SIFFEA: Scalable Integrated Framework
for Finite Element Analysis

Xiangmin Jiao, Xiang-Yang Li, and Xiaosong Ma

Department of Computer Science
University of Illinois, Urbana, IL 61801, USA
{jiao,xli2,xmal }@Quiuc.edu

Abstract. SIFFEA is an automated system for parallel finite element
method (PFEM) with unstructured meshes on distributed memory ma-
chines. It synthesizes mesh generator, mesh partitioner, linear system
assembler and solver, and adaptive mesh refiner. SIFFEA is an implicit
parallel environment: The user need only specify the application model in
serial semantics; all internal communications are transparent to the user.
SIFFEA is designed based on the object-oriented philosophy, which en-
ables easy extensibility, and a clear and simple user interface for PFEM.

1 Introduction

The parallel finite element method (PFEM) is widely used in the computational
solution of system simulations in various engineering problems. Generally, there
are six steps in the finite element analysis: mathematical modeling, geometric
modeling, mesh generation, linear system formulation, numerical solution, and
adaptive refinement. Many software packages are available on parallel machines
for each individual component of FEM. However, there is a lack of automated
integrated systems for PFEM, and a user must do a lot of application coding in
integrating softwares from various sources.

To address this problem, we are developing SIFFEA, an integrated framework
for FEM on scalable distributed memory machines. SIFFEA includes a mesh gen-
erator, a mesh distributor, a linear system assembler, an adaptive mesh refiner,
and interfaces with mesh partitioners and linear system solvers. It also contains a
novel user interface for specifying the mathematical model. SIFFEA is designed
based on object-oriented philosophy, and written in C++. The communications
are carried out using MPI for portability. Each component of SIFFEA is highly
encapsulated, and the components interact with each other through well-defined
interfaces, so that the implementation of one component can be changed without
affecting the others.

Below we give a brief description of several classes in SIFFEA: Mesh, Mesh-
Generator, MeshPartitioner, Solver, and MeshRefiner. A Mesh object encapsulates
all information about the mesh, including topological and geometrical data. A
MeshGenerator object is activated by a Mesh object. It contains all functions re-
lated to mesh generation and will generate triangulations and fill them into the

Mesh object. A MeshPartitioner object contains the interfaces with mesh parti-
tioning packages, and is activated by a Mesh object. A Solver object assembles
and solves a linear system, and performs error analysis. A MeshRefiner object
takes care of adaptive mesh refinement based on the results of error analysis.

Fig.3 is the interaction diagram of the system. It shows the timeline of ob-
jects’ active periods and operations. The whole timeline can be roughly divided
into four parts, shown as S1, S2, S3 and S4 at the left side of the diagram. They
correspond to the four stages of the computation: mesh generation, mesh par-
titioning, linear system assembly and solution, and adaptive mesh refinement.
Note that the lengths of objects shown in the diagram are not proportionally
scaled to their real life time. The operations in the dashed-line rectangle, i.e.,
operations in S2, S3 and S4 are repeated until error requirements are satisfied.
Notice that this diagram only provides a sequential view of the computations.
In fact, except for MeshGenerator and MeshRefiner, each object exists on all the
processors and its operations are carried out in parallel.

®) aMesh: aMeshGenerator:
X MeshGenerator

main: Main

| Mesh(@ridFile) | maepetaumay) |

Solver(aMesh) | p--oeeee =
initDstrDat

aMeshPartitioner: | | aSolver: aMeshRefiner:
MeshPartltloner Solver MeshRehner

partitionArray = parPart()

,,, 1
reDserat%?

updateM esh

ErrorAnal¥% 5

refine(@Mesh

e N

outgutDat%?

Fig. 1. Interaction diagram of SIFFEA.

SIFFEA provides a clear and simplified user interface. Up to date, the de-
sign of SIFFEA has been focusing on linear elliptic problems. For this kind of
problems, the user only needs to provide a geometry specification, and a class
encapsulating the serial subroutines for computing the element matrices and
vectors, and the boundary conditions. All internal communications of SIFFEA
are transparent to the user. We are looking into extending SIFFEA for time-
dependent and nonlinear problems, while preserving a simple user interface.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts about mesh generation and refinement, and their sequential and parallel
algorithms. Section 3 describes the interface with the mesh partitioner, and the

algorithms for distributing the mesh onto processors after partitioning. Section
4 addresses the issues about user mathematical model specification and parallel
linear system assembly. Section 5 discusses the basic concepts behind the error
estimator and the adaptive mesh refiner. Section 6 presents some preliminary ex-
perimental results. Section 7 compares SIFFEA with some other PFEM systems.
Section 8 concludes the paper with the discussion of future implementation and
research directions.

2 Mesh Generation and Delaunay Refinement

Mesh generation is a fundamental problem in FEM. In particular, the unstruc-
tured mesh is widely used in FEM solvers, due to its advantages of varying local
topology and spacing in reducing the problem size, and adapting to complex
geometries and rapid changing solutions.

It is well-known that the numerical errors in FEM depend on the quality of
the mesh. In particular, it is desirable that the angles of each element are not too
small [2,17]. The Delaunay triangulation and Delaunay refinement algorithms
generate high quality meshes satisfying this criterion. Specifically, Delaunay tri-
angulation maximizes the minimum angle among all elements [16]; Delaunay
refinement allows one to add extra vertices, called Steiner points, in order to
further improve the quality of the mesh [14].

SIFFEA contains a two-dimensional mesh generator, which can generate ex-
act Delaunay triangulations, constrained Delaunay triangulations, and conform-
ing Delaunay triangulations on complex domains. The conforming Delaunay tri-
angulations guarantee no small angles, and are thus suitable for finite element
analysis. The mesh generator also supports adaptive mesh refinement based on
a posterior error estimation, which will be discussed in Sec. 5.

The input to the mesh generator is a PSLG [10] description of the geometric
domain, which can contain points and line segments. These line segments are
called the constrained edges. The input domain can also contain holes, as shown
in Fig. 2. A clockwise or counterclockwise sequence of edges of a polygon defines
a hole. In particular, a clockwise sequence defines a hole inside the polygon, and
a counterclockwise sequence defines a hole outside the polygon. Every hole has
labels, which specify whether the hole belongs to the mesh, and the element
size requirement inside the hole. Boundary conditions may be associated with
the constrained edges. To achieve this goal, the user labels each constrained
edge with an integer, which will be inherited by the Steiner points on it; then
he/she defines a subroutine for computing the boundary condition based on
the coordinates and the mark of a point. By convention, the user marks the
uninterested edges with 0.

The mesh generation is designed using the object-oriented technology. We
separate the mesh representation from the algorithms. Internally, the Mesh class
uses the efficient quad-edge [8] data structure to represent the mesh. The al-
gorithms, including Delaunay triangulation, Delaunay refinement, and adaptive

refinement, are designed using the high-level interfaces of the Mesh class. Each
algorithm is encapsulated in a separate class.

The current mesh generator in SIFFEA is sequential, which is observed the
performance bottleneck of PFEM. We are also currently designing and imple-
menting a parallel mesh generation algorithm. The basic idea is as follows. As-
sume that there are p processors. We first apply the quadtree [6] based technique
to add some Steiner points to the input point set. Then we apply some point
separator [13] or the k-d tree [5], to divide the input point set and the Steiner
points into p subdomains. Each processor is then assigned a subdomain, and per-
forms the Delaunay triangulation and refinement on it. Note that the Delaunay
refinement may add Steiner points on the separator edges between subdomains.
Therefore, after each processor finishes triangulation and refinement locally, it
must update its point set, by merging with the Steiner points on its adjoining
separator edges from other processors; then it resumes the Delaunay refinement.
This process repeats until no new points are added. Notice that the Steiner points
added by the quadtree technique roughly make the points set well-spaced, thus
it reduces the number of Steiner points added on the separator edges later on
and hence reduce communication.

3 Mesh Partition and Distribution

After mesh generation, the mesh must be distributed across processors, so that in
the subsequent steps, the linear system can be assembled and solved in parallel.
In this section, we describe our approaches for mesh partition and distribution.

3.1 Mesh Partition

Mesh partition is to decompose the mesh into roughly equal size of subdomains
while minimizing the cut-edges between the subdomains. Its purpose is to achieve
better load balance and reduce communication overhead during linear system
assembly and solve. Mesh partition is typically done using a graph partitioning
algorithm. In our current implementation, we use ParMetis [9], which is a fast
parallel graph partitioning algorithm, to carry out the work.

The ParMetis subroutine for graph partitioning requires the input of a dis-
tributed graph. In particular, the mesh nodal graph must be distributed across
processors before calling ParMetis. If a sequential mesh generator is used, we
accomplish this by assigning vertices in blocks to processors. That is, if n is the
number of vertices, and p is the number of processors, then vertex i is assigned
to processor i/ [n/p]. Note that ParMetis only requires vertex adjacency list.
To collocate the mesh and utilize memory efficiently, we distribute the vertex
coordinates and the element connectivities along with the vertex adjacency list.
The initial element partition is determined as follows: We assign an element to
the owner of its second largest vertex. This simple heuristic has the advantage
of not requiring extra communication to determine the element partition, and it
yields fairly even distribution of elements in practice.

After the initial distribution, the ParMetis subroutine ParMetisPartKWay()
is then called, which returns the new processor assignment of the locally owned
vertices on each processor. This assignment will determine the partition of the
global stiffness matrix, as discussed in Sec.4.2. Note that an element partition
is also needed by the linear system assembler. Again, the element partition can
be derived from the vertex partition as above.

3.2 Data Redistribution

After determining vertex and element partitions, we must ship vertices and ele-
ments to their assigned processors. We refer to this stage as data redistribution.
In particular, four types of data must be communicated at this stage, and they
all have all-to-all communication patterns.

First of all, each processor must gather the vertices assigned to it, which
includes gathering the global indices, the coordinates, and the adjacency list of
each vertex. Note that the adjacency list will be used by memory management of
the global matrix. Since a processor is generally assigned nonconsecutive vertices,
to facilitate the subsequent steps, we compute a vertex renumbering such that
the vertices on each processor are consecutive in the new number system.

Secondly, we ship the element connectivities to the assigned processors. Since
the element assignments were based on the old number system, the connectivities
are mapped to the new number system after shipped to the owner processors.

One or more vertices of a straddling element on the cut-edges are not local
to the element’s owner processor. These nonlocal vertices are called the ghost
points, which are needed by the element matrix and vector computation. In the
third step, each processor determines and gathers the ghost points.

Finally the boundary vertices and their marks are shipped to the processors.
A boundary vertex must be sent to a processor, if it is owned or is a ghost point
of that processor. Since the number of boundary vertices is generally small, a
broadcast is used instead of vector scatters, to simplify communication pattern.
After the broadcasting, each processor deletes the unneeded boundary vertices.

4 Linear System Assembly

The next step of solving FEM is to assemble and solve a system of linear equa-
tions. Our current implementation of SIFFEA has adopted a matrix-based ap-
proach. Namely, we assemble a global stiffness matrix and a global load vector
from the element matrices and vectors, when solving the linear system. SIFFEA
features a novel design for computing the element matrices and vectors and for
assembling the global matrix. This design maximizes code reuse and reduces
application code development time. This section presents the rationales behind
our design. For the solution of the linear system, SIFFEA currently employs
the linear solves in PETSc, which includes a variety of iterative solvers and rich
functionality for managing matrices and vectors. For more information about
PETSc, readers are referred to [4].

4.1 Element Matrix and Vector

Solving a boundary value problem using FEM includes two distinct transfor-
mations of its mathematical formulation: the differential equation is first trans-
formed into an integral form (a.k.a. weak form), and then the integral form is
transformed into a matrix and vector form. The first transformation demands
knowledge about the application, and thus is best handled by the user. The sec-
ond transformation, on the other hand, is application independent, but tedious
and time consuming. Therefore, an ideal interface of a system for FEM should
have the flexibility for the user to specify the integral form, but require minimum
user’s effort to transform the integral form into matrix form.

With the above goals, we choose the integral form as the mathematical mod-
eling input of SIFFEA, and design tools for computing the element matrices
and vectors from the integral form. We categorize the tasks of computing el-
ement matrices into three levels. The lowest level is the evaluation of values
and derivatives of the shape functions at the Gauss points of an element. Since
there are only a small numbers of element types that are widely used, we can
develop an element library for these common elements. The second level is the
numerical integration of a term in an integral form to compute a partial element
matriz, where a term is a product of functions. The number of possible terms
is also small, and hence an integrator library can be built on top of the element
library. The highest level is the summation of partial matrices into an element
matrix. The same categorization applies for computing element vectors. The user
typically need write applications only in the highest level using the integrator
library.

We now illustrate this idea through a concrete example. Assume the input
integral form is

/(Vu-Vv+auv)dxdy=/ fudzdy,
fo) Q

where (2 denotes the domain, u and v are the base and test functions respectively,
a is a constant, and f is a smooth function on (2. We rewrite the left-hand side
as a sum of two integrals, and we get

/Vu-Vvdxdy—}—a-/uvdxdy:/fvdwdy.
Q Q Q

We can now use the integrators provided by SIFFEA to compute each integral.

There are three types of integrators. The first type integrates a term over
an element and returns a partial element matrix, which are used to compute
stiffness matrices. The second type also integrates a term over an element but
returns a vector, used to compute load vectors. The last type integrates a term
along marked boundaries of an element and returns a vector, used for applying
boundary conditions, where the marks are provided by the mesh generator based
on the users’ input geometric specification. Each integrator type may have several
functions, one for each valid term. The interface prototypes of these integrators
are given as follows.

template <class Element> Matrix aMatIntegrator(const Element&, Fn*);
template <class Element> Vector aVecIntegrator(const Element&, Fn*);
template <class Element> Vector aBndIntegrator(const Element&, Fn*);

Note that these integrators are all template functions, because for a given term,
the algorithms for computing its integral is the same for different elements. These
integrators all have two input parameters: an object of type Element, which will
be discussed shortly, and a function pointer. The function pointer points to a
user function. A null pointer indicates an identity function.

Return to the above example. Let the integrators for the terms of the integral
form be integrate dudv(), integrate uv(), and integrate v() respectively. When
translated into C++, the integrate form looks as follows.

template <class Element>
class ElmIntegralForm {
public:
Matrix formElementMatrix(const Element& e) {
return integrate_dudv(e, 0)+a*integrate uv(e,0);
}
Vector formElementVector(const Element& e) {
return integrate v(e, f);

}

// Other functions, such as Dirichlet boundary conditions, and user function f

+

Readers can easily recognize an one-to-one correspondence between the terms
in the integral form and in the application code. We encapsulate user’s code in
a parameterized class, which is consistent with the integrators. The choice of
element type is then independent of mathematical specification, as it should be.

An Element class encapsulates the nodal coordinates, shape functions, and
Gauss points of an element. Each type of finite element has a corresponding
Element class, but all having the same interface. Note that only the linear system
assembler need ever create instances of an Element class using the topological
and geometrical data from the mesh data structure. In the member functions of
the user class ElmlntegralForm, an Element object is passed in as a parameter.
The user, however, need only pass the object to the integrators as a black box.
The integrators then compute numerical integrations over the element through
its public interfaces. An Element class contains public functions for computing
the value and derivatives of the shape functions and the determinant of the
Jacobian of the element map at the Gauss points, and for retrieving the weights
at the Gauss points.

4.2 Global Matrix and Vector Assembly

Recall that in the global stiffness matrix, each row/column (or row/column
block) corresponds to a vertex in the mesh, and there is a nonzero at row i

and column j if vertex ¢ and j are adjacent in the mesh. It then follows that the
global matrix is symmetric, and its nonzero pattern can be determined statically.
SIFFEA employs the vertex adjacency information to preallocate memory space
for the global matrix, to minimize the number of memory allocations.

We partition the global matrix onto processors by rows. In particular, a
processor owns a row if it owns the corresponding vertices of that row. Linear
system assembly works completely under the new vertex number system, so
that each processor owns some consecutive rows of the global matrix. The global
vector is also partitioned similarly.

To achieve the best scalability, the global matrix and vector are assembled
on all processors concurrently. Each processor is in charge of constructing the el-
ement matrices and vectors of its locally owned elements, by calling the member
function of user class ElmintegralForm. Since all coordinates needed are already
cached in the local memory, computing element matrices does not introduce
extra communication. Subsequently, the element matrices and vectors are then
assembled into the global matrix and vector with moderate amount of commu-
nication.

4.3 Boundary Condition Adjustment

After the element matrices are assembled into the global matrix, the global
matrix is singular, and the boundary conditions must be applied. In the actual
implementation, we adjust the boundary condition during matrix assembly for
the best performance. For clarity, we discuss the boundary conditions separately.

The Neumann boundary conditions are handled in the integral form implic-
itly by the means of boundary integration. For Dirichlet conditions, we adopted
a simple approach, in which each row corresponding to a Dirichlet boundary
vertex is replaced by the boundary condition at that vertex. To preserve the
symmetry of the global matrix, the off-diagonal nonzeros in the column corre-
sponding to that vertex is also eliminated and moved to the right-hand side.
This method has the advantages of not changing the number of equations, and
hence simplifies the implementation. However, it suffers from a tiny amount of
redundant computation. In terms of the user interface, a member function for-
mDirichletBC() must be provided by the user in the class ElmlintegralForm to
compute the boundary condition of a point based on its coordinates and mark.

5 Error Estimation and Adaptive Mesh Refinement

After solving the linear system in parallel, we obtain an initial numerical solution
u. The initial mesh M does not guarantee a good solution, and hence it must be
refined properly [3]. In this section, we consider the issues regarding to adaptive
mesh refinement, and the algorithms for it.

A spacing function such as elps and [fsp [14] specifies how fine a mesh
should be at a particular region. This function can be derived from the previous
numerical results or from the local geometry feature. The spacing function for

a well-shaped mesh should be smooth in the sense that it changes slowly as a
function of distance, i.e., it satisfies the a-Lipschitz condition [11].

Our spacing function is based on Li et al. [11]. First, a refine-coarsening factor
d0p of each point p is obtained from a posterior error analysis, by comparing the
error vector e of the initial solution u with a scalar global error measurement
€. For example, if we choose e to be the magnitude of residual, and € the norm
of e, then J, can be defined as: (1)(ep/e)~2/*, if | < e,/e < L; (2)1/1M*, if
ep/e <1; (3)1/LY* if e,/e > L; where k is the accuracy order of the elements,
and 0 < I <1< L. The new spacing function h is then obtained from J, and
previous spacing[11].

The mesh is then adaptively refined according to h. We would like to use
the structure of the current mesh M as much and as efficiently as possible. The
first step of our algorithm is to compute a maximum spacing function f that
satisfies the new spacing requirement h. Then, we generate a -sphere-packing
of the domain with respect to f using the following procedure [11].

Let S1 = {B(p, f(p)/2)|p € M}. Then sample points in every triangle of the
mesh and let Sy be the set of these spheres defined by them. The spheres in
S1US, are ordered as the following: First the spheres centered on the boundary;
then, all other spheres in S; in increasing order of radii; then followed by all
spheres in S in increasing order of radii. The intersection relation of spheres
defines a Conflict Graph (CG). Let S be the set of spheres which form the
Lexical-First Mazimal Independent Set (LFMIS) [11] of CG. M’ is then the
Delaunay triangulation of the centers of the spheres in S. The generated mesh
is well shaped and the size is within a constant factor of the optimal mesh [11].

We are currently developing a parallel adaptive mesh refinement algorithm,
in which the same idea as the parallel mesh generation is to be used.

6 Experimental Study

The input geometry of our testing case is shown in Fig. 2. The testing mesh is
finer than the one shown in Fig. 2, containing 193881 vertices, 535918 edges, and
342033 triangles. The minimum minimum angle of the triangles is 20.1°. The
model being solved is a Laplace equation. The boundary conditions are set as
follows. The innermost circle has no displacement, and the outermost circle has
unit displacement in their normal directions. All the other boundaries have zero
natural boundary condition. The computational solution of this sample problem
is visualized in Fig. 3, which plots the displacement vectors of the mesh vertices.

We conducted some preliminary experiments on an Origin 2000 with 128 pro-
cessors at NCSA, which is a distributed shared memory machine. Each processor
is a 250 MHz R10000. The native implementation of MPI on Origin was used
during the test. The sparse linear solver used was Conjugate Gradient method,
where the absolute and relative error tolerances were both set at 10~8. The
preprocessing step is done in sequential, including Delaunay triangulation and
refinement.

FALANEE
T,

3
v
il

‘\\‘\\\ «/,/’,H]
A "

m,
M,
7%,
",

,
Zy, . o RANY LW
% Q
gy gt LS

Wity o TS
i \
R

Fig. 2. The input geometry of the testing Fig. 3. Displacement vectors.
problem.

Table 1. Performance results on Origin 2000 at NCSA.

Time in seconds 1 2 4 8 16 32 64 128
Initial distribution| - 0.41 0.35 0.51 0.35 0.48 0.61 0.46
ParMetis (M) 2.0 0.940.68 0.84 2.7 23.559.0
Redistribution (R) 0.50 0.27 0.26 0.25 0.31 1.4 12.3
Linear assembler |12.9 10.7 7.2 5.2 45 39 22 14
Linear solver 269.6 186.2 83.8 47.0 17.1 16.6 6.8 5.5

Total 382.5 199.8 92.6 53.7 23.0 24.0 34.5 78.7
Speedup(w/ M,R) | - 1.9 4.1 7.1 166 159 11.1 49
Speedup(w/o M,R)| - 1.9 4.2 7.2517.518.21 39.8 50.6

We present the execution times of data distribution, mesh partitioning, ma-
trix assembly, and linear solver in Table 1. The results show that the execu-
tion times of data distributions, which involve intensive communication, do not
change much with the number of processors. The mesh partitioner slows down
after 32 processors, maybe due to the following two reasons: (1) The initial vertex
distribution is essentially random, which causes large amount of communication
on large number of processors; (2) the difficulty of the partitioning problem it-
self increases with the number of the processors. For the similar reasons, the
data redistribution also has no speedups for more than 16 processors. The lin-
ear system assembler and the linear solver achieve steady speedups up to 128
processors. To isolate the slowdowns of ParMetis and data redistribution, we
report the speedups of both with and without ParMetis and data redistribution.
The results clearly demonstrate the necessity of parallel mesh generation: After
parallel mesh generation, each processor will contain a mesh of a subdomain,
which already gives a fairly good partition; then a cheaper partition refinement
and data redistribution can be used.

7 Related Work

A lot of work has been done on PFEM in the past few years. Various approaches
have been used by researchers. In this section, we summarize some features of
related work and highlight their differences from SIFFEA.

Archimedes [15], developed at the CMU, is an integrated tool set for solving
PDE problems on parallel computers. It employs algorithms for sequential mesh
generation, partitioning, and unstructured parallel computation as a base for
numerical solution of FEM. The central tool is Author, a data parallelizing
compiler for unstructured finite element problems. The user writes a complete
sequential FEM solver, including linear system assembly and solve, and then
Author automatically parallelizes the solver. Archimedes is written in C.

The Prometheus library [1], is a parallel multigrid-based linear system solver
for unstructured finite element problems developed at Berkeley. It takes a mesh
distributed across multiple processors, and automatically generates all the coarse
representations and operators for standard multigrid methods. Prometheus does
not integrate mesh generation and adaptive mesh refinement.

There is also some work in the area of parallel adaptive mesh refinement.
PYRAMIDJ[12], developed at NASA and written in Fortran 90, uses the edge
bisection to refine a mesh in parallel. To achieve load balancing, it estimates
the size of the refined mesh and redistribute the mesh based on a weighted
scheme before the actual refinement is performed. SUMMA3D[7] developed at
ANL uses the longest edge bisection method to refine a mesh. It applies its own
mesh partition algorithm after mesh refinement.

8 Conclusion and Future Work

We have described SIFFEA, an integrated framework for PFEM, which synthe-
sizes several widely used components in FEM. SIFFEA features a novel design
for specifying the mathematical model which maximizes code reuse and simplifies
the user interface. As an implicit parallel environment, SIFFEA hides all inter-
nal communications from the user. The preliminary experimental results have
achieved good overall speedups up to 32 processors, and reasonable speedups up
to 128 processors for our data distribution and matrix assembly codes. We are
underway of designing and implementing algorithms for parallel mesh generation
and refinement, to achieve better overall scalability. We also plan to extend the
framework to time-dependent and nonlinear problems, and to provide interfaces
with multigrid and direct linear solvers.

Acknowledgments

This work started as a course project with Professor Laxmikant Kale, who has

encouraged us to work on the problem continuously and to put it into publica-
tion. We thank Jiantao Zheng from the TAM Department of UIUC for helpful

discussions on theories of finite element methods. We thank the anonymous ref-
erees for their valuable comments. The authors are supported by the Center
for Simulation of Advanced Rockets funded by the U.S. Department of Energy
under Subcontract B341494.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Apams, M., DEMMEL, J. W., AND TAYLOR, R. L. Prometheus home page.
http://www.cs.berkeley.edu/“madams/Prometheus-1.0, 1999.

BABUSKA, I., AND Aziz, A. K. On the angle condition in the finite element
method. STAM J. Numer. Anal. 18(2) (1976), 214-226.

BABUSKA, 1., ZiENkIEWICZ, O. C., GAGO, J., AND DE A. OLIVEIRA, E. R., Eds.
Accuracy Estimates and Adaptive Refinement in Finite Element Computations.
Wiley Series in Numerical Methods in Engineering. John Wiley, 1986.

Baray, S., Gropp, W. D., McInnEs, L. C., AND SMmITH, B. F. PETSc 2.0
users manual. Tech. Rep. ANL-95/11, Argonne National Laboratory, 1998.
BENTLEY, J. Multidimensional binary search trees used for associative searching.
Communication of the ACM 18, 9 (1975).

BERN, M. W., EpPPSTEIN, D., AND TENG, S.-H. Parallel construction of quadtrees
and quality triangulations. In Algorithms and Data Structures, Third Workshop
(Montréal, Canada, 1993), F. K. H. A. Dehne, J.-R. Sack, N. Santoro, and S. White-
sides, Eds., vol. 709 of Lecture Notes in Computer Science, Springer, pp. 188-199.
FreITAG, L., OLLIVIER-GoOocH, C., JonNEs, M., AND PLASSMANN, P.
SUMMAS3D home page. http://www-unix.mcs.anl.gov/~freitag/SC94demo/, 1999.
GuiBas, L. J., aAND StoLFI, J. Primitives for the manipulation of general sub-
divisions and the computation of Voronoi diagrams. ACM Trans. Graphics 4, 2
(1985), 74-123.

KArypis, G., AND KuMAR, V. Parallel multilevel k-way partitioning scheme
for irregular graphs. TR 96-036, Computer Science Department, University of
Minnesota, Minneapolis, MN 55454, 1996.

Li, X. Y., TeEnG, S. H., AND UNGOR, A. Biting: advancing front meets sphere
packing. the International Journal of Numerical Methods in Engineering (1999).
to appear.

L1, X. Y., TENG, S. H., AND UNGOR, A. Simultaneous refinement and coarsening:
adaptive meshing with moving boundaries. Journal of Engineering with Computers
(1999). to appear.

Lou, J., Norron, C., DeEcyk, V., AND Cwik, T. Pyramid home page.
http://www-hpc.jpl.nasa.gov/APPS/AMR/, 1999.

MILLER, G. L., TENG, S. H., THURSTON, W., AND Vavasis, S. A. Geometric
separators for finite element meshes. STAM J. Scientific Computing 19, 2 (1998),
364-384.

RUPPERT, J. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of Algorithms 18, 3 (1995), 548-585.

SHEWCHUK, J. R., AND O’HALLARON, D. R. Archimedes home page.
http://www.cs.cmu.edu/~quake/arch.html, 1999.

SiBsoN, R. Locally equiangular triangulations. Computer Journal 21 (1978),
243-245.

STRANG, G., AND Fix, G. J. An Analysis of the Finite Element Method. Prentice-
Hall, 1973.

