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Abstract. In this paper we study proximity structures like Delaunay
triangulations based on geometric graphs, i.e. graphs which are sub-
graphs of the complete geometric graph. Given an arbitrary geometric
graph G, we define several restricted Voronoi diagrams, restricted De-
launay triangulations, relative neighborhood graphs, Gabriel graphs and
then study their complexities when G is a general geometric graph or
G is some special graph derived from the application area of wireless
networks. Besides being of fundamental interest these structures have
applications in topology control for wireless networks.

1 Introduction

Given a set S of two dimensional points, many geometric proximity structures
were defined for various applications, such as the Delaunay triangulation [1-
3], the Voronoi Diagram [2,3], the Gabriel graph (GG) [4,5], and the relative
neighborhood graph (RNG) [6-8]. These diagrams are defined with respect to a
geometric neighborhood. For example an edge uv is in GG if and only if the circle
with uv as a diameter, denoted by disk(u,v), is empty of any other points of S
inside. An edge is in RNG if and only if the lune defined by this edge is empty.
The lune defined by edge uv, denoted by lune(u,v), is the intersection of two
disks centered at u and v with radius ||uv]||. Obviously, RNG is a subgraph of GG,
which is a subgraph of the Delaunay triangulation. Since Delaunay triangulation
is planar, all these three structures are planar and have at most O(n) edges.
All these structures are defined solely on the given point set and can be
viewed as defined on the complete geometric graph topology. Recently, Li et
al. [9], motivated by constructing distributed protocols for network routing in
mobile networks, extended these definitions to account for the edge structures in
the unit disk graph. The unit disk graph is used for topology control and power
efficient topology construction for wireless ad hoc networks. In wireless ad hoc
networks, nodes can directly communicate with all nodes within its transmission
range, which is often normalized to one unit. For a unit disk graph G, [9] defined
the k-localized Delaunay graph as follows. A triangle Auvw formed by edges in G
is a k-localized Delaunay triangle if its circumcircle is empty of nodes which are
within & hops of u, or v, or w. The k-localized Delaunay graph LDel* contains
all k-localized Delaunay triangles and all Gabriel graph edges on G. In [9] it is
shown that LDel* is a planar graph for k£ > 2 and LDel' has thickness 2.



However, graphs representing communication links are rarely so completely
specified as the unit disk graph. We thus consider the general structure of arbi-
trary graphs defined by points in the plane, geometric graphs, i.e., its edges are
straightline segment connecting the endpoints. For example, for wireless commu-
nications, different nodes may have different transmission radius. Consequently,
two nodes can communicate directly if they are within the transmission range
of each other, i.e., there is a communication link between these two nodes. The
graph formed by all such communication links is different from the traditional
disk graph, in which two nodes are connected by a straight edge if the two
corresponding disks centered at these two nodes intersect. And for wireless com-
munications, two nodes sometimes cannot communicate directly even though
they are within the transmission range of each other, due to the blocking of
the signal by some barrier. As another example, paths may be required to be
found in visibility graphs defined amongst polygonal obstacles in the plane. Tra-
ditional proximity structures are often defined based solely on the information
of points. We consider the effect on these proximity structures biased by the
changed neighborhood created by the topology of geometric graphs. The use
of these proximity structures to reduce the complexity of the underlying graph
while still retaining connectivity or path properties of the original graph is an
interesting issue for research.

In this paper we first present several new proximity structures, based on a
given geometric graph G = (V, E). We show relationships between these struc-
tures and bounds on their sizes. Most of our definitions are for undirected graph,
but can be extended to directed graphs also. Let N (u) be all nodes that are
within k& hops of node u in G. We define the zero-edge oriented localized Delau-
nay graph on graph G, denoted by LDely(G). This consists of all edges uv € E
such that there is a circle passing through v and v, which contains no other
point w inside the circle. The one-edge oriented k-localized Delaunay graph on
G, denoted by LDelX(G), consists of all edges uv € E such that there is a circle
passing through « and v, which contains no point w € N&(u) U Nk (v) inside.
Finally, the two-edge oriented k-localized Delaunay neighborhood graph on G,
denoted by LDel%(G), consists of all edges uv € E such that there is a circle
passing through u and v, which contains no point w € N} (u) N Nk (v) inside.

These definitions are extended in the natural way to Gabriel Graphs and the
relative neighborhood graphs. Define the k-localized Voronoi region of a vertex
v as the set of points p such that v is the closest vertex to p among v and all
nodes w such that w € Nk (u). The union of all such region is called the one-edge
oriented k-localized Voronoi diagram, denoted by LV ork (V). We show that the
localized Voronoi diagram and Delaunay triangulation are dual of each other:
given an edge wv € G, wv is in the one-edge k-localized Delaunay triangulation
iff their corresponding Voronoi regions in k-localized Voronoi diagram share a
common boundary.

We study the edge complexity of the proximity diagrams. Given a geometric
graph G, we show that the one-edge oriented Delaunay graph, LDelf(G) has
at most O(n®/3) edges; and the one-edge oriented Gabriel graph has at most



O(n®/?) edges. Notice that the zero-edge oriented structures defined so far al-
ways have at most O(n) edges due to the planar property. However, the two-edge
oriented structures could have O(n?) edges. When the graph G is the communi-
cation graph M G derived from the wireless networks, we show that the two-edge
oriented Gabriel graph has at most O(n%/3 log Imax) odges, where rmax and ryin
are the maximum and minimum transmission rlelnnge respectively. In addition,
we show that all one-edge oriented localized structures on MG have thickness
1+ 2log, T=2=. We also study some conditions under which the proposed struc-
tures are planar graphs.

The remaining of the paper is organized as follows. We define the generalized
Delaunay triangulation and Voronoi diagram on general geometry graphs and
study their duality and the edge complexity in Section 2. We further extend
this ideas to the relative neighborhood graph, and Gabriel graph in Section 3.
We study their properties when the geometry graph is derived from wireless
communications in Section 4. We conclude our paper in Section 5.

2 Generalized Delaunay Triangulation, Voronoi Diagram

Voronoi diagram and Delaunay triangulation have been widely used in many
areas. A triangulation of V' is a Delaunay triangulation, denoted by Del(V), if
the circumcircle of each of its triangles does not contain any other vertices of V
in its interior. The Voronoi region, denoted by Vor(p), of a vertex p in V' is a
collection of two dimensional points such that every point is closer to p than to
any other vertex of V. The Voronoi diagram for V is the union of all Voronoi
regions Vor(p), where p € V. The Delaunay triangulation Del(V) is also the
dual of the Voronoi diagram: two vertices p and ¢ are connected in Del(V) if
and only if Vor(p) and Vor(q) share a common boundary.

2.1 Definitions

In this section, we extend the Voronoi region and the Delaunay triangulation
from being defined on a point set to being defined on a geometric graph.

The zero-edge oriented localized Delaunay graph on a geometry graph G =
(V, E), denoted by LDely(G), consists of all edges uv € E such that there is
a circle passing through v and v, containing no other point w inside the circle.
Obviously, LDelo(G) = Del N G. The one-edge oriented k-localized Delaunay
graph on G, denoted by LDel%(Q), consists of all edges uv € E such that there
is a circle passing through u and v, which contains no point w € N§&(u) U NE(v)
inside. The two-edge oriented k-localized Delaunay neighborhood graph on G,
denoted by LDel%(G), consists of all edges uv € E such that there is a circle
passing through u and v, containing no point w € N§ (u) N N (v) inside. Notice
LDel!*(G) C LDel¥(G) for i = 1,2, and LDelo(G) C LDel}(G) C LGG(G).

Let line [,,, be the perpendicular bisector of segment vw and let h,,, denote
the half-space partitioned by l,,,, containing the vertex v. Then it is well-known



that the Voronoi region Vor(v) = (,cy how = mvweDel(V) hyw. Given a ge-
ometry graph G, the k-localized Voronoi region of a vertex v € V, denoted by
LVork (v), is the intersection of all half-spaces h,,, such that w € N&(v), i.e.,

LVorf(v) = m how = {z | ||z — || < ||z — w||, Yw € NE(v)}.
wENE (v)

2.2 Duality

Let v be a function mapping every vertex of V' to a polygonal region, which
could be unbounded; ¢ be some simple graph on V. Then functions v and ¢ are
dual of each other, denoted by v L 4, if we have: given any edge uv € G, v(u)
and 7(v) share a common boundary segment iff vertices u and v are connected
in 4. It is well-known that Vor L Del for any point set V.

Theorem 1. For any geometry graph G, LVork, L LDel%(G).

PROOF. Given any edge uv € G, if LVork(u) and LVork (v) share some com-
mon boundary segment then the shared common boundary must be on the
perpendicular bisector I, of segment uv. Figure 1 (a) illustrates the proof that
follows. Consider any point z on the shared segment of LV ork,(u) and LV ork (v).
For any vertex w € NE(u), ||z — u|| < ||z — w]|. It implies that w is not inside
the disk centered at  with radius ||z — ul|. Similarly, for any vertex y € N&(v),
[lz—v|| < ||lz—y]|- It implies that y is not inside the disk centered at = with radius
[l — v|| = ||z — ul|- Therefore, there is a disk (centered at x) passing through
vertices u, v that does not contain any vertex from N§(u)U N (v) inside. Thus,
uv € LDel¥(Q).

Consider any edge uv from LDel¥(G). Then there is a disk passing through
u, v that is empty of N&(u) U NE(v). Let B(z, ||z — u||) be such disk. Then for
any w € N&(v), we have ||z — u|| < ||z — w||. It implies that z € LVork (u).
Similarly, z € LV ork (v). Due to the presence of the edge uv in G, we know that
LVork(u) and LV ork (v) are on different sides of the bisector l,,. By definition
of the one-edge localized Voronoi region, we know that LV ork (u) and LV ork (v)
share a common boundary segment containing point z.

2.3 Edge Complexity

It is well-known that the Delaunay triangulation has at most 3n — 6 edges for
a two-dimensional point set from its planarity. Thus, all structures that are
zero-edge oriented have at most O(n) edges. However, it is easy to construct a
geometry graph such that all other structures introduced so far are not planar
graphs. Thus, it is not obvious how many edges each of these new structures
have. Recently, there had been some studies on the complexity of these geometry
structures on unit disk graphs. Li et al. [9] proved that the (one-edge oriented)
local Delaunay triangulation on the unit disk graph has O(n) edges. In this



section, we will further the study of the complexity of these structures when a
more general geometry graph G is given.

We first give an upper bound on the number of edges of LDel?(G) on a general
geometry graph G. To do so, we first review the following theorem proved in [10]
(Theorem 11 from Chapter 4).

Theorem 2. [10] A K, -free graph G with n vertices has size at most

1 1
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Theorem 3. Graph LDel¥(G) has no more than O(n?) edges.

PROOF. We prove that LDelf(G) has no K3 5 subgraph. For the sake of contra-
diction, assume that LDel?(G) has a K. 3,3 subgraph composed of six vertices u,
Uz, U3, V1, V2, and v3. Nodes u; and v; are connected fori =1,2,3and j = 1,2, 3.
Notice that the subgraph K3 3 is not a planar graph. Without loss of generality,
we assume that edges ujve and ugvy intersect. Then w1, ua, v1, and ve form a
convex hull uwjusvavi. Notice that we have assumed that there are no four ver-
tices co-circular. ;From the pigeonhole principal, either Zujusvs + Zujvivy > 7
or Lugvavr + Zusuivy > w. Assume that Zujusvy + Zujvive > w. Then any
circle passing through w; and vy either contains us or vy. It is a contradiction
to the existence of edge uyvs in LDel®(G). jFrom Theorem 2, LDel®(G) has no
more than 2-2/35/3 4 n = O(n%) edges.

\
$ Vs, Vi
u v‘LV \
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Fig. 1. (a): LDel¥(G) and LVorf are dual. (b): No subgraph k,» with crossing edges
exists in LDel}(G). (c): LGG1(G) does not have K 3 subgraph.

The above theorem is true only if the points are in a general position, i.e., no
four points are co-circular. The proof of the above theorem implies that LDel¥(G)
does not contain the structure of a crossing Cy as a subgraph. Generally, we
would like to know what is the tight upper bound on the number of edges any
geometry graph that is free of a crossing Cy. The above theorem implies that
there are at most O(n3) edges. Out conjecture is that there is only O(n) edges.
Notice that the two-edge oriented k-localized structure could have O(n?) edges,
e.g., when @ is a bipartite graph.



3 Geometric RNG and GG

We next extend this idea to the relative neighborhood graph and the Gabriel
graph to any geometry graph.

3.1 Definitions

The zero-edge oriented localized relative neighborhood graph on a geometry
graph G = (V, E), denoted by LRNG(G), consists of all edges uv € E such that
there is no point w inside lune(u,v). The one-edge oriented k-localized relative
neighborhood graph on graph G, denoted by LRNG*¥(G), consists of all edges
uv € E such that there is no point w € N&(u) U Nk (v) inside lune(u,v). The
two-edge oriented k-localized relative neighborhood graph on graph G, denoted
by LRNG%(G), consists of all edges uv € E such that there is no point w €
NE(u) N NE(v) inside lune(u,v).

Obviously, LRNG**1(G) € LRNG¥(G) for i = 1,2, and RNG NG =
LRNGy(G) C LRNG¥(G) C LRNGE(G). Similarly, we can define localized
Gabriel graphs LGGy(G), LGG%(G), and LGG%(G) using disk(u,v) instead of
lune(u,v). Then, GGNG = LGGy(G) C LGG¥(G) C LGG%(G), LGGF™(G) C
LGG¥(G), and LRNG*(G) C LGG%(G) C LDel%(G) for i =0,1,2.

3.2 Edge Complexity

Theorem 3 implies that graphs LGG*(@) and LRNG¥(G) also have no more
than O(n?%) edges due to LRNG*(G) C LGG¥(G) C LDel*(G). We have

Theorem 4. Graph LGG*(G) has at most O(n3) edges.

PrROOF. We first prove that LGGY(G) has no K, 3 subgraph. Assume that
LGG’{(G) has a K53 subgraph composed of five vertices ui, uz, vi, vz, and
v3. Nodes u; and v; are connected for 4 = 1,2 and j = 1,2,3. Then similar to
Theorem 3, we know that there are no intersections among these edges. It implies
that four vertices uy, us, v1, and ve form a convex hull u;v;usvs. There are two
cases: node vs is inside the convex hull; it is outside of the convex hull. When
node vs is outside of the convex hull, we can rename the vertices. Thus, generally,
we can assume that node vz is inside the convex hull ujv;usvs. See Figure 1.
Then one of the angles among Zujv3vs, Zusvsve, Lusvsvy, and Zujvsvy is at
least w/2. It implies that one of the disks using wujvy, vius, ugvy, Or vau; as
diameter contains node ws. It is a contradiction to their existence in LGG¥(G).

It was shown that a graph without a K, s subgraph has edges at most n2=r

where r < s. Thus, LGG¥(G) has at most @n:’w +n/2=0(n2) edges.

The proof of the upper bounds of the number of edges in local Delaunay
triangulation and other relatives is based on the general graph structure. We
expect a tight bound by using more geometric properties of the structures.



3.3 Planarity

It was proved that RNG(V'), GG(V), and Del(V) are planar graphs. Li et al. [9]
recently showed that LDel;(G)! on UDG is not a planar graph, but LDel?(G)
on UDG is always a planar graph for any integer k£ > 1. The following lemma
presents a sufficient condition such that all localized structures LDelf(G) are
planar graphs for any integer k > 1.

Lemma 1. Assume that the geometry graph G is such that, given any two in-
tersected edges uv and xy, at least one of the four edges of the convex hull of u,
v, z, and y is in G. Then all localized structures LRNGY(G), LGGY(G), and
LDel*(GQ) are planar graphs for any integer k > 1.

PROOF. We only have to prove that LDel¥(G) is a planar graph if G' satisfies
the condition and k& > 1. Consider any two intersected edges uv and zy. Without
loss of generality, assume that four vertices u, z, v, and y are placed clockwise
and the edge uz € G. See Figure 2 (a) for an illustration.

y Ty
(a) (b) (c)

Fig. 2. (a): Either zy or uv does not belong to LDel?(G), for k > 2. (b): LGG}(DG)
and LDeli(DG) are not planar graphs. (c): Here Zuzv + Zuyv > .

,From the pigeonhole principle, either Zuxv+Zvyu > 7 or Lyux+ZLyve > .
Assume that Zuzv + Zvyu > w. Then any circle passing through edge uv must
contain z or y or both. Notice that both 2 and y are from NZ(u). It implies that
edge uv cannot be in LDel¥(G) for any k > 1.

The condition specified in Lemma 1 is satisfied by most practical geometry
graphs such as the unit disk graph, the disk graph. Here a graph G = (V, E) is
disk graph, denoted by DG, if there is a two-dimensional disk d(u) (with radius
ry) for each vertex u such that an edge uwv € E iff d(u) and d(v) intersect.

Theorem 5. LRNGY(DG), LGG¥(DG), and LDel%(DG) are planar, Vk > 1.

PRrROOF. Given a disk graph DG, assume that we have two intersected edges uv
and zy. See Figure 2 (a) for an illustration. We will show that one of the edges
on the convex hull exists in the disk graph.

For the sake of contradiction, assume that all four edges are not in the disk
graph. Then ||luz|| > ry+7a, ||2v]| > 7y + 72, ||vy|| > ro+1y, and |luy|| > 7y +71y.
(From triangle inequality, [luz||+(|vyl| < [luvl|+||lzyll, [luyll+[lvz]] < [luv]l+[|zyll



Thus, ||uv|| + ||zy|| > 74 + 7y + ry + ry. The existences of edges uv and zy imply
that ||wv|| < ry + 7y, and ||2y|| < 7z + 7y, which contradicts the previous bound.
Thus, one of the four edges is in G if G is a disk graph, which, together with
lemma 1 finishes the proof.

Figure 2 (b) gives an example such that structures LGG(DQG), and LDel}(DQ)
are not planar graphs. Here node x has the largest disk and node y has the small-
est and 7/3 < Zzuy = Zzvy < /2, and Zuzv < w/3. Thus, edges zu, zv, xy
and wv are preserved in LGG1(DG) and LDel}(DG).

Theorem 6. LRNG1(DG) is planar.

PROOF. Assume that there are two intersected edges zy and uv in LRNG%¥(DG).
Similar to the proofs in Theorem 5, we can actually show that there are two ad-
jacent edges of the convex hull uzvy existing in the disk graph. W.l.o.g, assume
that zu and zv are in the disk graph. If Zuzv > 7/3, edge uv cannot belong to
LRNG%(DQ@). Otherwise, one of the angles Zzuv and Zzwvu is larger than 7/3,
which implies that edge xy cannot belong to LRNG¥(DG). We have contradic-
tions in both cases. Thus, no edges intersect in LRNG%(DG).

Notice that, the conditions specified in Lemma 1 are not satisfied by some
other interesting geometry graphs, such as mutually-inclusion communication
graph defined later for wireless ad hoc networks.

3.4 Minimum Spanning Tree

Unfortunately, the zero-edge oriented or one-edge oriented localized structures
may be disconnected. The right figure of Figure 2 illustrates such an example,
in which edge uv is removed in any zero-edge or one-edge oriented localized
structures. Therefore, they do not always contain the minimum spanning tree of
graph G.

Lemma 2. Assume that, given any edge uv, the lune(u,v) is either empty of
NG (u) U NG(v) or it contains a vertex w such that wu and wv are edges of G,
then MST(V) C LRNGL(G).

Assume that, given any edge uv, either (1) disk(u,v) is empty of N (u) U
N} (v) or (2) lune(u,v) contains a vertex w such that wu and wv are edges of
G. Then MSTs(V) C GG (G).

Assume that, given any edge wv, either (1) there is a disk passing through uv
and empty of N} (u) UNE(v) or (2) lune(u,v) contains a vertex w such that wu
and wv are edges of G. Then M STg(V) C LDel}(G).

The proof is simple and omitted. Similarly, it is easy to show that all two-edge
oriented k-localized structures do contain the Euclidean minimum spanning tree
as a subgraph. As we will show later that, these structures have sub-quadratic
number of edges for some special communication graphs derived from wireless
as hoc networks. This makes a fast distributed computation of the minimum



spanning tree possible. Notice that, it is well-known [11] that the optimal time
and communication complexity of computing M ST in a distributed manner is
proportional to O(n) and O(m + nlogn) respectively.

4 Structures on Graphs from Wireless Ad Hoc Networks

In wireless ad hoc networks, there are some special geometry graphs. Consider a
set of wireless device distributed in a two-dimensional plane. Assume each point
u has a fixed transmission range r,. A mutual inclusion graph, denoted by MG
hereafter, used for ack-based communication in wireless ad hoc networks, has an
edge wo if and only if ||uv|| < min(ry,ry). In [9], Li et al. showed that the one-
edge oriented k-Localized Delaunay graph LDelf,U pe has only a linear number
of edges. Moreover, they showed that it can be constructed using only O(n) total
messages in wireless ad hoc communications model, i.e., assuming that a message
sent by a node can be received by all nodes within its transmission range.

4.1 Complexity of LRNG¥(MG), LGG¥(MG), LDel*(MG)

For simplicity, we first study their complexities when the transmission radius of
all nodes is within a constant factor of each other. Since for general graph G,
the one-edge oriented localized Gabriel graph has at most O(n®/?) edges, thus
all structures LRNG%(MG) and LGGY(MG) have also at most O(n®/?) edges.
Additionally, LDel¥(MG) has at most O(n®?) edges.

Here we will show a stronger result. Let rn, be the smallest transmission
range; max be the maximum transmission range of all nodes.

Theorem 7. The structure LGGY(MG) has thickness 2 if Tmax < V27 min.-

PRroOOF. First of all, it is easy to show that all edges with length at most 7y
belongs to the Gabriel graph of the unit disk graph defined over all nodes with
transmission range rmin. Thus, the number of all such edges is at most 3n — 6
since the Gabriel graph over any unit disk graph is planar. We then show that
the number of edges with length larger than 7, also forms a planar graph.
Assume, for contradiction, there are two edges uv and xy that intersect. Here
Pmin < [|[u0]] € Tmax < V2Pmin, so does ||zy||. See Figure 2 (a) for illustration.
We then show that one of the four edges of zu, uy, yv and vz has length at most
Tmin- Assume that all such four edges have length larger than rp;,. W.lLo.g,
assume that Zuzv + Zuyv > 7 and the angle Zuzv > w/2. Then |luv|]? =
luz||? + ||zv||> = 2||uz]| - ||zv]| - cos(Luzv) > 2r2,. . Thus ||uv|| > v/2rmin, which is
a contradiction. Thus, we know that one of the two edges uz and xv has length
at most Tmin. Assume that ||uz|| < rmin. Thus link uz belongs to the original
communication graph. Consequently, in the original communication graph, node
z is inside disk(u,v) and has an edge zu to node u, which is a contradiction to
the existence of edge uv in graph LGG¥(G).

Since LGG¥(MG) contains LRNG¥(MG) as a subgraph, graph LRNG¥(MG)
also has thickness 2 when ryax < V2 min. i et al. [9] proved that the localized



Delaunay triangulation LDelf(G) is a planar graph if G is a unit disk graph and
k > 2. Similarly, we have

Theorem 8. If k > 2 and rmax < V/2rmin, then LDel®(MG) has thickness 2.

By a simple bucketing of the edges into the following buckets: (0, Tmin],
(’rmin;\/i’rmin]; T (\/iz"“mina\/ﬁz-’_lrmin]; T (\/ﬁtil’rminaﬁtrmin]: it is easy

t t—1
to prove the following theorem. Here V2 Tmin > Pmax and V2 rmin < Tmax-

Theorem 9. Let B = Tiax/Tmin- Then LRNGY(MG) and LGG¥(MG) have
thickness 1+ 2log, B and LDelf(MG) has thickness 1+ 2log, 3, if k > 2.

4.2 Complexity of LRNGY(MG), LGGY¥(MG), and LDel¥(MG)

We study the structure LGG2(M G) when the transmission radius of all nodes is
within a constant factor of each other. Assume the minimum transmission range
is 7 and the maximum transmission range is fr, where § is a constant.

First of all, all edges in LGG%(M@G) with length at most r form a planar
graph since they are in the Gabriel graph over a unit disk graph (each node with
transmission range ). Thus, the number of edges with length at most r is at
most 3n. We then study the edges with length larger than r but less than fr.
We prove that the number of edges with length € (r,+/2r] is at most O(n5/3).

Lemma 3. The number of edges in LGGE(MG) with length between r and \/2r
is at most O(n5/ 3), where G is the mutually-inclusion communication graph
defined over a set nodes whose transmission radius is at least r and at most

V2r.

PrOOF. We prove that the crossing circle Cj is a forbidden subgraph. Assume
that there is a crossing C4y = zvuy formed by crossing edges uv and zy. Obvi-
ously, all such nodes have transmission range at least r.

Fig. 3. Crossing Cj is a forbidden subgraph.

We first prove that both z and y cannot be outside of disk(u,v). Suppose
that happens. W.l.o.g., assume that the midpoint of wv is on the same side of
zy as u (Figure 4.2 (a)). Then Zzvy > /2.



For both cases, if ||Jvy|]| < r, then the edge vy is in the original mutual
communication graph since all nodes have transmission range at least r. Since
Zzvy > w/2 edge xy cannot be in the Gabriel graph. If ||vy|| > r, together with
|zv|| > r and Zzvy > m/2, we have ||zy|| > /2r, which is a contradiction to the
fact that we only consider edges with length < V2r.

Then we know that at least one of x or y or both is inside disk(u,v). Assume
that y is inside. There are two cases here: (b) y is on the same side of bisector
of segment uv as u; (c) y is on the same side of bisector of segment uv as v.

Case (b) is impossible since ||uy| < @HUUH < 4\/57“ = r, which is a
contradiction to the fact that we only consider edges with length between r and
V2r.

In case (c), similarly we have ||vy|| < r, which implies the existence of edge
vy in the original mutual communication graph. This, together with existence
of edge uy, is a contradiction to the existence of edge uv in the Gabriel graph.

Notice in Theorem 3, we showed that if a graph is k3 3 free then it is free of
crossing Cjy. This finishes the proof.

By bucketing edges into 1 + 21log, § buckets, we have

Theorem 10. The number of edges in LGGY(G) is at most O(n®/3log, B),
where 8 = rmax/Tmin-

Congjecture 1. At most O(n) edges in LGG%(MG) have length € (r,+/2r].

5 Conclusion

In this paper we proposed several new proximity structures on general geometric
graphs and studied their complexities for both general geometric graph and some
special geometric graphs. We summarize the results about the edge complexities
of the structures we have discussed as follows. Here Cg = 1 + 2log, § and
B = Tmax/Tmin. The complexities with a star mark is true only when k > 2.

Table 1. Upper bounds of the edge numbers.

| | G | DG ] MG ]
LDel¥(G) |0(n®3)]|e(n) *| O(Cs - n) *
LDel5(G) | 0(n?) 0(Cj - n573)
LGGY(G) [0(m*®)|e(n) *| 0O(Cs -n)

LGG5(G) | en?) 0(Cj - n°73)
LRNGY(G)|0(n37?)| ©(n) | O(Cs - n)

LRNG5(®)| 6(n?) 0(Cj - n°73)

Notice that one way to study the complexity of these geometry structures is
from the point view of forbidden subgraphs. Although the complexity of general



graph with forbidden structure is well-studied, little is known about the complex-
ity of the geometry graph with some forbidden structure. We indirectly showed
that any geometry graph on n points with forbidden crossing Cy has at most
O(n®/3) edges. To the best of our knowledge, this is the currently best known
upper bound. However, it is unlikely that we can achieve this upper bound. We
summarize some open questions we have discussed in this paper as follows.

1. What are the tight bounds on the sizes of LDel%(G), LDel%(G), LGGY(G),
LGGE(G), etc.? We can also consider the case when G is some special graph
such as a disk graph DG, a mutually-inclusion graph MG etc.

2. What is the size of a geometric graph, free of crossing Cy. We know that it
is at most O(n5/3) for graph of n vertices.

3. How to construct the proximity structures defined in the paper efficiently.
For the UDG, Li et al. [9] previously gave an asymptotically optimal method
to construct LDel® (UDG).

4. Ts the graph LDel%(G) a spanner? This question would be interest also for
some special graphs like the disk graph or the mutually-inclusion graph. No-
tice that it was known [5] that GG and RNG are not length spanners. Thus
localized Gabriel graph and relative neighborhood graphs are not spanners.
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