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Abstract. Due to the variety of the data source and the veracity of their
trustworthiness, it is challenging to solve the distributed optimization
problems in the big data applications owing to the privacy concerns.
We propose a framework for distributed multi-agent greedy algorithms
whereby any greedy algorithm that fits our requirement can be converted
to a privacy-preserving one. After the conversion, the private information
associated with each agent will not be disclosed to anyone else but the
owner, and the same output as the plain greedy algorithm is computed
by the converted one. Our theoretic analysis shows the security of the
framework, and the implementation also shows good performance.

1 Introduction
Many optimization problems in real world are very challenging, but they are of
great usefulness at the same time due to the data-driven decision making in the
Business Intelligence (BI). Job scheduling problems in any network or operat-
ing system, profit maximization problems in any resource-bounded environment
or cost minimization problems in deadline-constrained cases are good exam-
ples. These problems are usually modeled as classic optimization problems (e.g.,
Knapsack problem, Minimum Spanning Tree problem, Weighed Set Cover prob-
lem, Travelling Salesman problem) whose solutions are widely known, and the
optimum solutions are derived correspondingly. Because data comes from mul-
titudes of parties in the big data, the problem to be solved is often a distributed
optimization, and a distributed greedy algorithm is desired, whose input comes
from different users. However, to have it working correctly, various information
needs to be gathered to make decisions at each iteration, and such information
is related to various private data in many real-life problems, which makes users
reluctant to provide the necessary input data [1–3]. Naturally privacy implica-
tion emerges and the following non-trivial job is expected: same solution needs
to be derived without having access to raw sensitive information.

In this paper, we start from the observation that there exists a huge class
of problems that can be solved or approximated by multi-agent greedy algo-
rithms, which we denote as greedy-class problems. In such algorithms, each
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agent possesses an instance which may or may not be selected in the opti-
mum/approximated solution (e.g., the bundle in WDCA), and the algorithms
determine the final solution based on all the data (description of the instance,
relevant information about the instance etc) provided by multiple agents. In-
stead of presenting privacy-preserving mechanism for every greedy-class prob-
lem, we propose a general framework to convert multi-agent greedy algorithms to
privacy-preserving ones such that agents’ privacy leakage is properly protected.

The main challenge comes from the local decision making at each iteration in
greedy algorithms. Decision must be made based on certain weight information
associated with agents’ instances, but the algorithm should not have access to
those information due to privacy concerns. We present three novel techniques to
solve this challenge, and as long as the greedy algorithm fulfills our requirements,
it can be converted to a privacy-preserving one via our framework. Finally, our
contributions are summarized below:
1. We propose a general solution for multi-agent greedy algorithms which keeps

agents’ private information secret. Three novel techniques are presented to
realize the privacy-preserving computation.

2. The privacy-preserving greedy algorithm generated by our framework achieves
the same result as the original greedy algorithm.

3. Based on the framework, we give a uniform definition of the privacy for
multi-agent greedy algorithms, and we prove that the framework does not
breach the privacy.

4. Our framework enables various useful greedy algorithms in distributed opti-
mization problems where users are reluctant to disclose their private infor-
mation.

2 Related Work

2.1 DCOP, DCS and Our Greedy-Class Problem
Distributed Constraint Optimization Problem (DCOP, [4]) is similar to our op-
timization problem. The only difference is that DCOP’s objective function is
the sum of each agent’s private cost (i.e., weight in this paper) while our ob-
jective function is any function of it. Universal solutions for any Distributed
Constraint Optimization Problem (DCOP) or any Distributed Constraint Satis-
faction (DCS) have long been a hot research topic [5,6], but much less attention
is paid to the privacy concerns when compared to other aspects. Yokoo et al. [7]
presented approaches to the DCS problem with cryptographic techniques, but
their methods rely on external servers which may not be always available. Nu-
merous works [8–10] discussed the DCS with privacy enforcement, and finally
Modi et al. proposed ADOPT [4], which is a complete solver. However, those
works suffer from high communication complexity because they all rely on a
DFS tree which depicts the constraints relationship between agents, and the to-
tal number of messages per agent grows exponentially as the number of agents
grows. To the best of our knowledge, [11] is the only work which proposes a gen-
eral solution to the DCOP within a polynomial time based on a BFS tree, but
they assume each agent is not aware of the system’s topology, otherwise privacy
is not preservable.
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The contribution of this paper is prominent compared to above works. First
of all, the DCOP is the special case of the greedy-class problem investigated in
this paper. Secondly, our framework converts any distributed greedy algorithm
such that the converted algorithm returns the final solution within a polynomial
time regarding the number of agents. Finally, although we also assume a spe-
cial organization of the agents in advance (according to [12]), awareness of this
organization does not breach privacy in our work.

2.2 Privacy-Preserving Computation

Secure Multi-party Computation (SMC, [13]) is a generic solution for the privacy-
preserving computation, in which n parties jointly and privately compute any
function fi(x1, x2, · · · , xn) = yi, where xi is the input of the i-th party and yi is
the output returned only to him. Each party i knows nothing but yi. Since SMC
evaluates any function in a privacy-preserving manner, it can be directly used
to solve the distributed greedy-class problem in theory. However, it suffers from
a high computation and communication complexities because of the garbled cir-
cuits [14] and the oblivious transfer [15]. Both complexities are exponential to
the input length with large hidden constant factors.

Homomorphic Encryption (HE) is another common solution to the privacy-
preserving computation actively used in academia [16–19]. It allows direct ad-
ditions and multiplications on ciphertexts while preserving their decryptability.
For example, E(m1) ∗ E(m2) = E(m1∗̂m2) where E(m) is the ciphertext of m
and ∗, ∗̂ stand for various operations (addition, multiplication etc).

3 Backgrounds & Problem Formulation

3.1 Big Data Greedy-Class Problems

We discuss the optimization problems which we denote as greedy-class problems
in this paper because they are solved or approximated by a greedy algorithm. A
big data greedy-class problem P = (I,D, d(·), f(·), l(·)) is a problem which:
1. has a set of instances I = {i1, · · · , in}, and the final solution set Ŝ ⊆ I.
2. has an information set D to be associated with the instances.
3. has a mapping d(i) associates private information to an instance i.
4. has a real-value objective function f(S) to be optimized.
5. has a feasibility function l(S) to check whether a set of instances S ⊂ I is

feasible, i.e., satisfying the constraint of the problem.

3.2 Adversary & System Model

We consider two models in this paper: agent-authority model and all-agents
model. In the agent-authority model, two entities participate in the problem solv-
ing: a central authority and a group of non-cooperative agents. Each agent
aj ∈ {a0, · · · , an−1} holds his instance ij and the corresponding private informa-
tion d(ij). If an agent has more than one instance, we assume the agent controls
a virtual agent for each of his instances ( [20]). In the agent-authority model,
the central authority is supposed to receive only the global solution set Ŝ of
the problem, and agents will not learn Ŝ. In the all-agents model, each aj will
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receive his local solution set Ŝj indicating whether his instance is contained in

the global one Ŝ, and no one in the system learn Ŝ.
We assume semi-honest adversaries in this work. That is, the honest-but-

curious agents and the central authority follow the protocol specification in
general, but they are interested in others’ information and try to harvest them.
That is, agents try to infer the final solution set S as well as other agents’ private
information, and the central authority tries to infer each agent’s private infor-
mation associated with the instances. Also, we assume that it is computationally
intractable to compute discrete logarithm in large integers as in other similar
research works [16–18,21–25], .

3.3 Greedy Algorithm Analysis

Algorithm 1 is an example of a common greedy algorithm, where the definition of
weight w(i, S) is decided by the problem and its greedy solution. For example, in
the greedy algorithm for the Knapsack problem, the weight is each item’s value
per weight; in the Early Deadline First (EDF) algorithm for the Job Scheduling
problem, the weight is each job’s end time; in the weighted set cover problem
(WSCP), the weight defined in its common greedy algorithm is marginal gain
per cost of the chosen set.

Algorithm 1 Generic Greedy Algorithm

1: S := ∅, and define the weight function w(i, S).
2: Given S, compute w(i, S) for each instance i.
3: Find the i = argmaxiw(i, S).
4: If l(S ∪ {i}) = True, S := S ∪ {i}.
5: Repeat 2-4 until the termination condition is satisfied.
6: Return S as the final solution set Ŝ.

Different formats of greedy algorithms exist for different types of problems
(covering problem, packing problem, static weight etc.). In covering problems,
the feasibility of current set S is false until the termination condition is satis-
fied (e.g., travelling salesman problem, vertex cover), while it is true until the
termination condition is satisfied in packing problems (e.g., winner determina-
tion, knapsack). Also, in some problems, weights are constants irrelevant to the
current set S (travelling salesman problem, job scheduling), and therefore the
weight does not need update at every iteration. However, most of them are ac-
cepted in our framework with slight conversion. For example, the weighted set
cover problem is a covering problem in which a given set S is feasible if the union
of all instances is the universe set U . In the common greedy algorithm for this
problem [26], the if condition in Step 4 should be ‘False’. In such case, we can
add a negation in front of the feasibility function and use the same algorithm.
Therefore, w.l.o.g. we discuss this specific example.

We mainly focus on the following three privacy concerns in this paper. First
of all, the computation of w(S, i) may leak information about S as well as
the private information associated with the instance since each instance’s weight
often directly or indirectly discloses the private information of the instance.
Secondly, finding the argmaxiw(i, S) may also breach the confidentiality of
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private information related to it. Thirdly, the feasibility function l(S ∪ {i})
leaks various sensitive information in two aspects. On one hand, information
about the final solution set Ŝ may be leaked to agents since the sub-solution S
should be merged with someone’s instance i in each iteration. On the other hand,
the constraint associated with the feasibility may be relevant to each instance’s
private information. For example, weight of items in a 0-1 knapsack problem,
start time and finish time in a job scheduling problem, and elements contained in
each set in the set cover problem should be checked in l(·). Besides, the algorithm
usually terminates when the loop iterates over all instances (e.g., Knapsack, Job
Scheduling), but sometimes it needs to terminate at the first time the l(S ∪{i})
returns ‘False’. Then, such termination condition’s evaluation also raises
privacy concerns.

3.4 Problem Formulation

Given the analysis on possible information leakage, we define the privacy of our
framework as follows.

Definition 1. Denote a generic multi-agent algorithm as Agen, a converted
privacy-preserving multi-agent algorithm as Apriv, all the communication strings
produced by our framework as C(1κ), where κ is the security parameter. Then,
an adversary’s advantage over instance i’s private information d(i) is defined as

advi =
∣∣∣Pr [d(i)|C(1κ),Output← Apriv]−Pr [d(i)|Output← Agen]

∣∣∣
where Pr[d(i)] is the probability that a correct d(i) is inferred. Further, an ad-
versary’s advantage over the final solution set Ŝ is defined as

advS =
∣∣∣Pr[Ŝ|C(1κ),Output← Apriv]−Pr[Ŝ|Output← Agen]

∣∣∣
where Pr[Ŝ] is the probability that any information about Ŝ is inferred.

Definition 2. We say our framework securely converts a generic greedy algo-
rithm to a privacy-preserving one if all polynomially bounded adversaries’ ad-
vantages are negligible w.r.t. the input size.

Informally, these definitions say our framework successfully converts a greedy
algorithm to a privacy-preserving one if any polynomial-time adversary cannot
increase his probability by to guess the correct private information d(i) or the
global solution Ŝ by attacking our framework. Then, our problem to be solved in
this paper is: designing a framework which securely converts any generic greedy
algorithm for a greedy-class problem to a privacy-preserving one which achieves
the same solution as the original algorithm. Note that our framework has certain
requirements, and only the greedy algorithms fulfilling the requirements can be
converted by our framework (summarized in Section 5).

4 Building Blocks For the Framework

4.1 Multivariate Polynomial Evaluation Protocol (MPEP)

Our previous works [12, 27] implemented a multi-party polynomial evaluation
protocol in which the following multivariate polynomial is evaluated without

disclosing any xi provided by different entities: poly(x) =
∑m
k=1(ck

∏n
i=1 x

di,k
i ).
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where p is a large prime number. Then, each party reports Rimi instead
of mi, and the product

∏
mi can be achieved from

∏
Rimi without disclosing

individual mi. This product calculation requires that every mi be non-zero.
Secondly, in order to implement the privacy-preserving sum calculation, we used
the following binomial property to calculate a sum via a product:

∏
(1 + x)mi =

(1 +x)
∑
mi which is equivalent to 1 +x

∑
mi mod x2. With this property, sum

is indirectly computed by the product, and the above privacy-preserving product
calculation can be used. Finally, the product and sum calculations are combined
to evaluate the aforementioned polynomial in a privacy-preserving manner.

Two models are proposed in the protocol: One Aggregater model and Par-
ticipants Only model. In the former one, only a third-party authority receives
the evaluation result while all the participants receive it in the latter one.

4.2 Secure Computation of w(i, S)

The current solution set S, which should be kept secret to agents, is usually
related in the weight computation. For example, in a common greedy algo-
rithm of the WSCP, the weight is defined as (i is a set of items): w(i, S) =
|
⋃

i′∈S∪{i} i
′|−|

⋃
i′∈S i

′|
d(i) , where d(i) is the cost of the selected set i. In such prob-

lems, each agent needs to compute the weight without knowing S. We use an
n-dimensional binary vector S to represent it, where its k-th bit sk = 1 if ak’s
instance ik ∈ S and 0 otherwise. Then, w(ik, S) is a function: f(s0, · · · , sn), and
we can find an equivalent polynomial to compute it, which can be conducted
securely via MPEP. For WSCP, another m-dimensional vector CS can be de-
fined to indicate whether m items are included in currently chosen sets S, where
the k-th bit ck,S = 1 if k-th item is included and 0 otherwise. Then, we have
ck,S = 1−

∏n
j=1(1− cj,k,S) where cj,k,S is 1 if k-th item is in aj ’s instance and

his instance is in S, and 0 otherwise. Then, the final weight can be computed as:

w(i, S) =
# of 1’s in CS∪{i} −# of 1’s in CS

d(i)

=

∑m
j=1 cj,S∪{i} −

∑m
j=1 cj,S

d(i)

=

∑m
k=1(1−

∏n
j=1(1− cj,k,S∪{i}))−

∑m
k=1(1−

∏n
j=1(1− cj,k,S))

d(i)

(1)

The numerator can be evaluated via One Aggregater MPEP where only the
i’s owner receives the result, and the recipient can divide d(i) to the result to
compute his weight w(i, S).

Different problems have different weight functions and thus different polyno-
mials. Even the same problem may have several different equivalent polynomials,
thus it is out of this paper’s scope to give a general conversion for any type of
problems. We assume the participants of the problem (central authority or agent)
have agreed on one polynomial in advance.

4.3 Finding the Maximal Weight w(i, S)

The goal is to find the instance with maximal weight without disclosing its
weight. Our idea is to linearly transform the weight w(i, S) → (w(i, S) + δ)δ′
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and sort the instances based on the transformed weights to find the instance with
the maximal weight. The challenge is to let agents agree on two global random
numbers δ, δ′ without knowing them. Here is how we achieve this goal.

Firstly, three agents A = {ap, aq, ar} are randomly chosen among all aj ∈
{a1, · · · , an}. Each aj ∈ A individually and independently picks two random
numbers δj , δ

′
j 6= 0. Then, the following transformation (Algorithm 2) is con-

ducted for all j ∈ {0, · · · , n− 1}, where ij is aj ’s instance.

Algorithm 2 Transformation for w(ij , S)

1: The following sum is evaluated via One Aggregater MPEP, where a randomly
chosen agent ax ∈ A (ax 6= aj) is the only recipient who achieves the result, and
aj provides w(ij , S): sumj = w(ij , S) + (δp + δq + δr).

2: The following product is calculated via One Aggregater MPEP: prodj = (w(ij , S)+
δp+δq +δr)δ

′
pδ

′
qδ

′
r, where w(ij , S)+δp+δq +δr is provided by the agent ax, who is

chosen at Step 1, and δ′p, δ
′
q, δ

′
r are provided by ap, aq, ar respectively. In the agent-

authority model, One Aggregater MPEP is used so that only the central authority
knows the results, while Participants Only MPEP is used to send transformed
weights to every agent in the all-agent model.

3: The result is the transformed weight of w(ij , S).

In the final transformed weight, δp + δq + δr is the δ, and δ′pδ
′
qδ
′
r is the

δ′ that are used in the linear transformation w(i, S) → (w(i, S) + δ)δ′. The
result recipient sorts the instances according to the transformed weights that
he received, and he learns the rank of the instances and nothing else about the
weight w(i, S) due to the random numbers. The reason we pick three random
agents is because random numbers can be inferred when aj ∈ {ap, aq, ar} if we
have less than three random numbers. On the other hand, we do not employ
more than three to avoid unnecessary performance loss.

We assume some user authentication mechanism is in place so that the central
authority (agent-authority model) knows the owner of each transformed weight
since he needs to arrange each instance into a solution set. In contrary, we assume
the ownership of the instance is hidden by employing an anonymized network
(torproject.org) in the all-agents model. This is necessary because disclosing the
ownership tells all agents everyone else’s rank, and this may give side information
about the global solution set to adversaries.

4.4 Feasibility Check

The goal of this function is to check whether a set of instances S is feasible. We
have three different methods to check the feasibility: set-based check, algebra-
based check, and graph-based check.

Set-based check

Definition 3. A feasible set S is maximal (minimal) if it is not a superset of
any smaller feasible set.

Then, we use the following subset-closure property to check the feasibility of a
given set S for the packing problem: ∀S1, S2 ⊆ S1 : S1 is feasible→ S2 is feasible.
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Similarly, superset-closure property, which is an analogue, can be used to check
the feasibility of a given set S in the covering problem.

In the packing (covering) problem, any subset (superset) of a feasible set is
also feasible. Then, a given set S is feasible if and only if it is a subset (superset)
of some maximal (minimal) feasible set, or it is one of the maximal (minimal)
feasible sets itself. Consequently, one only needs to see if S ⊆ S′ (S′ ⊆ S) for
all maximal (minimal) feasible sets S′ to evaluate l(·). Then, we use the same
n-dimensional binary vector S used in secure weight computation (Section 4.2).
Due to the inner product property, S ⊆ S′ if and only if S · ({1}n − S′) = 0.
Then, given a family of all maximal (minimal) feasible sets S∗, one can evaluate
the following term: ∃S′ ∈ S∗ : S · ({1}n−S′)⇔

∏
S′∈S∗(

∑n
j=1 sj · (1− s′j)) = 0.

In the agent-authority model, this evaluation is conducted locally at the
central authority’s side. This is possible because the central authority has all the
instances, instances’ ranks in terms of their weights, the intermediate solution
set S during the greedy algorithm, and all maximal feasible sets in S∗. He can
create the vectors S and S′ at every round of the feasibility check and evaluate the
above product locally. In the all-agents model, all maximal feasible sets are given
to agents, but the instances in the final global solution Ŝ should be kept secret.
Thus no one is allowed to access the intermediate solution set S (otherwise great
amount of information about Ŝ is leaked), and no one has the vector S. That
is, each agent aj has a secret binary value sj indicating whether his instance
is included in the S, and essentially we need to compute the

∑
sj · (1 − s′j)

without disclosing individual sj . This sum value can be evaluated securely via
Participants Only MPEP to let all agents know whether the sum value is 0
without knowing individual sj .

This idea is intuitive and applicable to any type of greedy-class problem,
but it has some limitations. 1) All maximal feasible sets should be given (in
MPEP’s encrypted format) in advance. 2) Construction of maximal feasible sets
requires private information associated with the instances in some problems (e.g.,
Knapsack and Job Scheduling problem). Therefore, we rely on the following two
methods when set-based check is not possible.

Algebra-based check In some greedy-class problems, the feasibility constraints
are given by a set of algebraic inequalities which are closely related to the private
information. That is, given a set of instances S and its associated information
set D, the feasibility constraint is {fi(S,D) ≤ θi}i where each fi(S,D) is some
function of S,D which returns a real value and θi is a threshold value depending
on the problem. l(S) returns true if all the feasibility constraints are satisfied. For
example, in a 0-1 Knapsack problem, there is only one constraint: f1(S,D) ≤ θ1,
where f1(S,D) is S’s total weight and θ1 is the total capacity, and in the Job
scheduling problem, if there are k jobs in the scheduling list, there are k − 1
constraints: the finish time of the job Ji−1 should be less than the start time of
the job Ji. Note that an equality can be trivially converted to two inequalities
(e.g., a = b⇔ a ≥ b, a ≤ b).

Since the feasibility is related to the private information associated with
the instances, we need to privately evaluate the inequalities without disclosing
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private information. It seems the building block [12] can be used to solve this
problem, where the input values of f1, f2, · · · , fk are provided by the owners of
various instances in S. However, the protocol proposed in [12] only evaluates a
polynomial in an integer domain. Therefore, an equivalent integer polynomials
should be found first: {polyi(S,D) ≤ θ′i}i. Then, we can run MPEP in [12] to
evaluate the polynomial values to check the inequalities in a distributed manner
without knowing anything about any instances’ private information. One Aggre-
gater MPEP is used in the agent-authority model and Participants Only MPEP
is used in the all-agents model.

However, this reveals the polynomial values to adversaries, which could be
used to infer private information. For example, the constraint inequality in Knap-
sack problem is chosen items’ total weight, and this value can be used to infer in-
dividual item’s weight. Therefore, we evaluate the following inequalities instead:
{(polyi(S,D)−θ′1)

∏n−1
j=0 δj,i ≤ 0}i, where δj,i is a random number independently

chosen by aj for the i-th inequality and
∏
i δj,i acts as a global random number

as in the weight transformation. By doing so, the polynomial values are masked
by the global random number.
Graph-based check The feasibility constraints in some greedy-class problems
are given by a graph structure. Given a set of instances S, the set is represented
by a graph structure GS = (VS , ES) depending on the problem, and l(S) returns
true if some graph constraints are satisfied. Therefore, one needs to convert the
set S to a graph GS first such that the feasibility is equivalent to the graph
constraint. The graph constraints fall into one of the following four categories:
1. Node covering/packing : the constraint is satisfied if every node is covered at

least/most once.
2. Edge covering/packing : the constraint is satisfied if every edge is covered at

least/most once.
Note that a problem with graph-based constraints may not be a graph-based

problem. For example, the WDCA is an auction problem to find the bundle
allocation, and it is not a graph-related problem. However, its constraint is an
edge packing type: each node represents each bidder and there is an edge between
two bidders if one’s bundle is not compatible with another one’s bundle, and an
edge is covered if either incident node’s (bidder’s) bundle is included in the S.
Then, one edge being covered by twice means two incompatible bundles are in
S. Its constraint can also be a node packing type: each node represents each
good and it is covered if the corresponding good is allocated to a bidder by
S. Then, one node being covered twice indicates the good is allocated to two
bidders simultaneously.

For an instance i, whether each node in GS = (VS , ES) is covered by it
can be represented as a |VS |-dimensional binary vector i whose k-th bit ik = 1
if the k-th node is covered and 0 otherwise. This is called the coverage status
vector of i. For the problems of edge types, the coverage status vector is a |ES |-
dimensional binary vector. Then, the feasibility function l(S) returns true if and
only if ∀k :

∑
i∈S ik ≥ (≤)1 for node/edge covering (packing) type.

For example, in the edge packing type of the feasibility check for the WDCA
problem, VS is the set of all bidders and ES is the set of edges indicating in-



10

compatibility between bidders. The coverage status vector of a bidder’s bundle
i is a |ES |-dimensional binary vector, where the k-th bit is 1 if the k-th edge
is covered (edges are indexed by arbitrary pre-defined order). Then, if any bit’s
sum over all instances in S is greater than 1, S is not feasible and vice versa.

In the agent-authority model, the above inequalities can be examined locally
at the central authority’s side since he has all instances and the current solution
set S, therefore he can construct the GS and corresponding coverage status
vectors for all instances to examine the inequalities. In the all-agents model,
no one is allowed to access S, but we can still use the privacy-preserving sum
calculation in [12] to examine the inequalities without disclosing any information
about S. Each agent controls the bits ik’s that are relevant to his instance (e.g.,
the k-th incompatibility edge in WDCA problem).

Feasibility check conclusion In conclusion, for various problems, if the fea-
sibility of a set of instances can be examined via above three methods, one can
examine the feasibility without leaking each individual’s privacy. Depending on
the application requirement, the protocol participants may agree on one of the
three types which best protects the privacy. Since the declaration of the feasi-
bility check type does not affect privacy protection, we assume this is declared
by any third party.

5 Our General Framework Design
If a greedy-class problem’s greedy algorithm fits our framework, the problem
can be solved with our framework. That is, if an algorithm’s weight function
can be represented with polynomials and if its feasibility can be evaluated with
one of the aforementioned three types of feasibility check, the original algorithm
(Algorithm 1) can be converted to the the privacy-preserving one (Algorithm 3).

Algorithm 3 Converted Privacy-Preserving Greedy Algorithm

1: S := ∅, and define the weight function w(i, S).
2: Given S, compute w(i, S) with secure computation (Section 4.2).
3: Find the i = argmaxiw(i, S) with transformation (Section 4.3).
4: If l(S ∪ {i}) = True, S := S ∪ {i}, where l(·) is evaluated by one of the three

feasibility checks (Section 4.4).
5: Repeat 2-4 until the termination condition is satisfied.
6: Return S as the final solution set Ŝ.

Note that some algorithms need to evaluate l(·) for the termination condition
while other just need to terminate after the loop is iterated over all instances,
and l(·) is evaluated by the privacy preserving feasibility check. Next, we show
detailed procedures of our framework in different system models (agent-authority
model and all-agents model) and give a running example of it.

5.1 Agent-Authority Model

Firstly, the weight of each agent’s instance is computed securely. Only the owner
of the instance receives the result by using One Aggregater MPEP. Then, agents
and the central authority run the privacy-preserving sorting in Section 4.3. The
MPEP ( [12]) in the sorting is executed with the One Aggregater Model such
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that only the central authority learns the polynomial results. When the privacy-
preserving sorting is finished, the central authority gets a set of transformed
weights of agents’ instances as well as a list of the instances in the order of their
weights. Secondly, the central authority picks the first instance i in the sorted list
and evaluates l(S ∪ {i}). If the problem’s feasibility is an algebra-based one, he
and the agents are repeatedly engaged in the privacy-preserving feasibility check
in Section 4.4, and the MPEP in the check is executed with the One Aggregater
Model again so that only the central authority achieves the evaluation result.
On the other hand, if the problem’s feasibility is a graph-based one or a set-
based one, the central authority checks the feasibility at his side locally. If the
feasibility check returns true, S and {i} are merged to form a new S.

These two steps are repeated until the termination condition is satisfied.
When the algorithm terminates, the central authority achieves the global solu-
tion set Ŝ without knowing any agent’s private information, and all agents do
not gain any information about Ŝ either.

5.2 All-Agents Model

Firstly, each agent achieves his own weight via privacy-preserving weight com-
putation (Section 4.2). Then, they run the privacy-preserving sorting as well,
but the MPEP is executed with the Participants Only Model, where all the par-
ticipants learn the polynomial results. When the privacy-preserving sorting is
finished, the agents gets a set of transformed weights of all instances, and each
agent knows the rank of his instance among all instances in terms of the weight.
Secondly, the feasibility of S∪{i} should be checked in the order of the instances’
weight, therefore the participants jointly and repeatedly run the feasibility check
in Section 4.4. If i is the k-th instance in the sorted list, l(S ∪ {i}) is checked
at the k-th round of the feasibility check, and S includes all instances who have
returned ‘True’ so far. Then, any one of the three feasibility checks in 4.4 can
be used to check S ∪ {i}’s feasibility depending on the problem. At each round,
if the S ∪ {i} is feasible, i is merged in S to form a new intermediate solution
set S := S ∪ {i}.

These two steps are repeated until the termination condition is satisfied.
When the algorithm terminates, every agent knows whether his instance is in-
cluded in the final solution set Ŝ but nothing else. In fact, no one in the system
has any information about Ŝ in this model.

5.3 Running Example of the WSCP

We convert the greedy algorithm for WSCP in all-agents model in this section.
At the first iteration, each agent aj locally computes his weight w(ij , S) =

|ij |
d(ij)

. Then, the agents participate in the instance sorting (Section 4.3) to receive

the transformed weights of all instances. Every agent locally sorts the instances
based on the transformed weight, and the owner of the i = argmaxi(w(i, S) +
δ)δ′ knows that his instance is in Ŝ. In the next iteration, weight computation
(presented in Section 4.2) is conducted via One Aggregater MPEP to update each
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Algorithm 4 Greedy algorithm for the WSCP

1: S := ∅. The weight is defined as Eq. 1 in Section 4.
2: Given S, compute w(i, S) for each instance i ∈ I.
3: Sort the instances in the non-increasing order of the weight w(i, S) and find the
i = argmaxiw(i, S).

4: If ¬l(S ∪ {i}) = True, S := S ∪ {i}.
5: Repeat 2-4 until ¬l(S ∪ {i}) = False.
6: Return S ∪ {i} as Ŝ.

instance’s weight, where only the owner of the instance receives the result. At
this computation, the owner of the instances in the solution set (i.e., i ∈ S) will
set the corresponding cj,k,S = 1 in the weight computation. Then, the instance
sorting with new random numbers δ, δ′ is run again to let all agents know their
own rank. They run the feasibility check (Section 4.4) to see if ¬l(S∪{i}) = True
where i is the instance with the maximal weight. If yes, the owner of i knows
that his instance is in Ŝ. This is repeated until ¬l(S ∪ {i}) = False, the owner
of the last instance i also knows that his instance is included in the Ŝ. Everyone
else learns that his instance is not in the final solution set Ŝ.

Adversaries’ Advantage on Private Information Private information might
be leaked in the following three parts: weight computation, instance sorting based
on transformed weights, and the feasibility check involving private information
and w(i, S).

Theorem 1. Assuming the discrete logarithm is hard, the adversary’s advantage
advi is a negligible function.

6 Performance Evaluation
6.1 Computation Overhead

We implemented the framework using the GMP library (gmplib.org) based on
C in a computer with Intel i3-2365M CPU @ 1.40 GHz ×4, Memory 4GB and
SATA Hard Drive 500GB (5400RPM).

Micro-benchmark Since various problems have different #poly for the weight
computation and the feasibility check, we present the computation overhead of
a single addition and a single multiplication for them. We measured the average
run time of 10,000 additions and 10,000 multiplications of two random numbers
in Zp respectively, which is shown in Figure 1(a) and 1(b). The integer group
size is bit length of p, i.e., the security parameter κ. Note that each operation
(either addition or multiplication) is in the order of microseconds, and therefore
the overall run time will be of several seconds unless the order of the operations
number introduced by the framework is greater than 1 billion, which is unlikely.
This shows that our framework is very lightweight.

The Figure 1(c) and 1(d) show the computation overhead of the instance sort-
ing based on their weights. We randomly generated a 20-bit weight for each agent
and conducted the weight transformation as well as the final sorting based on
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Fig. 1. Run time of a multiplication, addition, and sorting

the transformed weights. Quicksort is used in the sorting, and we observed that
the sorting’s computation overhead is almost negligible. The figures show the
run time of the central authority in the agent-authority model. In the all-agents
model, all of the agents have the same computation overhead as the central
authority in the agent-authority model because everyone needs to compute the
final weights based on the received ciphertexts.

Table 1. Comparison
Problem Original Converted

Authority
WDCA 5.87s 603s

Knapsack 4ms 273ms
Scheduling 7ms 11.2s

WSCP 9.31s 135s
Each agent

WDCA n/a 8.1s
Knapsack n/a 7.9ms

Scheduling n/a 10ms
WSCP n/a 350s

Extra Overhead Measurement We measured the
run times of the original greedy algorithms and the
ones of converted algorithms via our framework re-
spectively for the following four problems: WDCA,
Knapsack, Job scheduling and Weighted set cover
problem, and they are shown in 1. Network delay
and I/O delay are excluded from the measurement.
Note that everything is disclosed to the authority in
the original algorithm (no privacy consideration), and
thus agents do not compute anything. As shown in the
table, the extra computation overhead varies greatly for different problems due
to different types of corresponding greedy algorithms.

7 Conclusion
We designed a framework for multi-agent greedy algorithms in which the final
solution comes from multiple agents’ input instances. We use our novel secure
weight computation, privacy-preserving max finding, and privacy-preserving fea-
sibility check to prevent underlying privacy leakage in the distributed greedy al-
gorithms. We showed that our framework does not leak useful information about
the agents’ private information, and we also showed that the extra computation
overhead introduced by our framework is small. In addition, the communication
overhead is much less than that of other general solutions as well. All these are
evidence that our framework is a viable option for the business intelligence in
the big data context.
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