
Privacy-Preserving Data Aggregation without
Secure Channel: Multivariate Polynomial Evaluation

Taeho Jung†, XuFei Mao‡, Xiang-Yang Li†, Shao-Jie Tang†, Wei Gong‡, and Lan Zhang‡
†Department of Computer Science, Illinois Institute of Technology, Chicago, IL

‡School of Software, TNLIST, Tsinghua University, Beijing

Abstract—Much research has been conducted to securely
outsource multiple parties’ data aggregation to an untrusted
aggregator without disclosing each individual’s privately owned
data, or to enable multiple parties to jointly aggregate their
data while preserving privacy. However, those works either
require secure pair-wise communication channels or suffer from
high complexity. In this paper, we consider how an external
aggregator or multiple parties can learn some algebraic statistics
(e.g., sum, product) over participants’ privately owned data
while preserving the data privacy. We assume all channels are
subject to eavesdropping attacks, and all the communications
throughout the aggregation are open to others. We propose
several protocols that successfully guarantee data privacy under
this weak assumption while limiting both the communication and
computation complexity of each participant to a small constant.

Index Terms—Privacy, aggregation, secure channels, SMC,
homomorphic.

I. INTRODUCTION

The Privacy-preserving data aggregation problem has long
been a hot research issue in the field of applied cryptography.
In numerous real life applications such as crowd sourcing or
mobile cloud computing, individuals need to provide their sen-
sitive data (location-related or personal-information-related) to
receive specific services from the entire system (e.g., location
based services or mobile based social networking services).
There are usually two different models in this problem: 1)
an external aggregator collects the data and wants to conduct
an aggregation function on participants’ data (e.g., crowd
sourcing); 2) participants themselves are willing to jointly
compute a specific aggregation function whose input data is
co-provided by themselves (e.g., social networking services).
However, the individual’s data should be kept secret, and the
aggregator or other participants are not supposed to learn any
useful information about it. Secure Multi-party Computation
(SMC), Homomorphic Encryption (HE) and other crypto-
graphic methodologies can be partially or fully exploited to
solve this problem, but they are subject to some restrictions
in this problem.

Secure Multi-party Computation (SMC) was first formally
introduced by Yao [22] in 1982 as Secure Two-Party Compu-
tation. Generally, it enables n parties who want to jointly and

1The research of authors is partially supported by NSFC under Grant No.
61170216, No. 61228202, and No. 61272426, China 973 Program under Grant
No.2011CB302705, China Postdoctoral Science Foundation funded project
under grant No. 2012M510029, NSF CNS-0832120, NSF CNS-1035894, NSF
ECCS-1247944.

privately compute a function

f(x1, x2, · · · , xn) = {y1, y2, · · · , yn}

where xi is the input of the participant i, and the result yi is
returned to the participant i only. Each result can be relevant
to all input xi’s, and each participant i knows nothing but his
own result yi. One could let the function in SMC output only
one uniform result to all or parts of participants, which is the
algebraic aggregation of their input data. Then the privacy-
preserving data aggregation problem seems to be solved by
this approach. However this actually does not completely solve
our problem because interactive invocation is required for
participants in synchronous SMC (e.g., [13]), which leads to
high communication and computation complexity, which will
be compared in the Section VIII. Even in the asynchronous
SMC, the computation complexity is still too high for practical
applications.

Homomorphic Encryption (HE) allows direct addition and
multiplication of ciphertexts while preserving decryptability.
That is, Enc(m1) ⊗ Enc(m2) = Enc(m1 × m2), where
Enc(m) stands for the ciphertext of m, and ⊗, × refer to
the homomorphic operations on the ciphertext and plaintexts
respectively. One could also try to solve our problem using
this technique, but HE uses the same decryption key for
original data and the aggregated data. That is, the operator
who executes homomorphic operations upon the ciphertexts
are not authorized to achieve the final result. This forbids
aggregator from decrypting the aggregated result, because if
the aggregator is allowed to decrypt the final result, he can also
decrypt the individual ciphertext received, which contradicts
our motivation. Also, because the size of the plaintext space is
limited, the number of addition and multiplication operations
executed upon ciphertexts was limited until Gentry et al.
proposed a fully homomorphic encryption scheme [11] and
implemented it in [12]. However, Lauter et al. pointed out
in [16] that the complexity of general HE is too high to use
in real application. Lauter also proposed a HE scheme which
sacrificed possible number of multiplications for speed, but it
still needs too much time to execute homomorphic operations
on ciphertexts.

Besides the aforementioned drawbacks, both SMC and
HE require an initialization phase during which participants
request keys from key issuers via secure channel. This could be
a security hole since the security of those schemes relies on the
assumption that keys are disclosed to authorized participants

2

Secure Multi-party Computation
Pros different outputs for different participants
Cons high complexity due to the computation based on garbled circuit

frequent interactions required for synchronous SMC
Homomorphic Encryption

Pros efficient if # of multiplcations is restricted
Cons decrypter can decrypt both aggregated data and individual data

trade-off between # of multiplications and complexity exists

only. In this paper, we revisit the classic privacy preserving
data aggregation problem. Our goal is to design efficient
protocols without relying on a trusted authority and secure
pair-wise communication channels. The main contributions of
this paper are:

• Formulation of a model without secure channel: Different
from many other models in privacy-preserving data ag-
gregation problem, our model does not require a secure
communication channel throughout the protocol.

• Efficient protocol in linear time: The total communication
and computation complexity of our work is proportional
to the number of participants n, while the complexities
of many similar works are proportional to n2. We do not
use complicated encryption protocols, which makes our
system much faster than other proposed systems.

• General Multivariate Polynomial Evaluation: We general-
ize the privacy-preserving data aggregation to secure mul-
tivariate polynomial evaluation whose inputs are jointly
provided by multiple parties. That is, our scheme enables
multiple parties to securely compute

f({x1, · · · , xn}) =
m∑

k=1

ck(
n∏

i=1

x
di,k

i)

where the data xi is a privately known data by user i.
Note that our general format of data aggregation can be

directly used to express various statistical values. For example,∑n
i=1 xi can easily be achieved while preserving privacy, and

thus the mean µ =
∑n

i=1 xi/n can be computed with privacy-
preserving. Given the mean µ, nµ2 +

∑n
i=1 (x

2
i − 2xiµ) can

be achieved from the polynomial, and this divided by n is
the population variance. Similarly, other statistical values are
also achievable (e.g., sample skewness,k-th moment, mean
square weighted deviation, regression, and randomness test)
based on our general multi-variate polynomial. Although our
methods are proposed for computing the value of a multi-
variate polynomial function where the input of each participant
is assumed to be an integer, our methods can be generalized
for functions (such as dot product) where the input of each
participant is a vector.

The rest of the paper is organized as follows. We present
the system model and necessary background in Section III. In
Section IV, we analyze the needed number of communications
with secure communication channels when users communicate
randomly. We first address the privacy preserving summation
and production in Section V by presenting two efficient pro-
tocols. Based on these protocols, we then present an efficient
protocol for general multi-variate polynomial evaluation in

Section VI. In Section VII, we present detailed analysis of
the correctness, complexity, and security of our protocols.
Performance evaluation of our protocols is reported in Section
VIII. We compare our protocol with the ones based on SMC
or HE. We then conclude the paper with the discussion of
some future work in Section IX.

II. RELATED WORK

Many novel protocols have been proposed for privacy-
preserving data aggregation or in general secure multi-party
computation. Castelluccia et al. [5] presented a provable secure
and efficient aggregation of encrypted data in WSN, which is
extended from [6]. They designed a symmetric key homomor-
phic encryption scheme which is additively homomorphic to
conduct the aggregation operations on the ciphertexts. Their
scheme uses modular addition, so the scheme is good for CPU-
bounded devices such as sensor nodes in WSN. Their scheme
can also efficiently compute various statistical values such as
mean, variance and deviation. However, since they used the
symmetric homomorphic encryption, their aggregator could
decrypt each individual sensor’s data, and they assumed the
trusted aggregator in their model.

Sheikh et al. [19] proposed a k-secure sum protocol, which
is motivated by the work of Clifton et al. [7]. They sig-
nificantly reduced the probability of data leakage in [7] by
segmenting the data block of individual party, and distributing
segments to other parties. Here, sum of each party’s segments
is his data, therefore the final sum of all segments are sum
of all parties’ data. This scheme can be easily converted to
k-secure product protocol by converting each addition to mul-
tiplication. Similar to our protocol, one can combine their sum
protocol and converted product protocol to achieve a privacy-
preserving multivariate polynomial evaluation protocol. How-
ever, pair-wise unique secure communication channels should
be given between each pair of users such that only the receiver
and the sender know the transmitted segment. Otherwise, each
party’s secret data can be calculated by performing O(k)
computations. In this paper, we remove the limitation of using
secure communication channels.

The work of He et al. [14] is similar to Sheikh et al.’s
work. They proposed two privacy-preserving data aggregation
schemes for wireless sensor networks: the Cluster-Based Pri-
vate Data Aggregation (CPDA) and the Slice-Mix-AggRegaTe
(SMART). In CPDA, sensor nodes form clusters randomly and
collectively compute the aggregate result within each cluster.
In the improved SMART, each node segments its data into n
slices and distributes n− 1 slices to nearest nodes via secure
channel. However, they only supports additions, and since each
data is segmented, communication overhead per node is linear
to the number of slices n.

Shi et al. [20] proposed a construction that n participants
periodically upload encrypted values to an aggregator, and the
aggregator computes the sum of those values without learning
anything else. This scheme is close to our solution to the
multivariate polynomial evaluation problem, but they assumed
a trusted key dealer in their model. The key dealer distributes

3

random key ki to participant i and key k0 to the aggregator,
where Πn

i=0ki = 1, and the ciphertext is in the format of
Ci = ki · gxi . Here, g is a generator, ki is a participant’s key
and xi is his data (for i = 1, 2, · · ·n). Then, the aggregator can
recover the sum

∑n
i=1 xi iff he received ciphertexts from all of

the participants. He computes k0Π
n
i=1Ci to get g

∑n
i=1 xi , and

uses brute-force search to find the
∑n

i=1 xi or uses Pollard’s
lambda method [18] to calculate it. This kind of brute-force
decryption limits the space of plaintext due to the hardness
of the discrete logarithm problem, otherwise no deterministic
algorithm can decrypt their ciphertext in polynomial time. The
security of their scheme relies on the security of keys ki.

In our scheme, the trusted aggregator in [5][6] is removed
since data privacy against the aggregator is also a top concern
these days. Unlike [14][19], we assumed insecure channels,
which enabled us to get rid of expensive and vulnerable key
pre-distribution. We did not segment each individual’s data,
our protocols only incur constant communication overhead for
each participant. Our scheme is also based on the hardness of
the discrete logarithm problem like [20], but we do not trivially
employ brute-force manner in decryption, instead, we employ
our novel efficient protocols for sum and product calculation.

III. SYSTEM MODELS AND PRELIMINARY

A. System Model and Problem Definition

Assume that there are n participants {p1, p2, · · · , pn}, and
each participant pi has a privately known data xi from a
group G1. The privacy-preserving data aggregation problem
(or secure multivariate polynomial evaluation problem) is to
compute some multivariate polynomial of xi jointly or by
an aggregator while preserving the data privacy. Assume that
there is a group of m powers {di,k ∈ Zq | k = 1, 2, · · · ,m}
for each pi and m coefficients {ck | k = 1, · · · ,m, ck ∈ G1}.
The objective of the aggregator or the participants is to com-
pute the following polynomial without knowing any individual
xi:

f(x) =
m∑

k=1

(ck

n∏
i=1

x
di,k

i) (1)

Here vector x = (x1, x2, · · · , xn). For simplicity, we assume
that the final result f(x) is positive and bounded from above
by a large prime number P . We assume all of the powers
di,k’s and coefficients ck’s are open to any participant as well
as the attackers. This is a natural assumption since the powers
and coefficients uniquely determine a multivariate polynomial,
and the polynomial is supposed to be public.

We employ two different models in this paper: One Aggre-
gator Model and Participants Only Model. These two models
are general cases we are faced with in real applications.

One Aggregator Model: In the first model, we have one
aggregator A who wants to compute the function f(x). We
assume the aggregator is untrustful and curious. That is, he
always eavesdrops the communications between participants
and tries to harvest their input data. We also assume partici-
pants do not trust each other and that they are curious as well,

however, they will follow the protocol in general. We could
also consider having multiple aggregators, but this is a simple
extension which can be trivially achieved from our first model.
We call this model the One Aggregator Model. Note that in
this model, any single participant pi is not allowed to compute
the final result f(x).

Participants Only Model: The second model is similar to
the first one except that there are n participants only and there
is no aggregator. In this model, all the participants are equal
and they all will calculate the final aggregation result f(x).
We call this model the Participants Only Model.

In both models, participants are assumed not to collude with
each other. Relaxing this assumption is one of our future work.

B. Additional Assumptions

We assume that all the communication channels in our
protocol are insecure. Anyone can eavesdrop them to inter-
cept the data being transferred. To address the challenges of
insecure communication channel, we assume that the discrete
logarithm problem is computationally hard if: 1) the orders of
the integer groups are large prime numbers; 2) the involved
integer numbers are large numbers. The security of our scheme
relies on this assumption. We further assume that there is
a secure pseudorandom function (PRF) which can choose
a random element from a group such that this element is
computationally indistinguishable to uniform random.

We also assume that user authentication was in place to au-
thenticate each participants if needed. We note that Dong et al.
[9] investigated verifiable privacy-preserving dot production of
two vectors and Zhang et al. [24] proposed verifiable multi-
party computation, both of which can be partially or fully
exploited later. Designing privacy preserving data aggregation
while providing verification of the correctness of the provided
data is a future work.

C. Discrete Logarithm Problem

Let G ⊂ Zp be a cyclic multiplicative integer group, where
p is a large prime number, and g be a generator of it. Then, for
all h ∈ G, h can be written as h = gk for some integer k, and
any integers are congruent modulo p. The discrete logarithm
problem is defined as follows: given an element h ∈ G, find
the integer k such that gb = h.

The famous Decision Diffie-Hellman (DDH) problem pro-
posed by Diffie and Hellman in [8] is derived from this
assumption. DDH problem is widely exploited in the field
of cryptography (e.g., El Gamal encryption [10] and other
cryptographic security protocols such as CP-ABE [3]) as
discussed in [4]. Our protocol is based on the assumption that
it is computational expensive to solve the discrete logarithm
problem as in other similar research works ([15], [17], [24]).

IV. ACHIEVING SUM UNDER SECURED COMMUNICATION
CHANNEL

Before introducing our aggregation scheme without secure
communication channel, we first describe the basic idea of

4

randomized secure sum calculation under secured communi-
cation channel (It can be trivially converted to secure product
calculation). The basic idea came from Clifton et al. [7], which
is also reviewed in [21], but we found their setting imposed
unnecessary communication overhead, and we reduced it
while maintaining the same security level. Assume participants
p1, p2, · · · ,pn are arranged in a ring for computation purpose.
Each participant pi itself breaks its privately owned data block
xi into k segments si,j such that the sum of all k segments
is equal to the value of the data block. The value of each
segment is randomly decided. For sum, we can simply assign
random values to segments si,j (1 ≤ j ≤ k − 1) and let
si,k = xi −

∑k−1
j=1 si,j . Similar method can be used for

product. In this scheme, each participant randomly selects
k − 1 participants and transmit each of those participants a
distinctive segment si,j . Thus at the end of this redistribution
each of participants holds several segments within which one
segment belongs to itself and the rest belongs to some other
participants. The receiving participant adds all its received
segments and transmits its result to the next participant in
the ring. This process is repeated until all the segments of all
the participants are added and the sum is announced by the
aggregator.

Recall that there are n participants and each participant
randomly selects k− 1 participants to distribute its segments.
Clearly, a larger k provides better computation privacy, how-
ever it also causes larger communication overhead which is
not desirable. In the rest of this section, we are interested at
finding an appropriate k in order to reduce the communication
cost while preserving computation privacy.

In particular, we aim at selecting the smallest k to ensure
that each participant holds at least one segment from the other
participants after redistribution. We can view this problem
as placing identical and indistinguishable balls into n distin-
guishable (numbered) bins. This problem has been extensively
studied and well-understood and the following lemma can be
proved by simple union bound:

Lemma IV.1. Let ϵ ∈ (0, 1) be a constant. If we randomly
place (1 + ϵ)n lnn balls into n bins, with probability at least
1− 1

nϵ , all the n bins are filled.

Assume that each participant will randomly select k − 1
participants (including itself) for redistribution. By treating
each round of redistribution as one trial in coupon’s collector
problem, we are able to prove that each participant only needs
to redistribute ((1 + ϵ)n lnn)/n = (1 + ϵ) lnn segments to
other participants to ensure that every participant receives at
least one segment with high probability. However, different
from previous assumption, each participant will select k − 1
participants except itself to redistribute its segments in our
scheme. Therefore, we need one more round redistribution for
each participant to ensure that every participant will receive at
least one copy from other participants with high probability.

Theorem IV.2. Let ϵ ∈ (0, 1) be a constant. If each par-
ticipant randomly selects (1 + ϵ) lnn + 1 participants to

redistribute its segments, with probability at least 1 − 1
nϵ ,

each participant receives at least one segment from the other
participants.

This theorem reveals that by setting k to the order of lnn,
we are able to preserve the computation privacy. Compared
with traditional secure sum protocol, our scheme dramatically
reduce the communication complexity. However, we assume
that the communication channel among participants are secure
in above scheme. In the rest of this paper, we try to tackle the
secure aggregation problem under unsecured channels.

V. EFFICIENT PROTOCOLS FOR SUM AND PRODUCT

In this section, we present two novel calculation protocols
for each model which preserve individual’s data privacy.
These four protocols will serve as bases of our solution to
privacy-preserving data aggregation problem. For simplicity,
we assume all coefficients ck (k ∈ [1,m]) and powers
di,k (i ∈ [1, n], k ∈ [1,m]) of the polynomial f(x) =∑m

k=1 ck(
∏n

i=1 x
di,k

i) are known to every participant pi. Table
I summarizes the main notations used in this paper.

TABLE I
NOTATIONS OF SYMBOLS USED IN OUR PROTOCOLS

pi i-th participant in data aggregation
A Aggregator
G1,G2 multiplicative cyclic integer groups
g1, g2 generators of above groups
di,k power of x

di,k
i

ck coefficient of ck
∑n

i=1 x
di,k
i

ri, r̂i randomly chosen numbers

A. Product Protocol - Participants Only Model

Firstly, we assume that all participants together want to
compute the value f(x) =

∏
i xi given their privately known

values xi ∈ Zp. The basic idea of our protocol is to find some
random integers Ri ∈ Zp such that

∏
i Ri = 1 mod p and

the user pi can compute the random number Ri easily while it
is computationally expensive for other participants to compute
the value Ri.

Let G1 ⊂ Zp be a cyclic multiplicative group of prime
order p and g1 be its generator. Then our protocol for privacy
preserving production Πixi has the following steps: Setup,
Encrypt, Product.

Setup → ri ∈ Zq, Ri = (g
ri+1

1 /g
ri−1

1)ri ∈ G1

We assume all participants are arranged in a ring for
computation purpose. The ring can be formed according to
the lexicographical order of the MAC address or even the
geographical location. It is out of our scope to consider this
problem. Each pi(i ∈ {1, · · · , n}) randomly chooses a secret
integer ri ∈ Zq using PRF and calculates a public parameter
gri1 ∈ G1. Then, each pi shares Yi = gri1 mod p with pi−1

and pi+1 (here pn+1 = p1 and p0 = pn).
After a round of exchanges, the participant pi computes the

number Ri = (Yi+1/Yi−1)
ri = (g

ri+1

1 /g
ri−1

1)ri mod p and

5

g
rn−1

1

grn1

gr11gr11
gr21

pn−1

pi+1

gri1

p1

grn1

g
r(i+1)

1

p2

pi

pi−1

gri1 g
r(i−1)

1

gr21

pn

grn1

grA1

gr11gr11
gr21

pn

pi+1

gri1

A p1

g
r(i+1)

1

p2

pi

pi−1

gri1 g
r(i−1)

1

grA1

gr21

grn1

(a)Participants only model (b) One aggregator model

Fig. 1. Communications in Setup

keeps this number Ri secret. Note p1 calculates (gr21 /grn1)r1

and pn calculates (gr11 /g
r(n−1)

1)rn .
Encrypt(xi) → Ci ∈ G1

When a product is needed, every pi creates the ciphertext:

Ci := xi ·Ri = xi · (gri+1

1 /g
ri−1

1)ri mod p

where xi is his private input data. If he does not want to
participate in the multiplication, he can simply set xi := 1.
Then, he broadcasts this ciphertext.

Ci

Cn

Cn
C(n−1)

C(i+1)

pn

C2

C(i−1)

p2

p1

p(n−1)

p(i+1)

pi

p(i−1)

p2
p(n−1)

p1

p(i+1) p(i−1)

pi

A

Ci

C1

C2

pn
Cn

C(n−1)

C(i−1)

C(i+1)

(a)Participants only model (b) One aggregator model

Fig. 2. Communications in Encrypt

Product({C1, C2, · · · , Cn}) →
∏n

i=1 xi ∈ G1

Any pi, after receiving n ciphertexts {C1, C2, · · · , Cn}
from all of the pi’s, calculates the following product:

n∏
i=1

Ci =
n∏

i=1

xi mod p

To make sure that we can get a correct result
∏n

i=1 xi

without modular, we can choose p to be large enough, say
p ≥ Mn, where M is a known upper bound on xi.

B. Product Protocol - One Aggregator Model

We use the same group used in Participants Only Model.
Everything is same as the protocol above, except that the
aggregator A acts as the (n + 1)-th participant pn+1. In
other words, there are n + 1 “participants” now. The second
difference is that, each participant pi will send the ciphertext
Ci to the aggregator, instead of broadcasting to all participants.
The aggregator A will not announce its random number
Rn+1 = (gr11 /grn1)rn+1 to any regular participants.

Each participant pi, i ∈ [1, n], sends the ciphertext Ci =
Ri · xi to the aggregator A. The aggregator A then calculates

(gr11 /grn1)rn+1

n∏
i=1

xi =

n∏
i=1

xi

to achieve the final product, where rn+1 is the random number
generated by A.

C. Sum Protocol - Participants Only Model

Here we assume that all participants together want to
compute the value f(x) =

∑n
i=1 xi given their privately

known values xi ∈ Zp. It seems that we can still exploit
the method used for computing product by finding random
numbers Ri such that

∑n
i=1 Ri = 0. We found that it is

challenging to find such a number Ri while preserve privacy
and security. The basic idea of our protocol is to convert the
sum of numbers into production of numbers. Previous solution
[20] essentially applied this approach also by computing the
product of

∏n
i=1 g

xi = g
∑n

i=1 xi . Then find
∑n

i=1 xi by
computing the discrete logarithm of the product. As discrete
logarithm is computational expensive, we will not adopt this
method. Instead, we propose a computational efficient method
here.

In a nutshell, we exploit the modular property below to
achieve the privacy preserving sum protocol.

(1 + p)m =

m∑
i=0

(
m

i

)
pi = 1 +mp mod p2 (2)

From the Equation (2), we conclude that
n∏

i=1

(1 + p)xi =

n∏
i=1

(1 + p · xi) = (1 + p
∑
i

xi) mod p2.

Our protocol works as follows. Let G2 ⊂ Zp2 be a cyclic
multiplicative group of order p(p− 1) and g2 be its generator,
where p is a prime number. Then our protocol for privacy
preserving summation Πixi has the following steps: Setup,
Encrypt, Sum.

Setup → ri ∈ Zpq, Ri = (g
ri+1

2 /g
ri−1

2)ri

Remember that participants are arranged in a circle. pi

uses PRF to randomly pick a secret number ri ∈ Zpq , and
calculates a public parameter gri2 . Then, he shares gri2 with
pi+1 and pi−1. Similar to the product calculation protocol, pn

shares his public parameter with his p(n−1) and p1, and p1

shares his public parameter with p2 and pn.
After a round of exchanges, each pi calculates Ri =

(g
ri+1

2 /g
ri−1

2)ri and keeps this secret.

Encrypt(xi, Ri) → Ci ∈ G2

This algorithm crosses over two different integer groups:
G1 and G2. Each pi first calculates (1+xi ·p) mod p2. Note
that xi ∈ G1, and it is temporarily treated as an element in
G2, but this does not affect the last value of the result since
operations in G2 are modulo p2. Then, he multiplies the secret
parameter Ri = (g

ri+1

2 /g
ri−1

2)ri to it to get the ciphertext:

Ci = (1 + xi · p) ·Ri

6

After all, each participant broadcasts his ciphertext to each
others.

Sum({C1, C2, · · · , Cn}) →
∑n

k=1 xi ∈ G1.
Each participant, after receiving the ciphertexts from all of

other participants, calculates the following C ∈ G2:

C =

n∏
i=1

Ci = (1 + p

n∑
i=1

xi) mod p2

Then, he calculates (C − 1)/p mod p =
∑n

i=1 xi mod p to
recover the final sum.

D. Sum Protocol - One Aggregator Model

Similar to the product protocol for One Aggregator Model,
everything is the same except that A acts as (n+1)-th partic-
ipant in this model. The participants send their ciphertexts to
A, and A calculates

C = (gr12 /grn2)rn+1

n∏
i=1

Ci = (1 + p
n∑

i=1

xi) mod p2

Then, he can compute the final sum result
∑n

i=1 xi.

VI. EFFICIENT PROTOCOLS FOR GENERAL MULTIVARIATE
POLYNOMIAL

Now we are ready to present our efficient privacy preserving
protocols for evaluating a multivariate polynomials. Our proto-
col is based on the efficient protocols for sum and production
presented in the previous section.

A. One Aggregator Model

The calculation of the polynomial 1 can be divided into nm
multiplications and m additions. In this section we show how
to conduct a joint calculation of m products and one sum while
preserving individual’s data privacy in the One Aggregator
Model. Different from the protocols in the Section V, those
broadcast ciphertexts are not broadcast this time, they are sent
to the aggregator instead. The purpose of this small change
is only for reducing communication complexity, and from the
security perspective, this is just same as broadcasting since
our communication channels are insecure.

1) Basic Scheme: All the participants execute Setup to
initiate the system. Then, for each k, all the participants need
to calculate x

di,k

i ’s first, where di,k’s are powers specified by
the aggregator A, and run the aforementioned product protocol
for each k ∈ [1,m]. If A does not need the data from some
participant pi, A can set his powers to be 0, and if pi does
not want to participate in the aggregation, he can simply set
his input as 1.

Then, the aggregator is able to calculate∑m
k=1 (ck

∏n
i=1 x

di,k

i).
2) Advanced Scheme: The above Basic Scheme pre-

serves data privacy in our problem as long as there are
at least two x

di,k

i ’s not equal 1 in each following set
{xd1,k

1 , x
d2,k

2 · · · , xdn,k
n }k∈{1,··· ,m}, which will be further dis-

cussed in the Section VII-B1. Therefore, we exploit the
aforementioned sum protocol to achieve Secure Scheme.

All the participants execute Setup. Then, when executing
the Encrypt of the product protocol, each participant checks
whether his input is the only one not equal to 1 for each
product

∏n
i=1 x

di,l

i (i.e., his di,l is the only one not equal to 0
in {d1,l, d2,l, · · · , dn,l}). If it is, the product equals to his input
data, which will directly disclose his data, so he skips it. The
elements that are omitted form a set Dsum = {xdi,k

i }k∈Isum ,
where Isum is the set of indices k’s corresponding to the
elements in Dsum. For each x

di,k

i ∈ Dsum, find his owner
pi and add him into the set Psum. There can be duplicate
pi’s in the set Psum. The pi’s in Psum need to calculate the
following without knowing each other’s input:∑

pi∈Psum

ckx
di,k

i

They are called sum participants, and we assume they are
ordered by non-decreasing order of their indices in Psum and
arranged in a circle. In what follows, we denote pi’s successor
and predecessor in the Psum as pi,suc and pi,pre respectively.
These sum participants run the sum protocol to encrypt their
data and sends to the aggregator A.

A, after receiving all the sum ciphertexts, is able to
calculate

∑
k∈Isum

ckx
di,k

i . Then, he is able to calculate∑m
k=1 (ck

∏n
i=1 x

di,k

i).

B. Participants Only Model

From the One Aggregator Model, we know the combination
of two protocols (product protocol and second sum protocol)
proposed in Section V gives the best scheme. Therefore we
only show the scheme which employs both product and sum
protocols.

Advanced Scheme: Every participant executes Setup, and
when he executes the Encrypt of the product protocol, he
conducts the same examination as in the Section VI-A2 above.
Then, the sum participants run the sum protocol to share
their sum with each other. Finally, all participants are able to
calculate

∑m
k=1 (ck

∏n
i=1 x

di,k

i) based on others’ ciphertexts.

VII. CORRECTNESS, COMPLEXITY AND SECURITY
ANALYSIS

Here we provide rigorous correctness proofs, complexity
and security analysis of the protocols presented in this paper.
We also discuss when our protocols could leak information
about the privately known data xi and provide methods to
address this when possible.

A. Correctness

Next we show the correctness of the product protocol in
Section V.

1) Product Protocol: We only provide the analysis for Par-
ticipants Only model, but the correctness in One Aggregator
model is easily derivable from it. After participants receive
{C1, · · · , Cn} they conduct the following calculation:

7

n∏
i=1

Ci =
n∏

i=1

(xi(g
ri+1

1 /g
ri−1

1)ri)

= (
n∏

i=1

xi)
n∏

i=1

((g
ri+1

1 /g
ri−1

1)ri)

= (

n∏
i=1

xi)g
∑n

i=1 (ri+1ri−riri−1)
1 =

n∏
i=1

xi

Here rn+1 = r1, r0 = rn. Thus, the products are correctly
calculated.

2) Sum Protocol: Similar to above, we only discuss the
correctness for Participants Only Model. After participants
receive {C1, · · · , Cn}, they conduct the following calculation:

C =
n∏

i=1

Ci =
n∏

i=1

(1 + xip)(g
ri+1

2 /g
ri−1

2)ri

= (1 + p
n∑

i=1

xi)g
∑n

i=1 ri+1ri−riri−1

2

= (1 + p
n∑

i=1

xi) mod p2

Thus, (C − 1)/p mod p is indeed equal to
∑n

i=1 xi mod p.

B. Security

We discuss the security of the schemes in both One Aggre-
gator Model and Participants Only Model in this section.

1) Special Case of Products Calculation: As mentioned
in the Section VI-A2, if there is only one ciphertext di,k
is not equal to 0 in any set {d1,k, d2,k · · · , dn,k}k∈{1,··· ,m}
during the products calculation, the individual data xi can be
disclosed to others. This is because:
(suppose that only di,k is the only ciphertext not equal to 1 in
the set {d1,k, d2,k · · · , dn,k})

Decrypt({C1,k, C2,k · · · , Cn,k}) = xi

and xi is disclosed to others if ck ̸= 0. Therefore, in this
case, the participants should conduct additional secure sum
calculation before sending the ciphertexts to others.

2) Randomness and Group Selection: In fact, in the product
calculation protocol, the group G1 should be carefully selected
to make the input xi indistinguishable to a random element.
We select a cyclic multiplicative group G1 ⊂ Zp of prime
order q as follows. Find two large prime numbers p, q such
that p = kq + 1 for some integer k. Then, find a generator
h for Zp, and set g1 := h(p−1)/q modulo p (clearly g1 ̸= 1
modulo p). Then group G1 is generated by g1, whose order is
q. Here the powers of the numbers in G1 belong to an integer
group Zq .

Next, we show that any input data xi is computationally
indistinguishable to any random element chosen from Zp via
PRF.

For any i, we have

Ci = xi(g
ri+1

1 /gri−1)ri = xig
(ri+1−ri−1)ri
1 .

Let xi be gχi

1 and ri+1 − ri−1 be γi, where χi ∈ Zq and
γi ∈ Zq (This is possible since g1 is a generator of the group
G1). Then, Ci = gχi

1 gγiri
1 .

Theorem VII.1. ∀xi, ri ∈ Zq , ∃r̂i, χ̂i ∈ Zq such that

gχi

1 gγiri
1 = gχ̂i

1 gγir̂i
1 mod p.

Proof: For any ri, r̂i ∈ Zq , there exists χ̂i ∈ Zq such
that:

γi(ri − r̂i) = χ̂i − χi mod q

because q and (ri − r̂i) are relatively prime (q is a prime
number). Then we have χ̂i ∈ Zq for any ri ∈ Zq such that:

g
γi(ri−r̂i)
1 = gχ̂i−χi

1 mod p ⇒ gχi

1 gγiri
1 = gχ̂i

1 gγir̂i
1 mod p

This implies that given the ciphertext Ci, any value xi is a
possible valid data that can produce this ’ciphertext’ Ci.

According to the Theorem VII.1, we can deduce that χi

has the same level of randomness as ri. Therefore, gχi

1 is
indistinguishable to a random element in G1 from other
participants’ or attackers’ perspective, which implies

Theorem VII.2. The input xi is computationally indistin-
guishable to a random element chosen from G1.

3) Closure and Group Selection: We need to guarantee
that all the multiplications in the sum protocol are closed in
G2. Since (1+ xip) · (gr+i

2 /gr−1
2)ri is the only multiplication

throughout the sum protocol, we must carefully choose the
group G2 such that 1+xip ∈ G2. We let G2 ⊂ Zp2 be a cyclic
multiplicative group generated by h, which is the generator
of Zp. Then, the order of G2 is p(p − 1), and the powers
of the numbers in G2 belong to an integer group Zp(p−1).
Since G2 = Zp2 − {x|x = k · p, for some integer k} and
∀k : 1 + xip ̸= kp, 1 + xip belongs to the group G2.

4) Restriction of the Product and Sum Protocol: In both
protocols, we require that number of participants is at least 3
in Participants Only Model and at least 2 in One Aggregator
Model. In Participants Only Model, if there are only 2 partic-
ipants, privacy is not preservable since it is impossible to let
p1 know x1 + x2 or x1x2 without knowing x2. However, in
One Aggregator Model, since only the aggregator A knows
the final result, as long as there are two participants, A is not
able to infer any individual’s input data.

C. Complexity

We discuss the computation and communication complexity
of the Advanced Scheme for each model in this section.

1) One Aggregator Model: It is easy to see that the
computation complexities of Setup, Encrypt and Product of
the product protocol are O(1), O(1) and O(n) respectively.
Also, Encrypt is executed for m times by each participant
and Product is executed for m times by the aggregator in the
Advanced Scheme.

Every participant and the aggregator exchanges gri’s with
each adjacent neighbor in the ring, which incurs communi-
cation of O(|p|) bits in Setup, where |p| represents the bit

8

length of p. In Encrypt, each participant sends m cipher-
texts ck

∏n
i=1 x

di,k

i ’s to the aggregator, so the communication
overhead of Encrypt is O(m|p|) bits. Since n participants
are sending the ciphertexts to the aggregator, the aggregator’s
communication overhead is O(mn|p|).

Similarly, the computation complexities of Setup, Encrypt
and Sum in the sum protocol are O(1), O(1) and O(m)
respectively, and they are executed for only once in the
scheme. Hence, the communication overhead of Setup, En-
crypt and Sum are O(|p2|) bits, O(|p2|) bits and O(m|p2|)
bits respectively (|p2| is the big length of p2).

Note that |p2| = 2|p|. Then, the total complexity of
aggregator and participants are as follows:

TABLE II
ONE AGGREGATOR MODEL

Aggregator Computation Communication (bits)
Product (Product) O(mn) O(mn|p|)

Sum (sum) O(m) O(m|p|)
Per Participant Computation Communication (bits)

Setup (Product) O(1) O(|p|)
Encrypt (Product) O(m) O(m|p|)

Setup (sum) O(1) O(|p|)
Encrypt (sum) O(1) O(|p|)

2) Participants Only Model: In the Participants Only
Model, participants broadcast ciphertexts to others, and cal-
culates the products and sums themselves, therefore the com-
plexities are shown as below:

TABLE III
PARTICIPANTS ONLY MODEL

Per Participant Computation Communication (bits)
Setup (Product) O(1) O(|p|)

Encrypt (Product) O(m) O(mn|p|)
Product (Product) O(mn) O(mn|p|)

Setup (sum) O(1) O(|p|)
Encrypt (sum) O(1) O(m|p|)

Sum (sum) O(m) O(m|p|)

Note that the communication overhead is balanced in the
Participants Only Model, but the system-wide communication
overhead is increased a lot. In the One Aggregator Model, the
system-wide communication overhead is:

O(mn|p|) +O(m|p|) + n ·O(|p|) = O(mn|p|) (bits)

However, in the Participants Only Model, the system-wide
communication complexity is:

n ·O(|p|)+n ·O(m|p|)+n ·O(mn|p|) = O(mn2|p|) (bits)

VIII. PERFORMANCE EVALUATION BY IMPLEMENTATION

We conduct extensive evaluations of our protocols. Our
simulation result shows that the computation complexity of
our protocol is indeed linear to the number of participants.
To simulate and measure the computation overhead, we used
GMP library to implement large number operations in our
protocol in a computer with Intel i7-2620M @ 2.70GHz
CPU and 2GB of RAM, and each result is the average time

measured in the 100,000 times of executions. Also, the input
data xi is of 20-bit length, the q is of 256-bit length, and p
is roughly of 270-bit length. That is, xi is a number from
[0, 220 − 1] and q is a uniform random number chosen from
[0, 2256 − 1].

In this simulation, we measured the total overhead of our
novel product protocol and sum protocol (the second sum
protocol) proposed in the Section V). Here, we measured the
total computation time spent in calculating the final result
of n data (including encryption by n participants and the
decryption by the aggregator). Since we only measure the
computation overhead, there is no difference between One
Aggregator Model and Participants Only Model.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

tim
e

(m
ic

ro
se

co
nd

s)

of participants

 Our Product

0 20 40 60 80 100

0

50

100

150

200

250

300

350

400

tim
e

(m
ic

ro
se

co
nd

s)

of participants

 Our Summation

(a) product (b) sum
Fig. 3. Running time for product and sum calculation.

First of all, the computation overhead of each protocol is
indeed proportional to the number of participants. Also, the
sum protocol needs much more time. This is natural because
parameters in the sum protocol are in Zp2 , which are twice of
the parameters in the product protocol in big length (they are
in Zp).

Multivariate polynomial evaluation is composed of m prod-
ucts and one sum, so its computation overhead is barely the
combination of the above two protocols’ overhead.

We further compare the performance of our protocol with
other existing multi party computation system implemented
by Ben et al. [2] (FairplayMP). They implemented the BMR
protocol [1], which requires constant number of communica-
tion rounds regardless of the function being computed. Their
system provides a platform for general secure multi-party
computation (SMC), where one can program their secure com-
putation with Secure Function Definition Language (SFDL).
The programs wrote in SFDL enable multiple parties to jointly
evaluate an arbitrary sized boolean circuit. This boolean circuit
is same as the garbled circuit proposed by Yao’s 2 Party
Computation (2PC) [22][23].

In Ben’s setting, where they used a grid of computers, each
with two Intel Xeon 3GHz CPU and 4GB of RAM, they
achieved the computation time as following tables when they
have 5 participants:

TABLE IV
RUN TIME (MILLISECONDS) OF FAIRPLAYMP[2]

Gates 32 64 128 256 512 1024
Per Participant 64 130 234 440 770 1394

One addition of two k-bit numbers can be expressed with

9

k + 1 XOR gates and k AND gates. Therefore, if we set
the length of input data as 20 bits (which is approximately
1 million), we need 41 gates per addition in FairplayMP
system. When we conduct 26 additions (which is equivalent
to 1066 gates) in our system, the total computation time
is 72.2 microseconds, which is 2 × 104 times faster than
the FairplayMP, which needs 1.394 seconds to evaluate a
boolean circuit of 1024 gates. Even if we did not consider
the aggregator’s computation time in FairplayMP because they
did not provide pure computation time (they provided the total
run time including communication delay for the aggregator),
our addition is already faster than their system. Obviously, the
multiplication is much faster since it is roughly 8 times faster
than the addition in our system.

We also compare our system with an efficient homomorphic
encryption implementation [16]. Lauter et al. proposed an
efficient homomorphic encryption scheme which limits the
total number of multiplications to a small number less than
100. If only one multiplication is allowed in their scheme
(the fastest setting) and length of the modulus q is 1024, it
takes 1 millisecond to conduct an addition and 41 milliseconds
to conduct a multiplication. In our system, under the same
condition, it takes 16.2 microseconds to conduct an addition
and 0.7 microseconds to conduct a multiplication, which are
approximately 100 times and 6×104 times faster respectively.
They implemented the system in a computer with two Intel
2.1GHz CPU and 2GB of RAM. Even if considering our
computer has a higher clock CPU, their scheme is still much
slower than ours.

TABLE V
COMPARISON BETWEEN [16] AND OUR SYSTEM

Addition Multiplication
Lauter [16] 1 millisecond 41 milliseconds

Ours 16.2 microseconds 0.7 microseconds

The purpose of above two systems are quite different
from ours, the first FairplayMP is for general multi-party
computation and the second homomorphic encryption system
is for general homomorphic encryption. They also provide a
much higher level of security than ours since they achieve
differential privacy, however, the comparison above does show
the high speed of our system while our security level is still
acceptable in real life applications, and this is one of the main
contributions of this paper.

IX. CONCLUSION

In this paper, we successfully achieve a privacy-preserving
multivariate polynomial evaluation without secure communi-
cation channels by introducing our novel secure product and
sum calculation protocol. We also show in the discussion
that our proposed construction is efficient and secure enough
to be applicable in real life. However, our scheme discloses
each product part in the polynomial, which gives unnecessary
information to attackers. Therefore, our next research will be
minimizing the information leakage during the computation

and communication. Another future work is to design privacy
preserving data releasing protocols such that certain functions
can be evaluated correctly while certain functional privacy can
be protected.

REFERENCES

[1] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of the twenty-second annual ACM symposium
on Theory of computing, 1990, pp. 503–513.

[2] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for
secure multi-party computation,” in Proceedings of the 15th ACM
conference on Computer and communications security, 2008, pp. 257–
266.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in IEEE Symposium on Security and Privacy, 2007,
pp. 321–334.

[4] D. Boneh, “The decision diffie-hellman problem,” Algorithmic Number
Theory, pp. 48–63, 1998.

[5] C. Castelluccia, A. Chan, E. Mykletun, and G. Tsudik, “Efficient
and provably secure aggregation of encrypted data in wireless sensor
networks,” ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 3,
p. 20, 2009.

[6] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of
encrypted data in wireless sensor networks,” in The Second Annual In-
ternational Conference on Mobile and Ubiquitous Systems: Networking
and Services, 2005, pp. 109–117.

[7] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu, “Tools for
privacy preserving distributed data mining,” ACM SIGKDD Explorations
Newsletter, vol. 4, no. 2, pp. 28–34, 2002.

[8] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[9] W. Dong, V. Dave, L. Qiu, and Y. Zhang, “Secure friend discovery in
mobile social networks,” in IEEE INFOCOM, 2011, pp. 1647–1655.

[10] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in Advances in Cryptology, Springer, 1985, pp.
10–18.

[11] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Pro-
ceedings of the 41st annual ACM symposium on Theory of computing,
2009, pp. 169–178.

[12] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” Advances in Cryptology–EUROCRYPT 2011, pp.
129–148, 2011.

[13] O. Goldreich, “Secure multi-party computation,” Manuscript. Prelimi-
nary version, 1998.

[14] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher, “Pda:
Privacy-preserving data aggregation in wireless sensor networks,” in
IEEE INFOCOM, 2007, pp. 2045–2053.

[15] T. Jung, X. Li, Z. Wan, and M. Wan, “Privacy preserving cloud data
access with multi-authorities,” in IEEE INFOCOM, 2013.

[16] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic
encryption be practical,” Preprint, 2011.

[17] X. Li and T. Jung, “Search me if you can: privacy-preserving location
query service,” in IEEE INFOCOM, 2013.

[18] A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of applied
cryptography, CRC, 1997.

[19] R. Sheikh, B. Kumar, and D. Mishra, “Privacy preserving k secure sum
protocol,” Arxiv preprint arXiv:0912.0956, 2009.

[20] E. Shi, T. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-preserving
aggregation of time-series data,” in Proceedings of NDSS, vol. 17, 2011.

[21] V. Verykios, E. Bertino, I. Fovino, L. Provenza, Y. Saygin, and
Y. Theodoridis, “State-of-the-art in privacy preserving data mining,”
ACM Sigmod Record, vol. 33, no. 1, pp. 50–57, 2004.

[22] A. Yao, “Protocols for secure computations,” in Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, 1982, pp. 160–
164.

[23] ——, “How to generate and exchange secrets,” in 27th Annual Sympo-
sium on Foundations of Computer Science, 1986, pp. 162–167.

[24] L. Zhang, X. Li, Y. Liu, and T. Jung, “Verifiable private multi-party com-
putation: ranging and ranking,” in IEEE INFOCOM Mini-Conference,
2013.

