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Abstract—Recent technological advances have motivated large-
scale deployment of RFID systems. RFID readers are often
static and carefully deployed in a planned manner. However,
the distribution and movements of tags are often dynamically
changed and unpredictable. We study a challenging problem of
scheduling the activation of the readers without collision such that
the system can work in a stable way in the long term. Here a
schedule is stable if at any time slot, the number of total unread
tags is bounded from above with high probability under this
scheduling. In this paper, we propose a stable reader activation
scheduling protocol, RASPberry, in multi-reader RFID systems.
We analytically prove that our scheduling protocol, RASPberry,
is stable if the arrival rate of tags is less than the processing
rate of all readers. In RASPberry, at any time slot, a reader can
determine its status using only information of readers within a
local neighborhood. To the best of our knowledge, this is the
first work to address the stability problem of reader activation
scheduling in RFID systems. Our extensive simulations show that
our system performs very well.

Index Terms—RFID, reader, scheduling, stability, graph.

I. INTRODUCTION

In order to develop efficient and effective RFID systems, we
need to deal with many challenging issues such as anonymous,
security and read throughput. In this work, we focus on
the read throughput, the number of tags read per time slot.
RFID readers often have a limited interrogation region within
which it can communicate with a tag. This interrogation region
depends on many factors such as the antenna, barriers between
the reader and tags, and the characteristics of tags.

In many locations essential to daily life such as supermarket
or post office, multiple RFID readers are needed in a given
region to ensure a certain level of coverage. We study a large-
scale RFID system for estimating the number of tourists in
a large park. In the system, we need multiple static readers
to perform tag reading concurrently, which will improve the
read throughput greatly. RFID readers are often static and
carefully deployed in a planned fashion. When the tags are
static and given a priori, Zhou et al. [4] proposed a novel RFID
reader scheduling protocol to improve the read throughput of
multiple readers RFID system. However, the distribution and
movements of tags are often dynamically changed, instead of
static and known a priori. For example, within one day, new
tourists will arrive at different times and at different locations,
existing tourists will tour the park and leave the park finally.
Under this highly dynamic environment, we cannot expect the

number of unread tags within the interrogation range of any
reader to be fixed, but to follow some arrival distribution.

One challenging problem with multi reader RFID systems
is to schedule the activation of readers without collision such
that the system can work stably for a long term. We need
to schedule the readers in such a way that at any time slot,
the total number of unread tags at any timeslot is bounded
from above by some constant. Note that by considering the
limitation of the system’s ability (or capacity), the system
may not always work in a stable way no matter what kind
of scheduling scheme is implemented, e.g., when a huge
number of tags arrive at the system suddenly. Thus, instead of
guaranteeing the stability always, the objective of this work
is to design a scheduling scheme under which the system
can perform “best” in terms of stability within its ability (or
capacity).

Specifically, we study the problem of slotted scheduled
activation of RFID readers in a dynamic environment. We
assume that at every time slot, some new tags will appear
in the interrogation ranges of readers and some tags will be
accessed by these readers and thus remain silent henceforth.
Tags that will be accessed periodically can be treated in a
similar manner. We develop low complexity centralized and
distributed scheduling algorithms for the activation of readers,
by assuming the knowledge of the readers’ positions, their
interrogation regions, and the arrival rate of new tags. In
our distributed scheduling protocol, each reader only needs
the information of readers within a distance O(r) to finalize
its activity for every time-slot, where r is its interrogation
range. We prove that our scheduling schemes can achieve
near optimal capacity, i.e., the total number of tags that can
be read without leaving many tags unread in some region.
Our protocols are proven to be stable if the tag arrival rates
are in the capacity region of the readers. To the best of
our knowledge, this is the first work to address the stability
problem of reader activation scheduling in RFID systems.

The rest of the paper is organized as follows: We present our
system model in Section II, then formally define the problem
in Section III and present an overview of our protocol, RASP-
berry. We present our centralized RFID activation scheduling
protocol in Section IV and distributed read activation protocol
in Section V. The performance studies of our protocols are
reported in Section VI. We review the related work in Section
VII and conclude the paper in Section VIII.
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Fig. 1. Collisions in RFID systems. (a) Tag-Tag collision: Tags 1, 2 and 3 respond to reader A simultaneously
and causing collision at A; (b) Reader-Tag collision: Response from tag 1 to Reader A is “drowned” by the
signal from the reader B; (c) Reader-Reader collision: Signal from reader A and B collide at tag 1

Fig. 2. Illustration of an example in
which scheduling less readers will read
more tags.

TABLE I
NOTATIONS USED IN PAPER

Symbol Meaning

It a set of readers for scheduling at time t
sj a region partitioned by the interrogation regions of all readers

Xt(i) the tags arrived for reader i at time t
Xt(sj) the expected number of tags in the subregion sj at time t
ω(I, t) the weight of a scheduling I at time t (# of tags read)

I
(i,j)
t the optimum scheduling for square(i, j) under Xt.

C the capacity of the RFID system (it is a vector)

II. BACKGROUND ON RFID SYSTEM

In this section, we briefly review some basic definitions and
models regarding RFID systems.

Interrogation and Interference Regions: Each RFID
reader has an interrogation region and an interference region.
The interrogation region of a reader is the region within which
the tags can be successfully (without causing any collisions)
read by that reader. The interference region refers to the region
around a reader where the tag response will be affected by
the reader. For simplicity of description, we assume both
the interrogation region and interference region are disks
with radius r and R respectively. Typically, the values of r
vary from ten centimeters to hundred feets. Without loss of
generality, we further assume r = βR where 1 > β > 0
is a constant. Our results still hold if the interrogation and
interference regions satisfy that there is a value a and for any
region X with area A, the number of readers that can be active
simultaneously in X is at most O(A/a2). [4]Given a set of
readers R, we define the region monitored by the readers �
as the union of the interrogation regions of �. These regions
can be explored by a RF site survey. Such surveys can be
achieved by using certain localization device together with
radio signal strength measurement device. Remember that all
the readers are deployed in a planned manner, we may expect
those surveys to be practical.

Collisions in Multi-Reader Systems: Due to the interfer-
ence effect, simultaneous transmissions in RFID systems may
lead to collisions. Typically, there are three types of collisions.

Tag-tag collision(TTc): When multiple tags located in the
interrogation region of the same reader transmit data at the
same time, it will lead to tag-tag collision. See Figure 1(a). To
design a feasible scheduling that avoids the tag-tag collision,

we may schedule the activities of tags through certain link-
layered protocol such as framed Aloha [15] or tree-splitting
[11], [13]. Here we assume this is already in place.

Reader-tag collision(RTc): This happens when a reader
is in the interference region of another one. For example, in
Figure 1(b), transmission from reader B can affect the response
from Tag1 to A. We use RTc to denote this kind of collision.
In this case, any reader suffering RTc can not read any tag.
Thus, we need to carefully schedule the activation of different
readers.

Reader-reader collision(RRc): This happens when some
tags are located within the overlapping interrogation regions
of two different active readers. In such a case, the tags can not
tell the difference between the signals from those two readers.
We denote this collision as RRc. Note that it is different
from RTc, even though RRc will make the tags within the
overlapping interrogation region of two active readers fail to
access, the readers can still read other tags that are inside only
its own interrogation region. For example, in Figure 1 (c), both
Tag2 and Tag3 except Tag1 still have a chance to be served
successfully.

Similar as the work done by Zhou et al. [4], by using
STDMA style scheduling, we mainly study the reader acti-
vation scheduling problem in a multiple-reader environment.
Specially, we try to tackle Reader-tag and Reader-reader col-
lision problems in this work. The basic idea of this paper is to
utilize synchronized time slots among the readers, and select a
set of appropriate readers to active in each time slots such that
the system can work a a stable way. As we mentioned before,
since the TTc can be avoided through certain appropriate link
layer protocol (such as framed-Aloha based [15] or a tree-
splitting protocol [13]). Thus, we will not make any change
to the link layer protocol which is already in place. Our
RASPberry protocol is for reader activation.

III. PROBLEM FORMULATION AND PROTOCOL OVERVIEW

In this section we describe our scheduling model in detail
and give an overview of our RASPberry protocol.

A. Problem Formulation

Consider a set of n readers � = {r1,r2, · · · ,rn} deployed
statically at a deployment region. Each reader ri has its own
exogenous i.i.d. arrival stream of tags {At(i)} where At(i) is
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the set of new tags appeared in its interrogation region at time
slot t. After tag Tagi accessing some reader, we say that it
leaves the system, that is, there is no further request for Tagi

as long as it has been served. In the rest of our paper, we use
|S| to denote the size of a set S.

For each time slot t, the set of activated readers It contains
all the readers that should be activated at slot t. Note that
the time required to read tags is proportional to the number
of tags to be read without any collision [13], [15]. Assume
that each reader ri can read α tags within its intermigration
region successfully in one time-slot, where α is some con-
stant depending on certain link layer protocol. There may be
conflicts in the simultaneous activation of certain combination
of readers. Here conflicts refer to either RTc or RRc in this
paper. A valid scheduling set of readers activated at a certain
slot should not contain any combination which will lead to
RTc. However, the active readers with only RRc can still be
considered as a valid scheduling set. The number of readable
tags may be smaller than the sum of tags readable by all
readers due to RRc. Specially, a set of readers that are eligible
to be activated simultaneously must avoid RTc.

For a time-slot t, we denote the set of active readers
as It = {ri : ri is activated at time slot t}. Let I be the
collection of all possible valid scheduling sets. At each time
slot t, an active reader set It ∈ I is scheduled. A scheduling
policy {It : t = 1, 2, · · · ,∞} dictates which activation reader
set is used at each slot t. We define Xt(i) as the set of unread
tags that are in the interrogation region of reader ri at time slot
t. The tag distribution vector is Xt = {Xt(i) : i = 1, · · · , n}
and the corresponding vector of amount of unread tags is
|Xt| = {|Xt(i)| : i = 1, · · · , n}. Note that the tags that
may have a chance to access readers are those that are within
the interrogation area of exactly one activated reader. We
formally define the weight of scheduling It at time slot t as
the following:

Definition 1: Given a valid scheduling It, the weight
ω(It, t) of It at time slot t is defined as the total number
of tags that may have a chance to access, without causing
RRc, during time slot t, i.e., tags that are positioned in the
interrogation region of one and only one activated reader.

See Figure 2 for an illustration. Assume that three read-
ers A, B and C are independent from each other that is,
none of them is located at the interference regions of other
readers. If we choose all of them as an independent set for
scheduling, e.g., It = {A,B,C}, then its total weight is
|{Tag1,Tag2,Tag3,Tag4,Tag5}| − |{Tag2,Tag3}| = 3
since Tag2 and Tag3 are inside the overlapping region
of two readers. Interestingly, if we only choose A and
C as activated readers, e.g., It = {A,C}, the weight is
|{Tag1,Tag2,Tag3,Tag4}| − |{∅}| = 4 which is larger.

So far we assume that we know the tags that are covered
by any single reader ri, and the tags that are covered si-
multaneously by any two readers ri and rj . Thus, we can
compute the weight ω(I, t) of any possible scheduling I .
In practice, we can hardly know such information exactly
without any estimation scheme. Therefore, we may estimate

the number of tags covered by each reader based upon the
distribution of the arrival rate, and we can also implement
existing estimation scheme [18] to get the knowledge. Here we
show how to estimate it when the tags arrive with a Poisson
process with rate λ, i.e., the expected number of new tags that
arrive in a unit area during every time-slot is λ. Assume that
the boundaries of any two interrogation regions of two readers
have at most two intersection points. Let s1, s2, · · · , sm be
the m subregions partitioned by the interrogation regions of
all n readers �. Clearly m ≤ n2. Assume that we know the
locations of all readers � and the exact interrogation region
of each reader ri. We clearly can compute the area, denoted
as Area(sj), of each subregion sj , j ≤ m. Assume that,
given a scheduling It of readers, among all tags that can be
successfully read by some reader ri, reader ri will read at
most α of them randomly in a time-slot. Let Xt(sj) be the
expected number of tags in the subregion sj at time t. Given a
schedule I , let x(I, sj) ∈ {0, 1} denote whether subregion sj is
uniquely covered by only a single reader in I . If x(I, sj) = 1,
let ri(I, sj) be that unique reader whose interrogation region
Ri contains sj , and let β(I, sj) = Area(sj)∑

sa∈Ri
(x(I,sa)·Area(sa))

, i.e.,

the proportion of the area of subregion si in all subregions
readable by reader ri under I . Let Xt−1(si) be the expected
number of unserved tags after time t − 1, before time t. The
weight of a schedule I is then the expected number of tags
that can be read successfully by I . Then, at time t, given
a potential valid schedule I , define a variable Zt(I, si) as
Zt(I, si) = Xt−1(si)+λ·Area(si)−x(It−1, si)·α·β(It−1, si).
Given a valid scheduling I at time t, its weight ω(I, t) is

ω(I, t) =
∑

sj

(x(I, sj) · Zt(I, sj)). (1)

As analyzed below, we will always try to find a scheduling I
with maximum weight ω(I, t) at each time slot t. After we
pick It, let St(sj) be the actual number of tags served in the
subregion sj . Then the expected number of unread tags Xt(si)
evolves as Xt(si) = Xt−1(si) + λ · Area(si) − St(si).

B. Read throughput with Random Tag Arrival

Now we are ready to introduce a key definition which will
be used throughout this paper.

Definition 2: The RFID system is considered stable if the
amount of unread tags process {|Xt|}∞t=1 approaches a steady
state where the expected amount is bounded. In other words,
the scheduling is stable if sup{E[|Xt|]} < ∞.

Here we do not mean that these finite number of unread
tags will never be read. We only mean that at a given time-
slot instance, there is a finite number of tags unread. These
unread tags will be read in next finite number of timeslots. We
only ensure that, with high probability, at any given time-slot,
the number of tags that arrived but were not read is finite.

Denoting E[|At(i)|] by ai, the arrival rate vector is a =
{aj : j = 1 · · · , n}. A throughput vector a is achievable if
there is some scheduling policy under which the system is
stable when the arrival rate vector is a.
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The capacity region C (a point in the capacity region of
the given RFID system is a vector a of the mean arrival rate
E[At]) is the strict convex closure of all valid scheduling I:
a ∈ C if and only if there exists a scheduling such that the
system is stabilized. A scheduling policy is throughput-optimal
if it can achieve the optimal capacity region C.

Definition 3: The efficiency ratio of a scheduling policy
is the largest number γ such that the scheduling policy can
stabilize the system under any load vector a ∈ γ · C.

A protocol is efficient if its efficiency-ratio is close to 1. We
denote the set of all valid schedulings at time slot t as It. If
a load factor a belongs to C, then the system is stable under
the policy that selects for activation at time t the set It [3]

It = arg max
Ii

t∈It

ω(Ii
t , t) (2)

It implies that, the optimal scheduling policy is equivalent of
computing a maximum weighted independent set (MWIS) of
readers in the interference graph. This problem is usually of
high computational complexity and even NP-Hard. Hence the
maximum read throughput scheduling based on Eq. 2 is not
amenable to implementation.

Thus, we will rely on approximation algorithms. A schedul-
ing policy I is called imperfect scheduling policy with ratio
0 < γ ≤ 1(see [1] for more discussions) if at each time-slot
t, it will compute a schedule It ∈ It such that

ω(It, t) ≥ γ · max
Ii

t∈It

ω(Ii
t , t)

As analyzed later, if we only need to compute an imperfect
scheduling for each time slot t, the time complexity is much
lower than calculating the optimal one. However, we are more
interested in whether the system will remain stable under an
imperfect scheduling policy. The following two propositions1

offer us positive answers, and they will be the foundation for
studying the stability of our scheduling protocols.

Proposition 1: [1] Fix γ ∈ (0, 1]. if the arriving rates a lie
strictly inside γ · C (e.g., a lies in the interior of γ · C), then
any imperfect scheduling policy Iγ can stabilize the system.

Observe that the scheduling policy Iγ must be able to
find the γ-approximation surely at every time slot t. This
requirement may be too strong to be satisfied. Surprisingly, as
long as we can guarantee that our scheduling protocol can find
a γ-approximation scheduling with a certain constant positive
probability, the following proposition was proved.

Proposition 2: [2] Given any γ ∈ (0, 1], suppose that a
randomized algorithm has a probability at least δ > 0 of
generating a valid set of readers with weight at least γ times
the weight of the optimal. Then, capacity γ ·C can be achieved
by switching activated readers to the new set when its weight
is larger than the previous one (otherwise, previous set of
activated readers will be kept for scheduling). The algorithm

1Note that Proposition 1 and Proposition 2 are originally proved for the link
scheduling problem. In order to apply them in our reader activation scheduling
problem, we need slight modification to the original proof. The details are
omitted here to save space.

should generate the new scheduling It from the old scheduling
It−1 and current distribution Xt of unread tags.

In light of Proposition 1 and Proposition 2, it is concluded
that if our scheme can generate a near optimal scheduling in
terms of weight with at least a certain constant probability at
each time slot, we can still ensure the stability by switching
activated readers to a new set when its weight is larger than
the previous one. Thus, it is not necessary to always find the
optimal scheduling of every time-slot for stability.

C. Overview of Stable Reader Activation Scheduling Protocols

In the following, we will focus on designing our Reader
Activation Scheduling Protocols, called RASPberry, with low
complexity in both centralized and distributed manner. We
further prove that these novel protocols can ensure certain
level of stability. Since a valid scheduling scheme should
avoid the Reader-Tag collision(RTc) as well as Reader-Reader
collision(RRc), we next give a brief illustration to show how
we deal with these two possible collisions in our protocol
design. We first define the interference graph of a given RFID
reader network as the following:

Definition 4: Interference graph of the readers � is a
graph where every reader in � has a corresponding vertex,
and any two vertices have an edge between them if and only
if one reader is located in the interference region of the other.
In other words, any two adjacent readers in interference graph
cannot be active simultaneously due to RTc.

Since we assume the interference range of each reader is
R, we will connect any two readers in the interference graph
if the distance between them is at most R.

Avoid Reader-tag Collision: If two readers connected with
an edge in the interference graph are active simultaneously, it
will lead to RTc. All the readers from any independent set can
be activated simultaneously without causing RTc, i.e., a valid
scheduling.

Avoid Reader-reader Collision: If readers with overlap-
ping interrogation regions are activated simultaneously, RRc
collision happens. Thus, to avoid possible RRc, we exclude
the tags located at the overlapping interrogation regions from
the weight ω(It, t) as shown in Definition 1.

IV. CENTRALIZED READER ACTIVATION SCHEDULING

Assume that the spatial distribution of the tags are known
based on a certain estimation scheme. For each time t, we find
an active reader set It with the maximum or near maximum
weight.

A. Efficient Deterministic Scheduling Protocol

Recall that we already know the geometric positions of all
readers. We first partition the 2D deployment space into grids
using horizontal lines x = i and vertical lines y = j for
all integers i and j. The distance between any two neighbor
horizontal(or vertical) lines is max{2r,R}. For simplicity, by
assuming 2r ≤ R, we have max{2r,R} = R. A vertical
strip with index i is {(x, y) | i < x ≤ i + 1}. Similarly,
we can define a horizontal strip with index j and cell(i, j)
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(a) centralized method (b) distributed method

Fig. 3. Divide the space into grids for time-slot t. Here the square nodes
are the solution computed at time slot t. Readers fall in the shaded area are
removed. (a) space partition method for centralized method. (b) space partition
method for distributed method.

as the intersection area of a vertical strip i and a horizontal
strip j. Note that each cell has side length R. See Figure. 3(a)
for illustration, where the shaded areas are strips. It is not
difficult to find that for any two readers separated by a
strip, they can be scheduled for transmitting simultaneously
without RTc and RRc. To divide the problem of finding a
maximum weighted feasible scheduling into subproblems that
are solvable in polynomial time, we divide readers into groups
based on grid partition. To ensure that the union of solutions
of subproblems are still independent, as a standard approach,
we will add a separation between adjacent subproblems as
follows: At any time slot t, we will “remove” the readers (i.e.,
not activate these readers) located inside either vertical strips i
with i = at mod k or horizontal strips j with j = bt mod k.
Here at, bt ∈ [0, k − 1] are adjustable numbers. As illustrated
in Figure 3(a), we remove all readers inside the gray strips.
We define the preceding operations as Partition(k, at, bt), i.e.,
divide the space into grid-cells and remove some readers.

Given (at, bt), define square(i, j) to be the set of cells
{cell(x, y) | x ∈ [ik + at + 1, (i + 1)k + at − 1], y ∈
[jk+bt +1, (j +1)k+bt−1]}. A subproblem is then, given a
square(i, j), to find a MWIS of all readers inside this square.
Here each square has size R(k − 1) and two readers who are
closer than R cannot be activated simultaneously. Thus, the
size of any set of interference-free readers for a square(i, j)
is at most Λ = (R(k−1))2/πR2

4
< 4k2/π. Thus, a MWIS for

each square(i, j) can be found by a simple enumeration in time
nΛ

i,j , where ni,j is the number of readers inside square(i, j).
We compute a scheduling as follows: At time slot t, we

choose a partition (corresponding to some specific (at, bt)) and
compute a MWIS of readers for each square(i, j) that is not
empty of readers inside. Let I

(i,j)
t be the optimum scheduling

solution for square(i, j) under current tag distribution Xt.
Obviously, there are k2 different partitions since there are k2

different choices for (at, bt) and each of them corresponds
to a distinct partition. Accordingly, we can choose the “best”
partition among the k2 partitions. Here the best partition refers
to the partition such that the total weight of all MWIS for the
squares is maximum among all k2 different partitions. Let It

be the union of the optimum solutions for all squares in the
best partition. Pseudo-codes are listed in Algorithm 1.

Algorithm 1 Centralized Deterministic Scheduling
Input: Location of nodes, queue size of reader ri, and k.
Output: Feasible active reader set It for time slot t.

1: tmp = 0;
2: for at = 0 to k − 1 do
3: for bt = 0 to k − 1 do
4: Partition(k, at, bt);
5: Compute a MWIS I

(i,j)
t ;

6: if ω(
⋃

i,j I
(i,j)
t , t) > ω(tmp, t) then

7: tmp =
⋃

i,j I
(i,j)
t ;

8: It = tmp;

Lemma 1: It generated by Algorithm 1 is valid.
Proof: According to our algorithm, any two readers ri

and rj from two different squares are separated by distance
at least the strip width R. Thus, they are always interference-
free regarding to RTc and RRc since max{2r,R} = R.

Lemma 2: At each time slot t, the weight of scheduling It

computed by Algorithm 1 is at least

ω(It, t) ≥ (1 − 1
k

)2 · ω(IOPT
t , t)

Theorem 1: Algorithm 1 achieves (1 − 1

k )2C capacity.
Proof: As stated in Proposition 1, for a fixed γ ∈ (0, 1],

if the arrival rates a lies strictly inside γ · C (e.g., a lies in the
interior of γ ·C), then any imperfect scheduling policy γ ·IOPT

can stabilize the system. Remember that a scheduling policy
I is called imperfect scheduling policy with ratio 0 < γ ≤ 1
if at each time-slot t, it will compute a schedule It ∈ I such
that ω(It, t) ≥ γ maxIt∈I(t) ω(It, t) = γ · ω(IOPT

t , t). Based
on Lemma 2, we know that ω(It, t) ≥ (1 − 1

k )2ω(IOPT
t , t).

Then we can finish the proof by setting γ = (1 − 1

k )2.
Theorem 2: Algorithm 1 runs in time O(k2 · nΛ) where n

is total number of readers and Λ is some constant.

B. Efficient Randomized Scheduling Protocol

In Section IV-A, we designed an algorithm based on shifting
strategy. In order to find the best partition (k, at, bt) at each
time slot t, we need to check every possible partition, which
will lead to high time complexity and energy consumption.
Here we propose a novel efficient randomized scheduling
algorithm. The surprising result is that without decreasing the
level of stability, we can remove the factor k2 from the time
complexity of Algorithm 1.

Recall that using space partition, It (similar to Algorithm
1) is composed of optimum solutions from each square(i, j).
If we keep the same space partition (same (at, bt) for all t) for
all time-slots, clearly, we can produce the solution I

(i,j)
t for

each square(i, j) and ω(I(i,j)
t , t) ≥ ω(I(i,j)

t−1 , t) from the opti-
mality of I

(i,j)
t for square(i, j) with weight Xt. Consequently,

ω(It, t) ≥ ω(It−1, t). However, using the same partition for
all time-slots clearly violates the property that It has constant
approximation ratio with constant probability when t → ∞.
The key observation is that, after fixing a partition, the removed
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Algorithm 2 Centralized Randomized Scheduling
Input: Location of nodes, current distribution of tags.
Output: Feasible active reader set It for time slot t.

1: tmp = It−1;
2: Randomly choose at and bt from [0, k − 1].
3: Compute Partition(k, at, bt);
4: Compute a MWIS I ′(i,j)t ;
5: if ω(

⋃
i,j I ′(i,j)t , t) > ω(It−1, t) then

6: temp =
⋃

i,j I ′(i,j)t ;
7: It = temp;

readers (that fall inside the removed strips) will accumulate
unread tags in its interrogation region since they will never be
served now. Thus, to ensure the constant probability of getting
good solution, we need randomly choose a partition for every
time-slot. The challenge now is to ensure that It is consistently
no worse than It−1 at time slot t.

Like Algorithm 1, Algorithm 2 is also based on shifting
strategy. We first partition the 2D deployment region into
horizontal and vertical strips with width R. The main differ-
ence comes from the next step: Instead of enumerating every
possible partition (k, at, bt) to find the best one, we randomly
choose one partition for time slot t and compute a candidate
scheduling I ′t under this partition. By comparing the weight
of the scheduling under current randomly chosen partition and
the one under the partition used in previous time slot t−1, we
choose the better one as It: if ω(I ′t, t) ≥ ω(It−1, t), we will
choose I ′t as It; otherwise, we still use It−1 as the scheduling
for time slot t.

Lemma 3: Algorithm 2 has a probability of at least 1/k2

to generate a set of independent readers with weight at least
(1 − 1

k )2 of the optimal one at each time slot t.
In light of Proposition 2, we give the following theorem

to evaluate the performance of Algorithm 2. The surprising
result is that with a significant improvement in terms of time
complexity, Algorithm 2 can still achieve the same level of
stability as Algorithm 1 does.

Theorem 3: Algorithm 2 achieves (1 − 1

k )2C capacity.
Proof: According to Lemma 3, we know that with prob-

ability at least 1/k2, the weight of scheduling It computed
by Algorithm 2 is at least ω(It, t) ≥ (1 − 1

k )2ω(IOPT
t , t)

at each time slot t. Further, because in Algorithm 2, we
always choose the better one between scheduling under current
random partition and the one under previous partition as It.
Theorem follow from Proposition 2 by setting δ = 1/k2.

Theorem 4: Algorithm 2 has time complexity O(nΛ).

C. Discussions

The above described RASPberry protocols for reader activa-
tion can be easily generalized to three dimensions. Essentially,
in 3D, we will divide the space into cubic cells and randomly
pick a partition (at, bt, ct) for time-slot t.

Lemma 4: In 3D, when k ≥ 3, Algorithm 2 has a prob-
ability of at least 1

k3 to generate an independent set of

readers with weight at least (1− 1

k )3 of optimal solution, i.e.,
Pr

(
ω(It, t) ≥ (1 − 1

k )3ω(IOPT
t , t)

) ≥ 1

k3 . Algorithm 2 runs
in time O(n6k3/π) in 3D.

V. DISTRIBUTED READER ACTIVATION SCHEDULING

As we have mentioned before, in order to implement the
above centralized algorithm, it is necessary for us to estimate
the global spatial distribution of tags efficiently and accurately.
However, it is often very hard to do so in practice. Thus, we
design a randomized distributed reader scheduling algorithm
in which each reader only needs to estimate its local spatial
distribution of tags. As assumed always, every reader knows
its geometry location. We partition the whole space into cells
with side length max(2r,R). Then every reader knows exactly
which cell it belongs to. See Figure 3 for illustration. For
centralized algorithm, our method guarantees finding a (1 −
1/k)2-approximation of MWIS at each slot t by finding the
best partition. Clearly, this is impossible when we need low-
complexity distributed scheduling. Similarly to the approach
used in Algorithm 2, we will adopt the pick and compare
approach. Randomly picking a partition (using random (at, bt)
at time slot t) guarantees that, with probability at least 1/k2

we will end up with the best partition, and a MWIS whose
weight is at least (1 − 1/k)2 of the optimum. The challenge
now is to compare such candidate solution I ′t with previous
solution It−1 and then find the better one efficiently.

Since Algorithm 2 is a centralized algorithm, it is trivial
to compute the candidate scheduling I ′t under a random
partition, and it is also easy to compare ω(I ′t, t) with ω(It−1, t)
based on global information. However, when implementing
the algorithm in a distributed manner, we must deal with the
following challenging issues:

1) If we compute the scheduling locally, how do we ensure
that the union of all local solutions I

(i,j)
t is still a

valid scheduling? In other words, how can we guarantee
that

⋃
i,j I

(i,j)
t is still RTc free even when each local

scheduling I
(i,j)
t is valid?

2) By assuming the union of local scheduling
⋃

i,j I
(i,j)
t

is still valid, the next challenging problem is, if we
make a selection between current candidate scheduling
and previous one locally, how do we ensure that the
union of all local selections is still a correct global
solution? This indicates, by following a local selection,
the desired algorithm should ensure that the total weight
under resulted scheduling is not smaller than the previous
one from a global point of view.

To address these issues, for a square(i, j) partitioned in time
t, when we compute a solution I

(i,j)
t , we will compare the

local optimum solution under Xt, with some special partial
solution of It−1 that are locally known to square(i, j), and
the one with larger weight is chosen as I

(i,j)
t .

To describe our method in detail, we define some terms first.
A sub-square(i, j) is the set of cells: {cell(x, y) | x ∈ [i ∗k +
at+2, (i+1)∗k+at−1]y ∈ [j∗k+bt+2, (j+1)∗k+bt−1]}.
A super-square(i, j) is the set of cells {cell(x, y) | x ∈ [i ∗
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k+at +1, (i+1)∗k+at]y ∈ [j ∗k+ bt +1, (j +1)∗k+ bt]}.
Clearly, the collection of super-squares is a space partition. A
sub-square(i, j) is contained inside the super-square(i, j). See
Figure 3(b) for illustration, where the larger square region is a
super-square(i, j) and the smaller one is a sub-square(i+1, j).
In the following contents, let I

(i,j)
t−1 be the set of active readers

from It−1 that fall inside super-square(i, j) at time slot t.
At any time slot t, we will “remove” the readers positioned

within either vertical strips i and i+1 with i = at mod k or
horizontal strips j and j +1 with j = bt mod k, i.e., readers
are inside the gray region of Figure 3(b) will be removed. Note
that in order to ensure that the union of I

sub(i,j)
t is still valid,

we remove two consecutive strips for every k strips instead of
one. Our method then works as follows:

At time slot 0, we do a partition using (a0, b0) =
(0, 0). Then we compute an optimum MWIS I

(i,j)
0 for each

sub-square(i, j) that is not empty of readers.
For any time-slot t, we partition the space using (at, bt). We

choose (at, bt) as (t mod k, t mod k) when k ≥ 5. Observe
that when k = 3 (or 4), some cells will always be “removed”.
Therefore, when k = 3 (or 4), we let (at, bt) map to one
distinct partition of the total 9 (or 16) different partitions (we
can use a random partition), the partition will repeat after k2

time-slots. We then compute the optimum MWIS, I
sub(i,j)
t , for

all sub-square(i, j) under current tag distribution Xt. Recall
that we denote I

(i,j)
t−1 as the set of activated readers from It−1

that fall in super-square(i, j) at time t.
This set can clearly be computed locally as follows: If

ω(I(i,j)
t−1 , t) > ω(Isub(i,j)

t , t), let I
(i,j)
t = I

(i,j)
t−1 , otherwise

I
(i,j)
t = I

sub(i,j)
t . Then we use

⋃
i,j I

(i,j)
t for all super-squares

as a global solution.
Please refer to Algorithm 3 for details. Note that for each

super-square, one reader will be selected as the only coordina-
tor. It then computes the activation set inside this super-square
(by computing a candidate solution in sub-square and com-
paring it with previous scheduling within super-square) un-
der current tag distribution. We further assume the mes-
sage RESULT(I(i,j)

t ) contains all the necessary informa-
tion of the activation set selected by the coordinator inside
super-square(i, j) in time slot t. Initially, each reader has color
White; if it is selected to be active, it will color itself Red ,
and Black otherwise.

We first show that the resulted scheduling It is indeed a
valid scheduling (proof omitted due to space limit).

Theorem 5: It generated by Algorithm 3 is valid.
As shown before, the selection for I

(i,j)
t is made locally

by comparing ω(I(i,j)
t−1 , t) and ω(Isub(i,j)

t , t). However, since
It is decided by uniting all local selections, will it still be
a good scheduling compared with It−1, i.e., does ω(It, t) ≥
ω(It−1, t) still hold? The following theorem gives us a positive
answer.

Theorem 6: The scheduling It which is randomly generated
by Algorithm 3 is no worse than It−1 in terms of weight under
current tag distribution Xt.

Proof: Based on our local comparison scheme, we have

Algorithm 3 Distributed Scheduling by a reader v

Input: k, at, bt.
Output: Active or not for each reader at time slot t.

1: state = White; active = NO; Coordinator = NO;
2: Calculates which cell Z reader v resides in regarding to

the current partition(k, at, bt,);
3: Coordinator=YES if v is the coordinator for all readers in

the same square.
4: if Coordinator = YES then
5: Collect the tag distribution Xt(i) for all readers within

the same super-square(i, j), and the scheduled readers
I
(i,j)
t−1 in current super-square(i, j) at previous time-slot

t − 1 also.
6: Computes MWIS I

sub(i,j)
t in sub-square(i, j);

7: If ω(I(i,j)
t−1 , t) > ω(Isub(i,j)

t , t), we set I
(i,j)
t = I

(i,j)
t−1 ;

otherwise, we set I
(i,j)
t = I

sub(i,j)
t .

8: Broadcasts RESULT(I(i,j)
t ) in super-square(i, j);

9: if state= White then
10: if receives message RESULT(I(i,j)

t ) then
11: if v ∈ I

(i,j)
t then

12: state = Red; active=YES;
13: else
14: state = Black; active=NO;

ω(I(i,j)
t , t) ≥ ω(I(i,j)

t−1 , t) for any super-square(i, j). Since
the collection of super-squares is a space partition, and
It =

⋃
i,j I

(i,j)
t , we further have ω(It, t) = ω(

⋃
i,j I

(i,j)
t , t) ≥

ω(
⋃

i,j I
(i,j)
t−1 , t) = ω(It−1, t). This finishes the proof.

Lemma 5: When k ≥ 5, Algorithm 3 has a proba-
bility of at least 1

k to generate a valid scheduling set
with weight at least (1 − 4

k ) of optimal solution, i.e.,
Pr

(
ω(It, t) ≥ (1 − 4

k )ω(IOPT
t , t)

) ≥ 1

k . When k = 3 or 4,
Algorithm 3 has a probability of at least 1

k2 to generate a
valid scheduling set with weight at least (1 − 2

k )2 of optimal
solution, i.e., Pr

(
ω(It, t) ≥ (1 − 2

k )2ω(IOPT
t , t)

) ≥ 1

k2 .
Proof: Remember that (at, bt) = (t, t) when k ≥ 5,

therefore we have k different partitions. Each cell(i, j) appears
in the “removed” strips for at most 4 times. Suppose the
optimal solution for time slot t is ω(IOPT

t , t), then there exists
at least one good partition such that the removed part from the
optimal solution, i.e., weight of the readers located in the gray
area, is at most 4

kω(IOPT
t , t). Since the result generated by

Algorithm 3 for this good partition is optimal in the remaining
area, ω(It, t) is at least (1− 4

k )ω(IOPT
t , t). Therefore the best

partition generates a valid scheduling set with weight at least
(1− 4

k ) of optimal solution. With probability ≥ 1

k , (t, t) is the
best partition.

When k = 3, 4, there are k2 different partitions. Each cell
is “removed” for exactly 4k − 4 times. The rest of the proofs
follow similarly with the case k > 4.

Theorem 7: Algorithm 3 achieves (1− 4

k )C capacity for any
k ≥ 5 and (1 − 2

k )2C capacity for any k = 3 or 4.
The claim holds by Proposition 2 and Lemma 5. The efficiency
ratio can be improved to (1 − 2

k )2 using random (at, bt)
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Fig. 4. Throughput evaluation in static environment with the increase of the
interrogation radius r and the interference radius R.
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Fig. 5. Throughput and time complexity evaluation in dynamic environment
with the increase of λ.

partition for k ≥ 5.

VI. PERFORMANCE EVALUATION

We conducted extensive simulations with our own simulator
to study the time complexity (the time needed by readers to
find the activation scheduling) and stability of our methods.

A. Throughput Performance

First, we evaluate the performance of our methods in terms
of numbers of tags that can be read on average in one-slot in
both static and dynamic environments.

1) Static Scenario: For static scenario, we uniformly and
randomly distribute 50 readers and 1200 tags in a square
region of side-length 100 units. We compare our methods
with the Colorwave algorithm [16] and EGA algorithm [4].
Figure 4 shows the performance with varying interrogation
range r and interference range R respectively, with k = 5.
All algorithms perform worse with the increase of R while all
work better with the increase of r. As shown in Figure 4, our
schemes are more effective. During the tag reading process,
EGA algorithm tries to find a best bt for each at in every sub-
rectangles of the subgraphs partitioned by at. As discussed in
Section IV, our centralized deterministic method (Algorithm
1) computes a best (at, bt) pair from a global point of view. In
other words, we trade some read throughput for less computing
complexity. Observe that there is no noticeable throughput
difference between these two algorithms. As shown in Figure
4(a), Algorithm 1 produces nearly the same throughput as
EGA, e.g., the average number of tags to be read in each time
slot computed by our scheme is approximately optimal with
significantly reduced time complexity. Algorithm 2 performs
a little worse than those two algorithms.

2) Dynamic Scenario: To simulate the dynamic multi-
reader environment, we assume the arrival rates of tags as a
Poisson distribution with arrival rate λ. The interrogation and
interference regions are disks with radius r = 15 and R = 35
units respectively. We set a random distribution of 1200 tags
in the region as an initial state. Figure 5(a) shows the perfor-
mance of various algorithms with varying λ. We compare the
total time slots taken by various methods to finish the tag read-
ing in the monitoring region. As expected, Algorithms 1 and 2
perform significantly better than Colorwave algorithm for all
range of values, which is similar to what we observed in the
static scenario. We notice that the performances of Colorwave
worsen to infinite with increase of λ due to its random access
scheme. In contrast, our distributed protocol serves more and
more tags in each time slot with the increase of arrival rate of
tags, and it is always comparable with the centralized methods.
Moreover, our centralized algorithms perform nearly the same
with the EGA algorithm as λ increases. This exemplifies the
effectiveness of our algorithms.

B. Time Complexity

Before comparing our algorithms with related work in terms
of stability, another experiment is designed to evaluate the time
cost by various algorithms to find scheduling in dynamic tag
reading scenario. We run our programs on a PC with dual
core dual CPU, 2.53GHz, 2GB RAM. We take 700 iterations
for each algorithm, with λ range from 6 to 20. The statistics
we got from the experimentation are presented in Figure 5(b),
with time unit of microsecond. As described in above static
evaluation, we still distribute 50 readers and 1200 tags to
participate in the tag reading process in the rectangular region.
Figure 5(b) shows the performance with varying interrogation
range r and interference range R respectively, with k = 5.
Obviously, in contrast to EGA algorithm, our randomized
algorithms have very low time complexities.

C. Stability of the protocols
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Fig. 6. Stability evaluation in
dynamic environment.

We now evaluate the sta-
bility performance of our al-
gorithms with an even bigger
value of λ, such that the read-
ing process may not terminate
in a regular way. Recall that
we define a stable scheduling
as a scheduling under which
the expected amount of unread
tags is always bounded. Here
the expected bound serves as
an input parameter in our simu-
lation. Specially, we adjust the

expected average unread bound for readers from 180 to 220 as
λ changes, i.e., the expected bound will be slightly increased
while the arrival rate of tags increases. In this way, the bias for
the performance evaluation due to different new tags arrival
rates in each time slot can be alleviated, and the reader
scheduling schemes will play a more important role. Here we
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Fig. 7. Dynamic environment: Number of unread tags vs. time slot vs. reader
ID, with λ=3.
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Fig. 8. Dynamic environment: Number of unread tags vs. time slot vs. reader
ID, with λ=3.

randomly distribute 1200 tags at the beginning, with r = 15
and R = 35 units respectively. As the tag reading process
runs, we collect the average numbers of unread tags in the
monitoring region for each time slot. The running process
will be suspended in the time slot when the average number
of unread tags for each reader exceeds the expected value.
We evaluate the stability of the above algorithms in terms
of the total number of running time slots till the reading
process terminates. Figure 6 shows the performance of various
algorithms as λ increases.

In Figure 6, all algorithms suspend at an earlier time as
the arrival rate of tags gets bigger. It is shown that our
designed centralized algorithms perform slightly better than
EGA algorithm for almost all range of values, e.g., for the
same tag arrival rate, Algorithm 1 and Algorithm 2 will stay
in stable state as long as EGA algorithm or even better. To
minimize the total reading time, EGA algorithm tries to have
each location in the monitoring region be well-covered by
a reader in some time slot. It is straightforward that unread
tags accumulated at some readers tend to exceed the expected
bound before getting served as more tags arrive in each time
slot. We also notice that the performance of our distributed
algorithm are comparable with centralized algorithms as λ
increases, and are similar to them for bigger values.

Figure 7 and Figure 8 show the number of accumulated
unread tags within each reader’s (we randomly select four
readers as an illustration) interrogation range by every time
slot. Here we set λ = 3 to ensure that all algorithms can
terminate. It is shown that for a given λ of small value,
all algorithms experience an accumulation of unread tags at
the beginning. This is because there are a number of unread
tags covered by a reader initially. As more and more tags
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Fig. 9. Dynamic environment: Number of unread tags vs. time slot vs. reader
ID, with λ=7.
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Fig. 10. Dynamic environment: Number of unread tags vs. time slot vs.
reader ID, with λ=7.

get served, the number of unread tags decreases gradually.
In the results reported here with λ = 3, the number will
decrease to zero since the average throughput is larger than the
arrival rate of new tags. As shown in the simulation results,
EGA algorithm takes the least time to finish the reading
process at the price of stability loss, i.e., accumulating more
unread tags for several time slots. In contrast, Algorithm 1
has the best stability performance. Note that Algorithm 1’s
corresponding curves are smoother, which indicates the ever
decreasing number of unread tags accumulated within the
readers’ interrogation range. Algorithm 1 performs similarly
to EGA algorithm, with similar peak points and run way.
All results listed above indicate that our centralized schemes
performs as good (or even better) as EGA algorithm in terms
of stability with significantly lower complexity. Moreover, our
distributed algorithm remains stable for long term, even though
it takes more time to finish the process.

We then study the case when the arrival rate of tags exceeds
the average throughput. It is straightforward that unread tags
will be accumulated in this case. Here we set λ = 7 and
record the number of unread tags for each reader scheduled
by centralized algorithms in the first 200 time slots, while
recording the according statistics in the first 150 time slots
for our distributed scheduling algorithm. Figure 9 and Figure
10 show that our centralized schemes perform better in terms
of reducing average number of accumulated tags. By the
200th time slot, the number of unread tags for each reader
scheduled by EGA algorithm is less than that scheduled by
our centralized randomized scheduling scheme. However, the
average number of unread tags for all readers is not less than
ours since more readers have lots of unread tags. The total
number of unread tags scheduled by EGA is larger, which
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indicates lower stability. Observe that Algorithm 1 still has the
best stability since both the number of unread tags for each
reader and the number of readers with lots of unread tags is
smaller than others. Our distributed algorithm also achieves
acceptable stability in terms of minimizing the number of
readers with too many unread tags.

VII. RELATED WORK

Recently, several protocols have been proposed to avoid
collisions in RFID systems. We classify these results into three
categories according to the type of collisions they addressed.

Several link layer protocols, e.g., [7], [11], [13], [15], have
been proposed in order to avoid TTc. For example, one of the
most popular solutions is the tree walking algorithm (TWA)
[11], [13]. In TWA, entire ID space of tags is partitioned into
two subsets, and the readers try to recognize the tags belonging
to one of the subsets. Running recursively along this way
until a subset has no tag at all or exactly one tag. Recently,
[14] proposes optimizations to tree traversal. In slotted Aloha
protocol [6], a query frame is selected with a sufficiently large
number of time slots and each tag sends a response at a random
chosen time slot. When the reader hears a response correctly,
it sends confirmation. If there is a collision, the colliding tags
will choose another random slot to send a response.

For avoiding RRc or RTc, Colorwave [16] is one of pioneer
works to study RRc. Specially, it constructs an “interference
graph” over the readers, wherein there is an edge between
pair of readers if and only if they may cause RRc when
transmitting at the same time. Colorwave then tries to color the
readers randomly such that each pair of interfering readers can
gain different colors. In [9], the authors suggest k-coloring of
the interference graph in which k is the number of available
channels. In the recent EPCGlobal Gen 2 standard [5], the
authors propose a dense reading mode, in the dense reading
model the tag responses happen in different channels but not
the readers.

In [10], they design a Q-learning process. After a training
period, it adopts a resource (channel and time slot) allocation
scheme. The training process determines allocation of channel
and time slots to different readers when a new tag read
request arrives. There is no performance guarantees provided
in this paper. Recently, [4] proposes a tag access scheduling
protocol (EGA) based on STDMA. In the case where the tag
distribution is known, they assign time slots to readers, such
that each location of the deployment space is well-covered by
some reader among one of the time slots. They generalize and
optimize their solution for the model where the tag distribution
is unknown and multi-channels are available. They assume that
the tag distributions are static and no new tags will appear in
the system.

VIII. CONCLUSION

We proposed an efficient multiple-reader scheduling pro-
tocol, RASPberry, for scheduling RFID readers such that
it will reduce the number of unread tags. Our results can
be easily extended to the case when a tag should be read

periodically after it arrived, by adjusting the arrival rates of
tags accordingly. When the number of tags is more than the
system capacity (i.e., system is not stable), some tags will not
be read. Although at every timeslot there may be tags that
are not read, every tag will be read within a small number of
time-slots after the tag arrived when the system is stable.

An interesting question left for future research is to study the
placement of readers to maximize the overall read throughput,
when we can estimate and predict the tag arrivals. Another
challenge is to relax the Poisson distribution of the tag arrivals.
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