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Abstract—We study the problem of gateway placement for
cost minimization (GPCM) in two-dimensional wireless mesh
networks. We are given a set of mesh routers, assume they have
identical transmission range r, represented by unit transmission
disks around them. A router may be selected as a gateway at
certain placing cost. A router is served by a gateway if and only
if the gateway is within its transmission range.

The goal of this work is to select a set of mesh routers
as gateways to serve the rest routers with minimum overall
cost. This problem is NP-hard. To the best of our knowledge,
no distributed algorithm with a constant approximation ratio
has been given before. When all weights are uniform, the best
approximation ratio is 38. We present both centralized and
distributed algorithms which can achieve approximation ratios
6 + ε and 20 respectively. Our algorithms greatly improve the
best approximation ratios.

I. INTRODUCTION

In recent years, Wireless Mesh Networks (WMNs) [1]
attract considerable attentions due to their various potential
applications, such as broadband home networking, commu-
nity and neighborhood networks, and enterprize networking.
Many cities and wireless companies around the world have
already deployed mesh networks. U.S. military forces are now
using wireless mesh networking to connect their computers,
mainly ruggedized laptops, in field operations as well. For this
application, WMNs can enable troops to know the locations
and status of every soldier or marine, and to coordinate
their activities without much direction from central command.
MWNs have also been used as the last mile solution for
extending the Internet connectivity for mobile nodes. For
example, in the one laptop per child program, the laptops use
WMNs to enable students to exchange files and get on the
Internet even though they lack wired or cell phone or other
physical connections in their area.

WMNs consist of two types of nodes: mesh routers and
mesh clients. Compared with conventional wireless routers,
mesh routers may achieve the same coverage with much
lower transmission power through multi-hop communications.
Among mesh routers, there exist some self-configuring, self-
healing links. Mesh routers form an infrastructure for mesh
clients. To connect the mesh network (consisting of mesh
clients and mesh routers) to the Internet, gateway devices
(gateway node) are needed. Usually, in mesh networks some
mesh routers (gateway candidates) have the gateway function-
ality which can provide the connectivity to the Internet. We
select a subset of them to function as gateway devices. Note
that gateway candidates are different from gateways, a gateway

Fig. 1. The network infrastructure of wireless mesh network.

candidate becomes a gateway only if it is selected to function.
The common network infrastructure for mesh networks is
illustrated in Fig. 1, where dash and solid lines indicate
wireless and wired links respectively. We do not include the
mesh clients in Fig. 1, as in our work, we mainly focus on
the design of the mesh backbone. Hereafter, we will call the
ordinary mesh routers as mesh nodes or just mesh routers, and
call the mesh routers selected as gateway as gateway nodes to
differ from mesh routers.

The application scenario of this gateway placement problem
for a community network is as follows. The mesh nodes are
deployed on the roof of houses in a neighborhood, which
serve as access points for users inside the homes and along
the roads. All these mesh nodes are fixed and form the mesh
network. The mesh service provider needs to decide where to
place the gateway devices to connect the mesh network to the
Internet. Since different gateway placement causes different
mesh backbone topology and cost, it is important to find
optimal gateway placement to minimize the total cost while
ensuring the quality of service, e.g., coverage.

In our paper, we study gateway placement for mesh back-
bone with minimum cost. Given the mesh backbone consisting
of a set of mesh node (some of them are gateway candidates,
we assume all mesh nodes have identical transmission range r
and each gateway candidate is associated with a placing cost
(weight). A mesh node is served by a gateway if and only if
the gateway is within its transmission range. We want to select
a subset of gateway candidates to function as gateway, so as to
serve the mesh nodes with the overall placing cost minimized.
This problem is NP-hard. To the best of our knowledge, no
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distributed algorithm with a constant approximation ratio has
been given before. When all weights are uniform, the best
approximation ratio is 38. We first introduce a centralized
algorithm which can achieve approximation ratios 6+ ε. Then
we propose a distributed algorithm with approximation ratio
20.

The rest of the paper is organized as follows. Section II for-
mulates the GPCM problem. Section III presents a centralized
algorithm for the GPCM problem with the approximation ratio
6+ε. Section IV presents our distributed algorithm the GPCM
problem with the approximation ratio 20. Section V outlines
the related work. Finally, Section VI concludes the paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

A mesh network is modeled by a undirected graph G =
(V,E), where V = P = {v1, · · · , vn} is the set of n mesh
nodes and E is the set of possible communication links.
Every node vi has identical transmission range r, there is an
edge between any two nodes if and only if they are within
transmission range of each other, e.g., the euclidian distance
is no greater than r. By a proper scaling, we can assume that
r = 1.

Among the set V of all wireless mesh nodes, some of them
(gateway candidates) have gateway functionality and can pro-
vide the connectivity to the Internet. Let D = {d1, d2, · · · , dn}
be the set of m (m ≤ n) gateway candidates, where di is
actually node vn+i−m, for 1 ≤ i ≤ m. All other wireless
nodes vi (for 1 ≤ i ≤ n − m) ∈ V \D are ordinary mesh
nodes. Each ordinary mesh node u will aggregate the traffic
from all its users (or mesh clients) and then route them to
the Internet through a real gateway node it is served by. We
further assume that each gateway candidate di is associated
with a placing cost wi, at which it can be selected to function
as a real gateway node.

The goal of this work is to select a set of gateway candidates
D ⊆ D as real gateway nodes to ensure that 1) each mesh node
can be served by at least one gateway, e.g., there exists at least
one gateway within its transmission range, and 2) the overall
cost

∑
i∈D wi is minimized. For simplicity, we can assume

the transmission range r = 1 by proper scaling.
Since our problem is very similar to the minimum weighted

dominating set problem (MWDS), we will borrow some idea
from the existing solutions on MWDS problem to design a
centralized algorithm for our problem with constant approxi-
mation.

The main contribution of this work is that, we are the first to
propose a distributed algorithm with constant approximation
for the gateway placement problem. To illustrate our main idea
in an easy way, we first introduce a centralized algorithm with
6+ ε approximation. And we further extend it in a distributed
manner with 20 approximation.

III. CENTRALIZED ALGORITHM

In this section, we study the gateway placement problem
in a centralized manner. We present an algorithm with the
approximation ratio 6 + ε for GPCM based on an existing
algorithm in [9] for MWDS problem.

We employ double partition and divide-and-conquer tech-
niques, similar to [9]. Double partition means that we first
partition the plane into large blocks, each block is a square
with a side-length tμ, where μ =

√
2

2 (to ensure the diameter of
the square is 1, thus any gateway inside the square can serve all
mesh nodes inside the square) and t is a large integer constant
to be used for shifting strategy. Then we partition each large
block into t2 small squares with the side-length μ. The process
of double partition is illustrated in Figure 2.
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Fig. 2. Double partition: Partition plane into blocks and further partition
each block into some squares.

After double partition, the algorithm for solving the GPCM
problem can be divided into the following phases:

1) Solve GPCM in a tμ × tμ block. This means, for each
block, an instance of the GPCM problem can be defined
as: to select a subset of gateway candidates to function,
so as to serve all the mesh nodes lying inside the block.

2) Use the union of solutions for all instances of GPCM in
all blocks obtained in the Step 1) as a solution in the
plane.

3) Use shifting strategy to get a set of solutions in the
plane similarly. Here the shifting strategy (The details
can be found in [9]) is to try all possible t ways along
the diagonal direction to partition the plane into blocks
of size tμ × tμ. For each way of partition, we perform
Step 1) and 2) to find a solution in the plane.

4) Selection the one among all t solutions found by the shift-
ing strategy with minimum-weight as the final solution in
the plane and return it.

The details for solving GPCM in the plane are shown in
Algorithm 1.

Finally, we show the approximation ratio of Algorithm 1
for GPCM in a plane.

Theorem 1: For any constant ε, by setting t = O(1/ε),
Algorithm 1 always outputs a set of gateway nodes with weight
bounded by (6 + ε) · w(OPT ), where OPT is the optimum
solution and w(OPT ) is the weight of OPT .

Proof: The proof follows Theorem 1 in [9]. By lemma 6
in appendix (Subsection A), every gateway node in the optimal
solution OPT can be counted at most 6 times for solving
GPCM in a block. However it may be counted more if it is
located in the boundary region of a block. When we shift
the whole block many times, for any gateway node in OPT ,
it would be counted at most 6 times in most cases. Since
we return the one with minimum-weight as the final solution,
we can achieve a solution with weight bounded by (6 + ε) ·
w(OPT ) for any small constant ε > 0.
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Algorithm 1 Centralized Algorithm for GPCM ( [9])
Input: a set of mesh nodes P and a set of gateway candidates
D, a weight function w on D
Output: a solution for GPCM which is a subset of nodes from
D selected as gateways.

1: (Double Partition) Partition the whole plane into blocks of
size tμ × tμ, then partition each block into squares with
size μ × μ, where μ =

√
2

2 ;
2: Find a 6-approximation solution of GPCM for each block

that contains mesh nodes to be served and union the
solutions together to get a solution for the whole plane.
See appendix (Subsection A) for our approach solving
GPCM in a block.

3: Move each block one square along its diagonal direction;
4: Repeat Step 2 for this new partition to update the solution

if any better solution is found;
5: Repeat Step 3 for t times, and output the final solution.

IV. DISTRIBUTED ALGORITHM

In this section, we propose our distributed algorithm with
approximation ratio 20 for the GPCM problem.

Then we solve each sub-problem distributively (locally)
with a 2-approximation solution. By combining all solutions
together, we can achieve a 20-approximation solution for
MWDC which implies a solution for the original GPCM
problem immediately.

A. Our algorithm

Our algorithm employs the parameter μ =
√

2
2 as well.

We partition the plane into μ× 2μ rectangles (Figure 3). The
rectangle Sij , for i, j ∈ Z, contains all nodes (x, y) with

1) jμ ≤ y ≤ (j + 1)μ and 2iμ ≤ x ≤ 2(i + 1)μ if j = 2k;
2) jμ ≤ y ≤ (j + 1)μ and (2i + 1)μ ≤ x ≤ (2i + 3)μ if

j = 2k + 1.

µ

2µ

Fig. 3. Partition the plane into µ × 2µ rectangles.

Given an instance of MWDC, let P be the set of all nodes
to be covered, and D be the set of all weighted disks. For a
μ× 2μ rectangle Sij that contains at least a node to cover, let
Pij denote the subset of nodes in P which are located inside
Sij and Dij denote the subset of disks in D that covers at least
one node in Pij . Then we consider the following subproblem:
find a minimum-weight subset of disks in Dij that covers all
nodes in Pij . We will present a 2-approximation solution (note

as Uij) for the subproblem in Section IV-C. For each rectangle
Sij , we can define the subproblem and find a corresponding
solution Uij with constant approximation. We use the union of
solutions Uij for all subproblems as the global solution. The
details of our distributed algorithm for MWDC in the plane in
shown in Algorithm 2. Note that in our algorithm, the nodes
in P are the entities to do computing.

Algorithm 2 Distributed Algorithm for MWDC
Input: a set of nodes P and a set of weighted disks D
Output: a solution for MWDC (A subset of
disks)

1: Each node pi ∈ P broadcasts to all its neighboring nodes
within two-hops: (1) ID; (2) which rectangles it lies in.
(Here we assume the nodes are wireless devices with
communication and computing ability).

2: For each rectangle Sij , the node with the largest ID elects
itself as the leader and notify to all nodes in the rectangle.

3: Each node pi ∈ P sends to the leader of the rectangle a
message containing the information about where it lies:
(1) ID; (2) all disks that covers pi.

4: For each rectangle Sij , after receiving all messages, the
leader determines all nodes lying in Sij (assume they form
a set Pij); and all disks that covers at least one node in
Pij (assume they form a set Dij).

5: For each rectangle Sij that contains nodes, the leader find
a 2-approximation solution of MWDC, here the input is
disk set Dij and node set Pij . See Section IV-C for our
approach solving MWDC in a rectangle.

6: Output the final solution as the union of solutions found
in Step 5. Note that, if a disk has appeared in the union
of solutions for multiple times, we only keep one in the
final solution by marking method.

It is clear that the global solution is a feasible solution.
Next we show that the global solution is within a constant
approximation of the optimum solution.

B. Performance analysis

In this section, we analyze the approximation ratio of our
method in Section IV-A. As in Algorithm 2, we first reduce
the problem of MWDC into a set of sub-problems in a μ×2μ
rectangle, we prove that we only lose an approximation ratio
of 10 in the reduction process. Then for each sub-problem, we
can find a 2-approximation solution as shown in Section IV-C.
Combining the two parts, we can prove that our distributed
algorithm can achieve an approximation ratio of 20.

Lemma 2: Each disk can intersect at most 10 μ × 2μ
rectangles. Here a disk intersects a rectangle iff there exists
an common area between the disk and the rectangle. (See
Subsection C in the appendix for proof)

Theorem 3: Algorithm 2 can find a 20-approximation solu-
tion for the MWDC problem.

Proof: By Algorithm 2, we can find a disk set U whose
total weight is at most

∑
i,j w(Uij). The summation is over

all μ × 2μ rectangles that contain at least one node to cover.
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d1
d2

s1 s2

Fig. 4. Case 1 of the OPT covering pattern.

s2s1

d2

Fig. 5. Case 2 of the OPT covering pattern.

s2s1

Fig. 6. Case 3 of the OPT
covering pattern.

Let OPTij denote an optimal solution to the subproblem
for Sij . We can find a 2-approximation algorithm for each
subproblem as proved in Section IV-C, we have w(Uij) ≤
2 · w(OPTij).

Let OPT denote the global optimal solution. Note that
OPT

⋂
Dij is a feasible solution to subproblem Sij and

OPTij is an optimal solution. Then,

w(OPTij) ≤ w(OPT
⋂

Dij)

Therefore, we get,

w(U) ≤
∑

i,j

w(Uij) ≤ 2
∑

i,j

w(OPTij) ≤ 2
∑

i,j

w(OPT
⋂

Dij)

The sum
∑

i,j w(OPT
⋂

Dij) adds the weight of solutions
for all rectangles Sij that contain at least one node in P . Note
that a disk d in OPT can be in OPT

⋂
Dij only if it covers a

node in Pij and thus intersects the rectangle Sij . By Lemma 2,
a disk can intersect at most 10 μ× 2μ rectangles. This means
that each disk in OPT contributes its weight to OPT

⋂
Dij

at most 10 times. We have,
∑

i,j

w(OPT
⋂

Dij) ≤ 10 · w(OPT ).

Therefore, w(U) ≤ 20 · w(OPT ).

C. 2-Approximation solution for MWDC in a μ×2μ rectangle

In this section, we will present a 2-approximation solution
for a subproblem of MWDC in a μ × 2μ rectangle.

We divide the μ×2μ rectangle into 2 squares S = {s1, s2}
(each with side length μ). Let OPT denote a set of disks
constituting an optimal solution for the problem. We guess the
covering pattern of OPT and use the dynamic programming
technique to find a 2-approximation solution. If we define that
OPT covers a square if OPT contains a disk with center
inside the square. Then the covering pattern refers to whether
OPT covers any of the two squares. Clearly, for each square,
OPT either covers the square or not. If OPT covers a square,
then all the nodes inside the square can be covered by an
covers disk in OPT . Since we focus only two squares S =
{s1, s2}, there are totally at most 22 cases for the covering
pattern. We consider each case (note that Case 2 include 2
cases) separately as follows:

1) (Figure 4) Both squares in {s1, s2} contain a disk in
OPT . Since the diameter of the squares is one which
equals to the radius of disks, one disk with center in a
square is enough to cover all the nodes in the square.
Thus there is no need to add additional disks. Thus the

OPT has only 2 disks. We can get an optimal solution
by guessing which 2 disks are in polynomial time O(n2)
for this case.

2) (Figure 5) One square in {s1, s2} contains disks in OPT .
Assume s2 contains at least one disk d2. Then d2 can
cover all the nodes in square s2 and may cover some
consecutive area of its neighboring square s2. We delete
the nodes that have already been covered by disks d2.
Since s1 does not contain disks in it, we need to use
all disks outside of square s1 to cover the remaining
nodes in the red region. Ambühl et al. [3] showed a 2-
approximation to cover nodes in a square with disks all
outside of the square. Thus we can get 2-approximation
solution for this case.

3) (Figure 6) Neither square in {s1, s2} contains disks in
OPT . This means that two consecutive squares does
not contain disk. In this case, we need to use all disks
outside of the rectangle s1 ∪ s2 to cover the nodes in
the red region. In appendix (Subsection B), we will show
a 2-approximation for cover nodes in a rectangle with
disks all outside of the rectangle. Thus we can get 2-
approximation solution for this case.

Since for each of all three complementary cases, we can find
2-approximation solution, we can achieve an approximation
ratio of 2 for MWDC in a μ × 2μ rectangle.

V. RELATED WORK

As we know, GPCM is a essentially a coverage problem
which has been extensively studied recently. To evaluate the
quality of coverage of wireless networks, Meguerdichian et al.
[12] formulated the 1-coverage problem under two extreme
cases: the best case coverage (maximum support) problem
and the worst case coverage (minimum breach) problem.
They observed that an optimal solution for the maximum
support problem is a path which lies along the edges of the
Delaunay triangulation [11] [16] and an optimal solution for
the minimum breach problem is a path which lies along the
edges of the Voronoi diagram [11] [16]. They further proposed
centralized optimal algorithms for both problems. Later, Mehta
et al. [13] improved these algorithms and made them more
computational efficient.

Recently, some work aimed at solving the 1-coverage prob-
lem formulated in [12] in a distributed manner. Li et.al [19]
showed that the maximum support path can be constructed by
using edges that belong to the relative neighborhood graph
(RNG) of the sensor set. They attempted to address best

510510



case 1-coverage problem in distributed manner. This is an
improvement since the RNG is a subgraph of the Delaunay
triangulation and can be constructed locally. On the other side,
Meguerdichian et.al [12] implied that a variation of the local-
ized exposure algorithm presented in [16] can be used to solve
the worst case coverage problem locally. Another localized
algorithm with more practical assumptions was proposed by
Huang et al. [8].

For the general coverage problem, Huang et al. [8] studied
the problem of determining if the area is sufficiently k-
covered, i.e., every point in the target area is covered by at
least k sensors. They formulated the problem as a decision
problem and proposed a polynomial algorithm which can be
easily translated to distributed protocols. In [4], Huang et
al. further extended this problem to three-dimensional sensor
networks and proposed a solution The connected k-coverage
problem was addressed in [20] in which Zhou et al. studied
the problem of selecting a minimum set of sensors which are
connected and each point in a target region is covered by at
least k distinct sensors. They gave both a centralized greedy
algorithm and a distributed algorithm for this problem and
showed that their centralized greedy algorithm is near-optimal.
Xing et al. [7] explored the problem concerning energy
conservation while maintaining both desired coverage degree
and connectivity. They studied the integrated work between the
coverage degree and the connectivity and proposed a flexible
coverage configure protocol.

Some studies focused on the relationship between the cov-
erage degree k, the number of sensors n and the sensing radius
r. Kumar et al. [17] considered the problem of determining
the appropriate number of sensors that are enough to provide
k-coverage of a region when sensors are allowed to sleep
during most of their lifetime. In [18], Wan et al. analyzed the
probability of the k-coverage when the sensing radius or the
number of sensors changes while taking the boundary effect
into account.

Since the coverage problem can be reduced to disk cover
problem, we briefly review the recent work [2], [6] about the
disk cover problem in which the authors want to deploy some
disks (with same radius or not) at some locations on the given
area such that all points in the given point set are fully 1-
covered. Calinescu et al. [5] proposed the first constant factor
algorithm with approximation ratio 108. Narayanappa and
Vojtechovsky [14] improved this constant to 72. The best result
so far is achieved by Carmi et al. [6] with an approximation
ratio 38.

VI. CONCLUSION

In this paper, we study the problem of gateway placement
with minimum cost in wireless mesh networks. We propose a
distributed method which can achieve a 20-approximation of
the optimum. To the best of our knowledge, this is the first
work to give a distributed algorithm with constant approxima-
tion for this problem. We also design a centralized algorithm
with 6+ ε approximation which greatly improves the previous
results with approximation ratio 38.

As a future research direction, we would like to know
whether there is a PTAS for this problem, i.e., whether it is

possible to design a polynomial time algorithm such that, given
any constant ε > 0, we can find a solution whose total weight
is at most 1 + ε times of the optimum. Also, we try to find a
optimum gateway placement by taking the connection cost into
account, in particular, if each link is associated with certain
connection cost, then how to assign each router to different
gateway becomes a very interesting while interesting problem.
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[2] ALT, H., ARKIN, E., BRÖNNIMANN, H., ERICKSON, J., FEKETE, S.,
KNAUER, C., LENCHNER, J., MITCHELL, J., AND WHITTLESEY, K.
Minimum-cost coverage of point sets by disks. In Proceedings of the
twenty-second annual symposium on Computational geometry (2006),
ACM New York, NY, USA, pp. 449–458.

[3] AMBUHL, C., ERLEBACH, T., MIHAL AK, M., AND NUNKESSER,
M. Constant-Factor Approximation for Minimum-Weight (Connected)
Dominating Sets in Unit Disk Graphs. Lecture Notes in Computer
Science 4110 (2006), 3.

[4] C. HUANG, Y. C. T., AND LO, L. The coverage problem in threedimen-
sional wireless sensor networks,. In Proceedings of IEEE GLOBECOM
(2004).
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APPENDIX

A. 6-approximation for GPCM in a block

In this subsection, we present our algorithm for GPCM in
a tμ× tμ block B. As we can map each gateway candidate in
D as a unit disk with the same weight as that of the gateway
candidate, each mesh node P as a node in the plane, our
GPCM problem is reduced to a weighted version of Discrete
Unit Disk Cover (DUDC) as defined in [6]: to cover all nodes
in D using unit disks in D with minimum weight. Then we
present a solution for solving weighted DUDC in a block with
6-approximation.

We first introduce some terms and notations. Since block
B consists of t2 squares of size μ × μ, we denote them as
Sij , i, j ∈ [t]. Sij is the square in the i-th order from left to
right and in the j-th order from up to down. All squares Skj

together form a horizontal strip (note as sx
k, j ∈ [t]). Thus,

block B contains t horizontal strips, sx
1 , · · · , sx

m. Similarly,
block B contains t vertical strips, sy

1, · · · , sy
m, where sy

k is
formed by combination of all squares Sik, i ∈ [t]. Let Dij and
Pij denote the set of disks and points lying in Sij respectively.

UL UM UR

CRCL

LRLL LM

y2

x2

Sij

x1

y1

Fig. 7. Partition of outside of a µ × µ square into 8 regions.

For each square Sij , we divide its outside into eight regions
UL,UM,UR,CL,CR,LL,LM,LR as shown in Fig. 7.
Denote by Left = UL∪CL∪LL,Right = UR∪CR∪LR,
Up = UL∪UM∪UR, Down = LL∪LM∪LR. Assume the
four lines forming Sij are x = x1, x = x2, y = y1, y = y2.

Then we briefly describe the idea for solving weighted
DUDC in a block.
(1) Guessing the covering pattern. Assume the optimum so-

lution is OPT . For each square Sij , we have the follow-
ing two complementary cases:
• d ∈ OPT ∩Dij �= ∅. Since the disk radius is one and

the diameter of every square is one, any disk d from
OPT ∩ Dij can cover Sij entirely. Thus d can cover
all points in Pij .

• OPT ∩Dij = ∅. In this case, Pij are covered by disks
outside of the square Sij . By Lemma 5, we can use up
to 4 points to separate points in Pij into two groups,
one group can be covered by disks only from the Up
and Down region of the square, and the other can be
covered by disks only from the Left and Right region
of the square Sij .

Thus, we can guess the covering pattern of OPT for each
square Sij by enumeration of all possibilities.

(2) Solving weighted DUDC over strips. Once we guess a
pattern, we can decompose the problem into problem
in strips. We solve weighted DUDC for t horizontal
strips sx

j . Similarly, We solve weighted DUDC for t
vertical strips sy

j . We combine the 2m solutions and use
OPT ∩ Dij as the solution for this pattern. We then
output the minimum solution over all possible enumerated
covering patterns.

Lemma 4: ( [9]) Suppose p ∈ Pij is a point inside Sij

which can be covered by a disk d ∈ LM . We draw two lines
pl and pr , which intersect y = y1 by angle π/4 and 3π/4.
Then the shadow PLM surrounded by x = x1, x = x2, y = y1,
pl and pr can also be covered by d. Similar results can be hold
for shadow PUM , PCL and PCR, which can be defined with
a rotation.

p

p
p

p

Fig. 8. PLM , PUM , PCL and PCR

Then, we give the definition of sandglass and a lemma
which can be used to separate Pij into two groups, with one
can be covered by disks from Up ∪ Down and the other by
disks from Left ∪ Right.

Definition 1: ( [9] Sandglass) If D is a disk set covering
Pij and D∩Sij = ∅, then there must exist a subset PM ⊂ Pij

which can only be covered by disks from UM and LM (we
can set PM = ∅. if there is no such points). Select PLM ⊂ PM ,
the disks that can be covered by disks from LM , draw pl and
pr line for each p ∈ PLM . Select the leftmost pl and rightmost
pr and form a shadow. Symmetrically, choose PUM and form
a shadow. The union of the two shadows form a sandglass
region Sandij of Sij .

Lemma 5: ( [9]) Suppose D is a disk set covering Pij , and
Sandij are chosen as in Definition 1. Then any points in
Sandij can be covered by disks only from neighbor region
Up∪Down, and any point from Sij \Sandij can be covered
by disks only from neighbor region Left ∪ Right.

Then, we give Algorithm 3 for solving weighted DUDC in
a block.

Lemma 6: Algorithm 3 can find a 6-approximation solution
for weighted DUDC in a tμ × tμ block .

Proof: Since OPT is a feasible solution, for any square
in the block, it is either covered by a disk from OPT inside
this square, or covered by some disks from OPT outside of
the square. So during the enumeration process in Algorithm
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Algorithm 3 DUDC in a block ( [9])
Input: a set of points P in the block and D covering P;
Output: A solution for DUDC in the
block.

1: For each Sij , choose its sandglass or select a disk u ∈ Dij

inside the square;
2: If for a square Sij , a disk u is chosen, then remove all

points in Pij . We also remove all other points outside of
square Sij covered by u;

3: For each horizontal strip sx
i , calculate an optimum DUDC

for the remaining points in the sandglass of sx
i .

4: For each vertical strip sy
j , calculate optimum DUDC for

the union of points in the sandglass of sy
j .

5: Enumerates all possible covering patterns and takes the
one with minimum weight.

3, once the covering pattern is guessed correctly, for any disk
from OPT inside a square which is used to cover this square,
it is selected and then deleted by the algorithm in step 1, hence
is only used once.

Consider when we calculating DUDC for t horizontal strips,
it is used at most 3 times. For the horizontal strips, the analysis
is the same. By adding the horizontal and vertical strips up,
for any disk, it could be counted at most 6 times totally.

The two solutions together have weight no more than 6 ·
OPT , so Algorithm 3 gives a solution with weight no more
than 6 · OPT when it guess the pattern correctly. Since the
algorithm enumerates all possible covering patterns, and takes
the minimum solution, Algorithm 3 can output a solution with
weight at most 6 · OPT .

B. 2-approximation for MWDC in a rectangle with all disks
outside of the rectangle

We first introduce the concept of upper-active and lower-
active.

Definition 2: For a set of disks D with centers in the lower
half-plane of line l, we say that a disk u is upper-active at xp

if its uppest intersection point with vertical line x = xp has
the largest y-coordinate among all upper intersection points of
disks from D with that line x = xp. We say a disk is upper-
active at node p if it is upper-active at x = xp where xp is
the x-coordinate of node p.

Definition 3: For a set of disks D with centers in the upper
half-plane of line l, we say that a disk u is lower-active at xp

if its lower intersection point with vertical line x = xp has the
smallest y-coordinate among all lower intersection points of
disks from D with that line x = xp. We say a disk is lower-
active at node p if it is lower-active at x = xp where xp is
the x-coordinate of node p.

For upper-active, we have the following property.
Lemma 7: Consider two disks {d1, d2} under the edge l, if

disk d1 is upper-active at x1 and disk d2 is upper-active at x2,
then O1 < O2 iff x1 < x2 (Figure 9).

Proof: Assume A0 is the intersection point of line l and
vertical line x = x1, A1 is the uppest intersection point
of disk d1 and x = x1, and A2 is the uppest intersection

A0 B0

B1

B2
A1

A2

O1 O2

Fig. 9. The property of upper-active.

point of disk d2 and x = x1. Similarly, we define the points
B0, B1, B2. Given the assumption that disk d1 is upper-active
at x1 and disk d2 is upper-active at x2, we have: A1 lies
above A2 while B2 lies above B1. By geometrical property,
O1 lies on the perpendicular bisector of A1B1 and O2 lies
on the perpendicular bisector of A2B2. Both 
O1A1B1 and

O2A2B2 are isosceles triangles. We can move 
O1A1B1

down along the line A1A0 such that A1 is coincident with
A2. During the moving processing, only y-coordinates of
{O1, A1, B1} varied by the moving distance vertically, their
x-coordinates is unchanged. If x1 < x2, then Ai lies on the
left of Bi (i = 0, 1, 2), then O1 lies to the left of O2 and vice
versa. Thus the proof is done.

As a corollary of Lemma 7, assume disk di is upper-active
at a node with x-coordinate xi, and disk dj is upper-active
at another node with x-coordinate xj , if xi < xj , then
disk di lies to the left of disk dj . Thus if we sort all nodes
above line l in increasing order of x-coordinate, every disk
can only be active for some consecutive nodes. Thus, we have
the following lemma.

Lemma 8: Consider a set of disks under a horizontal line l
and a set of nodes above line l, each disk can only be upper-
active for some consecutive nodes.

Proof: We prove by contradiction. Assume there exists
a disk d1 which is not upper-active for some consecutive
nodes. Then there must exist three nodes with x-coordinates
x1, x2, x3 respectively and x1 < x2 < x3. At the same time,
d1 is upper-active at x1 and x3, while another disk d2 is upper-
active at x2. By Lemma 7, d2’s center should lies both to the
right and left of d1’s center. This causes contradiction. Thus
the proof is done.

Figure 10 serves as an illustration for Lemma 8. In this
figure, d1 is upper-active for all nodes below the red section
of line, d2 is upper-active for all nodes below the green section
of line, d3 is upper-active for all nodes below the brown section
of line, d4 is upper-active for all nodes below the blue section
of line.

Now let us return to our problem: to cover all the nodes
in a μ × 2μ rectangle ABCD with all disks outside the
rectangle which cover at least one node in the rectan-
gle. We divide the outside of rectangle ABCD into 10
regions UL,UM1, UM2, UR,CL,CR,LL,LM1, LM2, LR
as shown in Figure 12. First we only consider all the
disks that locate below line AB in OPT (which contains
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d4d1
d2

d3

Fig. 10. An example that each disk is upper-active for a set of consecutive
nodes.

LL,LM1, LM2, LR), order them by their x-coordinates, as-
sume the result is D = {d1, d2, · · · , dn} ⊆ OPT . By the
optimum of OPT , every disk in D must be active at least
in one node from P . For each node, if a disk d is active
(either upper-active or lower-active) at the node, then we call
the disk d as an active disk for the node. Otherwise, we can
delete the redundant disks which are not upper-active at any
node from P and get a solution better than OPT which causes
contradiction. Thus, we have the following lemma.

LM LRLL

l

D

b1 b2

A B

C

Fig. 11. A set of nodes in a rectangle covered by disks under the rectangle.

Lemma 9: Consider a set of nodes P located inside a
rectangle ABCD and a set of disks located below edge AB,
there exist two vertical line b1, b2 such that in optimal solution,
all nodes in P lying to the left of line b1 have active disks in
LL, all nodes in P lying to the right of line b2 have active
disks in LR, and all the nodes lying between line b1 and b2

have active disks in LM . Here we say a disk is in LL if its
center locates in LL. By similar analysis, we get every sub-
rectangle’s active disk region.

UL UR

CR

LR

CL

LL LM1 LM2

UM2UM1

Fig. 12. Partition of outside of 1 × 2 rectangle into 10 regions.

Based on the lemma, we can partition this μ×2μ rectangle
into 25 small sub-rectangles such that the subset of nodes in
P in each sub-rectangle can be covered by at most two parts
in set {UL,UM,UR,CL,CR,LL,LM,LR}

Take one case for example, sub-rectangle 1 locates on the
left of u1 and b1, thus it can not be have active disks in
UM,UR and LM,LR. Also, sub-rectangle 1 locates on the
upper side of both line l1 and r1, thus it can not have active
disks in CL,LL and CR,LR in OPT . To sum up, the nodes
in sub-rectangle 1 can be and only have active disks in UL.

By similar analysis, we can get every sub-rectangle’s active
region set.
1 : {UL} 2 : {UM} 3 : {UM,LM} 4 : {UR,LM}
5 : {UR} 6 : {UL,CR} 7 : {UM,CR} 8 : {UM,LM,CR}
9 : {LM,CR} 10 : {CR} 11 : {CL,CR}
12 : {UM,CL,CR} 13 : {UM,LM,CL,CR}
14 : {LM,CL,CR} 15 : {CL,CR} 16 : {CL}
17 : {CL,UM} 18 : {UM,LM,CL} 19 : {CL,LM}
20 : {CL,LR} 21 : {LL} 22 : {UM,LL}
23 : {UM,LM} 24 : {LM} 25 : {LR}.

Now we divide some sub-rectangles further for those that
can be covered by either UM or LM .
71 : {UM1, CR} 72 : {UM2, CR}
81 : {UM1, LM1, CR} 82 : {UM1, LM2, CR}
83 : {UM2, LM1, CR} 84 : {UM2, LM2, CR}
91 : {LM1, CR} 92 : {LM2, CR}
121 : {UM1, CL,CR} 122 : {UM2, CL,CR}
131 : {UM1, LM1, CL,CR} 132 : {UM1, LM2, CL,CR}
133 : {UM2, LM1, CL,CR} 134 : {UM2, LM2, CL,CR}
141 : {LM1, CL,CR} 142 : {LM2, CL,CR}
171 : {UM1, CL} 172 : {UM2, CL}
181 : {UM1, LM1, CL} 182 : {UM1, LM2, CL}
183 : {UM2, LM1, CL} 184 : {UM2, LM2, CL}
191 : {LM1, CL} 192 : {LM2, CL}

By Lemma 5, we can divide all nodes into two part in
polynomial time such that one part is covered by disks in
UL ∪ UM ∪ UR and LL ∪ LM ∪ LR. The other part is
covered by CL ∪ CR, by Lemma 1 of [3], we can find an
optimal solution for both parts. Thus by combining the two
optimal solution, we can find a 2-approximation solution for
μ × 2μ rectangle covering in this case.

r11 2 3 4 5

109876

11 12 13 14

2019181716

21 22 23 24 25

15

u1 u2

b1 b2

l1

l2

r2

Fig. 13. Partition a µ × 2µ rectangle into 25 small sub-rectangles.
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We enumerate all other cases and use the same method to
find a 2-approximation solution for 1 × 2 rectangle. Actually,
after fixing the relative position of horizontal lines l1, l2, r1, r2,
there are totally 6 for the relative position of vertical lines
u1, u2, b1, b2. We can divide the nodes in the cell into two
area such that we can find 2-approximation algorithm to solve
the problem. There are only 36 cases for the partition of
the rectangle, thus we can find 2-approximation solution in
polynomial time. Therefore, we have the following theorem:

Theorem 10: We can find 2-approximation solution in poly-
nomial time for MWDC in a μ × 2μ rectangle with all disks
outside of the rectangle.

C. Proof of Lemma 2

Proof:

µ

2µ

S11 S12 S13 S14

S21 S23S22

A BC D

Fig. 14. A disk can intersect at most 5 rectangles in two consecutive strips.

We prove that a disk can intersect at most 5 rectangles
from two consecutive horizontal strips. As the width of a
rectangle is 2μ ≈ 1.414, the diameter of a disk is 2, thus
a disk can intersect at most 3 rectangles from a strip Consider
the disk intersecting 3 disks from a strip, we prove that the
disk can intersect at most 2 rectangles from either of its two
neighboring strips. We consider the case for the lower neigh-
boring strip first. the case for the upper neighboring strip can
be proved similarly. Suppose the disk intersects S12, S13, S14

(Figure 14), then the disk must contain point A,B. If the disk
intersects 3 rectangles in its lower neighboring strip, then it
must contain either C or D. Assume it contains C, thus it
contains BC. Since ‖BC‖ = 3μ > 2, then the radius of disk
should be greater than 2, which causes contradiction.

Thus a disk can intersect at most 5 rectangles in two
consecutive strips. Since the height of a rectangle is μ ≈ 0.707,
a disk can intersect at most 4 strips. There it intersects at most
5 × 2 = 10 rectangles. This finishes the proof.
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