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ABSTRACT 1. INTRODUCTION
The family of Vickrey-Clarke-Groves (VCG) mechanisms is ar- In recent years, with the rapid development of the Internet, many

guably the most celebrated achievement in truthful mechanism de-protocols and algorithms have been proposed to make this Inter-
sign. However, VCG mechanisms have their limitations. They only net working more efficient and secure. The Internet is a complex
apply to optimization problems with a utilitarian objective func-  distributed system where a multitude of heterogeneous agents co-
tion, and their output should optimize the objective function. For operate together to achieve some common goals, and these pro-
many optimization problems, finding the optimal output is compu- tocols and algorithms often assume that all agents will follow the
tationally intractable. If we apply VCG mechanisms to polynomial- prescribed rules without any deviation. However, in some settings
time algorithms that approximate the optimal solution, the resulting Where the agents are selfish instead of altruistic, it is more rea-
mechanisms may no longer be truthful. sonable to assume these agentsratienal — maximize their own

In light of these limitations, it is useful to study whether we can profits — according to the neoclassic economics, and new models
design a truthful non-VCG payment scheme that is computation- are needed to cope with selfish behavior of these agents.
ally tractable for a given output metha@. In this paper, we fo- Towards this end, Nisan and Ronen [13] proposed the framework
cus our attention ominary demand gameis which the agents’  of algorithm mechanism desigand applied VCG mechanism to
only available actions are to take part in the a game or not to. For Some fundamental problems in computer science, including short-
these problems, we prove that a truthful mechanigim= (O, P) est paths, minimum spanning trees, and scheduling on unrelated
exists (with proper payment methd®) if and only if © satisfies machines. The VCG mechanisms [17, 5, 10] apply to mecha-
a certain monotone property. We also provide several general al-nism design problems whose outputs optimize the objective func-
gorithms to compute the payments efficiently for various types of tion g(o, t), which is simply the sum of all agents’ valuations and
output. In particular, we show how a truthful payment can be com- is known asutilitarian. Unfortunately, some objective functions
puted through “or/and” combinations, round-based combinations, are not utilitarian; even for those problems with utilitarian objec-
and some more complex combinations of outputs from subgames. tive function, sometimes it is impossible to find the optimal output

in polynomial time unless P=NP. Thus, some methods other than

Categories and Subject Descriptors VCG mechanism are needed to address the_se issues. '
] ] ) Archer and Tardos [2] studied a scheduling problem where it
F.2 [Analysis of Algorithms and Problem Complexity]: Gen- is NP-Hard to find the optimal output. They pointed out that a
eral; J.4 Bocial and Behavioral Sciencds Economics; K.4.4  certain monotone property of the output work loagis a neces-
[Computer and Society: Electronic Commerce sary and sufficient condition for the existence of a truthful mech-
anism for their scheduling problem. Auletta al. [3] studied a
General Terms similar problem. They provided a family of deterministic truth-

ful (2 + €)-approximation mechanisms for any fixed number of
machines and severél + ¢)-truthful mechanisms for some NP-
hard restrictions of their scheduling problem. Lehmatml[11]
Keywords studied the single-minded combinatorial auction and gayéra
Selfish agent, mechanism design, pricing, demand games, generahpproximation truthful mechanism. They also pointed out that a
framework. certain monotonicity in the allocation in single-minded combinato-
* - rial auction can lead to a truthful mechanism. The work of Mu’alem
TSupported _|n part by NSF Grant 11S-0121491. and Nisan [12] is the closest in spirit to our work. They character-
Supported in part by NSF under Grant CCR-0311174. ized all truthful mechanisms based on a certain monotone property
in a single-minded auction setting. They also showed how to used
MAX and IF-THEN-ELSE to combine outputs from subproblems.
o . . . As we will show later, the MAX and IF-THEN-ELSE combina-
Permission to make digital or hard copies of all or part of this work for  ionq cqId be treated as a special case of the combination schemes
personal or classroom use is granted without fee provided that copies are - - - L
not made or distributed for profit or commercial advantage and that copies we presents in this paper. More generally, our main contributions

bear this notice and the full citation on the first page. To copy otherwise, to in this paper are several algorithms for computing the payment in
republish, to post on servers or to redistribute to lists, requires prior specific polynomial time under mild assumptions.

permission and/or a fee. In our paper, we study how to design strategyproof mechanisms
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“selected” or “not selected”. We also assume that the valuations of tled down before the game starts and do not depend on the players’
agents are uncorrelated, i.e., the valuation of an agent only dependstrategies. For example, in a unicast routing game [13], the setting

on its own output and type. Recall that a mechanidm= (O, P)

is composed of two parts, an output functi6hand a payment
schemeP. Previously, it is often assumed that there is an objec-
tive functiong and an outpu), that either optimizes or is an-
approximation ofy. In sharp contrast to VCG mechanisms, we do
not require that the output should optimize the objective function.
In fact, we do not even require the existence of an objective func-
tion. Given any output metho€ for a binary demand game, we
showed that a truthful mechaniskd = (O, P) exists for the game

if and only if O satisfies a certaimonotone propertyNote that the
monotone property only guarantees the existence of a payment
that is strategyproof, it does not give any method to comfte
Even with the knowledge of the existence of a truthful mechanism,
sometimes it could still be very hard, if not impaossible, to find the
paymentP. Thus, instead of giving a method to design and com-

includes the topology of the network, the source node and the desti-
nation node. In summary, for a gargegiven the strategy vectar
of the players, it computes the output and payment for every player.
Throughout this paper, if we dot not mention explicitly, the setting
S of the game is always fixed and we are only interested in how to
design the mechanism.

For each possible output agenti’s preferences are given by
a valuation functiorv(¢;, o) that assigns a real monetary number
to outputo. Everything in the scenario, including the settiSg
the output method? and payment metho®, is public knowledge
except the type;, which is the private information to agentLet
u;(t;, 0) denote thaitility of agent; at the outcome of the game
given its preferences. Hereafter. we assume the utility for agent
1isu;i(t;, 0) = v(ts, 0) + pi(a) (i.e., quasi-linear).

Let a|’a; = (a1, - ,an), i.e., each agent

’
y Qi—1,y gy Qig1, " "

pute the truthful mechanisms for all binary demand games, we give j # 4 plays strategys; except that the agentplays a;. Let

a general framework to design the truthful mechanisms. In particu-

a—; = (a1, -+ ,ai—1,a:41, - - ,an) denote the strategies of all

lar, we present algorithms to compute the payment when the outputother agents except Sometimes, we writda;, b_;) as b|’a;.
is a composition of the outputs of subgames through the operatorsA strategya; is called adominant strategyf it (weakly) maxi-

“or” and “and”; through round-based combinations; through inter-

mediate results, which may be again computed from other subprob-

lems.
The remainder of the paper is organized as follows. In Section

2, we discuss preliminaries and previous works, define binary de-

mizes the utility of: for all possible strategies of other agents,
i.e., ui(ti, O(ai,b,i)) > ui(ti, O(a’“b,l)) for all CL; ;ﬁ a; and

all strategiesh_, of agents other than A strategy vecton™ is
called aNash equilibriunif it (weakly) maximizes the utility when
the strategies of all agents are fixedds, i.e., u;(t;, O(a™)) >

mand games and discuss the basic assumptions about binary deu;(t;, O(a, a*;)) for all i, anda; # a;.
mand games. In Section 3, we first study some basic properties of A direct-revelation mechanism is a mechanism in which the only

the truthful mechanisma/ = (O, P) for a binary demand game
when the output functioi® is given. We then show tha® sat-

actions available to the agents are to make direct claims about its
private typet; to the mechanism. A direct-revelation mechanism is

isfying a certain monotone property is a necessary and sufficient incentive compatibl¢IC) if each agent maximizes its utility when

condition for the existence of a truthful mechanidth= (O, P).
A framework is then proposed to compute the paynfeim poly-
nomial time for several types of output metha@s In Section 4,

it reports its typé, to the mechanism truthfully. A direct-revelation
mechanism is strategy-proof if truth-revelation is a dominant-strategy
equilibrium. Then, in a direct-revelation strategy-proof mecha-

we provide several examples to demonstrate the effectiveness ofnism, the payment function should satisfy the property that, for

our general framework. We conclude our paper in Section 5 with
some possible future directions.

2. PRELIMINARIES

2.1 Mechanism Design

In the design of centralized or distributed network protocols with
inputs from individual agents, the computational agents are typi-
cally assumed to be eitheorrect/obedienbr faulty (also called

adversarial). In contrast to this conventional approach, this paper
follows the assumption in neoclassic economics that all agents are

rational, i.e., they respond to well-defined incentives and will devi-
ate from the protocol if and only if it improves their gain.

A standard model for mechanism design is as follows. Assume

there aren agents{1,--- ,n} and every agent has some private
informationt;, called itstype only known to itself. For example,
the typet; can be the cost agentforwarding a packet in a net-
work or can be a payment that the agent is willing to pay for a good
in an auction. The set of all agents’ types definestsipe vector

t = (t1,t2, -+ ,tn). Every agent has a set of strategie he can
choose from. For each input vecwe= (a1, - - - ,a») Where agent

i plays strategyr; € A;, the mechanisiM = (O, P) computes
anoutputo = O(a) and apaymentvectorp = (p1, - ,pn),
wherep; = P;(a1,--- ,an). Here the paymeng; is the money
given to participating agentand depends on the strategies used
by agents. Ifp; < 0, the agent has to payp; to participate in
the action. A game is defined gs= (S, M), whereS is setting

for gameg. Here,S are the parameters of the game that are set-

each agent, v(t;, O(t)) +pi(t) > v(t:, O(t|'t])) + pi(t|'t}). An-
other common requirement in the literature for mechanism design
is so calledindividual rationality or voluntary participation the
agent’s utility of participating in the output of the mechanism is not
less than the utility of the agent if it did not participate.

Arguably the most important positive result in mechanism de-
sign is the generalized Vickrey-Clarke-Groves (VCG) mechanism
by Vickrey [17], Clarke [5], and Groves [10]. The VCG mecha-
nism applies to maximization problems where the objective func-
tion is utilitarian g(o,t) = >, v(ts, o) (i.e., the sum of all agents’
valuations) and the set of possible outputs is assumed to be finite.
A direct revelation mechanistm = (O(t), P(t)) belongs to the
VCG family if (1) the outputO(t) maximizes) . v(t:, 0), and (2)
the payment to ageritis pi(t) = 3=, v;(t;, O(t)) + h'(t-),
whereh’() is an arbitrary function of_;. Under mild assump-
tions, VCG mechanisms are tloaly truthful implementations for
utilitarian problems [9].

An output function of a VCG mechanism is required to maxi-
mize the objective function. This makes the mechanism compu-
tationally intractable in many cases. Notice that replacing the op-
timal algorithm with non-optimal approximation usually leads to
untruthful mechanisms if VCG payment method is used. In their
seminal paper on algorithmic mechanism design, Nisan and Ro-
nen [13] add computational efficiency to the set of concerns that
must be addressed in the study of how privately known preferences
of a large group of selfish agents can be aggregated into a “social
choice” that results in optimal allocation of resources. In this paper,
we study how to design a strategy-proof mechanism that does



necessarily implement the utilitarian objective function.

2.2 Previous Work

Lehmannet al. [11] studied how to design an efficient truthful
mechanism for single-minded combinatorial auction. In a single-
minded combinatorial auction, each age(it < : < n) only wants
to buy a subse$; C S with private pricec;. A single-minded bid-
deri declares a bid; = (S}, a;) with S, C S anda; € R*.

In [11], it is assumed that the set of goods allocated to an agent
i is eitherS; or @, which is known asxactness Lehmannet al.

2.3 Binary Demand Games

Given the strategies of all agents for a gagea mechanism
computes the output and the payment. Generally, the output func-
tion © maps each given type vectorto an output from a given
output space. In this paper, we focus our attention on the set of
output functions, whose range{8, 1}". In other words, the out-
put is an-tuple vectorO(t) = (O1(t), O2(t), - - , On(t)), where
O;(t) = 1 (resp.0) means that agentis(resp. not) selected. We
call such a mechanism design probleibiary demand gameex-
amples of binary demand games include: unicast [13, 18, 8] and
multicast [19, 20, 7] (generally subgraph construction by selecting

gave a greedy round-based allocation algorithm, based on the ranksome links/nodes to satisfy some property), facility location [6],

a

W that has an approximation ratigm, wherem is the num-
ber of goods inS. Based on the approximation algorithm, they
gave a truthful payment scheme. For an allocation rule satisfying
(1) exactnessthe set of goods allocated to an ageisteitherS; or

@; (2) monotonicity proposing more money for fewer goods can-
not cause a bidder to lose its bid, they proposed a truthful payment
scheme as follows: (1) charge a winning bidder a certain amount
that does not depend on its own bidding; (2) charge a losing bid-
der0. Notice the assumption adxactnesseveals that the single
minded auction is indeed a binary demand game. Their payment
scheme inspired our payment scheme for binary demand game.

In [1], Archer et al. studied the combinatorial auctions where
multiple copies of many different items are on sale, and each bid-
der: desires only one subs§t. They devised a randomized round-
ing method that is incentive compatible and gave a truthful mech-
anism for combinatorial auctions with single parameter agents that
approximately maximizes the social value of the auction. As they
pointed out, their method &rongly truthfulin sense that it is truth-
ful with high probability1 — ¢, wheree is an error probability. On
the contrary, in this paper, we study how to desigieterministic
mechanism that is truthful based on some given outputs.

In [2], Archer and Tardos showed how to design truthful mech-
anisms for several combinatorial problems where each agent'’s pri-
vate information is naturally expressed hysingle positive real
number which will always be the cost incurred per unit load. The
mechanism’s output could be arbitrary real number but their val-
uation is a quisilinear functiom - w, wheret is the private per
unit cost andw is the work load. Archer and Tardos characterized
that all truthful mechanism should have decreasing “work curves
w and that the truthful payment should B&(b;) = P;(0) +
biw;(b;) — fob'i w; (u)du Using this model, Archer and Tardos de-
signed truthful mechanisms for several scheduling related prob-
lems, including minimizing the span, maximizing flow and min-
imizing the weighted sum of completion time problems. Notice
when the load of the problems is = {0, 1}, it is indeed a bi-
nary demand game. If we apply their characterization of the truth-
ful mechanism, their decreasing “work curvas”implies exactly
the monotone property of the output. But notice that their proof
is heavily based on the assumption that the output is a continuous
function of the cost, thus their conclusion can't directly apply to
binary demand games.

The paper of Ahuva Mu’alem and Noam Nisan [12] is closes
in spirit to our work. They clearly stated thete only discussed
a limited class of bidders, single minded bidders, that was intro-
duced by[11]. They proved that all truthful mechanisms should

t

and a certain auction [11, 2, 12].

Hereafter, we also assume that the valuation of each d@dent
o; = 0is a publicly known value. This assumption is needed to
design a mechanism satisfying the individual rationality (IR) prop-
erty. If this assumption does not hold, in many applications, the
agent can get arbitrarily large utility by declaring arbitrarily small
v(ti, 0) andv(t;, 1) when the valuation of agents are negative. For
example, in the unicast problem, the IR property implies that the
payment to an agent is at leasin(—uv(t;,0), —v(¢;, 1)). With-
out loss of generality, we assume that the valuatign, 0) is nor-
malized to0. Thus, throughout his paper, we only consider these
direct-revelation mechanisms in which every agent only needs to
reveal its valuation; = wv(¢;,1) when it is selected. Notice that
in applications where agents providing service and receiving pay-
ment, e.g., unicast and job scheduling, the valuatioof an agent
1 is usually negative. For the convenience of our presentation, we
introduce the cost of agent whichds = —v(¢;, 1), i.e., it costs
agent: ¢; to provide the service. Throughout this paper, we will
usec; instead ofv; in our analysis. All our results can apply to
the case when the agents procure the service instead of provide by
settinge; to negative, as in auction.

A binary demand game is called Aimary optimization demand
gameif we optimize an object function. The main differences be-
tween binary demand games and those problems that can be solved
by VCG mechanisms are:

1. The objective function igtilitarian for a problem solvable
by VCG while there is no restriction on the objective function
for a binary demand game.

. The output functior© does not necessarily optimize an ob-
jective function, while a VCG mechanism only uses the out-
put that optimizes the objective function.

. The range of the output method in a binary demand game
is {0, 1}", while the range of the output function in a VCG
mechanism may be arbitrary.

4. We assume that the agents’ valuations are not correlated in
a binary demand game, while the agents’ valuations may be

correlated in a VCG mechanism.

In this paper, we assume for technical convenience that the ob-
jective functiong(o, ¢), if exists, is continuous regarding the cost
¢;, but most of our results can be directly applied to the discrete
case without any modifications.

have a monotone output and their payment scheme is based on the3- GENERAL APPROACHES

cut value. With a simple generalization, we get our conclusion for
general binary demand game. They proposed several combinatio
methods including MAX, IF-THEN-ELSE construction to perform
partial search. All of their methods required the welfare function
associated with the output satisfyibgonic property.

m3.1  Properties of Strategyproof Mechanisms

Generally, there are several properties that direct revelation mech-
anisms need to satisfy in order to be truthful (see appendix for the
proofs of the following theorems).



THEOREM 1. If a mechanism\/ = (O, P) satisfiesIC, then Algorithm 1 GENERAL FRAMEWORK: Truthful mechanism design

Vi, if O; (t|itil) =0, (t|iti2), thenpi(t\itil) = p; (t|iti2). for a binary demand game
. ) 1: Check whether the output methd@d satisfies the monotone
COROLLARY 2. For any strategy-proof mechanism for a binary property. If it does not, then there is no payment schéme
demand gamg with settingS, if we fix the cost_; of all agents such that mechanisth = (O, P) is truthful. Otherwise, de-
other thani, the payment to ageritis a constanp; if O;(c) = 1, fine the paymenP as follows.

and itis another constant if O:(c) = 0. 2: Based on the method, find the cut valuex;(O,c_;) for
agenti such thatO;(c|’d;) = 1 whend; < x;(O,c_;), and
OZ(Cle) =0 Whendi > m(O, Cfi).

3: The payment for agentis 0 if O;(c) = 0; the payment is
m((’),c,i) If OZ(C) =1.

THEOREM 3. Fixed the settingS for a binary demand game,
if mechanismM = (O, P) satisfiesIC, then mechanismd{’ =
(0, P") with the same output metha® and p;(c) = pi(c) —
0;(c—;) for any functiond; (c_;) also satisfied C.

The proof of this theorem is straightforward and thus omitted.
This theorem implies that for the binary demand games we can
always normalize the payment to an agestich that the payment  pareafter.

to the agent i®) when it is not selected. Hereafter, we will only Itis easy to show that LCP satisfies the monotone property. Thus,
consider normalized payment schemes, jie = 0. there exists a payment schefesuch thatM = (LCP,P) is a

3.2 Existence of Strategyproof Mechanisms truthful mechanism. Now, we find the cut value when LCP is used
o . . . . . as the output. LetCP(g;, qj, c|k0) be the least cost path when
Notice, given the setting, a mechanism design problem is com-

i ! . qx 1s selected with codd. Let LCP_,, (g;, g5, ¢) be the least cost
posed o_f two parts: the output functidh and a payment funct!on path without nodey:. Obviously, when the cost of nodg is no
‘P. In this paper, we use a given outgOtand focus our attention

> - more than|LCP_,, (¢:,q;, c)| — |LCP(gi, g;,¢|*0)|, nodegqx is
on how to design a truthful payment scheme basedorGiven selected. Consequentlyy,(LCP,c_i) = |LCP_q, (gi,q;,¢)| —
. y b— —qk 1y )

an output method for a binary demand game, we first present ILCP(gs, 45, ¢|*0)|. The payment forg, is p, = w(LCP,c_p).
a sufficient and necessary condition for the existence of a truthful \grice |ZILCJF7>(qZ- gi,¢|"0)| = ILCP(gi, 5, ¢)| — cx Whenq;; is se-

payment schem®. lected under cost profile Thus, the payment;, can be written as,
wheng; is selected|LCP_, (gi, g5, ¢)| — |LCP(qi, ¢;, ¢)| + ¢k,
which is exactly the same as what we get from the VCG mecha-
nism.

and target with the minimum cost, called tleast cost pati{LCP)

DEFINITION 1 (MONOTONENON-INCREASING PROPERTY(MP))
An output method is said to satisfy thenonotone non-increasing
propertyif for every agent and two of its possible costs, < ¢;,,

7 3

Oulel'eiz) < Oulel'eun). 3.3 Computing Cut Value Functions

This definition is not restricted only to binary demanvd games. It seems quite easy to find the truthful payment scheme by using
For binary demand games, this definition implies théifc|°ci,) =  our general framework, but as we will see later, the most difficult
1thenO;(c|"cs,) = 1. part is how to find the cut value function when we know it does
exist. Notice that the simple binary search methods do not work
generally since the valuation of the agents could be continuous. In-
stead of trying to give a universal approach to compute the cut value
for all output methods satisfying MP, we give some useful general
techniques that can help us finding cut value under certain circum-
stances. Our basic approach is as follows. First, we decompose
the output methods into the composition of several output meth-
ods. Then we find the cut value function for each of the decom-
posed output methods. Finally, we calculate the original cut value
function by combining the cut value functions of these decomposed
functions.

THEOREM 4. For any agenti and any fixedc—; in a binary
demand game with output meth@dthe following three conditions
are equivalent:

1. There exists a value,; (O, c_;) (called acut valug such
that OZ(C) = 1if ¢ < m(O,c,i) and OZ(C) = 0if
ci > ki(O,c—;). Whene; = (O, c—;), O;(c) could be ei-
ther0 or 1, depending on the tie-breaker of the output method
O. Hereafter, we will not consider the tie-breaker scenario
in our proofs.

2. The output metho® satisfies MP.
3.3.1 Simple Combinations

Given an output functiod, let (O, ¢) denote an-tuple vector
See the appendix for the proof of the theorem. We now summa- (£1(0, ¢-1), £2(0,c—2),- -+, £n (O, cn)). Here,xi(O, c—i) is

rize the process to design a truthful payment scheme for a binary the cut value for agent when the output function i&) and the
demand game based on an output mettiod costsc_; of all other agents are fixed. Regarding the combination

Regarding our general framework, we have the following theo- Of binary demand game, we have the following theorem.
rem.

3. There exists a truthful payment schefe

THEOREM 6. Fixed the settingS of a binary demand game,
sume that there are. output functionsd', 0%, ..., O™ satis-
fying the monotone property, andO®, ¢) is the cut value function

Here, we briefly illustrate our general framework through the vector f°r§?f wrlerez = 1,2,.--,m. Then the output function
example of unicast routing, which is well studied [13]. We assume ©(¢) = ViZ, O'(c) also satisfies the monotone property. More-
that the nodes are the agents, but all arguments and algorithms ca?Ve" the cut value function fap is
be applied to the case when the links are the agents. Assume that, m )
the output of the mechanism uses the path connecting the source #(0,¢) = lgljf{ﬂ(ola o)}

THEOREM 5. The payment defined Algorithm 1 is minimum among,
all truthful payment schemes usidgas output.



Herex (O, c) = max™,; {k(O%, c)} meansyj € [1,n], We study by an example to show how to compute the cut value
for a round-based output. The example we used here imthie

K;(0,c—5) = liilfaf({ﬂj(ozv c—i)} mum weighted vertex cover problémMWVC). Given a graptG =
_ B (V, E), where the vertice}” = {1,2,--- ,n} are agents and each
andO(c) = Vi, O'(c) meansyj € [1,n], agenti € V has a weight;, we want to find a vertex sét’ C V
) 5 . such that for every edg@:, v) € E at least one oft andv is in
Oj(c) = 0 (c) v Oj(c) V- -V O (c). V'. HereV' is called a vertex cover af. The valuation of a ver-

] ) ] o texi is —c; if it is selected; otherwise its valuation@s We define
The proof of this theorem is omitted due to space limit. In prac- . V') =Y,y cifor vV C V.

tice, many algorithms indeed fall into this category. To show the " \ve want to find a vertex cover with the minimum weight, i.e.,
usefulness of Theorem 6, we study a concrete example here. In e ohjective function to be implemented is utilitarian. To use
network, sometimes we want to deliver the packet to a set of termi- \yvcG mechanism. we need find the vertex cover with the mini-
nals instead of one, which is known as multicast. The most com- mym weight, which is NP-hard [14]. Since we are interested in

monly used structure in multicast routing is so called Shortest Path he mechanisms that can be computed in polynomial time, we have

Tree (SPT). Consider a netwotk = (V, E, ¢), whereV is the to use some polynomial-time computable output functions. Many
set of terminals, andis the actual cost of the node forwarding the 5 orithms have been proposed in the literature to approximate the
data. Assume that the source nodeésd the receivers arg C V. optimum solution. In this paper, we useapproximation algo-

For each receivey; € O, we compute the shortest path (least cost jthm proposed in [14]. For the completeness of presentation, we
path), denoted byCP(s, g, d), from the source to ¢; under the  pyjefly review their method here. The method is a round-based ap-
reported cost profil@. The union of all such shortest paths forms  yr5ach. Each round it selects some vertices and discards some ver-
the shortest path tree. We then use our general approach to desigfices. For each vertek w(i) is initialized to its weightc;, and
the truthful payme.nt sch_em@ when thg SPT structure is used as whenw(4) drops t00, i is picked into the vertex cover. To make
the output for multicast, i.e., a mechanisih = (SPT, P). the presentation clear, we say an edge ) is lexicographically

We defineLC'P(*%) as the output generated bEP (s, ¢;, d), smaller than edgéis, j») if (1) min(i1, j1) < min(is, j2), Of (2)
i.e., LOP,>%)(d) = 1if and only if nodevy, is in LCP(s, i, d). min(i1, j1) = min(iz, j2) andmax(iy, j1) < max(ia, ja).
Then the output SPT is defined 85, ., LCP*%). In other _ _ _ _
words,SPTy(d) = 1ifand only if g is selected in someCP(s, g, d). Algorithm 2 Approximate Minimum Weighted Vertex Cover
In previous section, we have already proven that shortest path satInput: A node weighted grapt¥ = (V, E, ¢).
isfies MP. Thus, by applying Theorem 6, we know that SPT also Output: A vertex coverV/’.
satisfies MP, and the cut value function vector for SPT can be calcu- 1: SetV’ = (). For each € V, setw(i) = c;.
lated as<(SPT, c) = maxy,cq £(LCP* %), c), wherex(LCP*%) c) 2: while V' is not a vertex covedo
is the cut value function vector for the shortest pa@P (s, ¢;, ¢). 3:  Pick an uncovered edgg, j) with the least lexicographic
Consequently, the payment scheme above is truthful and minimal order among all uncovered edges.
among all truthful payment scheme when the output is SPT. Letm = min(w(i), w(j)).

4.
5. Updatew(i) tow(i) — m andw(j) tow(j) — m.
6:
7

THEOREM 7. Fixed the settingS of a binary demand game, If w(i) =0, addi to V', If w(j) =0, addj to V".

assume that there are: output method®', 02, - -, O™ satisfy- end while

ing MP, andx(0O", c) are the cut value functions respectively for

O’ wheres = 1,2,.-- ,m. Then the output functio®(c) = Notice, selecting an edge using the lexicographic order does not
NiZ, O'(c) satisfies MP. Moreover, the cut value function ¢is necessarily achieve tieapproximation ratio, but it guarantees the
k(0 ¢) = miniZ, {k(O", ) }. monotone property. The above algorithm produces a vertex cover

V" whose weight is withir2 times of the optimum. For conve-

We then show that our simple combination generalizes the IF- nience, we us&C(c) to denote the vertex cover computed by Al-

THEN-ELSE function defined in [12]. For an agehtassume

Con > e gorithm 2 when the cost vector of vertices:is
th?glhere ?re t\(’v(gfmp?t;gqﬁzofi \i:ISSfuflittlizfr)\“sn? dg/'lp' (,I)‘Qet We then generalize the above algorithm to a more general sce-
Ri yC—i)y Ki y C—i ,

respectively. Then the IF-THEN-ELSE functia; (c) could be ”a"to' C?”SidTe”?g";‘l”@"‘r’“h :gtgngsaasft[t‘)f nagen's "’;”dt”}.e .
treated a9, (c) = [(c: < #i(O e 1) 1b1(c_)AO(c_s. eV cost vector. Typically, a round-based output can be characterize

(e < Ki(OY, c_i) — 6a(c_i)) wheredy (c_;) andda(c_ ;) are two as follows.

positive functions. By applying Theorems 6 and 7, we know that  DeriNniITION 2. An updating rulel{” is said to becrossing-
the output functior© satisfies MP ané; (O, c—;) is independent’, for any agenti not selected in round (1) &1
andc™t" do not depend onj (2) for fixedc” ;, ¢, < cf, implies

max{min(ﬁi((')l,c_i)+61(c_i),ni((’)z,c_i)),m(Ol,c_i)—(sg(c_i))}. that 1 < o+l
i1 — iz 7

We have the following theorem about the existence of a truthful

ayment usingA.
3.3.2 Cut-Value for Round-Based Outputs pay 9

The majority approximation algorithms can be categorized as .

round-based approaches: in each round the algorithm selects som P and th dating f o ing-ind dent
agents, and then updates the setting and the cost profile if neces- e:jn the updating functidlf” Is crossing-independent for every
sary. For example, majority approximation algorithms for mini- unadr.
mum weighted vertex cover, maximum weighted independent set, If the round-based output satisfies monotone property, the cut-
minimum weighted dominating set, minimum weighted set cover, value always exists. We then show how to find the cut value for a
minimum weighted Steiner tree, and so on fall into this category.  selected agerit in Algorithm 4.

THEOREM 8. Around-based outputl, with the framework de-
ned in Algorithm 3, satisfies MP if the output meth@dssatisfy



Algorithm 3 A General Round-Based Output

1: Setr =0, ® = ¢, andg® = G initially.
2: repeat

The correctness of Algorithm 4 is straightforward. To compute
the cut value, we assume that (1) we can solve the equdtienb
to find x in polynomial time when the cost vecter; andb are
given; (2) the cut value; for each roundi can be computed in
polynomial time.

Now we consider the vertex cover problem. For each round

3: Compute an output” using adeterministianethod we select a vertex with the least weight and that is incident on the
O": 8" x " — {0,1}". lexicographically least uncovered edge. The output satisfies MP.
) For agent, we update its cost tg — cj iff edge (4, j) is selected.
Here O", ¢" and 8" are output function, cost vector and |t js easy to verify this updating rule is crossing-independent, thus
game setting in gamg” respectively. Notice)" is often a we can apply Algorithm 4 to compute the cut value as shown in
simple greedy method such as selecting the agents that min- A|gorithm 5.
imize some utilitarian function. For the example of vertex
coyer,(”)" wi_II always select the Iight-vyquhted node on the Algorithm 5 Compute Cut Value for MVC,
lexicographically least uncovered ed@e;). -
4: Letr = r + 1. Update the game, i.e., we get a new game 'NPut: A node weighted grapkix = (V; E, ¢) and a nodek se-
G" with settingS™ and cost vectoe” from g"~* according ~ 'ected by Algorithm 2.
to some rule Output: The cut values, (VC,c_g).
o1 1 1 S 1: Foreach € V, setw(i) = ¢;.
U 0t x (8T, c) = (87, ¢). 2: Setw(k) = oo, pr = 0andV’ = 0.
Here we updates the cost and setting of the game. For the ex- 3: While V" is not a vertex covedo _ _
ample of vertex cove§” is a new graph resulted frosi :  Pick an uncovered edgg, j) with the least lexicographic
by removing of all edges incident on the selected node; and order among all uncovered edges.
the costs of nodes j are deduced by amount. Remember 5. Setm = min(w(i), w(j)).
herem is the minimum cost of, and; in G"~*. 6:  Updatew(i) = w(i) — mandw(j) = w(j) — m.
5: until a valid output is found 70 Ifw(i) =0,addito V'; else addj to V"
6: Return the union of selected players of all rounds as the final 8: If i ==k orj == kthen sepy. = py +m.

output. For the example of vertex cover, it is the union of nodes
selected in all rounds.

9: end while
10: Outputpy, as the cut valuex(VC,c_g).

Algorithm 4 Compute Cut Value for Round Based Method
Input: A round based output, the initial gameG' = G and
updating function vectaw

Output: Cut valuex for an agentk.

1: Setr = 0 andc, = 0. Here,( is the value that can guarantee
Ar = 0.

2: repeat
3:  Compute an output” using a deterministic method based
on settingS™ usingO” : §” x ¢" — {0,1}".
4:  Find the cut value for agerit based on output functio®”
for costsc” ;. Letl, = ki (O7, c”;,) be the cut value.
5.  Setr = r + 1 and obtain the new gan@. from G"~* and
o" according to the updating rulé”.
6: Letc" be the new cost vector for gangé.
7: until avalid output is found.
8: Lete' = ¢|*z, and(S",¢") = U (0", (S 7).
9: Find the minimum value: such that it satisfies the following
inequations:
x Z £1
G > b
6271 2 gr—l
[ N

10: Output the valuer as the cut value.

3.3.3 Complex Combinations

In section 3.3.1, we discussed how to find the cut value function
when the output of the binary demand game is a simple combina-
tion of some outputs, whose cut values can be computed through
other means (typically VCG). However, some algorithms cannot
be decomposed in the way described in section 3.3.1.

Next we present a more complex way to combine functions, and

as we may expected, the way to find the cut value is also more
complicated. Assume that there ateagentsl < i < n with
cost vectore, and there aren binary demand game$,; with ob-
jective functionsf; (o, c), settingS; and output function)® where
i =1,2,--- ,m. There is another binary demand game with set-
ting S and output function®, whose input is a cost vectar =
(di,d2,- -+ ,dm). Let f be the function vectoffi, f2, - , fm),
+ be the output function vectarp®, 2, ,4™) and [ be the
setting vector(Si, Sz, - - ,Sm). For notation simplicity, we de-
fine Fi(c) = fi(¥'(c),c), for eachl < i < m; and define
Fle) = (Fi(e), Fa(e), - -+, Fm(c)).

Let us see a concrete example of these combinations. Consider a
link weighted grapiG = (V, E, ¢), and a subset aof nodes@ C.

The Steiner tree problem is to find a set of links with minimum
total cost to conneaf). One way to find an approximation of the
Steiner tree is as follows: (1) we build a virtual complete gr&ph
using@ as its vertices, and the cost of each edge) is the cost
of LCP(i, 7, ¢) in graphG; (2) build the minimum spanning tree
of H, denoted as\/ ST (H); (3) an edge of7 is selected iff it is
selected in somé&CP(i, j,¢) and edge(s, j) of H is selected to
MST(H).

In this game, we define(¢ — 1)/2 gamesg; ;, wherei,j €
Q, with objective functionsf; ; (o, ¢) being the minimum cost of
connectingi andj in graphG, settingS; being the original graph
G and output functiorLCP(z, j,¢). The gameg corresponds to



the MST game on grapH. The cost of the pair-wisg(q — 1)/2
shortest paths defines the input vecioe= (d1,ds,- - ,d) for
game MST. More details will be given in Section 4.2.

DEFINITION 3. Given an output functio® and settingS, an
objective function vectof, an output function vectap and setting
vector [, we define a compound binary demand game with setting
S and output© o F defined agO o F);(c) = /-, (O;(F(c)) A

¥](0)).

The output method of the above definition can be interpreted as
follows. An agent; is selected if and only if there is asuch that
(1) i is selected iny? (c), and (2) the output metha® will select
indexj under cost profileéF(c). For simplicity, we will useQ o F
to denote the output of this compound binary demand game.

Notice that a truthful payment scheme usifigo F as output
exists if and only if it satisfies the monotone property. To study
whenQ o F satisfies MP, several necessary definitions are in order.

DEFINITION 4. Function Monotone Property (FMP) Given
an objective functiog and an output metho@, a functionH(c) =
g(O(e), c) is said to satisfy the function monotone property, if,
given fixed-_;, it satisfies:

1. WhenO;(c) = 0, H(c) does not increase ove;.

2. WhenO;(c) = 1, H(c) does not decrease ovey.

DEFINITION 5. Strong Monotone Property (SMP) An out-
put method? is said to satisfy the strong monotone propert@if
satisfies MP, and for any agehtvith O;(c) = 1 and agentj # i,
Oi(cf'c)) = 1if ¢ > ¢; or O;(cf’c)) = 0.

LEMMA 1. For a given output functioi® satisfying SMP and
cost vectorg, ¢’ with ¢; = ¢, if O;(c) = 1 andO;(c’) = 0, then
there must exist # i such that} < ¢; andO;(c') = 1.

From the definition of the strong monotone property, we have Lemm%

1 directly. We now can give a sufficient condition wh@mp F sat-
isfies the monotone property.

THEOREM 9. If Vi € [1,m)], F; satisfies FMPy)* satisfies MP,
and the outpu satisfies SMP, the® o F satisfies MP.

See appendix for the proof. This theorem implies that there is a
cut value for the compound outpto F. We then discuss how to
find the cut value for this output. Below we will give an algorithm
to calculatex;(O o F) when (1) O satisfies SMP, (2))7 satis-
fies MP, and (3) for fixed_;, F;(c) is a constant, saj;, when
¥l (c) = 0, andF;(c) increases wheny! (c) = 1. Notice that
hereh; can be easily computed by setting= oo sincey’ satis-
fies the monotone property. When giveand fixedc_;, we define
(F#)~*(y) as the smallest such thatF; (c|’z) = y. For simplic-
ity, we denotg F;) ' asF; " if no confusion is caused wheris a
fixed agent. In this paper, we assume that given;arwe can find
suchz in polynomial time.

THEOREM 10. Algorithm 6 computes the correct cut value for
agenti based on the output functigdf o F.

See appendix for the proof. In most applications, the output
function v’ implements the objective functiof and f; is utili-
tarian. Thus, we can compute the inverseﬁ)ﬁcl efficiently. An-
other issue is that it seems the conditions when we can apply Algo-
rithm 6 are restrictive. However, lots of games in practice satisfies

Algorithm 6 Find Cut Value for Compound Methaf! o 7

Input: Output function®, objective function vectof and inverse
function vectorF ' = {F; ', --- , F,'}, output function vector
1 and fixedc_;.

Output: Cut value for agent based or©O o F.

1:for1 <j<mdo

2. Compute the outputg’ (c;).

3:  Computeh; = F;(c|o0).
4

5

. end for
: Useh = (hi,hs2,--- ,hn) as the input for the output func-
tion O. Denoter; = k;(0O, h—_;) as the cut value function of
output©O based on inpuk.
for1 <j<mdo
Setnm- = ijl(min{Tj, h]})
. end for
: The cut value foti is k(O o F, c_;) = maxjL; Kq ;.

these properties and here we show how to deduct the MAX com-
bination in [12]. For the completeness of our presentation, we first
review the MAX combination first. Assumd; and A, are two
allocation rules for single minded combinatorial auction, then the
combinationM AX (A, A2) returns the allocation with the larger
welfare. If algorithmA; and A, satisfy MP and FMP, the opera-
tionmax(x, y) which returns the larger elementofindy satisfies
SMP, from Theorem 9 we obtain that combinatih4 X (A4, Az)

also satisfies MP. Further, the cut value of the MAX combination
can be found by Algorithm 6. As we will show in Section 4, the
complex combination can apply to some more complicated prob-
lems.

4. CONCRETE EXAMPLES
4.1 SetCover

In the set cover problem, there is a 8&bf m elements needed

be covered, and each agan ¢ < n can cover a subset of
elementsS; with a coste;. Let S = {S1,52,---,S»} andc =
(c1,c2,-+- ,cn). We want to find a subset of agenissuch that

U C U;ep Si- The selected subsets is called the set cover for
U. The social efficiency of the outpu? is defined asy ;. , ci,
which is the objective function to be minimized. Clearly, this is
a utilitarian and thus VCG mechanism can be applied if we can
find the subset of that coversU with the minimum cost. It is
well-known that finding the optimal solution is NP-hard. In [4], an
algorithm of approximation ratio off,,, has been proposed and it
has been proved that this is the best ratio possible for the set cover
problem. For the completeness of presentation, we review their
method here.

Algorithm 7 Greedy Set Cover (GSC)
Input: Agenti’s subsetS; covered and cost;. (1 < i < n).
Output: A set of agents that can cover all elements.

1: Initializer = 1, Tp = 0, andR = 0.

2. while R #£ U do

3:  Find the setS; with the minimum densitylﬁ.
4: SetT,41=T-JS;andR=RJj.

5 r=r-+1

6: end while

7: OutputR.

Let GSC(S) be the sets selected by the Algorithm 7.Notice that



the output set is a function &f andc. Some works assume that
the type of an agent could hg, i.e., S; is assumed to be a pub-

4.2 Link Weighted Steiner Trees
Consider any link weighted netwok = (V, E, ¢), whereE =

lic knowledge. Here, we consider a more general case in which {e1,ea,--- ,em} are the set of links and is the weight of the link

the type of an agent i§S;,¢;). In other words, we assume that
every ageni can not only lie about its cost but also can lie about
the setS;. This problem now looks similar to the combinatorial
auction with single minded bidder studied in [11], but with the fol-
lowing differences: in the set cover problem we want to cover all

e;. The link weighted Steiner tree problem is to find a tree rooted at
source node spanning a given set of nod€s= {q1,qz2, - ,qr} C

V. For the simplicity of notations, we assume that= v;, for

1 < i < k. Here the links are agents. The total cost of links in a
graphH C G is called the weight of{, denoted asy(H). Itis

the elements and the sets chosen can have some overlap while iyp-hard to find the minimum cost multicast tree when given an ar-

combinatorial auction the chosen sets are disjoint.
We can show that the mechanisii = (G'SC, PY°Y), using
Algorithm 7 to find a set cover and apply VCG mechanism to com-

bitrary link weighted grapl@z [15, 16]. Takahashi and Matsuyama
[16] first gave a polynomial-tim&-approximation algorithm for
this problem. Then a series of results have been developed to im-

pute the payment to the selected agents, is not truthful. Obviously, prove the approximation ratio. The currently best polynomial time
the set cover problem is a binary demand game. For the moment,method has approximation ratio+ 1n3 [15]. Here, we review and

we assume that agentvon’t be able to lie abous;. We will drop

this assumption later. We show how to design a truthful mechanism

by applying our general framework.

1. Check the monotone property The output of Algorithm 7
is a round-based output. Thus, for an agente first focus
on the output of one round In roundr, if ¢ is selected by
Algorithm 7, then it has the minimum rati%icjim among
all remaining agents. Now consider the case whées its
cost toc; < ¢;, obviouslyﬁ is still minimum among
all remaining agents. Consequently, agert still selected
in roundr, which means the output of roundsatisfies MP.
Now we look into the updating rules. For every round, we
only update th&’,;; = T..|JS; andR = R j, which is
obviously cross-independent. Thus, by applying Theorem 8,
we know the output by Algorithm 7 satisfies MP.

2. Find the cut value: To calculate the cut value for ageint
with fixed cost vector_;, we follow the steps in Algorithm
4. First, we set; = oo and apply Algorithm 7. Let, be the
agent selected in roundandej1 be the corresponding set.
Then the cut value of roundis

Ci, . ‘Sl_TT—z‘

6= —Gr
|Si7‘ - TT' 7(|

discuss the method by Takahashi and Matsuyama [16].

Algorithm 8 Find LinkWeighted SteinerTree (LST)

Input: NetworkG = (V, E, c) wherec is the cost vector for link

setFE. Source node and receiver sef.

Output: Atree LST rooted ats and spanned all receivers.

1: Setr=1,G1 = G, Q' = Q ands! = s.

2: repeat

3: In graphG,, find the receiver, say;, that is closest to the
sources, i.e., LCP(s,g;, c) has the least cost among the
shortest paths from to all receivers inQ".

4: Select all links orLCP(s, ¢;, ¢) as relay links and set their
cost to0. The new graph is denoted &5 1.

5. Sett, asq; andP, = LCP(s, ¢;, ¢).

6: SetQ "' =Q"\g;andr =r +1.

7: until all receivers are spanned.

Hereafter, |etLST(G) be the final tree constructed using the
above method. It is shown in [20] that mechanifn= (LST, p" “%)
is not truthful, wherep” < is the payment calculated based on
VCG mechanism. We then show how to design a truthful payment
scheme using our general framework. Observe that the oBtput
for any roundr, satisfies MP, and the update rule for every round
satisfiescrossing-independentThus, from Theorem 8, the round-
based outpuL ST satisfies MP. In round, the cut value for a link

Remember the updating rule only updates the game settinge; can be obtained by using the VCG mechanism. Now we set

but not the cost of the agent, thus we have

x 2 £1

c% =z > s
62_1 =z > [l

Eg = Z Et

Therefore, the final cut value for ageris

Cq —i
ki(GSC,c—;) = max{ ———— - |S; — T,
( ) = max{ e | }
The payment to an agents «; if i is selected; otherwise its
payment ig).

We now consider the scenario when agéman lie abouts;.
Assume that ageritcannot lie upward, i.e., it can only report a set
S; C S;. We argue that agentwill not lie about its elements;.
Notice that the cut value computed for rounts £" Sip

IR
|S; — T,7%|. Obviously|S; — T;7%| < |S; — T*| for any S} C S;.
Thus, lying its set asS; will not increase the cut value for each
round. Thus lying abou$; will not improve agent’s utility.

c; = oo and execute Algorithm 8. Leb‘(c;) be the cost of
the pathP..(c;) selected in theth round andT:(c;) be the short-
est path selected in roundif the cost of¢; is temporarily set to
—o0. Then the cut value for roundis £, = w?(c—;) — [TI&(c—)|
where|IT:(c_;)| is the cost of the patfil’(c_;) excluding node
v;. Using Algorithm 4, we obtain the final cut value for agént
ki(LST,c—;) = max,{¢,}. Thus, the payment to a link; is
ki(LST, c—;) if its reported cost isl; < x;(LST,d_;); other-
wise, its payment i§.

4.3 Virtual Minimal Spanning Trees

To connect the given set of receivers to the source node, besides
the Steiner tree constructed by the algorithms described before, a
virtual minimum spanning tree is also often used. Assume@hat
the set of receivers, including the sender. Assume that the nodes in
a node-weighted graph are all agents. The virtual minimum span-
ning tree is constructed as follows.

The mechanism\/ = (VMST,p¥“%) is not truthful [20],
where the paymeni” ““ to a node is based on the VCG mech-
anism. We then show how to design a truthful mechanism based on
the framework we described.

1. Check the monotone property Remember that in the com-



Algorithm 9 Constructe VMST

1: for all pairs of receivers;, ¢; € @ do

2: Calculate the least cost patlCP(qg;, g5, d).

3: end for

4: Construct a virtual complete link weighted grapfi(d) us-
ing @ as its node set, where the linkg; corresponds to the
least cost path.CP(g:,¢;,d), and its weight isw(qiq;) =
ILCP(gi,g;,d)|.

5: Build the minimum spanning tree oi(d), denoted as

VMST(d).
6: for every virtual linkg;q; in VM ST (d) do
7:  Find the corresponding least cost patBP(q;, ¢;, d) in the
original network.
8: Mark the agents ohCP(q;, q;, d) selected.
9: end for

plete graphi (d), the weight of a linkg; q; is [LCP (g, g;, d)|-

In other words, we implicitly define¢Q|(|Q| — 1)/2 func-
tions f; ;, foralli < jandg; € @Q andg; € @, with
fi,;(d) = |LCP(g¢:, q;,d)|. We can show that the function
fi,j(d) = |LCP(gi, q;, d)| satisfies FMP, LCP satisfies MP,
and the output MST satisfies SMP. From Theorem 9, the out-
put method VMST satisfies the monotone property.

2. Find the cut value: Notice VMST is the combination of
MST and functionf; ;, so cut value for VMST can be com-
puted based on Algorithm 6 as follows.

(a) Given a link weighted complete gragki(d) on Q, we
should find the cut value function for edge = (g:, ¢;)
based on MST. Given a spanning tr€eand a pair of
terminalsp andq, clearly there is a unique path con-
necting them or”. We denote this path ddr(p, q),
and the edge with the maximum length on this path as
LE(p,q,T). Thus, the cut value can be represented as
ke(MST,d) = LE(q;,q;, MST(d|*o0))

(b) We find the value-cost function for LCP. Assumg €

LCP(qgs, ¢;,d), then the value-cost function isy

yr — |LCPy, (q:,q;,d|"0)|. Here,LCP., (gi, q;,d) is

the least cost path betwegnandg; with nodewv;, on
this path.

Removev;, and calculate the valuk (d|*cc). Seth; ;) =

ILCP(g:, g5,d|>))| for every pair of node # j and

let h = {h¢ ;} be the vector. Then it is easy to

show thatr; ;) = |LE(gi,q;, MST(h|"?0))] is
the cut value for output VMST. It easy to verify that
min{h(w),‘T(i’j)} = |LE(qi,qj,MST(h)|. Thus,
we knows ") (VMST7 d)is|LE(gi,q;, MST(h)|—
ILCP., (¢, q;,d|*0)|. The cut value for agent is
k(VMST,d_1) = maxo<ij<r Iik (VMST d_g).

(©

3. We pay agenk x(VMST,d_
in VMST(d); else we pay ib.

) ifand only if  is selected

4.4 Combinatorial Auctions

Lehmannet al. [11] studied how to design an efficient truthful
mechanism for single-minded combinatorial auction. In a single-
minded combinatorial auction, there is a set of itesh® be sold
and there is a set of agents< i < n who wants to buy some of
the items: agent wants to buy a subset; C S with maximum
price m;. A single-minded biddei declares a bid; = (S}, a;)

with S; C S anda; € R*. Two bids(S}, a;) and(S}, a;) conflict

if Si NS} # 0. Given the bids1, ba, - - - , bn, they gave a greedy
round-based algorithm as follows. First the bids are sorted by some
criterion (‘S, i75 is used in[11]) in an increasing order and Iebe

the list of sorted bids. The first bid is granted. Then the algorithm
exams each bid df in order and grants the bid if it does not conflict
with any of the bids previously granted. If it does, itis denied. They
proved that this greedy allocation scheme using criteﬁi@%

approximates the optimal allocation within a factor\éfn, where
m is the number of goods if.

In the auction settings, we have= —a;. Itis easy to verify the
output of the greedy algorithm is a round-based output. Remem-
ber after biddey; is selected for round, every bidder has conflict
with j will not be selected in the rounds after. This equals to up-
date the cost of every bidder having conflict wittto 0, which
satisfiescrossing-independentin addition, in any round, if bid-
der is selected witha; then it will still be selected when it de-
claresa; > a;. Thus, for every round, it satisfies MP and the

cut value is|S;|*/? - ‘Sa% wherej, is the bidder selected in

roundr if we did not consider the agentat all. Notlcem
does not increase when roundncreases, so the final cut value
is |S|1/2 - 5 ‘fl’l/z whereb; is thefirst bid that has been denied
but would have been selected were it not only for the presence

of bidders. Thus, the payment by agenis |S/|'/? - 5 ‘,“1/2 if

ai > |SiY%. ‘S‘fﬁ and0 otherwise. This payment scheme is
J
exactly the same as the payment scheme in [11].

5. CONCLUSIONS

In this paper, we studied how to design a truthful mechanism
= (O, P) using a given output metha®. We showed that the
output method? satisfying the monotone property is the neces-

sary and sufficient condition such that a truthful mechanigrex-
ists. By considering a polynomial-time computable output method
O, we then studied in detail how to compute the paynfergf-
ficiently such that the mechanisi/ (O, P) is computable
in polynomial time. Our main contribution here is that we pre-
sented several general methods to compute the payment efficiently
for various monotone output methodk such as or/and combina-
tion, the round-based algorithms, and the composition-based algo-
rithms. Several concrete examples are studied to demonstrate the
effectiveness of our methods of computing the payments in poly-
nomial time.

Computational Complexity and Approximation Ratios: In
this paper, we mainly concentrated on how to compute the pay-
ments in polynomial time. We have to point it out that our method
is not necessarily the time-optimal for computing the payments for
mechanism\/ = (O, P) when a given monotone outp(®is used.
It seems impossible to design a general framework for computing
the payment with optimal time complexity without studying the
specifics of the original binary selection problem and the output
method®. We have made some progress in this latter direction.
We showed in [18] a method to compute the payment for unicast in
a node weighted graph in optimal time complexityn log n+m).

Another interesting research direction is, given a optimization
binary demand game, how to design an approximation method
satisfying the monotone property with good approximation ratio.
Many works [12, 11] in the mechanism design literature are in this
direction. We pointed out here that the attempt of this paper is not
to design a better output method for a problem, but to design a
method to compute the payment efficiently wi@iis given. Thus,



it would be interesting to find the output algorithm with the good Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN) of IPDPS
approximation ratio such that it has a computable payment scheme. (2004).

Beyond Binary Demand Game In this paper, we studied mech-  [19] WANG, W., LI, X.-Y., AND SUN, Z. Design multicast protocols for
anism design for binary demand games. However, some prob- non-cooperative networks, 2004. Submitted for pu_bllca_tlon. _
lems cannot be directly formulated as binary demand game. The[20) WA’\:G' W., L, >|iY AND Vg’?NG' T)‘I.Tr“Fhf“I multicast in selfish
job-scheduling probleniQ||Cuax) is such an example. This has wireless networks. Accepted for publication.
been studied extensively in [2]. It is known that a truthful payment
schemeP exists for an output metha® if and only if the workload
w; assigned by is non-decreasing ig; when fixings_;.

Theorem 4 can be extended to a general output mefhachose
range isR™. The remaining difficulty is then how to compute the
paymentP under mild assumptions about the valuations if a truth-
ful mechanismM/ = (O, P) does exist.
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7. APPENDIX

The outputo™™ that minimizes the objective functiog(o, c)
depends on the valuation vectorand the objective functiop it-
self, so we will us@™™ (g, ¢) to denoteo™ ™. In a binary demand
game with an objective functiog(o, ¢), if we fix the outpub; = 1,
then the objective function is denoted@$o_;, 1), ¢); if we fix the
outputo; = 0, the objective function is denoted a§o—;, 0), ¢).

Theorem 1: If a mechanismM = (O, P) satisfies/C, thenVs, if
Oi(t*tiy) = Oi(t]'ts,), thenpi(t['ti,) = pi(t|'tsy).

PROOF We prove it by contradiction. Without loss of gen-
erality, assume; (t|"t;;) > pi(t|'t;,). Now consider a profile
t' = t|*t;,. When agent declares;,, its utility is

wi(t]'tiy) = pi(t]'tiy) + v(Oi(t|'ts), i)
= pi(t|"tsy) +0(Os(t|'ts,), 1)
> pi(t]'tiy) + 0(Os(t|'tiy), tiy)
= wit|'ts,)

The above inequality implies that by lying its valuatiorttp, agent
1 could benefit, which is a contradiction[]

Theorem 4 For any agent and any fixed:_; in a binary demand
game with output method, the following three conditions are
equivalent:

1. There exists a value; (O, c—;) (called acut valug such that
Ol(c) 1if ¢; < Iﬂ(O,C_Z‘) and 01(0) =0if ¢ >
ki(O,c—i). Whene; = ki(O, c—;), O;i(c) could be either
0 or 1, depending on the tie-breaker of the output mettibd
Hereafter, we will not consider the tie-breaker scenario in our
proofs.

2. The output metho@® satisfies MP.

3. There exists a truthful payment scheni$or this binary de-
mand game.

PrROOF We break the proof into three directions as follow.

Direction 1: CONDITION 2 IMPLIES CONDITION 1.

The proof of this direction is straightforward and is omitted here.

Direction 2: CONDITION 3 IMPLIES CONDITION 2.

The proof of this direction is similar to a proof in [12]. To prove
this direction, we assume there exists an agemtd two valuation
vectorsc|'c;, andc|'ci,, wherec;, < ciy, Oi(c|'ci,) = 1 and
Oi(c)*ciy) = 0. From corollary 2, we know tha;(c|’c;, ) = p?
andpi(c|’ci,) = p; -

Now fix ¢_;, the utility for i whenc; = ¢;; is ui(ci,) = p?.
When ageni lies its valuation taz,, its utility is p; — c;,. Since
M = (O, P) is truthful, we have

@)

Now consider the scenario when the actual valuation of agent
iS ¢; = ci,. Its utility is p} — c;, when it reports its true valuation.
Similarly, if it lies its valuation toc;, , its utility is p?. SinceM =
(O, P) is truthful, we have

0 1
Di > Pi — Ciy

)

Combining inequalities (1) and (2), we hapg — ¢;, > p? >
pr — ¢, . This inequality implies that;, > ¢;,, which is a contra-
diction.

Direction 2: CONDITION 1 IMPLIES CONDITION 3.

0 1
Pi <DPi — Ciy

is: If O;(c) = 1, then agent gets paymenp;(c) = «i(O, c—s);
else it gets payment;(c) = 0.

From condition 1, ifO;(c) = 1 thenc¢; > xi(O,c—;). Thus,
its utility is x;(O, c—;) — ¢; > 0, which implies that the payment
scheme satisfies the IR. In the following we prove that this payment
scheme also satisfies IC property. There are two cases here.

Case 1:¢; < (0O, c—;). In this case, when declares its true
costc;, its utility is x:(O, c—;) — ¢; > 0. Now consider the situ-
ation when: declares a cost; # ¢;. If di < ki(O,c—;), then
i gets the same payment and utility since it is still selected. If
d; > ki(O, c_;), then its utility becomes since it is not selected
anymore. Thus, it has no incentive to lie in this case.

Case 2:¢; > (O, c_;). In this case, when reveals its true
valuation, its payment i8 and the utility is0. Now consider the
situation when declares a valuatiod; # ¢;. If d; > k:(O, c—;),
thens gets the same payment and utility since it is still not selected.
If di < ki(O,c—;), then its utility becomes; (O, c—;) —¢; <0
since it is selected now. Thus, it has no incentive to lie in this
case. [

Theorem5: The payment defined Alforithm 1 is minimum among
all truthful payment schemes usidgas output.

PRoOOFR Assume that there is a truthful payment scherngays
agent; a paymeni (O, c—;) — ¢, for somee > 0. Notice that the
payment to an agerntdoes not depend on its actual cost as long as
O, does not change. When agértas cosk (O, c_;) — €/2, itis
still selected. Thus, agenstill gets paymenk (O, c—;) — € under
schemep’. Consequently, the utility of ageritbecomes—e¢/2,
which violates the individual rationality property. This finishes the
proof. [

Theorem 8: A round-based outpud, with the framework defined
in Algorithm 3, satisfies MP if the output method¥" satisfy MP
and the updating functiotd” is crossing-independent for every
roundr.

PrROOF Consider an ageritand fixedc—_;. We prove that when
an agent is selected with cost;, then it is also selected with cost
d; < ¢;. Assume that is selected in round with costc;. Then
under costi;, if agent: is selected in a round before our claim
holds. Otherwise, consider in roumd Clearly, the setting” and
the costs of all other agents are the same as what if ddeat cost
¢; sinces is not selected in the previous rounds due to the cross-
independent property. Sincés selected in round with costc;, ¢
is also selected in roundwith d; < ¢; due to the reason th&?"
satisfies MP. This finishes the proof[]

Theorem9 Assume that for every < i < m, F; satisfies FMPy*
satisfies MP, and the output meth@dsatisfies SMP. The® o F
satisfies MP.

PROOF Assuming for cost vectoe we have(O o F);(c) =
1, we should prove for any cost vectar = ¢|c} with ¢, < ¢,

(O o F)i(c') = 1. Noticing that(O o F);(c) = 1, without loss
of generality, we assume thél, (F(c)) = 1 andyf(c) = 1 for
some indexd < k < m.

Now consider the outpu® with the cost vectorF(c')|* Fi (c).
There are two scenarios, which will be studied one by one as fol-
lows.

One scenario is that indéxis not chosen by the output function
O. From Lemma 1, there must exist~ k such that

Fi(c) < File) 3)

We prove this direction by constructing a payment scheme and and

proving that this payment scheme is truthful. The payment scheme

O;(F()[* Fi(c)) =1 @)



We then prove that agertwill be selected in the outpup? (¢'),
i.e., ¥l (c) = 1. Ifitis not, sincey?(c) satisfies MP, we have
Yl(c) = ¢l () = 0 from ¢, < ¢;. SinceF; satisfies FMP, we
know F;(c) > F;(c), which is a contradiction to the inequality
(3). Consequently, we hawe! (¢') = 1. From Equation (4), the
fact that indext is not selected by output functiafi and the defi-
nition of SMP, we have

O;(F() =1,

Thus, agent is selected by o F because o0, (F(c¢')) = 1 and
Yl() =1

The other scenario is that indéxis chosen by the output func-
tion O. First, agent is chosen iny* (¢) since the outpup* (c) sat-
isfies the monotone property add< ¢; andy¥ (¢) = 1. Secondly,
since the functiorfF;, satisfies FMP, we know thaf, (¢') < Fi(c).
Remember that outpud satisfies the SMP, thus we can obtain
Ox(F()) = 1 from the fact thatOy (F(¢')|*Fi(c)) = 1 and
Fi(c") < Fr(c). Consequently, agenwill also be selected in the
final outputO o F. This finishes our proof. []

Theorem 10 Algorithm 6 computes the correct cut value for agent
1 based on the output functidf o F.

PrROOF In order to prove the correctness of the cut value func-
tion calculated by Algorithm 6, we prove the following two cases.
For our convenience, we will useg to represenk; (O o F, c—;) if
no confusion caused.

First, if d; < k; then(O o F)i(c|'d;) = 1. Without loss of
generality, we assume that = «; ; for some;j. Since function?;
satisfies FMP and’ (c|'d;) = 1, we haveF;(c|'d;) < F;(x:).
Noticed; < ki, from the definition of; ; = ]—'j‘l(min{rj, h;i})
we have (1) (c|'d;) = 1, (2) Fj(c|'d:) < 7; due to the fact that
F;(z) is a non-decreasing function whers selected. Thus, from
the monotone property @ andr; is the cut value for outpu®,
we have

O; (h) Fj(c|'di)) = 1. (5)

If ©;(F(c|'d;)) = 1then(OoF);(c|'d;) = 1. Otherwise, since
O satisfies SMP, Lemma 1 and equation 5 imply that there exists
at least one indek such thatOy (F(c|'d;)) = 1 andFy(c|'d;) <
hi. Note Fi(c|'d;) < hi. implies thati is selected inp” (c|'d;)
sincehy, = Fx(c;|o0). In other words, ageritis selected i o F.

Second, Ifdz > KZ(O o .7:, Cfi) then((’) o .’F)L(Clldl) =0. As-
sume for the sake of contradiction t& o F);(c|’d;) = 1. Then
there exists an indek < j < m such thatO; (F(c|'d;)) = 1 and
¥l (c|*d;) = 1. Remember thal, > Fi(c|'d;) for anyk. Thus,
from the fact thatO satisfies SMP, when changing the cost vector
from F(c|'d;) to h|? F;(c|*d;), we still haveO; (k)7 F;(c|'d;)) =
1. This implies that

.7:3' (C|idi) < Tj.

Combining the above inequality and the fact t#t(c|’c|'d;) <
h;, we haveF;(c|*d;) < min{h;,;}. Thisimplies

d; < fjfl(min{h]-,Tj}) = Ri,j < /{Z(O o ]'-, C_i).

which is a contradiction. This finishes our proof.]



