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Abstract. In this paper, we study the spectrum assignment problem for
wireless access networks. Opportunistic spectrum usage is a promising
technology. However, it could suffer from the selfish behavior of secondary
users. In order to improve opportunistic spectrum usage, we propose to
combine the game theory with wireless modeling. Several versions of
problems are formalized under different assumptions. We design PTAS
or efficient approximation algorithms for each of these problems such
that overall social benefit is maximized. Finally, we show how to design
a truthful mechanism based on all these algorithms.

1 Introduction

Wireless technology is expected to play a bigger and more fundamental role
in the new Internet than it has today. The radio frequency spectrum has been
chronically regulated with static spectrum allocation policies since the early 20th
century. With the recent fast growing spectrum-based services and devices, re-
maining spectrum available for future wireless services is being exhausted, known
as the spectrum scarcity problem. Current fixed spectrum allocation scheme leads
to significant spectrum white spaces where many allocated spectrum blocks are
used only in certain geographical areas and/or in brief periods of time. A huge
amount of precious spectrum (below 5GHz), perfect for wireless communica-
tions, sit there silently. Recognizing that the traditional spectrum management
process can stifle innovation, and it is difficult to provide a certain quality of ser-
vice (QoS) for systems operated in unlicensed spectrum, the FCC has proposed
several new spectrum management models [15].

One promising technology is the opportunistic spectrum usage, secondary
users observe channel availability dynamically and explore it opportunistically.
While opportunistic spectrum has several advantages, it suffers from selfish be-
havior of secondary users. Thus, we propose to combine the game theory [13] with
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wireless communication modeling. More specifically, we study how to share the
spectrum and how to charge secondary users such that the overall social benefit
is maximized even in the presence of selfish behavior, while each secondary user
specifies channel, space and time constraints. Note the correlation of time and
space constraints introduces high complexity compared with traditional auctions
[12, 16, 7, 6, 14, 2].

The main contributions of this paper are as follows. First we design efficient
algorithms to allocate channels such that the social efficiency are approximately
maximized. Based on these approximation algorithms, we then design strate-
gyproof mechanisms to charge the secondary users. We essentially show that our
approximation algorithms satisfy a monotone property.

The rest of the paper is organized as follows. In Section 2, we define the
problems to be studied in this paper. From Section 3 to Section 6, we discuss
algorithms for several versions of problems described in Section 2. Then we
review related results on those spectrum assignment problems in Section 8 and
conclude the paper in Section 9 with discussion of some possible future works.

2 Preliminaries

2.1 Network Model

Consider a wireless network system formed by some primary users who hold the
right of some spectrum channels, secondary users V = {v1, v2, · · · , vn} who want
to lease the right to use some channels in some region for some time period. For
simplicity, we treat all primary users as one unified central authority. In certain
applications, each secondary user vi may provide service to some clients within
a geometry region. Let F = {f1, f2, · · · , fm} be the set of m frequencies that
can be used by some secondary users for a given time interval [0, T ]. For some
wireless network systems, it is possible that the primary users will only lease a
spectrum frequency for a certain time interval in a certain geographical region.
If this is the case, we assume that for each fi ∈ F , we associate it with a region
Ωi and a set of time intervals Ti that it is available. In this paper, most of our
results assume that every channel will be available everywhere and everytime.
Our results can easily deal with a general Ωi and Ti.

We assume that a secondary user vi may wish to lease a set of channels
Fi ∈ F . For a bidding, the secondary user will also specify two additional con-
straints: space condition and time condition. Each user vi will specify a 2D region
exclusively which is typically a disk D(vi, ri) centered at node vi with a radius
ri. User vi also specifies a time interval [si, ei] or a time duration di exclusively.
Here it is assumed that 0 ≤ si < ei ≤ T and 0 < di ≤ T . Generally, we use Ti to
denote the time constraint of user vi, where Ti is either [si, ei] or a scalar di > 0.

Two different models of secondary users will be studied in this paper. The
first model assumes that every secondary user is single-minded : when user vi bids
for Fi, the valuation of vi over an assignment is 0 if not all frequencies in Fi are
allocated. The secondary user vi will be called flexible if it will pay the allocated



frequencies separately. For a flexible user vi, we assume that for each channel fj ∈
Fi, user vi will bid bi,j for the usage of channel fj for a certain time and within
certain region. In this case, we use bi = {bi,1, bi,2, · · · , bi,m} to denote the bid
vector of user i, where bi,j = 0 if vi did not bid for fj . Thus, a bidding by a user
vi will be written as follows Bi = [bi,Fi, D(vi, ri), Ti]. Upon receiving the bids
from secondary users, the central authority decides an allocation method X =
{x1, x2, · · · , xn} where xi ∈ {0, 1} denotes whether user vi’s bid will be satisfied,
and also a time-interval [si, ei] with ei − si = di when user vi required a time-
duration di in the bid Bi. The allocation must be conflict free among satisfied
bids. Here two bids Bi and Bj conflict if Fi ∩ Fj 6= ∅, D(vi, ri) ∩D(vj , rj) 6= ∅,
and [si, ei]∩ [sj , ej ] 6= ∅. The objective of an allocation is to maximize

∑m
i=1 xibi.

For simplicity, given a set of bids Y , we use w(Y ) to denote the total weight of
bids in Y , i.e.,

∑
Bi∈Y bi.

2.2 Problems Formulation

In this paper, we study several versions of spectrum assignment problems by
separately assuming channel, region and time requirements. For notational con-
venience, we use CRT to denote a problem, where
– C denotes channel requirements. Here C will be either S (denoting that

secondary users are single-minded), or F (denoting that secondary users are
flexible), or Y (denoting that there is only one channel available).

– R denotes region requirement. Here R will be either O (denoting that re-
quired regions overlap) or U (denoting that required regions are unit disks),
or G (denoting that required regions are disks with arbitrary radii).

– T denotes time requirement. Here T will be either I (denoting that each
required time is an interval) or D (denoting that each required time is a du-
ration) or M (denoting that each required time is an interval or a duration).

For example, problem SUI represents the case that each user vi will bid for a
subset of channels Fi and is single-minded, will require a unit disk region D(vi, 1),
and a fixed time-interval [si, ei]. For each problem where each secondary user
bids separately for each channel (C = F), we have a corresponding C = Y
problem when considering each user requires k channels as k separate users each
requires a different channel. Therefore, we don’t discuss these C = F problems
as they are special cases of C = Y problems.

Some versions of the problems turn out to be some well-studied problems in
the literature and some well-studied problems turns out to be a special case of
the above problems. Problem YOD is essentially a knapsack problem, which has
a well-known FPTAS [5]. Maximum weighted independent set of a disk graph is
a special case of problem YGI with ei− si ≥ T/2 for each secondary user i. The
multi-knapsack problem is also a special case of problem YUD. Due to wireless
network applications, we will mainly focus on the problems YOM, YUI, YUD,
YUM, SUI.



3 Algorithm for Problem YOM

In this section, we design an approximation algorithm for problem YOM, where
there is only one channel available, required regions overlap, and the required
time is an interval or a duration. By using FPTAS of knapsack problem and
dynamic programming, we can get a simple (1−ε)/2 approximation algorithm as
follows. We partition the users into two groups: one group of users who required
some fixed time intervals and the other group of users who required some time
intervals. We solve the assignment problem for each group and take the better
assignment as the final solution.

4 PTAS for Problem YUI

In this section, we present a PTAS for the problem YUI, where there is only
a single channel available, the required region is a unit disk, and the required
time is an interval. The PTAS runs in O(n

1
ε2 ) time and provides approximation

factor of (1− ε) where n is the number of secondary users.

(a) (b) (c)

Fig. 1. (a) An illustration of cylinder graph; (b) the network at the end of ith iteration;
(c)An illustration of space using hyperplanes. This is a view from the bottom (Z-axis).

Notice that finding the set of bids with the maximum value is equivalent
to solve the maximum weighted independent set in the following intersection
graph of cylinders. Each bid Bi = [bi,Fi, D(vi, ri), Ti] defines a cylinder Bi =
(D(vi, ri)× [si, ei]) with weight bi. See Figure 1(a) for illustration. For simplicity,
we assume that the three axes are X, Y and Z and the axis Z denotes the time
dimension. The disk D(vi, ri) is called the base of the cylinder Bi.

Our PTAS is based on the shifting strategy developed in [9]. We partition the
space using hyperplanes perpendicular to X-axis and hyperplanes perpendicular
to Y -axis. See Figure 1(b) for illustration. In each partition, we throw away
some cylinders that intersect some special hyperplanes and then solve the sub-
instances of cylinders contained in each cell individually. Let I be the set of
all n cylinders. For any give integer k > 1, we derive k2 polynomially solvable
sub-instances from the given instance I in polynomial time. The best value of



those sub-instance solutions is at least (1 − 2
k )w(OPT (I)), where OPT (I) is

the optimal solution on I and w(OPT (I)) is the value of the solution. Then,
solve these sub-instances using a dynamic programming procedure and return
the solution with best value.

4.1 Deriving sub-instances

For simplicity, we assume that diameter of each disk is 1 and each disk is open
disk. Draw a grid consisting of hyperplanes x = i (for i ∈ Z) perpendicular to
X-axis and hyperplanes Y = j (for j ∈ Z) perpendicular to Y -axis. The distance
between every two parallel neighbor hyperplanes is the diameter of unit disk. So
each cylinder will be hit by at most one hyperplane perpendicular to X-axis and
at most one hyperplane line perpendicular to Y -axis.

For each i, j belong to {0, 1, · · · , k− 1}, we compose a sub-instance Ii,j con-
taining all cylinders except those being hit by a hyperplane from {x = p | p
mod k = i} or hit by a hyperplane from {y = p | p mod k = j}. There are k2

different sub-instances. For each sub-instance, we calculate its optimal solutions
using the dynamic programming in every of the k × k grids, which will be de-
scribed in detail in the next subsection. We first establish a technical lemma for
the performance guarantee (See [3] for proofs).

Lemma 1. For at least one sub-instance Ii,j, 0 ≤ i, j < k, the value of the
solution w(OPT (Ii,j)) ≥ (1− 2

k )w(OPT (I))

For each sub-instance, each disk is in a k×k grid. Disks in different grid won’t
intersect each other. So the union of solutions of all k × k grids is independent.
We show that the problem in a k × k grid is polynomially solvable as follows.

4.2 Dynamic programming

We describe a dynamic programming approach to find a maximum weighted
independent set for an instance Ii,j , which only considers cylinders contained in
one k × k cell of Ii,j . For these cylinders, we sort them in non-decreasing order
of their ending time ei. For simplicity, let B1, B2 · · · , Bn be the n cylinders
contained in one cell in the sorted order. In the rest of subsection, we use i to
denote the cylinder Bi.

Definition 1. Pile: A pile is an ordered collection 〈j1, j2, · · · , jq〉 of pairwise
non-intersecting cylinders that intersect a common hyperplane z = b (for some
value b) perpendicular to Z-axis. Here ji is the ending time of a cylinder Bji

and jt < jt+1.

Given a hyperplane z = b for some fixed value b, in a pile that was hit by
z = b, there are at most 2k2 cylinders in the pile. Notice that all cylinders in this
pile intersect the hyperplane z = b and are disjoint from each other. Then an area
argument implies that the number of cylinders in a pile is at most k2/π

4 < 2k2.



Lemma 2. The total number of all possible piles in each k×k grid is polynomial
of n.

Proof. Please see [3].

Our dynamic programming approach will first sort the piles based on an
order defined below; then find the optimum solution of all cylinders that are
ordered in front of a pile.

Definition 2. Define an order on the set of piles as following: 〈j1, j2, · · · , jl〉 ≺
〈i1, j2, · · · , im〉 if (1) jl < im, or (2) jl = im and 〈j1, j2, · · · , jl−1〉 ≺ 〈i1, j2, · · · , im−1〉,
or (3) m = 0.

Definition 3. We define OPT (X | j1, j2, · · · , jl) to be the maximum total weight
of pairwise non-overlapping cylinders from set X given that cylinders j1, j2, · · · , jl

already occupy their places. For a set of non-overlapping cylinders {j1, j2, · · · , jl}
and a cylinder t with t < j1, we define the marginal contribution, denoted as
Rj1,j2,··· ,jl

(t), of cylinder t to OPT (i : i ≤ t | j1, j2, · · · , jl) as
(OPT (i ≤ t|j1, j2, · · · , jl)−OPT (i < t|j1, j2, · · · , jl))

+
. Here (x)+ = max{0, x}.

Based on the above definition, a cylinder t has positive marginal contri-
bution Rj1,j2,··· ,jl

(t) will clearly be used in an optimum solution OPT (i ≤
t|j1, j2, · · · , jl). If its marginal contribution is 0, then it means that there is
one optimum solution OPT (i ≤ t|j1, j2, · · · , jl) that will not use the cylinder t.

As proved in [11], it is easy to show that OPT (i ≤ t|j1, j2, · · · , jl) =
∑t

i=1 Rj1,j2,··· ,jl
(i)

and Rj1,j2,··· ,jl
(t) = bt + OPT (i < t|j1, · · · , jl, t)−OPT (i < t|j1, · · · , jl).

We then present our dynamic programming to find an optimal solution in
each k × k cell as following Algorithm 1.

Algorithm 1 Find Maximum Weighted Independent Set of Cylinders in Each
Cell
Input: A set S of weighted cylinders contained in a cell.
Output: An optimum maximum weighted independent set in S.

1: Find all the piles P of cylinders from S and sort them in the order of ≺;
2: Take the piles one by one in the order starting from the least one. For each pile
〈j1, j2, · · · , jl〉 calculate and store in the memory the value Rj2,··· ,jl(j1) according to

the formula: Rj2,··· ,jl(j1) =
(
bj1 +

∑
i:i<j1

Rj1,j2,··· ,jl(i)−
∑

i:i<j1
Rj2,··· ,jl(i)

)+

3: After all the piles corresponding values of Rj2,j3,··· ,jl(j1) is calculated for every
possible pile p = 〈j1, j2, · · · , jl〉 ∈ P, we schedule the cylinders in the following
way. Consider cylinders from S in the order of decreasing number. Take a cylinder
j next in that order. Suppose that cylinders {j1, j2, · · · , jl} are already scheduled,
then schedule j iff Rj1,j2,··· ,jl(j) is positive.

Theorem 1. The running time of our dynamic programming is at most O(n2k2+1).

Proof. Please see [3].

Then by setting k = 2/ε, our method implies a PTAS in time n
1

ε2 .



5 Algorithm for Problem YUD and YUM

In this section, we design approximation algorithms with a constant approxima-
tion ratio for problems YUD and YUM respectively.

For YUD, we assume there is only one channel available, the required region
is a unit disk and required time is a duration. We can use the same graph of
cylinders mentioned above for illustration. The main idea here is to partition
cylinders into g groups. Solve the maximum weighted independent set in each
group and then take the group with the best solution. By pigeonhole principle,
it will give us 1/g approximation. We mainly will focus on designing a partition
with minimum constant value g, please see [3] for details.

For YUM, where there is only one channel available, the required region is
a unit disk and required time is a duration or an interval. The main idea is to
partition users into 2 groups. One group Gd includes all users asking for a time
duration and the other group Gi includes all users asking for a time-interval.
We solve group Gd by the algorithm for YUD, solve group Gi by the PTAS for
YUI, and then take the group with the best solution. It is a 1/10 approximation
algorithm for problem YUM, please see [3] for details.

6 Algorithm for Problem SUI

In this section, we design a Θ(
√

m)-approximation algorithm for problem SUI.
Notice that the set packing problem is a special case of the problem SUI due
to the observation in [3]. Recall that set packing problem is not approximable
within m1/2−ε for any ε > 0, unless NP=ZPP. Thus, we have

Theorem 2. Problem SUI is not approximable within m1/2−ε for any ε > 0,
unless NP=ZPP.

Assume that each bidder bids at most k frequencies and single time interval.
When k = 1, obviously the optimum solution is the union of the optimum

solutions OPTi, where OPTi is the optimum solution for the set of users who
do bid for frequency fi. We also use OPT to denote the global optimal solution
hereafter. Notice that OPTi can be solved by dynamic programming.

When k > 1, for each frequency fi, let OPT |i be the set of users in OPT
that bid for frequency fi. Obviously, we have

∑m
i=1 OPT |i ≥ k × OPT, since

each user in OPT will appear in at least k different OPT |i. Thus,
max{OPT |1, OPT |2, · · · , OPT |m} ≥ k

m ×OPT.
We partition the bidders into two groups:

1. Z1 contains all the bidders that bid at least
√

m frequencies;
2. Z2 contains all the other bidders, i.e., bid less than

√
m frequencies.

We approximate optimal solution for each group and return the larger one. We
will show Θ(

√
m)-approximate algorithms for both groups respectively. Then,

the maximum of these two solution must give us a Θ(
√

m) approximation.
First for group Z1, we just use max{OPT1, OPT2, · · · , OPTm} as our solu-

tion. Since each bidders bids at least k ≥ √
m frequencies, maxm

i=1 OPT (Z1)|i ≥



√
m

m OPT (Z1) = 1√
m

OPT (Z1). Here OPT (Zj) is the optimal solution for users
in group Zj for j = 1, 2. For bidders in Z1, we use Ii to denote the set of
bidders in Z1 that bid for frequency fi. Then we find the maximum weighted
independent set OPTi of Ii using standard dynamic programming. Obviously,
OPTi ≥ OPT (Z1)|i. Thus, maxm

i=1 OPTi ≥ maxm
i=1 OPT (Z1)|i ≥ 1√

m
OPT (Z1).

For group Z1, we convert this problem into Scheduling Split Intervals Prob-
lem (SSIP) [1]. The ordinary SSIP considers scheduling jobs that are given as
groups of non-intersecting segments on the real line. Each job Ji is associated
with an interval, Ij , which consists of up to t segments and a positive weight,
wj . Two jobs are in conflict if any of their segments intersect. The objective is
to schedule a subset of non-conflicting jobs with maximum total weight.

A 2t-approximation algorithm for problem SSIP is given in [1]. Here we create
a special instance for SSIP problem as follows. Let [0, T ] be the original time
period where bidders can place their time-interval. We then create a bigger time
period [0,m · T ] where m is the total number of frequencies. Then a user i will
be associated with following ti = |Fi| <

√
m segments in [0,m · T ]: {[(j − 1) ·

T + si, (j − 1) · T + ei] | fj ∈ Fi, 1 ≤ j ≤ m} In other words, we duplicate the
period [0, T ] m times for each of the frequencies in F , and a user i will have
a segment in the jth duplication if it bids for frequency fj . Then there are at
most

√
m segments for every bidder. Then based on algorithms in [1], we get

2
√

m-approximation solution, i.e., find a solution with value at least OPT (Z2)
2
√

m
.

Then the maximum of the above two solutions is at least max
(

OPT (Z1)√
m

, OPT (Z2)
2
√

m

)
≥

1
3
√

m
OPT, since either OPT (Z1) ≥ 1

3OPT , or OPT (Z2) ≥ 2
3OPT from OPT (Z1)+

OPT (Z2) ≥ OPT .
Notice that by using a different group partition, where group Z1 contains

the bidders that bid for at least
√

m
2 frequencies, we get an algorithm with

approximation ration
√

2
4
√

m
.

As a byproduct of our above results, we show that for problem SSIP, there is
no approximation algorithm with ratio O(t1−ε) for any ε > 0 unless NP = ZPP .

Theorem 3. For problem SSIP, there is no polynomial-time approximation al-
gorithm with ratio O(t1−ε) for any ε > 0 unless NP = ZPP .

Proof. Please see [3].

We can extend the above case. such that each bidder requires at most t time
intervals. Obviously, t ≤ b|F|/2c, every pair of users have a common requested
frequency. Thus, for this case, computing the approximation solution for each
frequency is exactly the traditional SSIP. We can get 2t-approximation solution
for this special case. Otherwise, we have a Θ(t

√
m)-approximation algorithm by

using similar method above, please see [3] for details.

7 Strategyproof Mechanism Design

In this section, we show how to design a straightforward mechanism, i.e., for each
secondary user, reporting its valuation truthfully maximizes its profit, based on



the algorithms discussed in previous sections. A strategyproof mechanism can de-
signed by using monotone output algorithm and critical value payment scheme.
An output algorithm is monotone if an agent will still participate in the output
when it increase its bid. We define a critical value θi, i.e., the minimum valuation
vi that makes agent i participate in the output. A critical value payment scheme
PO for an algorithm O such that pi = θi if agent i is in the output, otherwise,
pi = 0. If O is a monotone algorithm and PO is a critical value payment scheme
for O, M = (O,PO) is a strategyproof mechanism.

In the algorithms mentioned above, we used technology of dynamic program-
ming, grouping and the classic FPTAS for knapsack problem. Dynamic program-
ming and grouping do not affect the monotone property. However, the classic
FPTAS for knapsack problem is not monotone. A counterexample is given in [3].
In [4], Briest proposed an alternative rounding scheme that transform a pseu-
dopolynomial algorithm into a monotone FPTAS for knapsack problem. Using
this FPTAS for knapsack problem, all algorithms in this paper are monotone.
Therefore we can design strategyproof mechanisms M = (O, PO) for all prob-
lems discussed in previous sections.

8 Literature Reviews

The problems we discussed above are at the intersection of a lot of famous
problems. Here we review results for some of these problems.

Knapsack problem, which is same as simple problem YOD, has a classic
FPTAS by the means of rounding. However, we cannot design a strategyproof
mechanism using this FPTAS since it is not monotone. An alternative rounding
scheme was proposed by Briest in [4], which gave a new rounding scheme leading
to a monotone FPTAS for knapsack problem.

In [10], Jansen and Zhang presented a (2 + ε)-approximation algorithm for
rectangle packing problem which is similar with our problem YUI. If we don’t
consider intersections in space, it is a unit-height rectangle packing problem,
which is a special case of rectangle packing. Kovaleva described a PTAS for
unit-height rectangle packing problem in [11]. We extend this PTAS to a PTAS
for problem YUI as described above.

Problem SUI is a special case of set packing problem. In [8], Hastad proved
that set packing problem cannot be approximable within m

1
2−ε, unless NP =

ZPP . Another special case of set packing problem is Scheduling Split Intervals
Problem(SSIP). Bar-Yehuda et al. [1] gave a 2t-approximation algorithm. We
show how to convert the problem SUI to SSIP in previous section.

9 Conclusions

In this paper, we combine the game theory with communication modeling to
solve the channel assignment problem. We study how to assign the spectrum and
charge the secondary users such that the overall social benefits is maximized.



More specifically, we formalize several versions of spectrum assignment prob-
lems by separately assuming channel, region and time requirements. We also
show how to design strategyproof mechanism based those algorithms. We leave
it as a future work whether there are efficient approximation algorithms for prob-
lem SUD, where single-minded secondary users request unit disk region and a
time duration, whether there are PTASs for problems YOM, YUD and YUM.
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