
Randomizing RFID Private Authentication 

Qingsong Yao
1
, Yong Qi

1
, Jinsong Han

2
, Jizhong Zhao

1
, Xiangyang Li

3
, Yunhao Liu

2
  

1
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China 

2
Dept. of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China 

3
Department of Computer Science, Illinois Institute of Technology, Chicago, Illinois, USA 

 

Abstract—Privacy protection is increasingly important during 

authentications in Radio Frequency Identification (RFID) systems. 

In order to achieve high-speed authentication in large-scale RFID 

systems, researchers propose tree-based approaches, in which any 

pair of tags share a number of key components. Such designs, 

being efficient, often fail to achieve forward secrecy and 

resistance to attacks, such as compromising and 

desynchronization. Indeed, these attacks may still take effect even 

after a tag successfully finishes the authentication and key-

updating procedure. To address the issue, we propose a 

lightweight RFID private authentication protocol, RWP, based on 

the random walk concept. RWP also provides the forward 

security and temporal resistance to the tracking attack. The 

analysis results show that RWP effectively enhances the security 

protection for RFID private authentication, and increases the 

authentication efficiency from O(logN) to O(1). 

Keywords-RFID; private authentication; random walk. 

I. INTRODUCTION 

Radio Frequency Identification (RFID) is a popular 
technology that automatically identifies objects or people [1, 
2]. For security consideration, authentication is required by 
most RFID applications. A core requirement of RFID systems 
is protecting user privacy in the authentication process [3]. 
Different from other pervasive or mobile devices [4-7], the 
RFID tag has limited computation and storage capacity. To 
enable the authentication, RFID systems usually adopt the 
challenge-response scheme. Typically, each tag shares a 
distinct symmetric key (or keys) with the reader and the reader 
stores the key in the backend database. When a tag approaches 
the reader, the reader issues a query containing a nonce. The 
tag encrypts the nonce and sends the cipher to the reader. The 
reader then searches the backend database to locate the key, 
and hence identify the tag. For the ease of discussion, we 
denote T as the tag and R as the combination of backend 

application and the RFID reader. 

In RFID systems, private authentication protocols can be 
categorized into two groups, tree-based and non-tree-based 
approaches. Non-tree-based protocols usually employ a linear 
key storage structure in the backend database. Each pair of 
tags has no shared key components such that the keys of tags 
are not correlated. The search efficiency of non-tree-based 
approaches, however, is unacceptable for large-scale RFID 
systems due to the linear key structure. On the other hand, tree-
based schemes leverage virtual trees for key assignment and 
management. In such a virtual tree, every virtual node holds a 
key component. Each leaf node is uniquely assigned to a tag. 
After the assignment, there exists a path from the root to each 
leaf node in the key tree. The keys on such a path are 
correspondingly allocated to the tag associated with the leaf 
node, as illustrated in Fig. 1. In the tree structure, any pair of 
tags share at least one key component. The tree-based key 
structure improves the authentication efficiency from O(N) to 
O(logN), where N is the number of tags in the system [8].  

Although tree-based designs significantly accelerate 
authentication speed, the key components shared among tags 
lead to security flaws. A number of attacks raise privacy 
challenges to the authentication. Among them, the 
compromising attack is widely known as the most critical 
threat to tree-based approaches. In the compromising attack, 
attackers can compromise a tag and then obtain all its key 
components, so that they are able to track other tags based on 
the shared key components. The compromising attack also 
incurs a detriment to the forward secrecy, which is a guarantee 
that even if a tag’s key is leaked, all previously encrypted 
messages cannot be disclosed. Lu et al. propose SPA [9], an 
authentication protocol with key-updating, to mitigate the 
impact of compromise attacks and partially provides forward 
secrecy. The threat of compromising attack, however, has not 
been thoroughly eliminated since the shared key components 
among tags still exist. Even worse, the mapping relation 
between a tag and a leaf node is fixed in most tree-based 
approaches, which may facilitate the attacker’s probing. 

This work is supported in part by the NSFC grants No. 60873262 and No. 

90612014, National High Technology R & D Program of China (863 Program) 

under grants No. 2007AA01Z180 and No. 2006AA01Z101, and Hong Kong 

ITF GHP/044/07LP. 



 

Figure 1. Tree-based architecture. 

Besides the compromising attack, RFID private 
authentication also suffers from the mix of tracking attacks and 
desynchronization attacks. The desynchronization attack [10] 
interrupts the updating or synchronization procedure between 
the reader and tag, which causes failure in the subsequent 
authentications. Therefore, a temporally permanent protection 
on privacy is necessary when performing updating in RFID 
systems. In practice, the adversary is capable of conducting an 
attack that mixes the compromising and desynchronization 
attacks for tracking the tag. Unfortunately, all the existing 
works we are aware of cannot defend against such an attack. 

In this paper, we propose a concept of common-keys effect 
which considers three security concerns altogether, the 
compromising attack, desynchronization attack, and forward 
secrecy. We comprehensively analyze the intrinsical reason of 
privacy degradation in the state of the art approaches. To 
eliminate the impact of common-keys effect, we propose a 
Random Walk based RFID private authentication Protocol, 
called RWP, which introduces randomness to both the 
authentication and updating procedures. In this design, 
authenticating a tag is similar to randomly walking in the key 
tree. As a result of updating, RWP also changes the tag’s 
position in the key tree randomly and unpredictably. As such, 
RWP can eliminate the common-keys effect and close the gaps 
among the three security concerns. The contributions of this 
work are twofold. 

First, we provide a new insight on the privacy issue of 
RFID systems, and show that existing authentication 
approaches still suffer from the multiple attacks even with 
updating mechanisms. We propose a new concept, common-
keys effect, to integrate the main privacy concerns into the 
protocol design.  

Second, we propose a lightweight authentication protocol, 
RWP, to enhance RFID authentication. RWP can effectively 
withstand to existing attacks, including replaying, 
compromising, and desynchronization attacks. It also reduces 
the storage and computing complexity of a tag to O(1). For the 
backend application, RWP reduces the search and computing 
complexity of each authentication to O(1). 

The rest of this paper is organized as follows. Section II 
discusses the related works. We present the security 

requirements of RFID authentication as well as the common-
keys effect in Section III. We present the RWP design in 
Section IV, and analyze its security and efficiency in Section V. 
In Section VI, we conclude the work. 

II. RELATED WORK  

Many approaches have been proposed to protect user 
privacy for RFID authentication [11–14]. They can be 
classified into two categories, non-tree-based approaches and 
tree-based approaches.  

Non-tree-based protocols usually utilize linear search for 
locating a tag. The search efficiency is O(N), where N is the 
number of tags. Obviously, the linear search is not efficient in 
large-scale RFID systems that may have millions of tags [15].  

As a typical non-tree-based approach, Hash-lock [16] 
method uses the hash value of a key as a metaID to identify a 
tag. A tag thus can be tracked by the attackers from the metaID. 
A variant version of Hash-lock introduces a random number as 
another input to generate the hash value, which needs 
exhaustive search through all IDs to identify a tag. 

Hash-chain [10, 17] enables key-updating using the hash 
function. After each authentication, the tag and the reader 
compute the old key’s hash value as the new key. Due to the 
one-way property of hash function, the adversary cannot 
recover the old keys even if obtaining the current key. Based 
on Hash-chain, researchers further reduce the search 
complexity to O(N

2/3
) [18]. Hash-chain based approaches, 

however, may suffer from desynchronization attacks, in which 
the adversary deliberately interrupts the authentication or 
updating procedure to desynchronize the keys used by the tag 
and reader. In [19], Henrici et al. introduce a counter for each 
tag to record the number of successful authentications between 
this tag and the reader. The reader also keeps such a counter 
for each tag. Only if the two counters are equal, the tag and 
reader can perform the authentication. For practical 
implementations, Juels [20] looses the synchronization limit by 
setting a small window for the counter: as long as the values of 
two counters are within the window, the tag and reader can still 
process the authentication. The improvements made on the 
Hash-chain scheme, however, make a tag more recognizable 
when an adversary interrogates the tag multiple times. Being 
iteratively interrogated, the tag’s counter would have a 
distinctly large value, which is distinguishable and degrades 
the privacy level. 

Dimitriou [21] proposes to defense against the 
desynchronization attack by updating keys only after 
successful authentications. The tracking attack, however, may 
still take effect between successful identifications since no 
updating operation takes place in these intervals. 

Henrici et al. [22] propose the triggered hash chains 
approach that alters the tag ID after each successful 
authentication. The work in [22] utilizes three different hash 
functions to generate the response, authenticate the reader, and 
update the keys, respectively. The triggered hash chains 
approach allows a tag to update its key only after a successful 
mutual authentication with valid readers. To attack the 



TABLE I.  SUMMARY OF EXISTING WORKS 

 Privacy Tracking 

resistance 

Forward 

secrecy 

Authentication 

efficiency 

Cloning 

resistance 

[16]1 No No No O(1) No 

[16]2 Yes Yes No O(N) No 

[10] Yes Yes Yes O(N) Yes 

[18] Yes No Yes O(N2/3) Yes 

[19] Yes No Yes O(1) No 

[20] Yes No Yes O(1) No 

[21] Yes No Yes O(logN) Yes 

[22] Yes No Yes O(1) No 

[23] Yes No No O(logN) Yes 

[8] Yes No No O(logN) Yes 

[9] Yes No Yes O(logN) Yes 

[24] Yes No Yes O(logN) Yes 

[26] Yes No No O(logN) No 

[27] Yes Yes No O(N) Yes 

Remark: 1 Basic Hash-lock scheme; 2 Randomized Hash-lock scheme; 

triggered hash chains approach, the adversary can keep 
sending semi-completed authentication queries to a tag. The 
tag will return identical responses that facilitate attackers’ 
tracking. 

The main drawback of the non-tree-based approaches is the 
low search efficiency. To address the issue, tree-based 
protocols are proposed. They construct a key tree structure to 
expedite key searching in large-scale systems. Although the 
search efficiency can be improved to O(logN), the tree-based 
designs suffer from compromising attacks due to the key-
sharing structure in the key trees. 

Molnar and Wagner introduce a tree-based method [23], in 
which, each tag is assigned to a leaf node in the key tree. Thus, 
a path from the root to the leaf node is related to the tag. 
Identifying a tag is equivalent to exploring the path related to 
the tag in the key tree. Because of the key-sharing structure, 
compromising some tags helps to locate other tags. 

For defending against cloning or spoofing attack, Dimitriou 
proposes an enhanced tree-based approach [8]. To resist the 
compromising attack, Lu et al. propose a RFID private 
authentication protocol (SPA) [9], which enables a dynamic 

key-updating for tree-based authentication approaches. The 

dynamic key-updating [9] provides forward secrecy. Wang et 

al. also present a protocol (SAPA) to save the storage 
overhead [24]. The above tree-based approaches, however, 
cannot completely defend against compromising attacks as the 
key tree they adopt exhibits the common-keys effect, for which 
we will have more detailed discussions in Section III.  

Other works focus on the physical protection or the easy 
implementation of RFID authentication. In [25], Lim et al. 
leverage the interference of RF waves to protect the 
authentication procedure. The tag owner carries powerful 
jamming equipments emitting random mask-codes during 
authentication. Interfered by the mask-codes, the adversary 
cannot correctly receive the authentication messages. The 
disadvantage of interference-based approaches is that a 
jamming device should be carried by each tag owner, which 
incurs extra cost and inconvenience to users. Molnar et al. 
propose a new method [26] that supports delegation in the tag 
authentication. The tag owner can transfer the ownership to 
another party for authenticating valid tags. Similarly, the 
authors in [27] propose a server-free authentication protocol. It 
does not need backend server or database. Each reader holds 
an identifier and a list of records of tags that the reader is 
authorized to access. The server-free approaches, however, do 
not provide an efficient key searching mechanism for the 
backend application.  

Table I summarizes the capabilities of the existing works 
discussed in this section, where N is the number of tags in the 
system.  

III. SECURITY REQUIREMENTS AND COMMON-KEYS EFFECT  

We consider Privacy, Cloning resistance, Forward secrecy, 
and Untraceability as the fundamental security requirements of 
RFID privacy-preserving authentication [8]. In RFID systems, 
a private authentication protocol should meet the above 
security requirements. 

Privacy. Any user’s private information should not be 
leaked to any third party during authentication.  

Cloning resistance. All the valid tags should not be faked 
or impersonated. Replay attacks, in which adversaries may 
repeat the messages sent before to victims tag or readers, 
should also be infeasible to the authentication procedure.  

Forward secrecy. Achieving forward secrecy is that keys 
stored in a compromised tag cannot reveal the previous outputs 
of this tag. 

Untraceability. A tag should have no correlation with its 
authentication messages for avoiding tracking. 

Besides the above requirements, RFID systems should be 
able to defend against the compromising and 
desynchronization attacks. As we mentioned in Section I, 
compromising a tag may threat other tags if they share a 
number of keys. In normal tree-based protocols, the 
compromising attack can help tacking the tags. A mix of 
tracking and desynchronization attacks remains to be a serious 
threat to RFID systems. The key reason that RFID systems are 



vulnerable to the above attacks is that the keys for encrypting 
messages are shared during each authentication process. We 
define the common-keys effect to reflect this property.  

Definition 1. Given a tag T and its j-th response, the 
ciphertext in the response message is Mj = (r1, r2,…, rs)j, where 
the ‘s’ denotes the number of ciphers in each message from the 
tag for responding to a reader’s authentication query, and the 
‘j’ denotes the number of such messages when the tag is 
continuously interrogated by malicious readers. Suppose the 
attacker can obtain enough response messages Mo, (1 ≤ o ≤ j). 
The tag’s output has a common-keys effect if there exists an 
integer i, (1 ≤ i ≤ s), such that the attacker can deduce the ri in 
the (j+1)-th response Mj+1.  

A tag can easily be identified or be tracked, if its output has 
the common-keys effect. There are two kinds of common-keys 
effect. One is the temporal common-keys effect that the keys 
used by a tag in different authentication procedures can be 
deducible; the other is the spatial common-keys effect that 
different tags share common key components.   

Both the non-tree and tree-based methods may have the 
temporal common-keys effect. In most RFID authentication 
protocols, if not all, the updating process occurs when the 
reader R successfully authenticates a tag T. We denote A as the 
adversary. As the tag is designed to automatically answer the 
reader’s query, A can launch malicious interrogations to a 
victim tag and observe its responses. Without knowing the 
keys shared by the valid tag and reader, A cannot complete a 
successful authentication and updating with T. Hence, the keys 
and ID of T will not be changed after those incomplete 
authentications. In both the non-tree-based and tree-based 
approaches, those response messages are temporally deducible, 
as in the static tree approaches [8, 26], or predictable, as in the 
triggered hash chains approach [22], because the ID and keys 
used by T to generate the responses is identical upon each 
interrogation from A. According to Definition 1, those 
responses from T have the common-keys effect. Therefore, A 
can leverage those responses to track T. 

On the other hand, the spatial common-keys effect is more 
severe in tree-based approaches. By compromising a number 
of tags, A can obtain a number of keys stored. Since non-leaf 
keys are shared in the key tree, A can compute pseudo-random 
function (PRF) values using the captured keys, so as to 
distinguish different branches in the key tree as well as the 
most of the tags [18].  

To eliminate the common-keys effect, existing works 
attempt to update keys periodically to avoid tracking. The 
updating process, unfortunately, fails to change the structure of 
the key tree, as the mapping relation between a tag and its 
corresponding leaf node is fixed. After the updating process, 
the attackers are still able to recognize the tag without knowing 
those updated keys, because the unchanged key sharing 
structure helps to track the tag if the adversary is aware of the 
tree structure. Even after performing updating, for example 
using SPA [9], a tag does not directly update those keys shared 
with other tags. Otherwise, the other tags will fail in the 
following authentications because they are still using the old 

keys. A, however, can leverage this weakness to gain the 
knowledge of key tree and the updating status of other tags. 
Even worse, A may deliberately compromise a small number 
of tags to distinguish the rest of the tags with high probability.  

We illustrate the above impact of common-keys using an 
example. As illustrated in Fig.1, a tag T performs a updating 
process like in [9], and R updates a key component k3,2 at level 
3. Note that tree-based approaches usually update a key k as 
h(k), where h(·) is the hash function. R cannot directly update 
the key components k2,1 in the key tree since the tag T’ is still 
using k2,1 at that time. R thereby only updates k3,2 and keeps the 
k2,1 unchanged. Later, when T’ performs the updating, R will 
update k2,1. If T is compromised, all keys assigned to T are 
disclosed. In this case, A is aware of the old key k2,1, and A can  
compute the h(k2,1) and h(k3,2). Thus, the response from T, if T 
updates its keys, should be encrypted using k0, k1,0, h(k2,1), and 
h(k3,2), while the response from T’ must be encrypted using k0, 
k1,0, k2,1, and k3,3. Although the key component k3,3 is still 
unexposed, the adversary can easily track T’ because it can 
differentiate T’ from T according to the difference between 
using k2,1 and h(k2,1) in the responses.  

Note that each non-leaf node in the key tree can hold δ 
caches for storing old keys, where the δ is the branch factor of 
the tree. Due to the restriction of authentication latency, the 
value of δ cannot be too large. Otherwise R has to execute too 
many searching operations at each level in the key tree. This 
constraint also saves the adversary’s effort by reducing the 
number of tags she/he has to compromise to capture sufficient 
key components. 

IV. RWP PROTOCOL  

To mitigate the effect of common-keys, we design a private 
RFID authentication protocol without any shared key 
components in the key structure. 3

3 3

3 B

B B

BIn this section, we first give 
an overview of our RWP protocol, and then present the 
detailed design.  

A. Overview 

RWP includes four components, System Initialization, 
Authentication, Updating Process, and System Maintenance. 
RWP is also tree-based as shown in Fig. 2. Different from 
existing tree-based approaches, the basic idea of RWP is to 
setup a key structure in which tags do not share any key. To 
this end, we remove all the key components from the non-leaf 
nodes. Indeed, except the leaf node, all the non-leaf nodes only 
serve for navigating the tree in RWP. A navigation method for 
identifying the leaf node related to a given tag is also designed. 
We virtually transfer the tree to a coordinate space. The 
location of each node in the tree can be mapped to a 
coordinate. In RWP, we employ a bitstring to represent the 
coordinate. Initially, each tag is randomly assigned to a leaf 
node, which is correlated with a ‘formal location’. During 
authentication, the tag T generates a random number and 
computes its hash value. The hash value can be mapped to a 
virtual node in the tree, termed as an anchor node. Then T 
computes the distance offset between its formal location and 
the location of the anchor node.  



 

Figure 2. A RWP’s key tree. 

T then delivers the offset and location of anchor node to the 
reader R. Before responding to R, T employs a hash function to 
process the response messages for protecting the private 
information contained in the offset and location of anchor 
node. The information helps R to locate the leaf node assigned 
to T. After authentication, R randomly assigns T to another leaf 
node, updates the key for the tag, and synchronizes this 
updating. In this way, the common-keys effect is eliminated. 

B. System Initialization 

We use a sparse tree for facilitating the identification of a 
tag, as the example shown in Fig. 2. Let δ denote the branching 
factor of the key tree S and d denote the depth of S. For 
simplicity, we assume δ = 2 in this paper. Note that the 
protocol can easily adopt any δ > 2. We also assume that the 
6

6 6

6 B

B B

Bsystem comprises of N tags {Ti}, i∈[1, N], and a reader R. 
Each virtual node j in S has a location Lj. We define such a 
location as the formal location of a node. All the locations can 
be represented by binary strings with uniform length. A formal 
location contains three kinds of information, the depth of the 
node in the key tree, the sequence of the node at its level, and a 
direction to reach the formal location. RWP employs the 
bitstring to represent the location information. Specifically, the 

depth part needs at least 
2log d   bits and the sequence part 

needs at least 
2

log dδ  
bits.   

There are six tags in the system depicted in Fig. 2. Node 
P’s formal location is 10 110, where the first 2 bits 10 
indicates the depth of node P is 2. In RWP, the depth part of a 
formal location indicates how many bits are used in the 
sequence part. For example, the depth part 10 implies that the 
sequence part of P’s location constrains only two bits 11. 
Therefore, the latter substring 110 means that the node stays at 
the fourth position at the level 2.  

Besides the depth and sequence parts, the direction part 
helps to reach a leaf node related to the tag. In this part, we use  
‘0’ to denote the left subtree and ‘1’ to denote the right subtree. 
For the example in Fig.2, the tag T1, has 11 110 as its formal 
location and the last bit ‘0’ is the direction part. According to 
its formal location, we first locate the node P, then walk down 
to the most left node in the subtree of P, and finally reach the 
leaf node related to T1.  

T R

h, H, Kj,

PRNG, Lj

request, r1

h, H, Kj,

PRNG, {h(Lj)}

r1

PRNG

r2, n PRNG

compute

h(n), h(w),

and H(0, Kj, r1, r2)

search n, w

get Lj, 

get Kj

verify H(0, Kj, r1, r2)

compute

H(1, Kj, r1, r2)

r2, h(n), h(w),

H(0, Kj, r1, r2)

H(1, Kj, r1, r2)verify

H(1, Kj, r1, r2)
 

Figure 3. The authentication procedure of RWP. 

Initially, the leaf nodes in tree S are empty. R first 
constructs the mainframe of the sparse tree, including the non-
leaf nodes and leaf nodes. R then generates a random key for 
each leaf-node, and randomly assigns the N tags to N leaf 
nodes. Each Tj has a pair of (Lj, Kj), where Lj is its formal 
location in S and Kj is the key assigned to Tj. For example, the 
leaf node assigned to T4 contains the pair of (11 011, K4). 7

7 7

7 B

B B

B  

C. Authentication 

The authentication process comprises of three steps, as 
illustrated in Fig. 3.  

Step 1: When tag Tj enters the detecting range of R, R 
sends a query message as (request, r1) to it, where r1 is a nonce. 

Step 2: Upon R’s authentication query, Tj sends a response 
message I = (h(n), h(w), H(0, Kj, r1, r2)) to R, where r2 is a 
nonce, n represents the anchor node in the form of formal 
location, w is the offset between the location of the leaf node 
assigned to Tj and the location of the anchor node, Kj is the 
key assigned to Tj, and H(0, Kj, r1, r2) is the hash value 
computed with the inputs of Kj, r1, and r2. When R receives I, 
it first searches h(n) and h(w) in the backend database to get 
the appropriate n and w. To save storage space while enabling 
O(1) lookup, we employ CuckooHash [28] to manage the hash 
values of formal locations. Using n and w, R recovers the 
formal location of Tj, and then uses the Kj store at R to check 
whether the hash value H(0, Kj, r1, r2) is equal to the hash 
value in I. If yes, Tj is legitimate. Note the use of Kj also helps 
to resolve the problem of multiple locations caused by hash 
collisions. When hash collision happens, the hash value h(n) or 
h(w) may be correlated to multiple formal locations in the  



 

Figure 4. Formal location and offset recovery. 

CuckooHash table. Utilizing Kj, the tag correspond to the 
correct formal location can be eventually authenticated. 

The recovery process of n and w is as follows. Typically, a 
hash function maps a key to a hash value. Based on 
CuckooHash, we use two hash functions instead of one. 
Assume x is a key in the key space of h(·). We compute all 
hash values of the key spaces. Meanwhile, each key x, as well 
as its hash value h(x), will gain a record. Suppose the address 
of this record is addr. F(x) is a carefully selected hash function 
to correlate each h(x) to the address of the record {addr, x, 
h(x)}. All the records are stored at R, as illustrated in Fig. 4. 

During authentication, R receives a hash value h(n) from 
the tag’s response.  R then computes the address of the record 
{addr, n, h(n)} using F(h(n)). For w, the processing is similar. 
The computational complexity of such an operation is O(1). 

Step 3: Tj checks the validation of R. R sends a message C 
with the value of H(1, Kj, r1, r2) for Tj’s checking. The entire 
authentication procedure is shown in Algorithm 1.  

We use the example shown in Fig. 2 to illustrate the 
authentication procedure. After receiving a query message, tag 
T4 generates a random number n = 10 110 and the 
corresponding w. The formal location of T4 is 11 011. The 
depth of this formal location is 11. The first part of w is (11 – 
10) mod 100 = 01. The second part of w is (011 – 110) mod 
1000 = 101. R acquires h(n) and h(w) from the response sent 
by T4. Based on two hash values, R is able to find the formal 
location of T4, that is, identify T4.  

Using Algorithm 1, R can easily recover n from h(n) and w 
from h(w). To find the location where the n should be mapped, 
R locates the anchor node P from the n. In this case, n = 10 11 
implies that the fourth node at the level 2 in the tree is the 
anchor node. The next step is to find the way from the anchor 
node P to T4 according to w. Note that w is divided into two 
parts. We denote them as the vertical offset and horizontal 
offset components. In this example, the two offset components 
are 01 and 101, respectively.  

With the direction of two offset components, R navigates 
from P to T4 in the tree S as follows. R locates the anchor node 
P based on the n, 10 110. R starts from the anchor node P, and 
then goes to the leaf node of T4. Note that the path is  

Algorithm 1: Authentication 

Tj → R  :    request, r1 

Tj   :    generate r2, n 

compute w = (Lj.depth – n.depth) mod (d)  

|| (Lj.tail – n.tail) mod (δ
d
) 

R ← Tj  :    h(n), h(w), H(0, Kj, r1, r2)  

         R  :    Check if h(n) and h(w) are in database  

and n.depth + w.depth = d 

                      If exist compute  Lj = (n.depth + w.depth)  

|| (n.tail + w.tail) mod (δ
d
) 

                          Find the tag relative to Lj, get its key Kj
’
 

                          Check if H(0, Kj, r1, r2) = H(0, Kj
’
, r1, r2) 

                                If match, accept Tj 

R → Tj  :  H(1, Kj, r1, r2) 

Tj  :  Check H(1, Kj, r1, r2) 

                                                              If  match, accept R 

Algorithm 2: Updating 

Tj    :    Lj
’
 ← G(2, Kj, r1, r2) 

            Kj
’
 ← H(3, Kj, r1, r2) 

            delete Lj, Kj 

       R    :   Lj
’
 ← G(2, Kj, r1, r2) 

           Kj
’
 ← H(3, Kj, r1, r2) 

           Insert (Lj
’
, Kj

’
) 

Clear the old (Lj, Kj) 

determined by the vertical and horizontal offset components of 
w. In this case, these two values are 01 and 101, which indicate 
R has one vertical movement and five horizontal movements. 
At this point, the selection on the left or right string should be 
decided by the direction part of n. Here the direction part of n 
is ‘0’. Therefore, we need to move to left subtree of P in the 
vertical movement. 

In RWP, all movements are top-down and from left to right. 
R first travels to T1, and then walks to right ‘circularly’ 
according to the horizontal offset component of w. Note that in 
the second move, R reaches the rightmost leaf. Then R goes to 
the leftmost leaf node at the same level, and continues the 
remaining moves. That is the meaning of ‘circularly’ moving. 

Thus, the moving route is P→T1→T6→T5→T3→T2→T4. 



Correspondingly, R can calculate T4’s formal location l4 = (10 
+ 01) || (110 + 101) mod 1000 = 11011 by Algorithm 1.  

In short, identifying a tag is similar to walking in a key tree 
from a randomly chosen node to the leaf node assigned to the 
tag. The formal location and offset act as the index to navigate 
the movements. Then tag Tj is authenticated by checking Kj. 

Note that the identification procedure does not always need 
the above step by step movements. The formal location can be 
computed using Algorithm 1 and the computational complexity 
is O(1). Combining the lookup operation, the total 
computational cost of RWP’s authentication is still O(1). 

D. Updating process 

The updating process of RWP has two goals. First, RWP 
employs key-updating to protect the forward secrecy for tags. 
Without key-updating, if a tag is compromised, the keys stored 
in it would be exposed to adversary. The adversary is then able 
to use the keys to recover all messages sent by the tag before, 
and the forward secrecy is compromised. Second, the formal 
location of the tag should also be updated with the concern of 
compromising attacks. The updating process enables an 
unfixed key structure for RWP. Each tag has a new formal 
location after the updating process, and this location has no 
correlation with those of other tags. Therefore, there is no key 
component shared among tags to facilitate compromising 
attacks. RWP also protects the forward secrecy using a one-
way hash function to update keys. Due to the one-way property, 
the probability is negligible for attackers to break the hash 
function and hence deduce the old keys or formal locations 
from current ones. We will show the effectiveness of RWP in 

T R

h, H, Kj,

PRNG, Indexj

request, r1

h, H, Kj, PRNG,

{h(Indexj)}

r1 PRNG

r2 PRNG,

compute

w, h(w), and 

H(0, Kj, r1, r2)

search w,

get Indexj, 

get Kj,

verify H(0, Kj, r1, r2)

compute

H(1, Kj, r1, r2)

r2, h(w),

H(0, Kj, r1, r2)

H(1, Kj, r1, r2)verify

H(1, Kj, r1, r2)
 

Figure 5. Random walk in a dataset. 

providing forward secrecy and defending against the 
compromising attacks in Section V.  

After a successful authentication, the reader and the tag 
start the updating process, as shown in Algorithm 2. 

In RWP, the Kj generated in one updating round will be 
used as the input to compute the new location in next updating 
round. For any tag Tj, its new formal location is the hash value 
G(2, Kj, r1, r2), and the new key is H(3, Kj, r1, r2). RWP first 
uses the hash function H(·) to compute the hash value H(2, Kj, 
r1, r2). This value, however, cannot be directly used as the 
formal location Lj

’
. G(·) is a modified H(·). The output of H(·) 

can be divided into three fragments dep||seq||else, where the 
fragments dep and seq are in the same length as the depth and 
sequence parts in a formal location, respectively. The G(·) then 
further processes these two fragments as (dep mod d) and (seq 
mod δ

dep
), which meets the requirements of the formal location 

format.  

In RWP, some tags may have identical formal locations. 
Because the keys of those tags are independent from each 
other, the overlapped formal locations will not degrade the 
privacy of users. The above updating process only involves 
two hash operations and hence the computational cost is O(1).  

E. System maintenance 

When a tag T joins the system, R randomly assigns T a leaf 
node and a key. Then R stores the formal location of the leaf 
node and the key assigned to T. In RWP, the location of a 
newly joined tag is randomly chosen in the key tree. 

For the safety reason, any tag leaving the system should be 
deleted from the key tree together with its key. 

F. Improvements 

We further reduce the storage space required by RWP. The 
improvements aim at fully utilizing the entire key space. We 
propose the improvement based on the non-tree architecture 
shown in Fig. 5.  

Given a key space S’, we assign each tag Tj a key Kj as well 
as the tag’s index Indexj. During authentication, the tag T 
generates a random w according to the index and the random 
number r2 received from R. RWP performs a XOR operation 
on the r2 and the index of the tag to generate w. 

T sends the response message I’ = (r2, h(w), H(0, Kj, r1, r2)) 
to R. Having the response, R searches a w whose hash value is 
a match with the one in I’. With the pair of w and r2, R 
computes the index, and locates the Kj. R further verifies H(0, 
Kj, r1, r2). If the verification succeeds, R sends a hash value 
H(1, Kj, r1, r2) to the tag for T’s verifying. If both verifications 
succeed, the mutual authentication is successfully completed, 
and the updating process can follow. Indeed, the second 
improvement of RWP only uses w instead of (n, w) to identify 
the tag. The benefit is that authenticating a tag only needs one 
hash computation, and the search cost is reduced 50% at the 
reader side. Meanwhile, the storage space can also be reduced. 
For the example in Fig.2, the original RWP requires 5 bits to 
represent the tag’s formal location. Using this advanced 



version, representing a formal location needs only 3 bits. This 
shorter coding method thereby saves storage space.  

V. ANALYSIS  

 In this section, we discuss the security guarantee of RWP. 
We first show RWP achieves the fundamental security 
requirements proposed in Section III. We then demonstrate the 
ability of RWP in defending against mainstream attacks. 

A. Fundamental Defense Measurements  

Privacy protection: In RWP, all messages related to the 
private information are encrypted. Furthermore, eavesdroppers 
cannot find out any dissimilarity among the messages because 
they follow the same type of probabilistic distribution 
statistically [29]. The brute force attack is also difficult to take 
effect due to the one-way property of hash function.  

Cloning attack: In a cloning or spoofing attack, an 
adversary first queries a tag and records the response. Later, 
the adversary sends the response to a reader for some specific 
benefit. For example, the adversary may record the 
information of a cheap item from a tag, and then make a spoof 
of a much expensive one.  

In RWP, we make use of nonces to defend against cloning 
attacks. In each authentication procedure, the tag and reader 
exchange a nonce with each other, and the nonces are used as 
inputs to generate the hash values H(0, Kj, r1, r2) and H(1, Kj, 
r1, r2). The attackers cannot directly utilize previous messages 
to perform cloning attack, because they are unable to know the 
nonces used in the current authentication procedure in advance. 
Thus, it is impossible for attackers to make spoofs.  

Forward secrecy: The adversary might obtain the tag’s 
key after successfully compromising it. If the key has never 
been updated, the adversary can use the key to recover the 
messages sent before. Some existing works suffer from such 
attacks due to the lack of updating [8, 26]. In RWP, a tag 
updates its key after each successful authentication. The 
updating process of RWP computes the hash values of old 
keys as the new keys. In this process, the probability is 
negligible for attackers to deduce the previous keys from 
current ones. Therefore, RWP guarantees the forward secrecy 
for tags. 

Tracking: As the tree-based structure is used in RWP, a 
security concern about the tree structure is whether RWP has 
the shared key components like normal tree-based protocols, 
which exposes a flaw to attackers’ tracking. In the key tree of 
RWP, the non-leaf nodes only serve for navigation. There is no 
shared key existing in the key tree. Also, the specific index for 
a tag is hidden in the response message. Therefore, there is no 
shared information among tags that can be utilized by the 
adversary. If a new tag is assigned to a position where a 
leaving tag just stayed, this may lead to a potential flaw. 
Attackers can make use of this assignment pattern to track a 
newly joined tag in normal tree-based methods. This flaw, 
however, does not exist in RWP, as the newly coming tag is 
randomly assigned to a formal location that the attackers 
cannot predicate. 

B. Compromising Attack 

As in illustrated in [18], tree-based approaches suffer from 
compromising attacks because of the key components shared 
among tags. As we mentioned in Section III, a compromising 
attack mainly depends on the differences between the victim 
tag T and other tags. We eliminate the impact of compromising 
attacks from two aspects.  

First, the number n in the tag’s response is generated 
randomly. Correspondingly, the value of w varies at each 
authentication. The hash values of these two parameters 
thereby vary at each authentication procedure. The probability 
that the adversary generates a number that is equal to n or w is 
1/2

L
, where L is the number of bits in the formal location. If 

the adversary knows n and w at a certain round, she/he knows 
the current formal location of the tag. Following RWP, the tag 
gains an updated formal location after an authentication 
procedure, and the n and w are changed at the next 
authentication procedure. Therefore, a tag’s messages in 
different authentication procedures are not related. This 
property impedes tracking.  

Second, since each tag has a distinct key that is not shared 
with other tags, compromising some tags is useless for an 
adversary to deduce the keys of other tags. Furthermore, the 
reader employs two nonce numbers as inputs to update the key 
for each tag. The adversary can only break those keys by using 
brute force attacks. If the length of the keys is long enough, the 
system is sufficiently secure.  

C. Desynchronization Attack 

The desynchronization attack usually focuses on 
synchronization based RFID approaches, but it also has a 
serious impact on any RFID authentication protocols when 
combined with the tracking attacks.  

When adopting the updating scheme, the RFID system 
faces a dilemma, in which the tag cannot simultaneously resist 
to the desynchronization and tracking attacks. The normal way 
for defending against the desynchronization attack is to force 
the tag to update its keys if and only if it finishes a successful 
authentication. Otherwise, the keys used by the tag and the 
reader are desynchronized when the tag receives incomplete 
authentication queries.  On the other hand, updating the tag’s 
keys after a successful authentication cannot resist to tracking 
attacks. A malicious reader can iteratively interrogate the tag 
with incomplete authentication queries. The response messages 
from the tag are similar since the tag does not update its keys. 
Based on those recognizable messages, the attacker can track 
the tag. 

For example, the triggered hash chains proposed in [22] 
employs the authentication procedure shown in Fig. 6. In this 
procedure, the tag updates the keys only after it successfully 
finishes an authentication with the reader. The reader holds 
each tag’s ID. During the authentication, the reader sends a 
request to the tag first. The tag sends a hash value as g(ID) to 
the reader as the response. The reader thereby obtains the ID 
based on the g(ID). Then the reader uses another hash function 
to compute a hash value h(ID) and delivers it to the tag. The 



tag checks the h(ID). If the result is correct, the tag updates the 
ID as ID� f(ID), where f(·) is the hash chain function. 

We assume the ID of a given tag Ti is id. The attacker can 
send the tag with n incomplete authentication queries, denoted 
as r1, r2, …, rn. Since the attacker is unable to obtain the 
original id from g(id), it cannot send a correct updauth 
message. Thus, the ID of Ti does not change after receiving the 
n queries. The g(id) in the response messages is also 
unchanged. The attacker can easily recognize and track the tag 
based on those messages.  

In contrast, RWP allows a tag to change the response upon 
each authentication query. A tag in RWP introduces a nonce r2 
to generate the response message, so the value of h(w) cannot 
be recognized. Meanwhile, the tag updates the keys only after 
a successful authentication. In addition, we have shown that 
RWP is resilient to compromising attack in subsection V.B. 
These methods effectively protect RWP from the 
compromising and desynchronization attack simultaneously. 

If the adversary interrupts the response from the reader to 
the tag, a desynchronization may incur. To deal with this 
problem, RWP keeps a temporary cache for each tag in the 
backend database to store the last formal location and key 
successfully passed the verification. If a tag can provide this 
information, the reader will also accept the tag. 

D. Performance 

To evaluate the performance of RWP, we compare the 
computing complexity, storage cost, and search efficiency of 
RWP with those of Hash-chain [10] and Dimitriou’s protocol 
[8] approaches. Hash-chain is a typical non-tree-based 
approach which adopts the linear storage and search. 
Dimitriou’s protocol [8] is the representative of tree-based 
approaches.  

 

Figure 6. Triggered hash chains protocol. 

Table II shows that RWP reduces the computing 
complexity and storage cost to O(1) for tags. This 
improvement significantly reduces the hardware demand on 
tags. RWP also reduces the computing complexity to O(1) on 
the reader side, and achieves a O(1) search.  

RWP introduces extra storage cost into the backend 
application. The coding of formal location requires adding a 
head to each tag’s record. RWP needs at least 

2 2log log logN Nδ +        bits for coding N tags. The 

increased storage, however, is affordable for backend 
application. Considering a RFID system with 2

32
 tags, RWP 

requires 18.5GB in the backend server, which is acceptable for 
current mainstream computers.  

TABLE II.  PERFORMANCE COMPARISON 

Cost (1) (2) (3) 

Tag H+g H·d 2h +4H 
Average 

computing cost 

Reader N·H/2 δ·d ·H /2 4H + 2f  

Tag lk d·lk lk + L 

Storage cost 

Reader N·lk N·d·lk d·δd· (L + lk) 

Search cost Reader N·a/2 δ·d·a/2 3a 

Number of 

communications 

(considering 

updating) 

Tag & 

Reader 
2 3 3 

Length of 

authentication 

message 

Tag lk ln + d·lk ln + 3lk 

Remark: (1): Hash-chain [10]; (2): Dimitriou’s protocol [8]; (3): RWP.  

N: number of tags in the system 

d: depth of the key tree;  

δ: branching factor of the key tree; 

h: cost of encrypt function for formal location h(·);  

H: cost of encrypt function H(·), 

f: cost of localization function F(·);  

g: cost of updating function g(·) in Hash-chain;  

lk: length of a key and the output of h(·), H(·);  

L: length of the formal location;  

ln: length of a random nonce;  

a: one time search cost. 



VI. CONCLUSIONS AND FUTURE WORK 

We present a secure and efficient private authentication 
protocol, called RWP, based on random walks in the tree-
based key structure. RWP enhances the privacy protection for 
RFID systems by eliminating the key components shared 
among tags. The comprehensive analysis demonstrates that 
RWP outperforms existing works in terms of both security and 
efficiency. Our future work includes further reducing the costs 
of storage, increasing scalability, and seeking an optimal trade-
off between the authentication latency and storage required. 5

5 5

5 B

B B

B  

  

 

ACKNOWLEDGMENTS 

We would like to thank the shepherd, Marcel C. Rosu, for 
his constructive feedback and input. We also thank Dr. Li Lu 
for reading the paper and his valuable suggestions.  

REFERENCES 

[1] P. De, K. Basu and S. K. Das, “An Ubiquitous Architectural 
Framework and Protocol for Object Tracking using RFID Tags”, 
in Proceedings of ACM MobiQuitous Networking Conference, 
2004. 

[2] M. Mamei, F. Zambonelli, “Pervasive Pheromone-based 
Interactions with RFID Tags”, ACM Transactions on 
Autonomous and Adaptive Systems, Vol. 2 ,  Iss. 2, June 2007. 

[3] P. Robinson and M. Beigl, “Trust Context Spaces: an 
Infrastructure for Pervasive Security in Context-Aware 
Environments”, in Proceedings of SPC, 2003. 

[4] N. Ravi, C. Narayanaswami, M. T. Raghunath, M. C. Rosu, 
“Securing Pocket Hard Drives”, IEEE Pervasive Computing, 
Vol. 6 ,  Iss. 4, October 2007, pp. 18-23. 

[5] W. Gu, X. Bai, S. Chellappan, D. Xuan and W. Jia, “Network 
Decoupling: A Methodology for Secure Communications in 
Wireless Sensor Networks”, IEEE Transactions on Parallel and 
Distributed Systems, Vol. 18, No. 12, December 2007, pp. 1784-
1796. 

[6] Q. Cao, T. Abdelzaher, T. He, and R. Kravets, “Cluster-Based 
Forwarding for Reliable End-to-End Delivery in Wireless 
Sensor Networks”, in Proceedings of INFOCOM, 2007. 

[7] Z. Jiang, J. Ma, W. Lou, and J. Wu, “An Information Model for 
Geographic Greedy Forwarding in Wireless Ad-Hoc Sensor 
Networks”, in Proceedings of INFOCOM, 2008. 

[8] T. Dimitriou, “A Secure and Efficient RFID Protocol that Could 
make Big Brother (partially) Obsolete”, in Proceedings of IEEE 
PerCom, 2006. 

[9] L. Lu, J. Han, L. Hu, Y. Liu, and L. M. Ni, “Dynamic Key-
Updating: Privacy-Preserving Authentication for RFID 
Systems,” in Proceedings of IEEE PerCom, 2007. 

[10] M. Ohkubo, K. Suzuki and S. Kinoshita, “Cryptographic 
Approach to Privacy-friendly Tags,” in Proceedings of RFID 
Privacy Workshop, MIT, 2003. 

[11] G. Avoine, “Bibliography on Security and Privacy in RFID 
Systems”, LASEC Security and Cryptography Laboratory, 
available online at Hhttp://lasecwww.epfl.ch/~gavoine/rfid H, 2007. 

[12] M. Lehtonen, T. Staake, F. Michahelles, and E. Fleisch, “From 
Identification to Authentication – A Review of RFID Product 
Authentication Techniques”, in Proceedings of Workshop on 
RFID Security (RFIDSec), 2006. 

[13] G. Avoine, “Cryptography in Radio Frequency Identification 
and Fair Exchange Protocols”, Ph.D. thesis, EPFL, Lausanne, 
Switzerland, 2005. 

[14] A. Juels, “RFID Security and Privacy: a Research Survey”, 
Selected Areas in Communication, IEEE Journal on, Vol. 24, 
No. 2, 2006, pp. 381-394. 

[15] G. Roussos and V. Kostakos, “RFID in Pervasive Computing: 
State-of-the-art and Outlook”, Pervasive and Mobile Computing, 
Elsevier, 2008. 

[16] S. Weis, S. Sarma, R. Rivest and D. Engels, “Security and 
Privacy Aspects of Low-Cost Radio Frequency Identification 
Systems”, in Proceedings of SPC, 2003. 

[17] M. Ohkubo, K. Suzuki, and S. Kinoshita, “Efficient Hash-Chain 
based RFID Privacy Protection Scheme”, in Proceedings of 
UbiComp, Workshop Privacy, 2004. 

[18] G. Avoine, E. Dysli, and P. Oechslin, “Reducing Time 
Complexity in RFID Systems”, in Proceedings of SAC, 2005. 

[19] D. Henrici and P. Müller, “Hash-based Enhancement of 
Location Privacy for Radio-Frequency Identification Devices 
Using Varying Identifiers,” in Proceedings of Pervasive 
Computing and Communications Workshops, 2004. 

[20] A. Juels, “Minimalist Cryptography for Low-Cost RFID Tags”, 
in Proceedings of SCN, 2004. 

[21] T. Dimitriou, “A Lightweight RFID Protocol to Protect Against 
Traceability and Cloning Attacks”, in Proceedings of 
SecureComm, 2005. 

[22] D Henrici, P Müller, “Providing Security and Privacy in RFID 
Systems Using Triggered Hash Chains”, in Proceedings of IEEE 
PerCom, 2008. 

[23] D. Molnar and D. Wagner, “Privacy and Security in Library 
RFID: Issues, Practices, and Architectures”, in Proceedings of 
ACM CCS, 2004. 

[24] W. Wang, Y. Li, L. Hu, L. Lu, “Storage-Awareness: RFID 
Private Authentication based on Sparse Tree”, in Proceedings of 
Security, Privacy and Trust in Pervasive and Ubiquitous 
Computing, 2007. 

[25] T. L. Lim, T. Li, and S. L. Yeo , “Randomized Bit Encoding for 
Stronger Backward Channel Protection”, in Proceedings of 
IEEE PerCom, 2008. 

[26] D. Molnar, A. Soppera, and D. Wagner, “A Scalable, 
Delegatable Pseudonym Protocol Enabling Owner-ship Transfer 
of RFID Tags”, in Proceedings of SAC, 2005. 

[27] C. Tan, B. Sheng, and Q. Li, “Serverless Search and 
Authentication Protocols for RFID”, in Proceedings of IEEE 
PerCom, 2007. 

[28] U. Erlingsson, M. Manasse, and F. McSherry, “A Cool and 
Practical Alternative to Traditional Hash Tables”, in 
Proceedings of WDAS, 2006. 

[29] M. Shao, Y. Yang, S. Zhu, and G. Cao, "Towards Statistically 
Strong Source Anonymity for Sensor Networks," in Proceedings 
of INFOCOM,  2008.. 

 


