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Abstract—In this work, for a wireless sensor network (WSN)
of n randomly placed sensors with node density λ ∈ [1, n],
we study the tradeoffs between the aggregation throughput and
gathering efficiency. The gathering efficiency refers to the ratio
of the number of the sensors whose data has been gathered to
the total number of sensors. Specifically, we design two efficient
aggregation schemes, called single-hop-length (SLH) scheme and
multiple-hop-length (MLH) scheme. By novelly integrating these
two schemes, we theoretically prove that our protocol achieves the
optimal tradeoffs, and derive the optimal aggregation throughput
depending on a given threshold value (lower bound) on gathering
efficiency. Particularly, we show that under the MLH scheme, for
a practically important set of symmetric functions called perfectly
compressible functions, including the mean, max, or various kinds
of indicator functions, etc., the data from Θ(n) sensors can be
aggregated to the sink at the throughput of a constant order
Θ(1), implying that our MLH scheme is indeed scalable.

Index Terms—Wireless sensor networks, Data Aggregation,
Percolation theory, aggregation capacity.

I. INTRODUCTION

Data aggregation is a key energy consuming functionality
in wireless sensor networks (WSNs) for both data gathering
applications and event-based applications, since the commu-
nication cost is often the higher-order of the computation cost
[1]. It has been shown in the literature that the achievable
minimum data rate among all sensor nodes is severely limited
for random WSNs if we insist data from all sensors should be
collected. In this paper, we design structure-based aggregation
schemes for WSNs to achieve the optimal tradeoffs between
the aggregation throughput and gathering efficiency. Here the
gathering efficiency refers to the ratio of the number of the
sensor nodes whose data were gathered successfully to the
total number of sensor nodes in the network. Collecting data
from a subset of sensor nodes is reasonable because of the
potential spatial correlations among sensed environment. In
our protocol, for the neighborhood of every node, we will
approximately select Ψ portion of nodes and aggregate their
data to the sink. Such sampling scheme will achieve high
aggregation throughput while maintaining the spatial coverage
by the sampled sensors.

For data gathering, we focus on an important set of sym-
metric functions called perfectly compressible functions, such
as the mean, max, or kinds of indicator functions [2] that will
be used to compute the data aggregation. Two characteristics
of this work are extracted as following:

• To meet specific application requirement, e.g., full cover-
age, k-coverage, connectivity, etc the node density (number
of nodes per unit area) can be treated as a varible within
a large range. Thus we consider a random deployed WSN
with a general density, where n sensors constitute a network
with node density λ, 1 ≤ λ ≤ n, rather than the special
random dense networks or random extended networks, where
λ = n and λ = 1, respectively. Depending on the requirement
of gathering efficiency, we determine the thresholds of the
density λ by which the aggregation throughput and tradeoffs
are divided into different regimes.
• As the node density is decreasing and the area of de-

ployment region is thus increasing, we need to rely on some
long links to ensure the network connectivity. For those long
links, it is unrealistic to set the link rate be a constant order as
under the protocol model and physical model [3]. Hence, we
design efficient protocols under a more realistic model called
generalized physical model, rather than under the protocol
model [4], [5] or physical model [2].

Under the structure-based aggregation schemes for a ran-
dom WSN, the aggregation throughput for a specific type of
function is mainly limited by the following two factors:
• Outliers: In random networks, given a proper threshold

(upper bound) on the length of links, there is a giant connected
component in which any pair of nodes can be connected by the
link of length below the threshold. While, there might be some
nodes, called outliers, outside a specific connected component.
To reach them, some links longer than the threshold are
needed, which possibly leads to lower link rate.
• Dense Components: Given a deterministic routing, in

the conflict graph modeling link interferences, there might
be some cliques (complete subgraphs) of high-order size.
Then, the scheduling of corresponding links might become
a bottleneck.

To address these limitations and challenges, we design two
efficient protocols to improve the tradeoffs between throughput
and gathering efficiency.
• Single-Hop-Length (SLH) Scheme: The routing is non-

hierarchical and consists of the links with similar lengths.
By selecting a certain number of sensors in local regions
depending on the given lower bound on gathering efficiency,
we improve the throughput by deliberating the bottleneck
produced by the second limitations, i.e., dense components.



• Multiple-Hop-Length (MLH) Scheme: The routing is
hierarchical and consists of the links with various lengths. By
selecting a fixed number of sensors from local regions and
limiting the length of those long links, we improve the aggre-
gation throughput by deliberating the bottleneck produced by
both the outliers and dense components.

In summary, our main contributions are as follows:
• Scalability is an important metric when designing the

network protocol. We prove that under the MLH scheme, the
measurements from Θ(n) sensors can be aggregated into the
sink at the throughput of order Θ(1), which means that the
MLH aggregation scheme is indeed scalable. To the best of
our knowledge, our MLH scheme is the first scalable structure-
based aggregation scheme.
• Combining the schemes SLH and MLH, we derive the

optimal tradeoffs between the aggregation throughput and
gathering efficiency for perfectly compressible functions in the
random WSN with general density λ, 1 ≤ λ ≤ n, as illustrated
in Fig.1. When we set the gathering efficiency be 1 and the
node density λ be Θ(n), the resulted aggregation throughput is
specified into the ordinary aggregation throughput for random
dense WSNs [2], [4], [5].

The rest of the paper is organized as follows. In Section II,
we introduce the system model and formulate the problem.
In Section III, we propose two aggregation schemes for
random WSNs with general density. We derive the achievable
aggregation throughput and the tradeoffs between it and the
gathering efficiency in Section IV. In Section V, we draw some
conclusions and future perspective.

II. SYSTEM MODEL

A. Network Model

Assume that the sensors are deployed on the 2-dimension
plane according to a Poisson point process of density λ,
where λ = Ω(1) and λ = O(n). We consider a random
network consisting of n (or Θ(n)) sensors. Specifically, we
focus on the square A(λ, n) = [0,

√
n/λ]2. Then, according

to Chebyshev’s inequality, the number of sensors in A(λ, n) is
within [(1−ε) ·n, (1+ε) ·n] with high probability. To simplify
the description, we assume the number of nodes is exactly
n, without changing the final results in order sense. Denote
S(n) = {s0} ∪ {s1, s2, · · · , sn−1}, where s0 is the sink node
and si, i ∈ [1, n − 1] are the ordinary sensor nodes. In the
following, we denote such a random network by N (λ, n).

B. Aggregation Throughput for Wireless Sensor Networks

As in the models of most related works [2], [5], every sensor
node si, i ∈ [0, n − 1], periodically generates measurements
of the environment, which belong to a fixed finite set M
with |M| = m, and the function of interest is then required
to be computed periodically for the measured data. Define
the function of interest to sink node as gn:Mn → Gn;
furthermore, for any node k ∈ [1, n], define the function
of the sensor measurements as gk:Mk → Gk, where Gk is
the range of gk. Suppose that each sensor has an associated
block of L readings, known a priori [5]. We call L rounds of

TABLE I
SOME NOTATIONS.

Notations Meaning

φ(n) ∼ [φ0(n), φ1(n)] φ(n) = Ω(φ0(n)) and φ(n) = O(φ1(n)).
φ(n) ∼ (φ0(n), φ1(n)) φ(n) = ω(φ0(n)) and φ(n) = o(φ1(n)).

A(λ, n) the square region [0,
√

n/λ]2.
N (λ, n) a random network composed of n sensors with

density λ.
m := |M| the size of a fixed finite set M containing all

measurements.
L block-length, i.e., the size of aggregation units.

Mn×L ∈Mn×L a n× L matrix of measurements.
Mn×L(i, j) the j-th measurement of sensor node si.
Mn×L(i, ·) a block of L consecutive measurements of si.
Mn×L(·, j) a set of the j-th measurements of n sensors.
gk(Mk) := gk(M1, M2, ..., Mk), for any k-vector

Mk = [M1, M2, ...Mk]T ∈Mk .
gL

k (Mk×L) :=
(
gk(Mk×L(·, 1)), · · · ,gk(Mk×L(·, L))

)
,

for a given matrix Mk×L.
Ψ := Ψ(n) gathering efficiency.
S(Ψn) a subset consisting of Ψ · n sensors.

A (n, L,S(Ψn)) a scheme that can aggregate the measurements
from sensors in S(Ψn).

Λ := Λ(λ, n) the achievable aggregation throughput.
Φ := Φ(λ, n) Tradeoff between throughput and gathering

efficiency.

measurements an aggregation unit. Notice that the aggregation
operation can only be applied to the data from the same round.
Before formulating the definition of aggregation throughput,
we introduce some notations in Table I.

1) Aggregation Functions of Interest: We focus on an
important class of symmetric functions called perfectly com-
pressible [2]. Functions such as the mean, max (or min), or
various kinds of indicator functions all belong to this category.

Note that |Gk| = Θ(m) is not a sufficient condition ensuring
the aggregation function gk to be perfectly compressible [2],
[5]. For simplicity, we assume that |Gk| = m for a perfectly
compressible aggregation function, without changing the order
of the derived throughput. Functions like max, min, etc.,
belong to this category.

2) Achievable Aggregation Throughput: Denote an aggre-
gation scheme as A (n,L,S(Ψ · n)), where
• L denotes the block-length, which determines a sequence

of message passings between sensors and computations
at sensors;

• S(Ψ ·n) ⊆ S(n), Ψ ∈ (0, 1], is a subset of sensors which
will be used to measure the gathering efficiency;

• input any M(Ψ·n)×L ∈ M(Ψ·n)×L from all sensors in
S(Ψ · n), output gL

(Ψ·n)(M
(Ψ·n)×L) at the sink node.

Next, we define the achievable aggregation throughput. All
the logs in this paper are to the base 2.

Definition 1: For a given aggregation function: gn:Mn →
Gn, we say a throughput of Λ(n) = L·log m

T bps Ψ-achievable,
if there exists an aggregation scheme A (n,L,S(Ψ · n))
under which there is a subset S(Ψ · n) such that the cor-
responding M(Ψ·n)×L ∈ M(Ψ·n)×L can be aggregated into



TABLE II
SOME PRE-DEFINED CONSTANT PARAMETERS.

Range Conditions

c ∈ (0,∞) c2 > ln 6

κ ∈ (0,∞) κ > 2/(c2 − ln 6)

$ ∈ (0,∞) $ < (κ · (c2 − ln 6)− 2)/(ln(1− e−c2 ) + c2)

ε1 ∈ (0,∞) arbitrary
ε2 ∈ (0, 1) ε2 + (1− ε2) ln(1− ε2) > 0

ε3 ∈ (0,∞) (1 + ε3) ln(1 + ε3)− ε3 > 0

ε4 ∈ (0, 1) ε4 + (1− ε4) ln(1− ε4) > 1/z, for z ∈ (0,∞)

ε5 ∈ (0,∞) (1 + ε5) ln(1 + ε5)− ε5 > 1/z, for z ∈ (0,∞)

ε6 ∈ (0,∞) σλ · ((1 + ε6) · ln(1 + ε6)− ε6) + ln(σλ) = o(ln n)

ε7 ∈ (0,∞) arbitrary

ε8 ∈ (0, 1) ε8 = (1 + ε3) · (1 + ε7) · (eε6/(1 + ε6)(1+ε6)
)c2

ε9 ∈ (0, 1) ε9 ≥ ε2 + ε8

gL
(Ψ·n)(M

(Ψ·n)×L) at the sink node within T seconds.
The ordinary achievable throughput [2], [5] is indeed 1-

achievable. We say a Ψ-achievable throughput asymptotically
1-achievable if lim inf

n→∞
Ψ = 1. We also directly call it

asymptotically achievable. We call the ratio Ψ the gathering
efficiency of a specific aggregation scheme A (n,L,S(Ψ ·n)).

3) Tradeoffs between Throughput and Gathering Efficiency:
It is intuitive that there exists a tradeoff between the aggrega-
tion throughput Λ(λ, n) and gathering efficiency Ψ(n). Define
such tradeoff as

Φ(λ, n) = Λ(λ, n) ·Ψ(n).

Obviously, Φ(λ, n) = O(1). Particularly,
Definition 2: We say an aggregation scheme A (n,L,S(Ψ·

n)) scalable if

Φ(λ, n) = Λ(λ, n) ·Ψ(n) = Θ(1), (1)

i.e., Λ(λ, n) = Θ(1) and Ψ(n) = Θ(1), where Λ(λ, n) is the
throughput derived by A (n,L,S(Ψn)).

III. AGGREGATION SCHEMES FOR RANDOM WSNS

Two proposed aggregation schemes are both cell-based. To
simplify the description, we recall a notion called scheme
lattice.

Definition 3 (Scheme Lattice): Partition a square region
A = [0, a]2 into a lattice consisting of square cells of side
length l, we call the produced lattice scheme lattice, and denote
it by L(a, l, θ, λ), where θ ∈ [0, π

4 ] is the minimum angle
between the boundaries of A and the sides of cells.

A. Single-Length-Hop (SLH) Aggregation Scheme

We design the scheme A1(n,L,S(Ψ · n)) based on the
scheme lattice L1 = L(

√
n/λ,

√
z · lnn/λ, 0, λ). For all

cells in L1, the number of sensors inside each cell is w.h.p.
within [(1 − ε4) · lnn, (1 + ε5) · lnn], where ε4 and ε5 are
some constants depending on z and are defined in Table.II.
For simplicity, we ignore the details about the integer, and
assume that the number of rows (or columns)

√
n

z·ln n is
always an integer, without changing on the results in order

Algorithm 1: Horizontal Backbone Pipelined Aggregation
Input: L rounds of aggregated measurements at all

aggregation stations.
Output: L rounds of aggregated data at all station bi,δ .
for k = 1, 2, · · · , L, L + 1, · · · , L + δ − 3 do

k → k′;
if k > L then L → k;
else for h = 0, 1, 2 do

for v = 0, 1, 2 do
for r = 1, · · · , k do

All bi,j ∈ Hh,v are permitted to transmit;
if it holds that 1 ≤ j ≤ δ − 1, and
(1) bi,j , j ≥ 1, has received the r-th
round aggregated data from bi,j−1, and
(2) bi,j+1 has not received the r-th round
aggregated data from bi,j , then bi,j sends
them to bi,j+1;
else if j = 0, and bi,1 has not received
the r-th round aggregated measurements
from bi,0, then bi,0 sends them to bi,1.

k′ → k

sense. Taking the cell in bottom left corner as the origin
with a 2-dimensional index (0, 0), we give each cell in L1

an index in the order from left to right and bottom to top,
i.e., the index of the cell in top right corner is (δ, δ), where
δ = δ(n) =

√
n√

z·ln n
−1. We assume without loss of generality

that the sink node s0 is located in the cell (δ, δ). Choose
randomly just one sensor from each cell as the aggregation
station, we obtain a set, denoted by B, consisting of n

z·ln n
sensors. Let bi,j ∈ B denote the aggregation station in cell
(i, j). Note that the sink node s0 can be selected as the
aggregation station of cell (δ, δ). Define a sequence of sets:
Hh,v := {bi,j | (i mod 3 = h) ∧ (j mod 3 = v)}, where
h ∈ {0, 1, 2} and v ∈ {0, 1, 2}. Then, the aggregation scheme
A1(n,L,S(Ψ · n)) is as follows:
• Local Aggregation: In each cell in L1, β · lnn sensors

are selected, if applicable, where

β = max{Ψ · (1 + ε5), 1/lnn}. (2)

L rounds of measurements from those sensors to be aggregated
to the aggregation stations by a single hop; all transmissions
are scheduled by a 4-TDMA scheme, as illustrated in Fig.2(a).
• Horizontal Backbone Aggregation: L rounds of data

held by each aggregation station are aggregated to the ad-
jacent aggregation stations in the order from left to right
in a pipelined fashion (Algorithm 1); all transmissions are
scheduled by a 9-TDMA scheme, as illustrated in Fig.2(b).
• Vertical Backbone Aggregation: L rounds of measure-

ments held by each station in the δth-column are aggregated
to the adjacent station in the order from bottom to top in a
similar pipelined fashion to Algorithm 1; all transmissions are
scheduled by a 3-TDMA scheme, as illustrated in Fig.2(b).
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Fig. 1. Tradeoffs Φ(λ, n) between aggregation throughput Λ(λ, n) and gathering efficiency Ψ(n) for ordinary perfectly compressible functions under the
schemes A1(n, L,S(Ψn)) and A2(n, L,S(Ψn)), denoted by SLH and MLH, respectively, where γ = max

{
Ψ(n)
1−ε9

− $
κ

, 0
}

, and the constant parameters
ε9, $ and κ are defined in Table.II.

B. Multiple-Length-Hop (MLH) Aggregation Scheme

We design another aggregation scheme A2(n,L,S(Ψ · n))
based on the scheme lattice L2 = L(

√
n
λ , c√

λ
, π

4 , λ), where
c > 0 is a constant and the specific value is determined in
Table.II. Choose randomly a sensor from each nonempty cell,
called aggregation station, then, we can build the aggregation
backbones using the method in [6]. Please see the illustration
in Fig.3. The backbone stations, i.e., the stations on the
aggregation backbones, are connected by only short links,
whereas every peripheral station, i.e., the stations other than
aggregation stations, can access a specific aggregation station
node in one-hop transmission.

For a given constant κ > 0, partition the scheme lattice L2

into horizontal (vertical) rectangle slabs with the horizontal
(vertical) width of

√
n
λ and the vertical (horizontal) width of

wR = (κ lnm) · c
√

2/λ, (3)

where m =
√

n√
2c

. We assume that m
κ ln m , denoting the number

of rectangle slabs, is an integer. Then, according to Theorem
5 of [6], we have

Lemma 1: For any constants c, κ satisfying 0 < 2
c2−ln 6 <

κ < ∞, there exists a constant $ depending on κ and c such
that for all horizontal (or vertical) slabs, there are w.h.p. at
least $ · lnm horizontal (or vertical) aggregation backbones,
where 0 < $ < κ·(c2−ln 6)−2

ln(1−e−c2 )+c2 .
When the aggregation backbones are built, the cells in

each slab can be assigned averagely to $ · lnn aggregation
backbones. For instance, each slab is further divided into
$·lnn slices, and each slice is mapped to a specific backbone.
Anyway, the distance between a peripheral station to the
corresponding backbone station is within (0, wR]. Now, we

give the aggregation scheme A2(n,L,S(Ψ ·n)). The involved
constants are all defined in Table.II.
• Selection: Choose a subset of aggregation stations, de-

noted by C(Ψ), that are at distance of at most γ · wR to the
corresponding aggregation backbones, where

γ = max
{

Ψ
1− ε9

− $

κ
, 0

}
. (4)

• Local Aggregation: In each cell in C(Ψ), choose ran-
domly at most c = d(1+ε6) · c2e sensors, if applicable, where
ε6 > 0 is defined in Table.II by letting σλ = c2; L rounds of
measurements from those chosen sensors to be aggregated to
the aggregation station by a single hop; all transmissions are
scheduled by a 4-TDMA scheme based on L2.
• Draining Aggregation: All peripheral stations in C(Ψ)

drain the L rounds of data into the corresponding backbone
stations by a single hop of distance at most γ · wR; all
transmissions are scheduled by a K2-TDMA scheme based
on L2, where K = 2 · (

⌈
γ·wR

c/
√

λ

⌉
+ 1).

• Horizontal Backbone Aggregation: L rounds of data
held by each backbone station are horizontally aggregated to
the adjacent backbone stations in the order from left to right in
a similar pipelined fashion to Algorithm 1, until the data are
aggregated into the backbone stations on the backbones passed
through by the sink node s0, denoted by bs0 ; all transmissions
are scheduled by a 9-TDMA scheme, as illustrated in Fig.2(b).
• Vertical Backbone Aggregation: L rounds of data held

by each backbone station in the backbone bs0 are aggregated
to the adjacent aggregation stations in the order from bottom
to top in a similar pipelined fashion to Algorithm 1; all
transmissions are scheduled by a 3-TDMA scheme.
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(a) Selection and Aggregation (b) Aggregation Backbones

Fig. 2. Aggregation Scheme A1(n, L,S(Ψ · n)). The shaded cells are
simultaneously scheduled. (a)In each cell, β · ln n sensors are selected, if
applicable. (b) The black square is the sink node.

Scheduled Cell

Backbone Station

Peripheral Station

Aggregation Backbone

≤ γ · wR

c2

Fig. 3. Aggregation Backbone under Scheme A2(n, L,S(Ψ · n)).

IV. Ψ-ACHIEVABLE AGGREGATION THROUGHPUT

A. Ψ-achievable Throughput under SLH Scheme

First, according to Step 1 of A1(n,L,S(Ψ ·n)), the number
of sensors is at least Ψ · n, then, it is easy to get that

Lemma 2: Under the scheme A1(n,L,S(Ψ · n)), the de-
rived throughput is Ψ-achievable..

Theorem 1: Under the scheme A1(n,L,S(Ψ · n)) with
L = Ω(

√
n√

log n
), the achievable throughput for perfectly com-

pressible aggregation functions is of order

Λ1(λ, n) =

{
Ω( 1

β·log n ) when λ ∼ [log n, n]

Ω( λ
α
2

β·(log n)1+
α
2

) when λ ∼ [1, log n]

where β is defined in Equation (2).
As mentioned in Section II-B2, the ordinary achievable

throughput [2], [5], is indeed the 1-achievable throughput
under Definition 1. Giridhar and Kumar [5] designed an
aggregation scheme under the fixed-range protocol model [3]
by which the achievable throughput of a special case of
random dense scaling WSNs, i.e., N (n, n), is of Ω( 1

log n ).

B. Ψ-achievable Throughput under MLH Scheme

First, we have the following result.
Lemma 3: Under the scheme A2(n,L,S(Ψ · n)), the de-

rived throughput is Ψ-achievable.

Theorem 2: Under the scheme A2(n,L,S(Ψ · n)) with
L = Ω(

√
n), the Ψ-achievable throughput for perfectly com-

pressible aggregation functions is of order

Λ2(λ, n) =

{
Ω( 1

(γ·log n)2+1 ) when λ ∼ [(γ log n)2, n]

Ω( λ
α
2

(γ·log n)α+2+λ
α
2

) when λ ∼ [1, (γ log n)2]

where γ is defined in Equation (4).

C. Tradeoffs between Throughput and Gathering Efficiency

Based on Theorem 1 and Theorem 2, we get that
Theorem 3: Under the schemes A1(n,L,S(Ψn)) and

A2(n,L,S(Ψn)), the detailed tradeoffs are presented in Fig.1.
From Theorem 3, we have the following observations:

1) The SLH scheme A1(n,L,S(Ψn)) is not scalable.
2) Under the MLH scheme A2(n,L,S(Ψn)), when Ψ(n) =

(1 − ε9) · ($
κ + O( 1

log n )), the Ψ-achievable throughput
is of order Θ(1), which means that the MLH scheme is
indeed scalable.

3) When Ψ(n)
1−ε9

− $
κ = ω( 1√

log n
), the tradeoff under

the A1(n,L,S(Ψn)) is better than that under the
A2(n,L,S(Ψn)) (Fig.1(d)); otherwise, it is not better,
as illustrated in Fig.1(a)-(c).

V. CONCLUSION

We study the data aggregation of perfectly compressible
functions for random WSNs with general density. We design
two protocols, called SLH and MLH schemes, to derive the
optimal aggregation throughput depending on a given gather-
ing efficiency, and provide the optimal tradeoffs. Particularly,
we show that the MLH scheme is scalable.
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