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Abstract—With the increased popularity of smartphones,
various security threats and privacy leakages targeting them are
discovered and investigated. In this work, we present SilentSense,
a framework to authenticate users silently and transparently
by exploiting dynamics mined from the user touch behavior
biometrics and the micro-movement of the device caused by user’s
screen-touch actions. We build a “touch-based biometrics” model
of the owner by extracting some principle features, and then
verify whether the current user is the owner or guest/attacker.
When using the smartphone, some unique operating dynamics of
the user is detected and learnt by collecting the sensor data and
touch events silently. When users are mobile, the micro-movement
of mobile devices caused by touch is suppressed by that due to
the large scale user-movement which will render the touch-based
biometrics ineffective. To address this, we integrate a movement-
based biometrics for each user with previous touch-based bio-
metrics. We conduct extensive evaluations of our approaches on
the Android smartphone, we show that the user identification
accuracy is over 99%.

I. INTRODUCTION

The rapid development in mobile device industry has
now stimulated the blooming of the personalized applications
(checking email, enjoying personal photos [1]) and services
(mobile payment, smart home [2], [3]) for more convenience
and better user experience. According to survey [4], a large
number of users concern about their data privacy and in-
tegrity when sharing mobile phones to others [5], [6]. User
identification is an important component of mobile devices
for personalized services and data access control. From the
perspective of device, therefore, we cannot assume the current
user is authentic, even after the initial successful unlock
verification using various mechanisms, e.g., PIN or fingerprint
based authentication. Besides, when you share your device to
other guest users, a owner-triggered protection strategy before
handing is labor-intensive and makes most owner awkward
because it shows distrust to the guest [4]. Under this circum-
stance, it would be good for device to identify the current user
swiftly, silently, inconspicuously and continuously, as well as
provide necessary privacy protection and access control.

At present, PIN codes or password is the most common
identification and access control strategy in commercial mobile
device operating systems, such as iOS, which is obviously
labor-intensive, and does not provide silent and continuous
authentication. Facial recognition [7] by the front camera is an-
other optional strategy to identify users. But it is still annoying
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to require users to take pictures frequently. Besides, the face
recognition accuracy is unreliable with changing environment
and frequent imaging is power-consuming, which renders the
continuous authentication expensive using this technology. The
latest solution exploits the capacitive touch communication as
a mechanism to distinguish different users [2], which utilizes
touch screen device as receivers for an identification code
transmitted by a hardware identification token. This mech-
anism requires special devices. All these mechanisms have
the risk of being imitated, e.g., peeking at the PIN code,
using a photo to cheat the camera, or eavesdropping on the
communication between the transceivers.

On the other hand, the motion sensors integrated in most
smartphones have stimulated the research on user identification
through behavior detection [8]. For example, TapPrints [9]
indicates the behavior of tapping on different locations on the
touch screen will be reflected from sensory data, and such ob-
servation may be considered as potential risk of compromising
user’s privacy [10]. In addition, individual users may have their
own interacting behavior patterns, and these motion sensors
may help to characterize user’s behavior to identify users [11].
GEAT [12] is the latest gesture based user authentication
scheme for securely unlock the touch-screen based devices,
which provides an average EER of 0.5% with 3 gestures using
only 25 training samples. However, such system still cannot
provide continuous authentication to prove the identity of being
legitimate user of the device a while after unlock the device.

In this work, by investigating the feasibility of utilizing
the behavioral biometrics extracted from smartphone sensors
for user identification, we propose SilentSense, a non-intrusive
continuous user identification mechanism to silently substanti-
ate whether the current user is the device owner or a guest or
even an attacker [13]. Exploiting the combination of several
interacting features from both touching behavior (pressure,
area, duration, position) and reaction of devices (acceleration
and rotation), SilentSense achieves highly accurate identifica-
tion with low delay. Usually the interacting behavior could be
observed while the smartphone is in relatively static condition.
Therefore, a great challenge comes from the circumstance
when the user is in motion, such as walking. The perturbation
generated by the interacting will be suppressed by larger-
scale user movement. While most of existing works neglect
this circumstance, SilentSense is capable of identifying user in
motion by extracting the motion behavior biometrics.

Keeping the sensors always on provides minimum guest
identification delay, but could cause unwanted energy con-
sumption since most of time the current user is the owner
or the current app is not sensitive, e.g., the game app. But an



intrusion may be missed when the sensors are off. Facing this
debacle, we propose a novel model to estimate the current user
leveraging the observation of owner’s sociable habit. An online
decision mechanism is designed for the timing to turn on or
turn off sensors, which provides a balance between energy cost,
delay and accuracy. Such mechanism results in an adaptive
observing frequency according to owner’s social habit.

We evaluate the effectiveness of SilentSense through exten-
sive experiments using the empirical data collected from 100
volunteer users in both static and motion scenarios. The evalu-
ation results indicate that in the former scenario, our approach
is able to classify the legitimate user and guest/impostors
with averaged equal error rate about 20% with only one
stroke, 0 error with about 13 strokes. However, when users are
moving, the approach designed for static scenario deteriorate
to with false reject ratio (FRR) about only 18% after 4 steps.
Our integrated approach using motion behavior biometrics
improves the FAR and FRR to reaches 0 with only 3 steps.
Our study also shows that individual behavior patterns are
difficult to be imitated precisely, and the feature is unique.
The evaluation also shows our online decision mechanism can
successfully identify the guest user with averaged 2.26 actions
delay with a 98% accuracy guarantee when 57% time the
sensors are off.

II. SYSTEM OVERVIEW

SilentSense is designed as a pure software-based frame-
work, running in the background of smartphone, which non-
intrusively explores the behavior of users interacting with the
device without any additional assistant hardware.

A. Main Idea

The main idea of SilentSense for user identification comes
from two aspects: (1) how you use the device; and (2) how
the device reacts to the user action.

While using mobile devices, most people may follow
certain individual habits unconsciously. Running as a back-
ground service, SilentSense exploits the user’s app usage and
interacting behavior with each app, and uses the motion sensors
to measure the device’s reaction. Correlating the user action
and its corresponding device reaction, SilentSense establishes
a unique biometric model to identify the role of current user.

We investigate the phone usage behavior of our colleagues.
Tiny perturbation of the whole device will be captured by
motion sensors when a user touches the screen. The amplitude
of such tiny perturbation depends on the user’s holding gesture,
the touching pressure and coordinate. The framework focuses
on extracting essence features from the user’s behavior, in-
cluding both screen-touch events and the user’s motion events,
to determine the discriminative patterns of individuals. Such
behavior pattern and dynamics are much difficult to be imitated
or attacked as these are often invisible. Besides, both our inves-
tigation and [4] show that people share phone with friends from
time to time and the share frequency varies with the owners’
social habit. The phone belonging to a more sociable owner,
tends to have a higher probability to be shared with guest users,
which may require a relatively high identification frequency,
and vice versa. The social characteristic of the owner can help
us to optimize the observation frequency to reduce the overall
energy cost with a identification performance guarantee.

Training Identify
App 2

App 1

App 3

App 4

Tap

Scroll

Fling

Coordinate

Duration

Pressure
Vibration
Rotation

Action Features

FA1 = {f1, f2, f3, f4, f5}

New State

App

Observation

Fig. 1. Framework overview.

While the owner is using the phone, it is feasible to
establish a behavior model through automatically learning.
When interacting happens, the system evaluates the probability
of being the owner, and updates the evaluation with increasing
observations to determine the identity silently and automat-
ically. If the current user is a guest, the privacy protection
mechanism will be triggered automatically, which prevents the
privacy leakage while maintaining the trustiness of the guest
user. Based on the historical identification results, the social
characteristic of the owner could be learned to help decide the
observation frequency.

B. Challenges

In order to achieve the identification in an accurate, silent
and fast manner, the following technical challenges should be
addressed.

User Behavior Modeling: To characterize individuals’ un-
conscious use habits accurately, the user behavior model
should contain multiple features of both user’s action
and device’s reaction. In addition, the connection between
features may not be neglected for identification, such as
different interaction coordinates on the touch screen may
cause different reaction vibrations of the device.

Identification Strategy: To establish the user behavior
model, for the owner there are abundant behavior infor-
mation. For a guest, the collected behavior information
may be very limited. In addition, in motion scenarios,
some interacting features will be swamped by the motion
from the perspective of sensory data, which greatly in-
creases the difficulty of accurate identification. Thus it is
challenging to distinguish users with limited information
effectively, even if the interacting features are partially
swamped.

Balance Among Accuracy, Delay and Energy: Nonstop
observation with sensors provides identification with
small delay and high accuracy, but may cause unwanted
energy consumption for the mobile device when the
current user is the owner or a guest is using an insensitive
app, e.g., playing a game. But intrusion may happen
when the sensors are off and the risk increases with
the detection delay. A well designed mechanism is
required to decide the observation timing to reduce
energy consumption while guarantee the identification
accuracy and delay.

C. Main Framework

The framework model consists of two basic phases: Train-
ing and Identification, as shown in Figure 1. The training
phase is conducted to build a behavior model when the user
is interacting with the device, and the identification phase is



implemented to distinguish the identity of the current user
based on the observations of each individual’s interacting
behaviors. When a guest user is observed, privacy protection
mechanism will be triggered automatically. After the guest
leaves and the owner returns, privacy protection will be reset
for the owner’s convenience.

The framework trains the device owner’s behavior model
by retrieving two types of correlated information, the infor-
mation of each touch-screen action and the corresponding
reaction of the device when the user is static. In the motion
scenario, instead of the reaction information, motion features
will be detected. Initially, we assume that the device has
only the owner’s information, e.g. a newly bought phone,
only owner’s features are captured and trained. Therefore we
conduct identification through one-class SVM classifier, which
only provides whether the observed features belong to the
owner (true of false). However the identification accuracy by
one observation is usually not high enough for an identity
conclusion, continuous consistent judgements will increase
the accumulated confidence for this judgement. When the
accumulated confidence is high enough, a conclusion is ready
and the newly observed features will be added to the owner or
guest dataset according to the conclusion to update the model.
Gradually, by self-learning, the model will be upgraded to two-
class SVM model, which provides more accurate judgement.

To reduce energy cost of frequent observations, an optimal
stoping mechanism is designed to determine the timing to
stop observation i.e., turn sensors off, with a good accuracy
guarantee. Based on the recent historical conclusions, the
social characteristic of the owner can be learnt. Here the social
characteristic refers in particular to the frequency/propobility
this owner shares his/her device with a guest. With the help of
the social characteristic, a strategy is designed to determines
the timing to restart observation.

D. Interacting Model

For touch actions, there are three principle gestures: tap,
e.g., texting, clicking item, scroll, e.g., browsing mails and
tweets, and fling, e.g., reading e-books. Different gestures usu-
ally have different touch features and lead to different device
reactions. Interacting with certain app often involves a certain
set of gestures. For a touch action Ti, we combine the app with
its touch gesture and the features captured by this framework
as one observation, denoted as Oi = {Ai, Gi, fi1, · · · , fin}.
here Ai is the app being used, Gi represents the gesture (e.g.
tapp), and fi,j (j ≥ 1) are features of the observed action.

Because of individual habits, the features of the same
gesture for the same app vary for different users. Two types
of features are used in this system: the touch features and
reaction features. The touch features include touch coordinate
on the screen, touch pressure and duration, which can be
obtained from system API. To capture the reaction features, we
notice that diverse gestures and positions for holding the device
by individual users infer different amplitudes of vibration
caused by each touch, which has already been proved by
previous works ( [9], [14]). Such tiny reaction of the devices
produces an identifiable patterns which could be observed
via accelerometer and gyroscope. Therefore, for each gesture
(Gi) in one observation, its feature is the combination of

three touch features and two reaction features, presented as:
FGi = {f1, f2, f3, f4, f5}.

E. Identification Strategy

Both the training and identification process are established
based on observations from interacting behavior as illustrated
in Figure 1. In this section, we present our self-learning model
and identification strategy.

Initially, without only the owner’s behavior data, a one-
class SVM model is trained to identify a new observation Oi
and provide the judgement Ji whether this action belongs to
the owner or not, i.e., Ji = true or Ji = false. Lacking
of groundtruth, it is difficult to determine the correctness of
the judgement. To achieve high identification accuracy, we
adopt the SVM model’s credibility for each judgment Ji as
the confidence of the framework on Ji. Let this confidence be
εi(Ji), which indicates the probability the framework considers
that Ji is correct for the current observation Oi. Using one-
class SVM, the judgement of one observation usually is not ac-
curate enough to make a identity conclusion. Obviously, more
observations leads to higher conclusion accuracy. Specifically,
let {J1, J2, · · · , Jk} be a sequence of consistent judgements,
i.e. J1 = J2 = · · · = Ji, to continuous observations
{O1, O2, · · · , Ok}. Based on the judgement sequence, an
identity conclusion I1,k can be made, i.e. I1,k = Jk. Then
the conclusion confidence will be cumulated as

P1,k = P(J1, J2, · · · , Jk) = 1− (

k∏
i=1

(1− εi(Ji))), (1)

which indicates the probability this framework considers that
the identity conclusion I1,k is correct. Then the identification
delay dk for a conclusion I1,k is defined as the number of
observations taken to achieve this conclusion. With the number
of observation increases, the framework will be more confident
to provide a correct conclusion, meanwhile the delay will
increase. Note that, an inconsistent judgement will interrupt the
sequence, and the conclusion confidence need to be cumulated
from scratch. Except some multi-player game, which is not
privacy sensitive, in most cases, there won’t be frequent
switches between guest and owner. Since a conclusion will
change the privacy setting, a high confidence is required to
give an identity conclusion. A conclusion confidence threshold
Pθ can be given to make sure this framework only outputs
conclusion with confidence higher than Pθ.

While the system uses the owner’s model to make iden-
tification conclusions, the observation generating a judgement
with high confidence will be added into the owner or guest
training data buffer accordingly. With a small amount of guest
data, our system upgrades the model to two-class SVM model,
which outperforms the one-class model in accuracy. The SVM
model will be continuously updated using the most recently
buffered data. Considering the training data, the number of
owner actions usually will be far greater than the number of
guest users, the updating frequency of guest behavior should
be higher than that of owner’s.

F. Observation Decision

In practice, user usually requires a high conclusion con-
fidence, which may lead a undesired long conclusion delay.
In addition, the main energy cost of SilentSense is caused
by sensors. Nonstop observation may cause unwanted energy



consumption, as for most of the time the user is the owner.
The balance among accuracy, delay and energy is challenging.
In this section, we investigate the requirements of the device
owner and design a strategy to determine the timing to start
and stop observation,i.e. turn on and turn off sensors.

First, we consider the privacy requirements of the owner.
Not all apps are privacy related, e.g., game apps are frequently
used but nonsensitive. For an sensitive app, if the user is a
guest, the privacy protection mechanism should be enabled
immediately; if the user is the owner, the protection mech-
anism should be disabled for the owner’s convenience. So
if the current app is sensitive, the privacy and functionality
requirements take priority over energy. The current app can
be detected by system API without extra energy cost. Then
we get the first rule of the strategy: When there is a switch
from a nonsensitive app to a sensitive app, observation should
be started immediately (if hasn’t bee). And while the user is
interacting with a sensitive app, the observation should not be
stopped.

When the current app is nonsensitive, observations help
the framework to collect training data and get ready for a
sudden app/user switch. In this case, nonstop observation is
not necessary and energy waste. The issue is when to start/stop
observation. To guarantee a highly accurate conclusion with
small delay, the main idea of our decision strategy is to
keep the framework confident enough about the current user’s
identity using the sensors as less as possible.

When the observation with sensors has been started but a
conclusion hasn’t been made, the confidence of the current
user’s identity is the accumulated confidence according to
Eq. (1). Although larger number of observation leads to higher
confidence, which implies higher accuracy, the energy cost
will increase too. Formally, let the current touch action be Tk,
which can be acquired from system API, requiring no extra
energy. Its corresponding observation is Ok and the judgement
by SVM is Jk. Let Os be the observation from which the
judgements are consistent with Jk, i.e., Ji = Jk for s < i < k.
Then the framework has a candidate identity conclusion Is,k =

Jk, and its confidence is Ps,k = 1 − (
k∏
i=s

(1 − εi(Ji))). The

accumulated energy consumption from Os to Ok is Es,k =∑k
i=s ei, here ei is the energy cost of sensors for observation

Oi. If the candidate identity conclusion is output after the
action Tk, then the delay of the conclusion is dk = k − s
(action). We notice that there is a positive correlation between
the delay and the energy cost, and both of them are preferred to
be small. Therefore, we propose Uk = Ps,k/Es,k as the utility
at the action Tk, which indicates a tradeoff among accuracy,
energy and delay. Then, deciding the time to stop observation
can be solved as an Optimal Stopping problem, where after
which touch action Tt to stop observation so that the utility is
maximized and the conclusion confidence is guaranteed above
Pθ. We assume R(Ut|Ps,t > Pθ) as the expected maximum
utility could be achieved by the following observation with a
confidence constraint Pθ, which is:
R(Ut|Ps,t > Pθ) =

max{R(
Ps,t
Es,t
|Ps,t > Pθ), R(

Ps,t+1

Es,t+1
|Ps,t+1 > Pθ)}.

Here, Ps,t+1 is the accumulated confidence by current con-

fidence Ps,t and the expected confidence ε̄ of SVM using
(1). Es,t+1 = Es,t + ē, here ē is the expected energy cost
for each observation. Both ε̄ and ē can be obtained by the
historical observations. Once a stop timing Tt is detected, the
observation will be terminated, and a identification conclusion
Is,t with confidence Ps,t > Pθ will be output for the privacy
protection setting.

When the observation is stopped after the action Tt, the
framework need to decide when to restart the observation.
As we mentioned, a switch to sensitive app will trigger the
observation. When the app is nonsensitive, we estimate the
current user for action Tj based on the recent conclusion It.
Intuitively, if j−t is small enough, then with a high probability,
the current user’s identity is still consistent with It; as time
goes by, the confidence of the identification It will decrease.
In this work, we use the recent social state of the owner,
which decides the confidence decrease rate, to estimate the
current user. When the confidence of estimation fall out of a
lower bound Pϕ, the observation will be started. Formally, the
framework learns the transfer model between guest and owner
from the recent historical conclusions. The model includes two
probabilities Qo2g and Qg2o, which represent the transfer prob-
ability from owner to guest and guest to owner respectively.
When the observation is stopped, the identification for touch
Tj is consistent with the most recent conclusion It, with a
confidence Pj = Pj−1 · (1 − Qo2g) + (1 − Pj−1) · Qg2o, if
It is owner; or Pj = Pj−1 · (1−Qg2o) + (1−Pj−1) ·Qo2g ,
if It is guest. Once Pj < Pϕ, the observation will be started,
and a new round of optimal stopping is initiated.

Our online decision strategy achieves a tradeoff among
accuracy, energy and delay with a confidence guarantee. Mean-
while an adaptive observation frequency is yielded according
to the owner’s social habit.

III. BEHAVIORAL BIOMETRIC EXTRACTION

Accurate behavioral biometric of the user is the core for
correct identification. Among the multi-dimension features, the
pure touch features (coordinate, pressure and duration) are
relatively easy to obtain via system API. The challenge comes
from how to capture the essence of the device reactions to each
user’s different actions, and the essence of a user’s motion, e.g.
walking, using the noisy sensory values.

A. Device Reaction to Touch Action

We use the onboard sensors to explore the device reaction
to the three types of touch gestures.

We start the analysis from the features caused by tap-
ping. When tapping event happens, the tapping coordinate,
timestamp and duration could be obtained from system API.
Meantime, the device accelerations along three device axes
(X,Y,Z) are captured by the accelerometer. In order to mea-
sure the amplitude of vibration while tapping, we use the
Ftap =

√
LAx

2 + LAy
2 + LAz

2 to represent the summation
of acceleration vector in the space. LAx, LAy , LAz indicate
the linear acceleration in the device system. Another valuable
reaction feature is the vector of angular velocity obtained from
the gyroscope, denoted by AVtap =

√
AVx

2 + AVy
2 + AVz

2.
This feature represents the position variation of the device in
the space when touched by a user.
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Fig. 2. The reaction of the device when tapped.
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Fig. 3. The distribution of both vibration and rotation on touchscreen under
a given holding gesture.

Figure 2 illustrates the reaction of the mobile device when
tapping event occurs while the user is sitting still. In both
sub-figures, the red line segments represents the occurrences
of tapping, and the length of each segment corresponds to
the duration of the tap event. Tapping on the screen will
cause jumping on the sensory data. However, the sensory data
contains noises and errors, because the user cannot hold the
device in absolutely still. Therefore,to eliminate such noise, we
calculate the mean perturbation of acceleration and rotation as
features for each tapping event.

We conduct a long period experiments to measure the
vibration and rotation of the device with various touch coor-
dinates. We separate the touch screen into 25× 15 small grids
and calculate the mean vibration and mean rotation caused
by tapping from each user for each grid-cell. Figure 3 shows
the statistic device reactions from one of the users, who used
to hold the lower part of the device by left hand, i.e. the
supporting point is near the left bottom, and taps the device
by right index finger. The experiments results show some
interesting observations: (1) the amplitude of vibration and
rotation depend on how the user holds the device. the father
the coordinate from the holding point, the larger the vibration
and rotation will be; (2) the changing trend of the vibration
is obvious, leading to the possible holding position (which is
also a behavior biometrics).

B. Motion Analysis

We also investigate the device reaction to fling and scrolling
and compare the reactions to the three gestures. The results
show that, reactions to both fling and scrolling are different
from that to tapping, especially the amplitude. Besides, both
fling and scrolling do not drive the device to rotate in a large
extent.

So far, we mainly consider the condition that the user is
motionless or relatively still while the touch action. In practice,
a user may use the device while walking, the amplitude of the
acceleration cause by walking is much larger than that from
touch, which makes it infeasible to to extract the touch reaction
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Fig. 4. The frequency feature of acceleration in the earth coordinate system
(ECS) while walking.

feature in this case. To address this challenge, we design a
series of methods to extract the biometric walking feature for
identify users in motion.

For the dynamic scenario, we analyze the motion features
when the user uses the phone while walking, and combine
the walking features with the interacting features (coordinate,
duration and pressure) to construct the behavioral biometrics
for identifying user in motion.

To accurately capture the walking features of different
users, three steps are conducted in our method. Firstly, con-
sidering a user could hold the phone in any attitude, we
convert the raw acceleration vector in phone coordinate system
(X,Y,Z axis)into the earth coordinate system (north, east,
gravity) in real time. Let the vector in the earth coordinate is
EA = {EAx, EAy, EAz}.There are a lot of walking indepen-
dent noise in the acceleration, which will greatly confuse the
walking feature detection. We analyze the acceleration while
walking in the frequency domain, Figure 4(a) shows that, the
energy mainly locates around 2Hz, which is the user’s walking
frequency. The energy in other frequency comes from noise. To
extract the pure walking acceleration, secondly, we filter EA
with a band pass filter to generate EA′. Then we get the ver-
tical acceleration EAv = EA′z in the gravity orientation and
horizontal acceleration EAh =

√
EA′2

x + EA′2
y . Figure 4(b)

shows the filtered vertical acceleration. A simple step detection
algorithm can be performed on the filtered vertical acceleration
in real time.

C. Identification in Static Scenario

Thirdly, we extract the walking feature from the processed
acceleration data. The vertical displacement of a walker is
directly correlated to his/her stride length and height, hence
it is an important feature. Besides, the step frequency and
horizontal acceleration pattern also vary with different users.
To sum up, we extract four features of walking from EAv
and EAh: (1) Vertical displacement of each step by double
integration of EAv; (2) Current step frequency, calculated by
the duration of each step; (3) Mean horizontal acceleration for
each step; (4) Standard deviation of EAv for each step.

IV. PERFORMANCE EVALUATION

We implemented SilentSense on Android phone as a service
running background. This service obtains the current app and
touch events from system API, and captures sensory data
from accelerometer and gyroscope. We evaluate performance
of SilentSense in different phases in both static and dynamic
scenarios. Android based HTC EVO 3D and Samsung Galaxy
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S3 are employed in our experiments. We have 100 volunteers,
and we choose 10 of them are the smartphone owners, and
the rest 90 are guest users. Each owner are deployed one
of the Android phone and required to use at least one day.
And all the data stored in the smartphone is erased before
deployment. Several types of apps are considered sensitive in
our experiments: message, mail, album, contacts and social
networking apps. We divide touch actions into three categories
by gestures, including tap, scroll and fling. In practice, the
touch gestures are not limited to the three principle gestures,
and there may be long press, double touch, pinch open, etc..
But the fraction of such complex gesture is less than 5% for
daily usage. As a result, we neglect other gestures in this
experiments. More than 50 actions of each gestures from each
guest user are collected. For each owner, thousands of actions
of each gestures are collected.

A. Identification in Static Scenario

First, we explore the uniqueness of the behavior biometric
in the static scenario. With more than 100 actions for each user,
we analyse the key features of users extracted from both the
touching behavior and reaction of smartphone. The analysis
shows that there exist big diversity of each interacting feature
among different users’s. The diversity mainly comes from the
habits and biometric features of users, and the combination of
multiple features provide unique user features. For example,
the mean duration of scrolls gesture of 100 users varies from
200 ms to 1200 ms, and the touch pressure varies from level
2 to level 40. Figure 5 shows 13 randomly selected users’
interacting features of three types of gestures and present the
diversity explicitly.

Then we evaluate the performance of identification by three
types of gestures, tap, scroll, and fling. The main difference
between scroll and fling is the moving speed and distance of
the finger. Fling is much faster while the distance of scroll
is longer. In SilentSense , observations and identification are
made based on the three touch gestures. Figure 6 presents the
false acceptance ratio (FAR), and false rejection ratio (FRR)
of identification conclusion by different gestures with different
number of observations. Here the FAR is defined as the ratio
of the number of identifications misjudge a guest as an owner
over the total number of guest actions; and FRR is defined as
the ratio of the number of identifications misjudge the owner as
a guest over the total number of owner actions. The results of
100 users show that, as illustrated in Figure 6(a), the mean FAR
of identification by one observation of tap is 22%, by one fling
action is 9%, by one scroll action is 23%. The FAR is reduced
to below 1% after observing about 3 fling actions and with
about 13 observations the FAR achieves 0 for all three gestures.
Surprisingly, Figure 6(b) shows that FRR almost achieves 0
with only 2 observations for each gesture. The experiments
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Fig. 6. FAR and FRR by different actions and numbers of actions observed.
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Fig. 7. Identification based on sequence of random gestures.

result show great discrimination of three gestures based on
multiple features extracted by SilentSense .

Now, we evaluate the performance of SilentSense in a more
general scenario, with 100 users interacting with smartphones
freely as their daily usages, i.e., the action sequences are
random combinations of three types of gestures. Initially,
the smartphone does not have any guests’ behavior data, the
framework could only identify the current user by one-class
SVM model. Our experiments show that the initial accuracy
is only 72.36% with one observation and the FAR is 24.99%.
However, when a two-class SVM model is trained with increas-
ing amount of guest data, SilentSense reach high accuracy of
identification with a small amount of observations. Since the
amount of training behavior data for the guest user is much
smaller than that of the owner’s data set, our experiments show
that it is much faster to achieve a high accuracy for identifying
the owner than identifying the guest. Even so, the framework
could reach over a 80% accuracy within 10 observations for
identifying a guest. Figure 7(a) takes the results from five
random selected guests and plots how soon the framework
could identify the guest. Similarly, as shown in Figure 7(b),
the owner will be identified with in 6 observations. Overall,
in a general scenario, with only one observation, the FAR
and FRR are about 20%. But, with about 12 observations of
various actions, the FAR and FRR are both reduced to nearly
0, meaning that there is no incorrect identification.

B. Identification in Dynamic Scenario

In this part, users interact with smartphone while walking.
Recall that, the vibration and rotation reaction features caused
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Fig. 8. Walking features for different users.
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Fig. 9. FAR and FRR by different number of steps observed.
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Fig. 10. Identification based on walking feature.

by touch are no longer feasible due to the large movement
cased by walking. In this case, if only touch features (coordi-
nate, pressure and duration) are used, as shown in Figure 9(a),
although the FAR reduces to 0% after only 2 steps, the FRR
is high as 18% even after 4 steps. In the dynamic scenario,
we extract 4 walking features, including vertical displacement,
step duration, mean and standard deviation of the horizontal
acceleration, from the filtered accelerations. First, we explore
the discriminative of walking features. As shown in Figure 8,
the walking pattern varies greatly for different users, which
give us an opportunity to identify the walking user rapidly.
So, we combined the walking features with touch features to
establish the SVM model for dynamic scenario. To evaluate the
identification performance of SilentSense in dynamic scenario,
50 volunteers are required to use phones while they are
waking freely. We presents the FAR and FRR of identification
results in Figure 9(b). Our experiments show that the FAR
and FRR reduce to 0 after only about 3 steps. Considering
the different amount of training data, Figure 10 presents the
achieved identification accuracy for randomly selected owners
and guests separately. After 12 steps, the accuracy to identify
a guest can achieve 100%, and after 7 steps, the accuracy to
identify the owner can achieve 100%.

C. Online Decision

Using the historical observations, the probability Qo2g the
owner shares the phone with a guest can be learned. Based on
the our online decision strategy, the framework dynamically
starts or stops observation, while keep a confidence about
the current user’s identity. In the experiments, three users
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Fig. 11. Online decision performance.

use phones with different phone share frequencies. We set
the confidence for a conclusion Pθ = 0.98, and the accept-
able estimation confidence Pϕ = 0.8. Figure 11(a) presents
the confidence changing with observations. During the rising
edges, the observation has been started, while during the falling
edges, the observation has been stopped. The result shows that
our online decision mechanism can successfully identify the
user with averaged 2.26 actions delay with a 98% accuracy
guarantee when 57% time the sensors are off for an owner
who has 10% probability to share the phone. Figure 11(a)
also presents adaptive observation frequencies yielded by our
online decision strategy according to the owner’s sociability.
While the observation stopped, motion sensors are off and no
extra energy is cost by SilentSense . Figure 11(b) illustrate
the energy saved by the online decision strategy for different
Qo2g . When the owner rarely shares the phone, more than
90% energy can be saved; while the owner share his/her phone
frequently, the energy saving decreases and a relatively high
observation frequency is necessary.

V. RELATED WORKS

In this section, we review related works on user identifica-
tion by smartphones. There are two categories of biometrics for
identification users: physiological (such as fingerprints, facial
features) and behavioral biometrics (such as speaking, typing,
walking). Physiological biometrics usually requires special
recognition devices. Some physiological biometrics, like face
and voice can be detected by smartphones, but usually cost
expensive computation and energy cost and have a high error
rate. For example, in [15], the (equal error rates) EER for
face recognition is around 28% and for voice is around 5%.
Keystroke is a popular behavioral biometric. [16] presented a
survey on the large body of literature on authentication with
keystroke dynamics. Researchers also propose authentication
token based mechanisms to identify legal users,e.g., wireless
token [17]. However, they require additional hardware and
are not convenient for daily smartphone usage. On the smart
phones with touch screens, PINs, pass-phrases, and secret
drawn gestures are the commonly used authentication meth-
ods [18]. Such approaches are easily deployed with off-the-



shelf smartphones, but they are vulnerable to shoulder surfing,
smudge and other attacks. Recently, there is a growing body
of work that use the features of touch behavior to verify users.

Several existing approaches have used the touch behavior
biometrics for various security purposes. [19] proposes an
password application, by which the user draw a stroke on
the touch screen as a input password. Pressure, coordinates,
size, speed and time of the stoke are used to identify valid
user. Overall accuracy of this work is 77% with a 19% FRR
and 21% FAR. [11] uses four features (acceleration, pressure,
size, and time) to distinguish the true owner and impostor
to enhance the security of passcode. Its identification system
achieves 3.65% EER. A user enters a password by tapping
several times on a touch surface with one or more fingers.
PassChord failed to authenticate for 16.3% of the time. There
are some other work addressing the user identification issue
with touch features, e.g., [20].As we see, with pure touch
data, there may be a high error rate. Furthermore, the above
work verify users in an explicit way, which works similar as
inputting a pincode and are inconvenient for device share or
multi-user scenarios. Itus [21], [22] is the latest framework for
Android which allows other researchers to improve implicit
authentication schemes.

Recently, there are some work address the user identifica-
tion with behavior biometrics in continuous or implicit manner.
In those work, identification services run in background and
identify the current user in real time. For example, [23] con-
tinuously authenticates users based on 30 behavioral features,
including touch features and motion sensor features. In this
work, the EER is approximately 13% with a single stroke
and converges to a range between 2% and 3% with 11 to
12 strokes. SenGuard [24] combines motion, voice, location
history and multi-touch data to identify users of smartphone,
whose average error rate is 3.6%. FAST [25] uses a special
digital sensor glove to achieve highly accurate continuous
identification. [26] distinguishes different users based on their
gait, and the rhythmical body movements of human beings as
they walk. Those work use special devices or motion sensors to
enrich the identification features to improve the poor accuracy
with pure touch information. But they ignore the scenario that
the user uses mobile phone while in motion.

VI. CONCLUSION

In this paper, we present SilentSense , a framework to verify
whether the current user is legitimate owner of the smartphone
based on the behavioral biometrics, including touch behaviors
and walking patterns. We establish a model and a novel method
to silently verify the user with high confidence: the false
acceptance rate (FAR) and false rejection rate (FRR) could
be as low as < 1% after only collecting about 10 actions. We
have found that a user’s touch signatures if used in conjunction
with the walking patterns will achieve significant low error
rates for user identification in a completely non-intrusive and
privacy preserving fashion.
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