorithm to recognize not only physical activ-

ities, but also their intensities using five accelerometers and

a wireless heart rate monitor. Krishnan et al. [14] demon-

strated that putting accelerometers in certain parts is inade-

quate to identify activities, such as sitting, walking, or run-

ning. Mannini et al. [21] introduced multiple machine learn-

ing methods to classify human body postures and activities,

including lying, sitting, running, and climbing, based on ac-

celerometers attached to certain positions on the body. Lee

et al. [18] introduced a novel system to identify user’s lo-

cation and activities through accelerometer and angular ve-

locity sensor in the pocket, combined with a compass on the

waist. Ravi et al. [28] used HP iPAQ to collect acceleration

data from sensors wirelessly, and recognize the motion ac-

tivities. A few studies perform activity detection and recog-

nition using commercial mobile devices [8,16,23,35], which

are more practical and unobtrusive. Unfortunately, these sys-

tems and approaches cannot be used for distinguishing driver

and passenger and detecting driving and texting activities.
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3. SYSTEM DESIGN
To address the driver-passenger challenge, we will lever-

age the existing inertial sensors integrated in smartphones

and exploit some unique and distinguishable patterns ob-

served from a sequence of sensory data. In this section, we

discuss in detail design goals, the approach to detect which

side a user is entering the car, and which row the user is sit-

ting, for location classification.

3.1 Challenges and Design Goals
The purpose of our system is to distinguish the driver and

the passengers using smartphone only without any assistance

of dedicated infrastructures or intrusive equipments in the

vehicle. The key goal that led to our inertial sensor approach

is to be able to determine various activities and classify the

phone location from the observed unique and distinguish-

able micro-movements and sequential patterns. This pure

phone software solution, however, leads to several technical

challenges:

Robust to Diversity and Ambiguity of Human Activi-
ties: The system requires a real-time activity recognition to

identify the driver with high accuracy and low delay. For

example, when we know that a user is walking towards the

car, we should start the algorithm to determine if s/he enters

the car or not, and determine if s/he is a driver or passenger.

However, because of the difference of smartphone’s orien-

tation, position and location, same user activity may result

multiple irregular sensory data. In addition, we need an ef-

fective method to detect the starting point and the duration of

an activity for the purpose of increasing the accuracy while

considering the randomness of action even by the same user.

We assume that the behaviors between drivers and passen-

gers are different, especially during the action of entering the

vehicle and driving. We need to carefully identify the signal

and patterns that can be used for accurate distinguishing.

Robust to Data Noise: It is widely accepted and verified

in our testing that the data collected by the inertial sensors

in smartphones contain significant noise. If it is not care-

fully addressed, such noise may override the small changes

caused by different human activities.

Computation and Energy Efficiency: As smartphones

have limited computation capability and limited energy sup-

ply, standard smartphone platforms should be able to execute

the system in an online manner with running time of second-

s or sub-second. The system will be running at background

in carefully selected dynamic duty cycle. Thus we need a

careful tradeoffs between efficiency and detection accuracy.

3.2 System Architecture Overview
We now briefly describe the architecture of our system. In

this work we propose a three-phase solution to accomplish

the task: recognizing the action, locating the user in the vehi-

cle, and determining the role of the user based on assembled

information. Figure 1 illustrates various components of our

system that will be described in details.

Figure 1: The system overview
Activity Identification: When driving or sitting in the

vehicle, the behaviors are different from most of the other

activities in our daily lives. Empirically, such driving ac-

tivities usually start from walking towards the vehicle, and

are followed by entering the vehicle, fastening the seat belt,

or even pressing the gear and brake. Thus, walking will be

detected periodically, and we looking for the action of enter-

ing the vehicle following the detection of the walking action.

Notice that our system does not require any interaction from

the user, thus, it is critical to find when a user will enter

the vehicle so that no driving and texting activity is missed.

Generally, most of users get used to carry smartphone for a

whole day, the system will definitely record multiple kinds

of behaviors throughout one day. A research task here is to

identify related activities from a rich set of potential daily

activities, including walking, sitting, standing or going up-

stairs. We observe that most time different activities will be

reflected in different micro-movements and motion pattern-

s, although sometimes different activities will have similar

“observed” patterns. We will exploit some subtle differences

(e.g., the different frequency distribution when converting

the time-series data to the frequency domain, the variance of

the amplitude of the time-series data) between observed da-

ta from various sensors (e.g., accelerometer, magnetometer,

and gyroscope) for recognizing driving activity from other

activities.

By collecting the daily activities, we study the distribution

of activities and temporal and spatial relationship between

different activities, and construct a Hidden Markov Model

(HMM) [27] to analyze the behavior based on the observed

sensory data. This model will then be used to further reduce

the energy consumption by carefully adjusting the operating

duty-cycle of the system.

Detecting Left vs. Right: The second component of our

system is to determine whether a user entered the vehicle

from the left side of the vehicle or the right side of the ve-

hicle. If the user is recognized to have entered the vehicle

from the right side, taking US as an example, the user must

be a passenger usually. But we still cannot judge the role

precisely if the user is from the left side. We found that

the accelerometer data exhibits different patterns when a us-

er entered the vehicle from different sides and having the

smartphone at different pockets.

Detecting Front vs. Back: Detecting the side cannot u-
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niquely identify the driver. Thus, the third phase is proposed

to determine whether the user is sitting in the front seats or

back seats. Together with the side information, we can de-

termine the location of the phone in a vehicle. Suppose there

are one driver seat and three passenger seats in the vehicle.

Take US as an example, the user must be the driver if he is

sitting in the left side of the front row. Our approach relies

on two separate signals. The first signal is the change of

magnetic field strength value. Our extensive tests show that

when the phone is in the front half of the car, we can see an

obvious change in the collected magnetometer data when the

vehicle engine is started. The second signal is the change of

the accelerometer value based on different road condition.

We observed that when a car passing through a bump or a

pothole, there are unique and distinguishable patterns when

the phone is in the front seats or the back seats. The bump

signal, although not guaranteed to happen, can always accu-

rately determine whether the phone is in front seats or rear

seats.

Further Improvement: Although these phases provide

us some information of the behavior and location of the user

in a vehicle, we cannot neglect the issue regarding the iden-

tification accuracy. In this work we rely on machine learning

process and evidence fusion to further improve the accuracy.

For example, when driving, the driver may text in an abnor-

mal patterns, while the passenger, on the other hand, may

still follow regular patterns.

To further improve the robustness of our system, we con-

sider the diversity of human activities, e.g., considering the

fact that users put their smartphone in different locations ac-

cording to individual habit [13].

Another issue worth mentioning is that the system will be

running at background, and operating the entering-vehicle

recognition and side detection in real time, rather than keep

recording the sensory data into local buffer and detect the

activities through rolling back which is most common way.

The strategy is determined based on two main reasons, effi-

ciency and reducing cost.

Figure 2: Real time strategy vs. rolling-back.
Suppose the system starts recording the sensory data at

time 0, as shown in Figure 2. At time T1, the user starts en-

tering a car which lasts T2. He starts driving after a delay

of T3 sitting inside the car. It is common that a user may

make a phone call before driving. Once the system detects

the driving behavior with detection delay δ, after users has

driven for time T4. The whole duration of the sequence of

actions will last T1 + T2 + T3 + T4 + δ. However, the ex-

act duration of every Ti is unknown and unpredictable, the

amount of sensory data which have to be stored in the buffer

will be extremely large if we do offline detection. While in

our real-time detection system TEXIVE, we can distinguish

driver at time T1 + T2 without buffering data.

3.3 Inertial Sensors and Data Noise
Suppose the smartphone is carried by the user and placed

in a pocket, the motion of a human body is reflected on

the motion of smartphone through three inertial sensors (ac-

celerometer, magnetometer, and gyroscope). In our system,

the sampling rate is set as 20Hz, and then a series of chang-

ing values on the sensor readings will represent the continu-

ous human activity.

As a rigid body, the readings from sensors only apply to

the coordinate of smartphone, which could be denoted as

Body Frame Coordinate (BFC). Since the motion condition

of smartphone is irregular and unpredictable, without know-

ing the posture of the phone in the pocket, it is difficult to

analyze the human behavior in detail. On the other hand,

from the perspective of the earth, individual person may act

by following some hidden regular pattern unconsciously, and

the only difference may be the frequency, duration and the

amplitude of the behavior. In this case, we extract the read-

ings from the sensors, and convert the value into the Earth

Frame Coordinate (EFC) to represent the activity.

In addition, in order to reduce the noise coming from both

intrinsic mechanical structure and measurement, we adopt

a calibrated orientation method through Extended Kalman

Filter (EKF).

3.4 Entering Vehicles?
A key challenge of this system is to identify specific activ-

ities in real-time, especially determining whether a user will

enter a vehicle or is just performing other activities, which

have similar observable patterns as that of entering a vehi-

cle. Here we will mainly focus on the analysis of pattern

recognition, including the walking and entering the vehicle.

The system is running at the background and will capture

sensory data from three inertial sensors according to sophis-

ticated duty cycle strategy. Then, the acquired data will be

processed and classified into specific activities through spe-

cially designed activity recognition method.

Activity Recognition.
As the sensors will collect data continuously, a critical

step in activity recognition is to identify the starting time

and ending time of an activity from a sequence of temporal

data collected. The second critical step in activity recog-

nition is an effective feature extraction, which will be the

foundation for machine learning based activity recognition.

In our system, we adopt Discrete Cosine Transform (DC-

T) [5] to extract features from linear acceleration to repre-

sent the specific action. Although the system mainly focuses

on detecting driving activity, the system will also encounter

many other activities as it is running in the background with

a carefully selected adaptive duty-cycle. For the purpose of

driving activity detection and establishing HMM, we classi-

fy activities into three categories walking, entering vehicle,

and other activities (including sitting, going upstairs, down-

stairs, or getting on the bus).
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(a) in trouser pockets (b) ascending stairs (c) sitting down (d) getting on the bus

Figure 3: Sensory data extracted from accelerometer in different behaviors.
Both the walking behavior and going upstairs or down-

stairs involve repetitive motions, and the activity pattern could

be reflected from the acceleration on the direction of ground,

as shown in Figure 3(a)and 3(b). Sitting down is another

activity which will be detected multiple times throughout a

day, the pattern is illustrated in Figure 3(c). The behavior of

getting on the bus is more complicated than the rest, because

it consists of multiple other activities and the duration is

much longer than the others, as shown in Figure 3(d). How-

ever, the patterns of these behaviors are different from each

other, and it is not that difficult to distinguish each other. In

order to evaluate the performance of the activity recognition,

we monitor the behavior for one specific user for one week,

and collect multiple cases of sensory data. In our initial test,

we collect the activities of walking, sitting down, and going

upstairs 20 cases each, and 100 other behaviors, including

running, jumping, jogging. In this work, we choose naive

Bayesian classifiers [17] to detect and identify activities re-

lated to driving. Naive Bayesian classifier could distinguish

activities from the other in an acceptable accuracy (91.25%).

Our system is carefully designed to meet the requirement

of online learning and real-time classifying. It collects the

inertial sensory data while triggers the signal when specific

activities are detected. It also adjusts the activity model in

real-time as new training examples from users are collected.

The protocol will adapt the new feature changes over time,

train and reconstruct the model as the system being applied

to other user.

Entering Vehicles?.
We first extract the feature of entering the vehicle by con-

ducting extensive testing. Typically, the activity of getting

into the vehicle consists of following steps: walking toward-

s the vehicle, opening the door, turning the body, entering,

and sitting down. Empirically, the duration of entering ve-

hicle activity is relatively small. In our system, we set the

window size of the sampled data for activity recognition as

4.5 seconds, which is based on the extensive evaluation to

be presented later. We then extract the feature regarding the

linear acceleration in both the horizontal plane and ground

direction in EFC.

In addition, the behavior will consist of two different cases

according to the entering side, and such activity patterns are

different. Although the user’s behavior could be reflected

through build-in inertial sensors in attached smartphone, we

cannot neglect the position where smartphones are put. A

recent study [13] indicates that male users usually carry their

phones in trouser pockets in most cases (57%) while only 5%
put in the upper body pocket. We first study the circumstance

that the phone is in the pocket of trousers.

We take a set of testing of entering the vehicle from both

sides in the parking lot by a group of colleagues with s-

martphones under left and right trousers pocket respectively.

We collect 200 samples of the entering-vehicle activity from

both sides. Due to irregular and unpredictable orientations of

the smartphone, we transform all the data from BFC to EFC.

Since in EFC, the X and Y axes record the data along the

Magnetic North and East, with different orientation of the

vehicle, the acceleration in time domain will also be differ-

ent, which will lead to the mismatch in the following activity

recognition process. On the other hand, no matter which ori-

entation the vehicle directs, the activity, from the perspective

of the head of vehicle, will still be the same. Thus, we cal-

culate the vector of joint linear acceleration in the horizontal

plane by
√
a2north + a2east, and present the activity of enter-

ing the vehicle in both horizontal plane and ground direction

in two cases in Figure 4, where the difference is much more

obvious.

(a) Driver Side, Left Pocket (b) Driver Side, Right Pocket

Figure 4: Data extracted from accelerometer in Horizon
plane and ground when people entering vehicle.

Improve the Accuracy.
Our initial test consists of 40 cases of behavior of entering

vehicle in total, and nearly 300 hundred other behaviors, in-

cluding walking, sitting down, ascending stairs, descending

stairs, and jumping. According to Naive Bayesian classifi-

er, both the accuracy and precision of distinguishing enter-

ing vehicle from other actions are 84.46% and 45.24% re-

spectively, as shown in Table 1. From the first experiment,

although the behavior of entering the vehicle is easily iden-

tified through acceleration, a considerable number of oth-

er behaviors (sitting down mostly) are also identified as the

same activity (the false positive is relatively high), which
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Table 1: Preliminary results on activity recognition.
Entering Vehicle Other activities

Test True 38 46

Test False 3 250

will hinder the performance of the detection. We discover

that there are two main reasons for confusion sitting down

with entering vehicle, for one the behaviors are quite sim-

ilar some times (both may consist of walking, turning and

sitting), and the other is that even if the same behavior may

result in multiple patterns. In order to overcome such phe-

nomena, we propose a more comprehensive filter to elevate

the result accuracy.

We observe that the main difference between regular sit-

ting down and entering the vehicle is the environment: the

former more likely happens indoor and the latter is around a

vehicle. Such difference on environment happens to provide

a key factor to distinguish the scenario, which is the ampli-

tude of magnetic field. Empirically, when approaching the

(a) Toward a vehicle and sit (b) Toward a chair and sit

Figure 5: The magnetic field in two scenarios.
vehicle, the magnetic field will vary dramatically because

of the special material of vehicle and engine. We sample

the magnetic field data in three axes for both scenarios, and

plot the data in Figure 5. As we could see from the figures,

the magnetic field fluctuates as user is approaching the ve-

hicle, and becomes relatively stable when the user sitting in

the vehicle. When it comes to the other case, the magnetic

field remains relatively stable even if the whole action con-

tains walking and sitting down. Besides, the accelerometer

will detect large acceleration when the vehicle starts moving,

which could be considered as a supplementary filter. Such

method could guarantee the user is in a vehicle. In our sys-

tem, as long as the sitting action is detected, both the mag-

netic filter and acceleration filter will be triggered to scan

the changing condition of ambient environment, and judge

the current scenario.

3.5 Left or Right Side?
The successful detection of entering the vehicle is an ini-

tial stage leads to the final driver detection. However, such

stage only constrains the location of the user in the vehicle,

but we still could not tell on which seat the user is sitting.

Then the second stage is to determine which side the user

has entered the vehicle as long as the entering behavior is

identified, and we denote this step as side detection.

The side detection is based on the observation that the s-

martphone will experience a different movement when get-

ting on the vehicle from driver side compared with that from

passenger side. Although the previous stage has already

trained the behavior of getting on vehicle from both sides,

the feature extraction according to DCT may consider some

cases to be quite similar. In our training stage, we test the be-

havior of entering vehicle in four different cases with respect

to the location of smartphone and side of getting in. Suppose

the user is getting in the vehicle from driver side with his s-

martphone in the right trouser pocket, the motion will lead

to a large fluctuation on acceleration and a more small one

because of the inner leg entry followed by the other. Here we

denote the leg which is close to the vehicle and with smart-

phone in that pocket as the inner leg. However, looking in to

the case of getting on from passenger side with smartphone

placed in the left trouser pocket, the observation is much the

same. The same thing happens when driver-side-left-pocket

case versus right-side-right-pocket case.

(a) Left Pocket, Driver Side (b) Right Pocket, Driver Side

Figure 6: Side detection: the observation of rotation a-
long BFC.

Suppose smartphone is located in the trouser pocket, the

orientations are different if we get in vehicle from differen-

t sides. We calculate the continuous orientation of smart-

phone while user entering the vehicle from both driver and

passenger sides respectively, and plot the varying of pitch

and roll in Figure 6. In addition, the orientation is modi-

fied according to Extend Kalman Filter, because of the in-

ternal mechanism noise of inertial sensors and the measure-

ment noise. Since the orientation of the vehicle is unknown

and unpredictable, we only consider the rotation in Pitch and

Roll, which will be affected when stepping into the vehicle.

From Figure 6, the vibration difference is obvious, especial-

ly when the inner leg is stepping into the vehicle, so that

the rotation patterns are different, and the side detection is

feasible.

3.6 Front or Back Seats?
The third phase of our system is to solve the front-or-back

problem, and by combining with the left-or-right result from

the second phase, we can locate the exact position of the s-

martphone in a vihicle. Actually, useful information that the

smartphone can exploit is limited, so it is hard to identify

the accurate front-or-back location of a smartphone inside

a vehicle. The latest work is based on calculating the dis-

tances between smartphone and the speakers through acous-

tic ranging [36], and the other relies on the sound level of the
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(a) Dashboard (b) Front vs. Back (c) Engine Starts

Figure 7: Changes of magnetic field in various scenarios.
turning signal [9]. However, the first solution has to handle

the issues of the placement of speakers, and the latter need-

s collaboration between phones and cloud server to do the

comparison. In this section, we will introduce two indepen-

dent approaches (based on changes of magnetic field when

engine starts, and changes of accelerometer when vehicle

passing through bumps and potholes) to determine whether

the smartphone is located in the front row or the back row.

Smartphone is capable of sensing the magnetic field, and

the special mechanical structure of the vehicle will affect the

surrounding magnetic field. We take a set of further exper-

iments to test the altering condition of magnetic field from

walking towards the car to being ready to drive in two dif-

ferent cases, one is sitting on the front row, and the other is

sitting on the back row.

We first put the smartphone on the dashboard, where the

place is much closer to the engine, the value of magnetic

field is relatively large, around 65uT when the engine is off.

After we start engine, as shown in Figure 7(a), the value ex-

periences a slight increase to approximately 67uT after an

obvious spike, which reflects a large fluctuation of the mag-

netic field at the very moment of engine starts. The sudden

spike provides us a good signal to detect whether the engine

starts, with the amplitude nearly increased by 20uT . How-

ever, most of users may put their smartphones in the cup

holder or leave them in the pocket, and that signal may not

be so obvious because of the increasing distance between

the smartphone and the engine. Thus we take another test

for both sitting in the front row and the back row to eval-

uate the difference of the spike. The tests are taken in a

continuous period: walk towards the car, open the door, sit

down, and start engine. We plot the value of the magnetic

field in Figure 7(b). Based on this figure, there are two ob-

servations: one is that the level of magnetic field is similar

when the user is away from the vehicle, and the other is that

the magnetic field in the back row is larger than the front

row (which is somewhat counter intuitive). An exciting phe-

nomenon is that even the smartphone is in the cup holder

or the trouser pocket, the magnetometer could still sense the

variation (red circle) of the magnetic field while the engine

starting, but with a smaller amplitude change (around 3uT ,

and the zooming in figure is shown in Figure 7(c)). And we

also found that if the smartphone is located on the back seat,

it will record nothing. Thus, we exploit the instantaneous

magnetic field vibration when the engine starts to determine

the rows by fusing the readings from accelerometer. When

the vehicle is moving has been indicated, our system will

look through the stored data in the buffer, and if the magnet-

ic vibration can be detected, we know that the smartphone is

located in the front row with high probability.

Since the system is running according to specific duty cy-

cle, and chances that the mis-detection is possible. There-

fore, the second method is now proposed. In both Nericel-

l [24] and Pothole Patrol (P2) [11], researchers use accel-

eration sensors and GPS deployed on vehicles to detect the

pothole and bump on the road. And the pothole and bump

will result in significant vertical spikes and dips in accelera-

tion in the gravity direction, and machine learning approach

is adopted to identify these.

Empirically, when we drive through a bump or a pothole,

people sitting in the back row feel more bumpy than those

sitting in the front row. We try to use this phenomenon as

a smart evidence for detecting front-or-back. We collect a

set of data by driving through both bumps and potholes to

match the sensory data to the real feeling.

(a) Driving through bump (b) Driving through pothole

Figure 8: Driving through bumps and potholes.

We deploy two smartphones in two passengers, sitting on

the front and back row respectively, and sample the accel-

eration in 20Hz during the driving. The accelerations are

converted into the gross linear acceleration in the horizontal

plane, and the ground direction in EFC is in Figure 8. Gen-

erally, the smartphone will observe the road condition twice

because both front and back wheels will drive through the

bump/pothole, and the amplitudes are completely different.

Due to the special shape of bump or deceleration strip, one

wheel will experience two continuously large vibrations, one

is first hitting the bump and jumping to the highest, and the

other is hitting the ground after driving through. When the

smartphone is in the front row, the intensity difference be-

tween two continuous bumps is relatively small, while in the

other case, the difference is much larger. The smartphone
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(a) Time Interval between two
inputs

(b) Frequency of typing (c) The probability of different
time interval between two inputs

(d) The typo frequency

Figure 9: The information extracted from typing.
could only detect a small jump when the front wheel pass-

es the bump, but the back wheel will make the jump much

higher, as shown in Figure 8(a). The pattern is similar when

it comes to the pothole as in Figure 8(b). In real scenario,

most of the cars will vibrate during driving even if the road

is smooth enough. When vehicles drive on a bumpy road,

both front and back wheel will experience a sudden drop

and then jump or a jump followed by a drop.

3.7 Texting?
While driving, the accident will be more likely to happen

when the driver is distracted, such as texting, twittering and

composing email. In order to prevent the driving distrac-

tion, the second function of the system is to detect texting

during driving. Once the endangered behavior is detected,

the system could alert the driver or the relatives through net-

work [4].

Generally, typing is not a difficult task when user are fully

concentrated, with fewer typo and higher accuracy. While

user typing on the smartphone but partly distracted, the time

interval between words or letters may last much longer, and

the typing accuracy may be much lower, which leads to the

two criteria to determine if the user is typing in a normal

manner or distracted manner. The criteria of determining

whether the user is fully concentrated or distracted from tex-

ting depends mainly on the frequency of typing and the prob-

ability of typo appears. We conduct a set of experiments by

a group of colleagues to compose multiple sentences in the

smartphone in both driving and normal condition. Due to the

safety issue, the driving scenario is conducted in the parking

lot. In this initial experiment, we record both the time inter-

val between consecutive inputs of letter, and the number of

letters between two consecutive typos.

We plot the CDF of both cases in Figure 9(a), and the gen-

eral statistic information in Figure 9(b). In the normal tex-

ting cases, the user usually is fully concentrated so that the

typing speed is relatively higher than that of the abnormal

cases. Thus about 90% of typing inputs falls within 800ms
in the former scenario, while the same interval only covers

less than 70% inputs in the latter scenario. Based on statistic

information, the average time interval is around 536.55ms
with Standard Deviation 327.03ms for the normal scenari-

o and the value in the distracted scenario is 742.42ms and

528.68ms respectively. Typing while driving, people usu-

ally type one word or phrase, and then pause for a while to

watch the road before continue typing, such special behavior

leads to the large standard deviation of input interval in the

distracted scenario. Such behavior habit also results in the

fact that there is still a certain proportion of inputs with in-

terval less than 500ms, as shown in the Probability Density

Function (PDF) in Figure 9(c). Simultaneously, the amoun-

t of typos in the distracted scenario is much larger than the

normal scenario. We compute the amount of inputs between

two continuous typos, generating from backspace and the

CDF is shown in Figure 9(d). Generally, typo appears in ap-

proximately every 50 inputs in normal condition, while only

30 inputs in the distracted scenario.

4. REDUCING ENERGY CONSUMPTION
The basic strategy adopted by TEXIVE to reduce energy

consumption is dynamic sampling according to self-learnt

daily routine generated through a close loop. Based on our

observation, we notice that users often have to walk to the

parking lot or the garage before getting on the vehicle. In ad-

dition, most of the users drive at some fixed time everyday.

Thus in our strategy, TEXIVE starts with walking detection

with different duty cycle (e.g., sample every 5 minutes) ac-

cording to the commute-time (e.g., at 8AM in morning and

5PM in afternoon). In commute-time, the system will sam-

ple historical data and learn when a user will drive in a day.

When the current time T is close to commute-time TD, i.e.,
T = TD − α · Tth where Tth is the variance of historical

commute-times and α is a constant, we will sample data with

large frequency, say 1/tc. In the rest of the time, the system

will detect the walking activity with sample frequency 1/td
times, which is much smaller than 1/tc.

TEXIVE learns the habit of user, and adjusts the detecting

periods automatically based on possibility that a user may s-

tart driving. We record the time of each of the behaviors for

certain users for a week, including walking, standing, sitting

down, driving, ascending stairs, and others. We then model

the transition probability between different activities using

Hidden Markov Model (HMM) [27] as shown in Figure 10.

From statistics of a week data, we calculate the initial prob-

ability of each activity as shown in Table 2.

We then calculate the transition probabilities from one s-

tate to another state and found that such probability is as

high as 16.67% among the behavior we detected. We put

more emphasis on the sampling strategy during the possible

routine driving period, including walking towards the car.
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Figure 10: The Action Loop

Table 2: Probabilities of different activities.
Behavior Probability Behavior Probability

Walking 42.25% Enter Car 14.08%

Stand 9.86% Sit Down 11.27%

Stairs 15.49% Others 7.05%

Suppose the time duration before entering the car is T , and

it could be divided into small detecting time slot, denoted as

ti, and the sampling frequency is fi. Our goal of deciding

the sampling strategy is to minimize the overall energy con-

sumption while guarantee the expected behavior miss ratio

is less than a threshold ε. In TEXIVE, we use the following

sampling strategy. Assume that the mean time of walking

towards the car is T and variance is σ, and we have detect-

ed walking activity using HMM. Then we start looking for

entering car activity by sampling data and performing detec-

tion algorithm with time interval ti = (T − σ) · ( 12 )i, for

i = 1, 2, · · · .

We then study the energy consumption if we need to use

bump and/or pothole signal for driver detection. Suppose

the vehicle is driving at a constant velocity, and the bumpy

detection is taken in a cycle w + s, where w is the dura-

tion of detection and s denotes the sleep. The system will

Figure 11: Bump on the road
stop checking until the system detects the existence of the

bump or pothole. If bumps and potholes follow Poisson

Process, the probability of detecting k bump or pothole in

time interval [t, t + τ ] is: P (k) = e−λτλτk

k! where λ is a

rate parameter. Thus, the probability of successfully detect-

ing the kth bump or pothole by the ith detecting cycle is:

Pik = Pith hit · Pk−1 miss = (1 − e−wλ) · s
s+w . Suppose

the average power for sampling sensory data and running

activity recognition in one unit time is C, as a result, the

total energy consumption under the same circumstance is

C((i− 1)(w + s) + t), where t is the time for identifying a

bump or pothole in the ith sampling. And the overall expect-

ed cost is E(k) = (1−e−wλ) · s
s+w ·C((i− 1)(w + s) + t).

We test a segment of the road (over 5 miles), containing both

local streets and highway. The actual ”bump” measured in

our data is not the regular speed bump people experience.

We treat any non-smoothy part of a road segment that will

cause ”bump-like” behavior as a bump, and record the time

interval of driving through a bump or pothole on the street as

shown in Figure 11. The figure shows that the probability of

a vehicle driving through a bump within 50 seconds is over

80%, so that method is feasible and reliable.

5. EVALUATIONS
In our evaluation, we use both Samsung Galaxy S3 (Phone

1) and Galaxy Note II (Phone 2) with Android 4.1.2 as the

platform. Since the driver detection consists of three steps,

and we will evaluate each step separately. The whole pro-

cess is evaluated on street in Chicago, except the texting part

is evaluated in a large parking lot. To study the impact of d-

ifferent users, we also evaluate the system by different users.

5.1 Getting on Vehicle
Our initial evaluation is the performance of the activity

detection, more specifically, the capability of extracting the

behavior of entering vehicles from large amount of activities.

We run a week-long experiment to gather the information of

user’s behavior regularity, notice that most of our colleagues

drive only on commute time. Since the system is running in

the background, it will detect multiple activities throughout

a day besides entering vehicles. We collected totally 41 be-

haviors of entering vehicle in both SUV and sedan as well

as 296 other activities, and the result of precision, sensitivi-

ty, specificity and accuracy are plotted in Figure 12(a). We

(a) Recognition of entering ve-
hicles

(b) Detecting the first arriving
signal

Figure 12: Detecting entering vehicles.
test the performance in different window size, ranging from

1.5s to 5s. As it shows in the figure, the performance im-

proves with the increase of window size. When the window

size is around 4s to 4.5s, the results are similar, the sensi-

tivity of both cases are over 90%. It is worth mentioning

that the precision in all the cases are not as high as expect-

ed, the reason is because the number of difference between

true positive and false positive are not large enough. For ex-

ample, the true positive and false positive of both cases are

39to38 and 39to36 respectively. In addition, the specificity

of the cases of window size being larger than 3.5s are close

to 90%, and the accuracy is similar. After entering vehicle,

the smartphone may sense both momentarily magnetic fluc-

tuation and acceleration fluctuation, which demonstrates the
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(a) Accuracy in Left vs. Right (b) Side Detection (c) New Training Data

Figure 13: Side detection accuracy in different window sizes.
users being in a moving car. According to such idea, we

improve our method, and evaluate the performance. Surpris-

ingly, the value of false positive decreases to zero, thus both

the precision and specofocoty increases to 100%.

Figure 12(b) shows an illustration of the first signal the

system detected according to the protocol. The evaluation is

based on the acceleration from the perspective of the earth,

with two dimensions, the horizontal plane and ground. The

whole serials of activities starts from putting the smartphone

in the pocket after making a phone call, and walking toward-

s the door followed by entering. As shown in the figure,

the system successfully detects the walking pattern starting

from the 112 time stamp, and after nearly 2 seconds, the sys-

tem senses the first arriving signal of entering (133 sampling

point). In this evaluation, the window size is 4.5s, and since

the duration of the entering will last approximately 5 to 6
seconds individually, we slide the window with step length

1s. In this case, the system will detect multiple entering be-

havior, which we will conclude with high probability that the

user is entering the vehicle.

After the behavior is determined, the detection of enter-

ing side is followed. We first evaluate the influence brought

about by the window size in Figure 13, ranging from 1.5s
to 5s in both learning and testing. For both driver side en-

tering and passenger side entering, the accuracy climbs with

the increase of window size, and the accuracy for both left

side and right side are around 90%, but the accuracy with

the window size only 1.5s is rather low (Figure 13(a)). Both

left and right cases have acceptable accuracy when the win-

dow size is around 3s with the accuracy over 95%. Fig-

ure 13(b) presents the precision, recall, specificity and ac-

curacy for whole process of side detection. The precision

reaches 90% when the window size is 3s, the result stil-

l increases while enlarging the window size, and the highest

precision is around 95% with window size 4.5s. The to-

tal accuracy is approximately 85% when the window size is

set as the largest. We also evaluate the performance of self-

adjusting ability for TEXIVE by introducing new data from

another user in Figure 13(c). Originally the training data is

coming from user 1, however, such data cannot provide con-

vincing results when detecting the data generated from user

2. However, with the number of new training data increase,

TEXIVE adjusts automatically, and obtains high accuracy,

precision and specificity.

5.2 Front vs. Back
Our system presents two independent approaches to han-

dle the front-back classification through engine start signal

monitoring and bump road signal detecting. In order to demon-

strate the generality of both methods, we organize the exper-

iment in two different cars (a Mazda sedan and a Honda SU-

V) and multiple positions in the cars where the phone may

be put.

As mentioned in the previous section, the embedded mag-

netometer in smartphone could detect the changing magnetic

field when the phone is located in the trouser pocket. How-

ever, some users get used to make a phone call or texting

while entering the car, and then put in cup holer of under

dashboard. Thus our experiments mainly focus on the detec-

tion of the engine start signal while the smartphone is held

in hand or put in some other possible positions in the car.

In Figure 14(a), we plot the magnetic field changing when

the engine starts in four different locations: cup holder, hold-

ing in hand, in dashboard and under the windshield (sorted

by the distance to the engine). Obviously, the place closest

to the engine experiences largest fluctuation in the magnet-

ic varying with the amplitude about 7uT , with the distance

to the engine increases, the amplitude of the magnetic fluc-

tuation decreases slightly. When the smartphone is held in

the hand while sitting or put in the cup holder, the ampli-

tude is only half of the value in the windshield. We also

calculate the variance for the magnetic field value in two d-

ifferent conditions, and the value is around 0.0614, 0.0485
and 0.0642 respectively for in hand, pocket and cup-holder

when the engine is off, and approximately 0.3919, 0.32 and

0.4860 when the engine starts. Thus, although the magnetic

field in the vehicle fluctuates along with the unpredictable

motion behavior of the human body, the orientation, posi-

tion and location of the smartphone, the magnetic field can

be considered as a feasible factor to distinguish the front and

back.

Figure 14(b) shows the magnetic field value in both Maz-

da sedan and Honda SUV in seven separate sampling loca-

tions, and the location numbers indicate the location to the

engine in order of increasing distance, i.e., under the wind-

shield, dashboard, the trouser pocket of driver, in cup-holder,

back of front seat, back seat, and under the back windshield.

Based on the experiment, the value of magnetic field is de-

termined by both the location and position of the smart-

phone, as well as the placement in the vehicle. The mag-
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(a) Spike if engine starts. (b) Spatial variations when idle. (c) Engine starts.

Figure 14: Magnetic field fluctuations experienced at different places of car. Figure 15: Texting

netic field is demonstrated to be the largest in both cars un-

der the windshield, and decrease when being put close to the

dashboard, where drivers may put their smartphone while

driving. Although the readings, as shown, are irregular, we

still observed instant spikes at that very moment, as shown

in Figure 14(c). The figure indicates that the closer to the

engine, the more sensitive the magnetic field variation be,

and when put the smartphone in the back seat area, the sen-

sor can hardly detect the changing magnetic field when en-

gine starts, which demonstrates that the spike from engine is

trustable.

We then take two separate sets of experiments in both

parking lot and local roads to evaluate the efficiency of front-

back distinguish using bumps and potholes. There are one

deceleration strip and one bump in the parking lot, and we

drive through both in ten times in each with different driving

speeds. The test results are shown in Table 3, both detections

lead to the absolute correctness, 20 bump are all successfully

detected in both locations.

Table 3: Bump on the Road
Bump in Front Bump in Back

Test in Front 20 0

Test in Back 0 20

When it comes to the street test, the results are slightly

different. The experiment is taken in a suburb at night, the

total distance is approximately 5.2 miles with local road and

highway. Both the driver and back seat passenger turn on

the system to estimate its exact location in the car according

to the sensory data while driving. The smartphone of driver

detects 334 samples of readings and 23 of bumps and pot-

holes, while the back seat passenger only detects 286 sam-

ples but 58 bumps and potholes. The sampling number is

different because of the starting time of passenger is behind

the driver. In addition, although the number of bumps and

potholes being detected by both smartphones are different,

both smartphones report they are in the right location with

accuracy of 100%.

5.3 Texting Evaluation
We then detect the regulation of texting to detect if the

user is driving or not. We sample 20 different cases with 8
texting in normal condition and the rest in driving condition

tested in the parking lot. Each sentence is approximately 20
to 30 words, we collect the input time interval and calculate

the average value in real time. In Figure 15, we draw two

pink lines, identifying the average time interval of each sce-

nario, and the green dash line in the middle as the standard

classifier. All the dots should be separated by the standard

classifier, with the blue (normal texting) below and red (tex-

ting while driving) in above. The two error classification are

denoted in black circle. The evaluation in texting detecting

is reliable and feasible, the accuracy is 90%.

5.4 Driver Detection
The decision of driver detection is based on previous sub-

processes through evidence fusion. When doing real time

recognition, the system slides the window with step 0.5s to

match the stored behavior through naive Bayes classifier. S-

ince the activity could be detected in multiple times because

of the sliding window, we consider a continuous same ac-

tivity recognition to be a successful recognition. And taking

the acceleration into account as a filter, the recognition could

provide high level of credit for current recognition.

Based on our experiment, we notice that the performance

of TEXIVE mainly depends on the first two phases. We test

the performance of driver detection based on the fusion of al-

l the phases, the precision is 96.67% and accuracy 87.18%.

Meanwhile, according to the real evaluation in Android s-

martphone, the recognition delay is only 0.2184 second.

5.5 Energy Consumption
The energy consumption of the system is determined by

the running duration of inertial sensors. Besides, the An-

droid API provides four different level of sampling rates,

with the energy consumption being largest (95mA [37]) in

the fastest level, which the sensory data being delivered with-

out any delay. The working strategy of the system is deter-

mined based on individual life pattern, more specifically, the

behavior regulation.

We take a group of experiments using Galaxy S3 to test

the energy consumption in high density sampling. Without

using any inertial sensors, the battery drop 2% within half an

hour, but 9% when the inertial sensors are triggered. How-

ever, in this process, we reduce the detecting rate to 10s
in every one minute with the sensor sampling rate 0.05s,

which on the other hand, match the transition probability of

transferring from walking to entering car. Based on the test,

the battery reduce only 4% for half an hour. Other existing

works utilize GPS to determine whether the user is in driv-

ing vehicle. Although such solutions do not require sensors
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to monitor the behavior and adjust the user habit, the energy

consumption from GPS is much larger than sensors. In addi-

tion, the system has to open GPS and store sensory data for a

certain duration, depending on when the driving behavior is

detected. In our experiment, the battery discharge from 84%
to 70% for the same testing duration.

6. CONCLUSION
This paper presented TEXIVE, a smartphone based appli-

cation to detect driver and texting according to user’s behav-

ior and activity pattern. Our system leverages inertial sen-

sors integrated in smartphone and accomplish the objective

of driver-passenger distinguishing without relying any ad-

ditional equipment. We evaluate each process of the detec-

tion, including activity recognition and show that our system

achieves good sensitivity, specificity, accuracy and preci-

sion, which leads to the high classification accuracy. Through

evaluation, the accuracy of successful detection is approxi-

mately 87.18%, and the precision is 96.67%. The evaluation

of TEXIVE is based on the assumption that smartphone is

attached to the user body in the trouser pocket most of the

time. However, a certain number of users may enter the ve-

hicle while making a phone call or with their smartphones in

the hand bag, which in most of the time the activities men-

tioned above may not be detected precisely sometimes. Al-

though such conditions may bring us a lot difficulties, the

system is still demonstrated to be robust in handling the de-

tection through evidence fusion and some side signals.
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