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ABSTRACT
The family of Vickrey-Clarke-Groves (VCG) mechanisms is ar-
guably the most celebrated achievement in truthful mechanism de-
sign. However, VCG mechanisms have their limitations. They only
apply to optimization problems with a utilitarian objective func-
tion, and their output should optimize the objective function. For
many optimization problems, finding the optimal output is compu-
tationally intractable. If we apply VCG mechanisms to polynomial-
time algorithms that approximate the optimal solution, the resulting
mechanisms may no longer be truthful.

In light of these limitations, it is useful to study whether we can
design a truthful non-VCG payment scheme that is computation-
ally tractable for a given output methodO. In this paper, we fo-
cus our attention onbinary demand gamesin which the agents’
only available actions are to take part in the a game or not to. For
these problems, we prove that a truthful mechanismM = (O,P)
exists (with proper payment methodP) if and only if O satisfies
a certain monotone property. We also provide several general al-
gorithms to compute the payments efficiently for various types of
output. In particular, we show how a truthful payment can be com-
puted through “or/and” combinations, round-based combinations,
and some more complex combinations of outputs from subgames.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: Gen-
eral; J.4 [Social and Behavioral Sciences]: Economics; K.4.4
[Computer and Society]: Electronic Commerce
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Algorithms, Economics
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1. INTRODUCTION
In recent years, with the rapid development of the Internet, many

protocols and algorithms have been proposed to make this Inter-
net working more efficient and secure. The Internet is a complex
distributed system where a multitude of heterogeneous agents co-
operate together to achieve some common goals, and these pro-
tocols and algorithms often assume that all agents will follow the
prescribed rules without any deviation. However, in some settings
where the agents are selfish instead of altruistic, it is more rea-
sonable to assume these agents arerational – maximize their own
profits – according to the neoclassic economics, and new models
are needed to cope with selfish behavior of these agents.

Towards this end, Nisan and Ronen [13] proposed the framework
of algorithm mechanism designand applied VCG mechanism to
some fundamental problems in computer science, including short-
est paths, minimum spanning trees, and scheduling on unrelated
machines. The VCG mechanisms [17, 5, 10] apply to mecha-
nism design problems whose outputs optimize the objective func-
tion g(o, t), which is simply the sum of all agents’ valuations and
is known asutilitarian. Unfortunately, some objective functions
are not utilitarian; even for those problems with utilitarian objec-
tive function, sometimes it is impossible to find the optimal output
in polynomial time unless P=NP. Thus, some methods other than
VCG mechanism are needed to address these issues.

Archer and Tardos [2] studied a scheduling problem where it
is NP-Hard to find the optimal output. They pointed out that a
certain monotone property of the output work loadwi is a neces-
sary and sufficient condition for the existence of a truthful mech-
anism for their scheduling problem. Aulettaet al. [3] studied a
similar problem. They provided a family of deterministic truth-
ful (2 + ε)-approximation mechanisms for any fixed number of
machines and several(1 + ε)-truthful mechanisms for some NP-
hard restrictions of their scheduling problem. Lehmannet al.[11]
studied the single-minded combinatorial auction and gave a

√
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approximation truthful mechanism. They also pointed out that a
certain monotonicity in the allocation in single-minded combinato-
rial auction can lead to a truthful mechanism. The work of Mu’alem
and Nisan [12] is the closest in spirit to our work. They character-
ized all truthful mechanisms based on a certain monotone property
in a single-minded auction setting. They also showed how to used
MAX and IF-THEN-ELSE to combine outputs from subproblems.
As we will show later, the MAX and IF-THEN-ELSE combina-
tions could be treated as a special case of the combination schemes
we presents in this paper. More generally, our main contributions
in this paper are several algorithms for computing the payment in
polynomial time under mild assumptions.

In our paper, we study how to design strategyproof mechanisms
for binary demand gameswhere the output of an agent is either



“selected” or “not selected”. We also assume that the valuations of
agents are uncorrelated, i.e., the valuation of an agent only depends
on its own output and type. Recall that a mechanismM = (O,P)
is composed of two parts, an output functionO and a payment
schemeP . Previously, it is often assumed that there is an objec-
tive functiong and an outputO, that either optimizes or is anα-
approximation ofg. In sharp contrast to VCG mechanisms, we do
not require that the output should optimize the objective function.
In fact, we do not even require the existence of an objective func-
tion. Given any output methodO for a binary demand game, we
showed that a truthful mechanismM = (O,P) exists for the game
if and only ifO satisfies a certainmonotone property. Note that the
monotone property only guarantees the existence of a paymentP
that is strategyproof, it does not give any method to computeP .
Even with the knowledge of the existence of a truthful mechanism,
sometimes it could still be very hard, if not impossible, to find the
paymentP . Thus, instead of giving a method to design and com-
pute the truthful mechanisms for all binary demand games, we give
a general framework to design the truthful mechanisms. In particu-
lar, we present algorithms to compute the payment when the output
is a composition of the outputs of subgames through the operators
“or” and “and”; through round-based combinations; through inter-
mediate results, which may be again computed from other subprob-
lems.

The remainder of the paper is organized as follows. In Section
2, we discuss preliminaries and previous works, define binary de-
mand games and discuss the basic assumptions about binary de-
mand games. In Section 3, we first study some basic properties of
the truthful mechanismsM = (O,P) for a binary demand game
when the output functionO is given. We then show thatO sat-
isfying a certain monotone property is a necessary and sufficient
condition for the existence of a truthful mechanismM = (O,P).
A framework is then proposed to compute the paymentP in poly-
nomial time for several types of output methodsO. In Section 4,
we provide several examples to demonstrate the effectiveness of
our general framework. We conclude our paper in Section 5 with
some possible future directions.

2. PRELIMINARIES

2.1 Mechanism Design
In the design of centralized or distributed network protocols with

inputs from individual agents, the computational agents are typi-
cally assumed to be eithercorrect/obedientor faulty (also called
adversarial). In contrast to this conventional approach, this paper
follows the assumption in neoclassic economics that all agents are
rational, i.e., they respond to well-defined incentives and will devi-
ate from the protocol if and only if it improves their gain.

A standard model for mechanism design is as follows. Assume
there aren agents{1, · · · , n} and every agenti has some private
informationti, called itstype, only known to itself. For example,
the typeti can be the cost agenti forwarding a packet in a net-
work or can be a payment that the agent is willing to pay for a good
in an auction. The set of all agents’ types defines thetype vector
t = (t1, t2, · · · , tn). Every agenti has a set of strategiesAi he can
choose from. For each input vectora = (a1, · · · , an) where agent
i plays strategyai ∈ Ai, the mechanismM = (O,P) computes
an output o = O(a) and apaymentvector p = (p1, · · · , pn),
wherepi = Pi(a1, · · · , an). Here the paymentpi is the money
given to participating agenti and depends on the strategies used
by agents. Ifpi < 0, the agent has to pay−pi to participate in
the action. A game is defined asG = (S,M), whereS is setting
for gameG. Here,S are the parameters of the game that are set-

tled down before the game starts and do not depend on the players’
strategies. For example, in a unicast routing game [13], the setting
includes the topology of the network, the source node and the desti-
nation node. In summary, for a gameG, given the strategy vectora
of the players, it computes the output and payment for every player.
Throughout this paper, if we dot not mention explicitly, the setting
S of the game is always fixed and we are only interested in how to
design the mechanism.

For each possible outputo, agenti’s preferences are given by
a valuation functionv(ti, o) that assigns a real monetary number
to outputo. Everything in the scenario, including the settingS,
the output methodO and payment methodP, is public knowledge
except the typeti, which is the private information to agenti. Let
ui(ti, o) denote theutility of agenti at the outcome of the gameo,
given its preferencesti. Hereafter. we assume the utility for agent
i is ui(ti, o) = v(ti, o) + pi(a) (i.e., quasi-linear).

Let a|ia′i = (a1, · · · , ai−1, a
′
i, ai+1, · · · , an), i.e., each agent

j 6= i plays strategyaj except that the agenti plays a′i. Let
a−i = (a1, · · · , ai−1, ai+1, · · · , an) denote the strategies of all
other agents excepti. Sometimes, we write(ai, b−i) as b|iai.
A strategyai is called adominant strategyif it (weakly) maxi-
mizes the utility ofi for all possible strategies of other agents,
i.e., ui(ti,O(ai, b−i)) ≥ ui(ti,O(a′i, b−i)) for all a′i 6= ai and
all strategiesb−i of agents other thani. A strategy vectora∗ is
called aNash equilibriumif it (weakly) maximizes the utility when
the strategies of all agents are fixed asa∗−i, i.e., ui(ti,O(a∗)) ≥
ui(ti,O(a′i, a

∗
−i)) for all i, anda′i 6= a∗i .

A direct-revelation mechanism is a mechanism in which the only
actions available to the agents are to make direct claims about its
private typeti to the mechanism. A direct-revelation mechanism is
incentive compatible(IC) if each agent maximizes its utility when
it reports its typeti to the mechanism truthfully. A direct-revelation
mechanism is strategy-proof if truth-revelation is a dominant-strategy
equilibrium. Then, in a direct-revelation strategy-proof mecha-
nism, the payment function should satisfy the property that, for
each agenti, v(ti,O(t))+pi(t) ≥ v(ti,O(t|it′i))+pi(t|it′i). An-
other common requirement in the literature for mechanism design
is so calledindividual rationality or voluntary participation: the
agent’s utility of participating in the output of the mechanism is not
less than the utility of the agent if it did not participate.

Arguably the most important positive result in mechanism de-
sign is the generalized Vickrey-Clarke-Groves (VCG) mechanism
by Vickrey [17], Clarke [5], and Groves [10]. The VCG mecha-
nism applies to maximization problems where the objective func-
tion is utilitarian g(o, t) =

P
i v(ti, o) (i.e., the sum of all agents’

valuations) and the set of possible outputs is assumed to be finite.
A direct revelation mechanismM = (O(t),P(t)) belongs to the
VCG family if (1) the outputO(t) maximizes

P
i v(ti, o), and (2)

the payment to agenti is pi(t) =
P

j 6=i vj(tj ,O(t)) + hi(t−i),

wherehi() is an arbitrary function oft−i. Under mild assump-
tions, VCG mechanisms are theonly truthful implementations for
utilitarian problems [9].

An output function of a VCG mechanism is required to maxi-
mize the objective function. This makes the mechanism compu-
tationally intractable in many cases. Notice that replacing the op-
timal algorithm with non-optimal approximation usually leads to
untruthful mechanisms if VCG payment method is used. In their
seminal paper on algorithmic mechanism design, Nisan and Ro-
nen [13] add computational efficiency to the set of concerns that
must be addressed in the study of how privately known preferences
of a large group of selfish agents can be aggregated into a “social
choice” that results in optimal allocation of resources. In this paper,
we study how to design a strategy-proof mechanism that doesnot



necessarily implement the utilitarian objective function.

2.2 Previous Work
Lehmannet al. [11] studied how to design an efficient truthful

mechanism for single-minded combinatorial auction. In a single-
minded combinatorial auction, each agenti (1 ≤ i ≤ n) only wants
to buy a subsetSi ⊆ S with private priceci. A single-minded bid-
der i declares a bidbi = 〈S′i, ai〉 with S′i ⊆ S andai ∈ R+.
In [11], it is assumed that the set of goods allocated to an agent
i is eitherS′i or ∅, which is known asexactness. Lehmannet al.
gave a greedy round-based allocation algorithm, based on the rank

ai

|S′i|1/2 , that has an approximation ratio
√

m, wherem is the num-

ber of goods inS. Based on the approximation algorithm, they
gave a truthful payment scheme. For an allocation rule satisfying
(1) exactness: the set of goods allocated to an agenti is eitherS′i or
∅; (2) monotonicity: proposing more money for fewer goods can-
not cause a bidder to lose its bid, they proposed a truthful payment
scheme as follows: (1) charge a winning bidder a certain amount
that does not depend on its own bidding; (2) charge a losing bid-
der 0. Notice the assumption ofexactnessreveals that the single
minded auction is indeed a binary demand game. Their payment
scheme inspired our payment scheme for binary demand game.

In [1], Archer et al. studied the combinatorial auctions where
multiple copies of many different items are on sale, and each bid-
deri desires only one subsetSi. They devised a randomized round-
ing method that is incentive compatible and gave a truthful mech-
anism for combinatorial auctions with single parameter agents that
approximately maximizes the social value of the auction. As they
pointed out, their method isstrongly truthfulin sense that it is truth-
ful with high probability1− ε, whereε is an error probability. On
the contrary, in this paper, we study how to design adeterministic
mechanism that is truthful based on some given outputs.

In [2], Archer and Tardos showed how to design truthful mech-
anisms for several combinatorial problems where each agent’s pri-
vate information is naturally expressed bya single positive real
number, which will always be the cost incurred per unit load. The
mechanism’s output could be arbitrary real number but their val-
uation is a quisilinear functiont · w, wheret is the private per
unit cost andw is the work load. Archer and Tardos characterized
that all truthful mechanism should have decreasing “work curves”
w and that the truthful payment should bePi(bi) = Pi(0) +

biwi(bi) −
R bi

0
wi(u)du Using this model, Archer and Tardos de-

signed truthful mechanisms for several scheduling related prob-
lems, including minimizing the span, maximizing flow and min-
imizing the weighted sum of completion time problems. Notice
when the load of the problems isw = {0, 1}, it is indeed a bi-
nary demand game. If we apply their characterization of the truth-
ful mechanism, their decreasing “work curves”w implies exactly
the monotone property of the output. But notice that their proof
is heavily based on the assumption that the output is a continuous
function of the cost, thus their conclusion can’t directly apply to
binary demand games.

The paper of Ahuva Mu’alem and Noam Nisan [12] is closest
in spirit to our work. They clearly stated thatwe only discussed
a limited class of bidders, single minded bidders, that was intro-
duced by[11]. They proved that all truthful mechanisms should
have a monotone output and their payment scheme is based on the
cut value. With a simple generalization, we get our conclusion for
general binary demand game. They proposed several combination
methods including MAX, IF-THEN-ELSE construction to perform
partial search. All of their methods required the welfare function
associated with the output satisfyingbitonicproperty.

2.3 Binary Demand Games
Given the strategies of all agents for a gameG, a mechanism

computes the output and the payment. Generally, the output func-
tion O maps each given type vectort to an output from a given
output space. In this paper, we focus our attention on the set of
output functions, whose range is{0, 1}n. In other words, the out-
put is an-tuple vectorO(t) = (O1(t),O2(t), · · · ,On(t)), where
Oi(t) = 1 (resp.0) means that agenti is(resp. not) selected. We
call such a mechanism design problem abinary demand game. Ex-
amples of binary demand games include: unicast [13, 18, 8] and
multicast [19, 20, 7] (generally subgraph construction by selecting
some links/nodes to satisfy some property), facility location [6],
and a certain auction [11, 2, 12].

Hereafter, we also assume that the valuation of each agenti for
oi = 0 is a publicly known value. This assumption is needed to
design a mechanism satisfying the individual rationality (IR) prop-
erty. If this assumption does not hold, in many applications, the
agent can get arbitrarily large utility by declaring arbitrarily small
v(ti, 0) andv(ti, 1) when the valuation of agents are negative. For
example, in the unicast problem, the IR property implies that the
payment to an agent is at leastmin(−v(ti, 0),−v(ti, 1)). With-
out loss of generality, we assume that the valuationv(ti, 0) is nor-
malized to0. Thus, throughout his paper, we only consider these
direct-revelation mechanisms in which every agent only needs to
reveal its valuationvi = v(ti, 1) when it is selected. Notice that
in applications where agents providing service and receiving pay-
ment, e.g., unicast and job scheduling, the valuationvi of an agent
i is usually negative. For the convenience of our presentation, we
introduce the cost of agent which isci = −v(ti, 1), i.e., it costs
agenti ci to provide the service. Throughout this paper, we will
useci instead ofvi in our analysis. All our results can apply to
the case when the agents procure the service instead of provide by
settingci to negative, as in auction.

A binary demand game is called anbinary optimization demand
gameif we optimize an object function. The main differences be-
tween binary demand games and those problems that can be solved
by VCG mechanisms are:

1. The objective function isutilitarian for a problem solvable
by VCG while there is no restriction on the objective function
for a binary demand game.

2. The output functionO does not necessarily optimize an ob-
jective function, while a VCG mechanism only uses the out-
put that optimizes the objective function.

3. The range of the output method in a binary demand game
is {0, 1}n, while the range of the output function in a VCG
mechanism may be arbitrary.

4. We assume that the agents’ valuations are not correlated in
a binary demand game, while the agents’ valuations may be
correlated in a VCG mechanism.

In this paper, we assume for technical convenience that the ob-
jective functiong(o, c), if exists, is continuous regarding the cost
ci, but most of our results can be directly applied to the discrete
case without any modifications.

3. GENERAL APPROACHES

3.1 Properties of Strategyproof Mechanisms
Generally, there are several properties that direct revelation mech-

anisms need to satisfy in order to be truthful (see appendix for the
proofs of the following theorems).



THEOREM 1. If a mechanismM = (O,P) satisfiesIC, then
∀i, if Oi(t|iti1) = Oi(t|iti2), thenpi(t|iti1) = pi(t|iti2).

COROLLARY 2. For any strategy-proof mechanism for a binary
demand gameG with settingS, if we fix the costc−i of all agents
other thani, the payment to agenti is a constantp1

i if Oi(c) = 1,
and it is another constantp0

i if Oi(c) = 0.

THEOREM 3. Fixed the settingS for a binary demand game,
if mechanismM = (O,P) satisfiesIC, then mechanismM ′ =
(O,P ′) with the same output methodO and p′i(c) = pi(c) −
δi(c−i) for any functionδi(c−i) also satisfiesIC.

The proof of this theorem is straightforward and thus omitted.
This theorem implies that for the binary demand games we can
always normalize the payment to an agenti such that the payment
to the agent is0 when it is not selected. Hereafter, we will only
consider normalized payment schemes, i.e.,p0

i = 0.

3.2 Existence of Strategyproof Mechanisms
Notice, given the settingS, a mechanism design problem is com-

posed of two parts: the output functionO and a payment function
P . In this paper, we use a given outputO and focus our attention
on how to design a truthful payment scheme based onO. Given
an output methodO for a binary demand game, we first present
a sufficient and necessary condition for the existence of a truthful
payment schemeP.

DEFINITION 1 (MONOTONENON-INCREASING PROPERTY(MP)).
An output methodO is said to satisfy themonotone non-increasing
propertyif for every agenti and two of its possible costsci1 < ci2 ,
Oi(c|ici2) ≤ Oi(c|ici1).

This definition is not restricted only to binary demand games.
For binary demand games, this definition implies that ifOi(c|ici2) =
1 thenOi(c|ici1) = 1.

THEOREM 4. For any agenti and any fixedc−i in a binary
demand game with output methodO, the following three conditions
are equivalent:

1. There exists a valueκi(O, c−i) (called a cut value) such
that Oi(c) = 1 if ci < κi(O, c−i) and Oi(c) = 0 if
ci > κi(O, c−i). Whenci = κi(O, c−i),Oi(c) could be ei-
ther0 or 1, depending on the tie-breaker of the output method
O. Hereafter, we will not consider the tie-breaker scenario
in our proofs.

2. The output methodO satisfies MP.

3. There exists a truthful payment schemeP.

See the appendix for the proof of the theorem. We now summa-
rize the process to design a truthful payment scheme for a binary
demand game based on an output methodO.

Regarding our general framework, we have the following theo-
rem.

THEOREM 5. The payment defined Algorithm 1 is minimum among
all truthful payment schemes usingO as output.

Here, we briefly illustrate our general framework through the
example of unicast routing, which is well studied [13]. We assume
that the nodes are the agents, but all arguments and algorithms can
be applied to the case when the links are the agents. Assume that,
the output of the mechanism uses the path connecting the source

Algorithm 1 GENERAL FRAMEWORK: Truthful mechanism design
for a binary demand game
1: Check whether the output methodO satisfies the monotone

property. If it does not, then there is no payment schemeP
such that mechanismM = (O,P) is truthful. Otherwise, de-
fine the paymentP as follows.

2: Based on the methodO, find the cut valueκi(O, c−i) for
agenti such thatOi(c|idi) = 1 whendi < κi(O, c−i), and
Oi(c|idi) = 0 whendi > κi(O, c−i).

3: The payment for agenti is 0 if Oi(c) = 0; the payment is
κi(O, c−i) if Oi(c) = 1.

and target with the minimum cost, called theleast cost path(LCP)
hereafter.

It is easy to show that LCP satisfies the monotone property. Thus,
there exists a payment schemeP such thatM = (LCP,P) is a
truthful mechanism. Now, we find the cut value when LCP is used
as the output. LetLCP(qi, qj , c|k0) be the least cost path when
qk is selected with cost0. Let LCP−qk (qi, qj , c) be the least cost
path without nodeqk. Obviously, when the cost of nodeqk is no
more than|LCP−qk (qi, qj , c)| − |LCP(qi, qj , c|k0)|, nodeqk is
selected. Consequently,κk(LCP, c−k) = |LCP−qk (qi, qj , c)| −
|LCP(qi, qj , c|k0)|. The payment forqk is pk = κ(LCP, c−k).
Notice |LCP(qi, qj , c|k0)| = |LCP(qi, qj , c)| − ck whenqk is se-
lected under cost profilec. Thus, the paymentpk can be written as,
whenqk is selected,|LCP−qk (qi, qj , c)| − |LCP(qi, qj , c)| + ck,
which is exactly the same as what we get from the VCG mecha-
nism.

3.3 Computing Cut Value Functions
It seems quite easy to find the truthful payment scheme by using

our general framework, but as we will see later, the most difficult
part is how to find the cut value function when we know it does
exist. Notice that the simple binary search methods do not work
generally since the valuation of the agents could be continuous. In-
stead of trying to give a universal approach to compute the cut value
for all output methods satisfying MP, we give some useful general
techniques that can help us finding cut value under certain circum-
stances. Our basic approach is as follows. First, we decompose
the output methods into the composition of several output meth-
ods. Then we find the cut value function for each of the decom-
posed output methods. Finally, we calculate the original cut value
function by combining the cut value functions of these decomposed
functions.

3.3.1 Simple Combinations
Given an output functionO, let κ(O, c) denote an-tuple vector

(κ1(O, c−1), κ2(O, c−2), · · · , κn(O, c−n)). Here,κi(O, c−i) is
the cut value for agenti when the output function isO and the
costsc−i of all other agents are fixed. Regarding the combination
of binary demand game, we have the following theorem.

THEOREM 6. Fixed the settingS of a binary demand game,
assume that there arem output functionsO1,O2, · · · ,Om satis-
fying the monotone property, andκ(Oi, c) is the cut value function
vector forOi wherei = 1, 2, · · · , m. Then the output function
O(c) =

Wm
i=1Oi(c) also satisfies the monotone property. More-

over, the cut value function forO is

κ(O, c) =
m

max
i=1

{κ(Oi, c)}.



Hereκ(O, c) = maxm
i=1{κ(Oi, c)} means,∀j ∈ [1, n],

κj(O, c−j) =
m

max
i=1

{κj(Oi, c−j)}

andO(c) =
Wm

i=1Oi(c) means,∀j ∈ [1, n],

Oj(c) = O1
j (c) ∨ O2

j (c) ∨ · · · ∨ Om
j (c).

The proof of this theorem is omitted due to space limit. In prac-
tice, many algorithms indeed fall into this category. To show the
usefulness of Theorem 6, we study a concrete example here. In a
network, sometimes we want to deliver the packet to a set of termi-
nals instead of one, which is known as multicast. The most com-
monly used structure in multicast routing is so called Shortest Path
Tree (SPT). Consider a networkG = (V, E, c), whereV is the
set of terminals, andc is the actual cost of the node forwarding the
data. Assume that the source node iss and the receivers areQ ⊂ V .
For each receiverqi ∈ Q, we compute the shortest path (least cost
path), denoted byLCP(s, qi, d), from the sources to qi under the
reported cost profiled. The union of all such shortest paths forms
the shortest path tree. We then use our general approach to design
the truthful payment schemeP when the SPT structure is used as
the output for multicast, i.e., a mechanismM = (SPT,P).

We defineLCP (s,qi) as the output generated byLCP(s, qi, d),
i.e., LCP

(s,qi)
k (d) = 1 if and only if nodevk is in LCP(s, qi, d).

Then the output SPT is defined as
W

qi∈Q LCP (s,qi). In other
words,SPTk(d) = 1 if and only ifqk is selected in someLCP(s, qi, d).
In previous section, we have already proven that shortest path sat-
isfies MP. Thus, by applying Theorem 6, we know that SPT also
satisfies MP, and the cut value function vector for SPT can be calcu-
lated asκ(SPT, c) = maxqi∈Q κ(LCP (s,qi), c), whereκ(LCP (s,qi), c)
is the cut value function vector for the shortest pathLCP(s, qi, c).
Consequently, the payment scheme above is truthful and minimal
among all truthful payment scheme when the output is SPT.

THEOREM 7. Fixed the settingS of a binary demand game,
assume that there arem output methodsO1,O2, · · · ,Om satisfy-
ing MP, andκ(Oi, c) are the cut value functions respectively for
Oi where i = 1, 2, · · · , m. Then the output functionO(c) =Vm

i=1Oi(c) satisfies MP. Moreover, the cut value function forO is
κ(O, c) = minm

i=1{κ(Oi, c)}.

We then show that our simple combination generalizes the IF-
THEN-ELSE function defined in [12]. For an agenti, assume
that there are two output functionsO1 andO2 satisfying MP. Let
κi(O1, c−i), κi(O2, c−i) be the cut value functions forO1, O2

respectively. Then the IF-THEN-ELSE functionOi(c) could be
treated asOi(c) = [(ci ≤ κi(O1, c−i)+δ1(c−i))∧O2(c−i, ci)]∨
(ci < κi(O1, c−i)− δ2(c−i)) whereδ1(c−i) andδ2(c−i) are two
positive functions. By applying Theorems 6 and 7, we know that
the output functionO satisfies MP andκi(O, c−i) is

max{min(κi(O1, c−i)+δ1(c−i), κi(O2, c−i)), κi(O1, c−i)−δ2(c−i))}.

3.3.2 Cut-Value for Round-Based Outputs
The majority approximation algorithms can be categorized as

round-based approaches: in each round the algorithm selects some
agents, and then updates the setting and the cost profile if neces-
sary. For example, majority approximation algorithms for mini-
mum weighted vertex cover, maximum weighted independent set,
minimum weighted dominating set, minimum weighted set cover,
minimum weighted Steiner tree, and so on fall into this category.

We study by an example to show how to compute the cut value
for a round-based output. The example we used here is themini-
mum weighted vertex cover problem(MWVC). Given a graphG =
(V, E), where the verticesV = {1, 2, · · · , n} are agents and each
agenti ∈ V has a weightci, we want to find a vertex setV ′ ⊆ V
such that for every edge(u, v) ∈ E at least one ofu andv is in
V ′. HereV ′ is called a vertex cover ofG. The valuation of a ver-
tex i is−ci if it is selected; otherwise its valuation is0. We define
c(V ′) =

P
i∈V ′ ci for V ′ ⊆ V .

We want to find a vertex cover with the minimum weight, i.e.,
the objective function to be implemented is utilitarian. To use
VCG mechanism, we need find the vertex cover with the mini-
mum weight, which is NP-hard [14]. Since we are interested in
the mechanisms that can be computed in polynomial time, we have
to use some polynomial-time computable output functions. Many
algorithms have been proposed in the literature to approximate the
optimum solution. In this paper, we use a2-approximation algo-
rithm proposed in [14]. For the completeness of presentation, we
briefly review their method here. The method is a round-based ap-
proach. Each round it selects some vertices and discards some ver-
tices. For each vertexi, w(i) is initialized to its weightci, and
whenw(i) drops to0, i is picked into the vertex cover. To make
the presentation clear, we say an edge(i1, j1) is lexicographically
smaller than edge(i2, j2) if (1) min(i1, j1) < min(i2, j2), or (2)
min(i1, j1) = min(i2, j2) andmax(i1, j1) < max(i2, j2).

Algorithm 2 Approximate Minimum Weighted Vertex Cover

Input: A node weighted graphG = (V, E, c).
Output: A vertex coverV ′.
1: SetV ′ = ∅. For eachi ∈ V , setw(i) = ci.
2: while V ′ is not a vertex coverdo
3: Pick an uncovered edge(i, j) with the least lexicographic

order among all uncovered edges.
4: Let m = min(w(i), w(j)).
5: Updatew(i) to w(i)−m andw(j) to w(j)−m.
6: If w(i) = 0, addi to V ′. If w(j) = 0, addj to V ′.
7: end while

Notice, selecting an edge using the lexicographic order does not
necessarily achieve the2-approximation ratio, but it guarantees the
monotone property. The above algorithm produces a vertex cover
V ′ whose weight is within2 times of the optimum. For conve-
nience, we useVC(c) to denote the vertex cover computed by Al-
gorithm 2 when the cost vector of vertices isc.

We then generalize the above algorithm to a more general sce-
nario. Consider a gameG with settingS, a setI of n agents and the
cost vectorc. Typically, a round-based output can be characterized
as follows.

DEFINITION 2. An updating ruleUr is said to becrossing-
independentif, for any agenti not selected in roundr, (1) Sr+1

andcr+1
−i do not depend oncr

j (2) for fixedcr
−i, cr

i1 ≤ cr
i2 implies

that cr+1
i1

≤ cr+1
i2

.

We have the following theorem about the existence of a truthful
payment usingA.

THEOREM 8. A round-based outputA, with the framework de-
fined in Algorithm 3, satisfies MP if the output methodsOr satisfy
MP and the updating functionUr is crossing-independent for every
roundr.

If the round-based output satisfies monotone property, the cut-
value always exists. We then show how to find the cut value for a
selected agentk in Algorithm 4.



Algorithm 3 A General Round-Based OutputA
1: Setr = 0, c0 = c, andG0 = G initially.
2: repeat
3: Compute an outputor using adeterministicmethod

Or : Sr × cr → {0, 1}n.

HereOr, cr andSr are output function, cost vector and
game setting in gameGr respectively. NoticeOr is often a
simple greedy method such as selecting the agents that min-
imize some utilitarian function. For the example of vertex
cover,Or will always select the light-weighted node on the
lexicographically least uncovered edge(i, j).

4: Let r = r + 1. Update the game, i.e., we get a new game
Gr with settingSr and cost vectorcr from Gr−1 according
to some rule

Ur : or−1 × (Sr−1, cr−1) → (Sr, cr).

Here we updates the cost and setting of the game. For the ex-
ample of vertex cover,Sr is a new graph resulted fromSr−1

by removing of all edges incident on the selected node; and
the costs of nodesi, j are deduced by amountm. Remember
herem is the minimum cost ofi, andj in Gr−1.

5: until a valid output is found
6: Return the union of selected players of all rounds as the final

output. For the example of vertex cover, it is the union of nodes
selected in all rounds.

Algorithm 4 Compute Cut Value for Round Based Method

Input: A round based outputA, the initial gameG1 = G and
updating function vectorU
Output: Cut valuex for an agentk.
1: Setr = 0 andck = ∅. Here,∅ is the value that can guarantee
Ak = 0.

2: repeat
3: Compute an outputor using a deterministic method based

on settingSr usingOr : Sr × cr → {0, 1}n.
4: Find the cut value for agentk based on output functionOr

for costscr
−k. Let `r = κk(Or, cr

−k) be the cut value.
5: Setr = r + 1 and obtain the new gameGr from Gr−1 and

or according to the updating ruleUr.
6: Let cr be the new cost vector for gameGr.
7: until a valid output is found.
8: Let c1 = c|kx, and(Sr, ci) = Ur(or−1, (Sr−1, cr−1)).
9: Find the minimum valuex such that it satisfies the following

inequations: 8>>><>>>:
x ≥ `1
c1
i ≥ `2

· · ·
cr−1

i ≥ `r−1

cr
i ≥ `r

10: Output the valuex as the cut value.

The correctness of Algorithm 4 is straightforward. To compute
the cut value, we assume that (1) we can solve the equationcr

i = b
to find x in polynomial time when the cost vectorc−i andb are
given; (2) the cut valuèi for each roundi can be computed in
polynomial time.

Now we consider the vertex cover problem. For each roundr,
we select a vertex with the least weight and that is incident on the
lexicographically least uncovered edge. The output satisfies MP.
For agenti, we update its cost tocr

i − cr
j iff edge(i, j) is selected.

It is easy to verify this updating rule is crossing-independent, thus
we can apply Algorithm 4 to compute the cut value as shown in
Algorithm 5.

Algorithm 5 Compute Cut Value for MVC.

Input: A node weighted graphG = (V, E, c) and a nodek se-
lected by Algorithm 2.
Output: The cut valueκk(V C, c−k).
1: For eachi ∈ V , setw(i) = ci.
2: Setw(k) = ∞, pk = 0 andV ′ = ∅.
3: while V ′ is not a vertex coverdo
4: Pick an uncovered edge(i, j) with the least lexicographic

order among all uncovered edges.
5: Setm = min(w(i), w(j)).
6: Updatew(i) = w(i)−m andw(j) = w(j)−m.
7: If w(i) = 0, addi to V ′; else addj to V ′.
8: If i == k or j == k then setpk = pk + m.
9: end while

10: Outputpk as the cut valueκk(V C, c−k).

3.3.3 Complex Combinations
In section 3.3.1, we discussed how to find the cut value function

when the output of the binary demand game is a simple combina-
tion of some outputs, whose cut values can be computed through
other means (typically VCG). However, some algorithms cannot
be decomposed in the way described in section 3.3.1.

Next we present a more complex way to combine functions, and
as we may expected, the way to find the cut value is also more
complicated. Assume that there aren agents1 ≤ i ≤ n with
cost vectorc, and there arem binary demand gamesGi with ob-
jective functionsfi(o, c), settingSi and output functionψi where
i = 1, 2, · · · , m. There is another binary demand game with set-
ting S and output functionO, whose input is a cost vectord =
(d1, d2, · · · , dm). Let f be the function vector(f1, f2, · · · , fm),
ψ be the output function vector(ψ1, ψ2, · · · , ψm) and ∫ be the
setting vector(S1,S2, · · · ,Sm). For notation simplicity, we de-
fine Fi(c) = fi(ψ

i(c), c), for each1 ≤ i ≤ m; and define
F(c) = (F1(c),F2(c), · · · ,Fm(c)).

Let us see a concrete example of these combinations. Consider a
link weighted graphG = (V, E, c), and a subset ofq nodesQ ⊆.
The Steiner tree problem is to find a set of links with minimum
total cost to connectQ. One way to find an approximation of the
Steiner tree is as follows: (1) we build a virtual complete graphH
usingQ as its vertices, and the cost of each edge(i, j) is the cost
of LCP(i, j, c) in graphG; (2) build the minimum spanning tree
of H, denoted asMST (H); (3) an edge ofG is selected iff it is
selected in someLCP(i, j, c) and edge(i, j) of H is selected to
MST (H).

In this game, we defineq(q − 1)/2 gamesGi,j , wherei, j ∈
Q, with objective functionsfi,j(o, c) being the minimum cost of
connectingi andj in graphG, settingSi being the original graph
G and output functionLCP(i, j, c). The gameG corresponds to



the MST game on graphH. The cost of the pair-wiseq(q − 1)/2
shortest paths defines the input vectord = (d1, d2, · · · , dm) for
game MST. More details will be given in Section 4.2.

DEFINITION 3. Given an output functionO and settingS, an
objective function vectorf , an output function vectorψ and setting
vector∫ , we define a compound binary demand game with setting
S and outputO ◦F defined as(O ◦F)i(c) =

Wm
j=1(Oj(F(c))∧

ψj
i (c)).

The output method of the above definition can be interpreted as
follows. An agenti is selected if and only if there is aj such that
(1) i is selected inψj(c), and (2) the output methodO will select
indexj under cost profileF(c). For simplicity, we will useO ◦ F
to denote the output of this compound binary demand game.

Notice that a truthful payment scheme usingO ◦ F as output
exists if and only if it satisfies the monotone property. To study
whenO◦F satisfies MP, several necessary definitions are in order.

DEFINITION 4. Function Monotone Property (FMP) Given
an objective functiong and an output methodO, a functionH(c) =
g(O(c), c) is said to satisfy the function monotone property, if,
given fixedc−i, it satisfies:

1. WhenOi(c) = 0,H(c) does not increase overci.

2. WhenOi(c) = 1,H(c) does not decrease overci.

DEFINITION 5. Strong Monotone Property (SMP) An out-
put methodO is said to satisfy the strong monotone property ifO
satisfies MP, and for any agenti withOi(c) = 1 and agentj 6= i,
Oi(c|jc′j) = 1 if c′j ≥ cj or Oj(c|jc′j) = 0.

LEMMA 1. For a given output functionO satisfying SMP and
cost vectorsc, c′ with ci = c′i, if Oi(c) = 1 andOi(c

′) = 0, then
there must existj 6= i such thatc′j < cj andOj(c

′) = 1.

From the definition of the strong monotone property, we have Lemma
1 directly. We now can give a sufficient condition whenO ◦F sat-
isfies the monotone property.

THEOREM 9. If ∀i ∈ [1, m],Fi satisfies FMP,ψi satisfies MP,
and the outputO satisfies SMP, thenO ◦ F satisfies MP.

See appendix for the proof. This theorem implies that there is a
cut value for the compound outputO ◦ F . We then discuss how to
find the cut value for this output. Below we will give an algorithm
to calculateκi(O ◦ F) when (1)O satisfies SMP, (2)ψj satis-
fies MP, and (3) for fixedc−i, Fj(c) is a constant, sayhj , when
ψj

i (c) = 0, andFj(c) increases whenψj
i (c) = 1. Notice that

herehj can be easily computed by settingci = ∞ sinceψj satis-
fies the monotone property. When giveni and fixedc−i, we define
(F i

j)
−1(y) as the smallestx such thatFj(c|ix) = y. For simplic-

ity, we denote(F i
j)
−1 asF−1

j if no confusion is caused wheni is a
fixed agent. In this paper, we assume that given anyy, we can find
suchx in polynomial time.

THEOREM 10. Algorithm 6 computes the correct cut value for
agenti based on the output functionO ◦ F .

See appendix for the proof. In most applications, the output
function ψj implements the objective functionfj andfj is utili-
tarian. Thus, we can compute the inverse ofF−1

j efficiently. An-
other issue is that it seems the conditions when we can apply Algo-
rithm 6 are restrictive. However, lots of games in practice satisfies

Algorithm 6 Find Cut Value for Compound MethodO ◦ F
Input: Output functionO, objective function vectorF and inverse
function vectorF−1 = {F−1

1 , · · · ,F−1
m }, output function vector

ψ and fixedc−i.
Output: Cut value for agenti based onO ◦ F .
1: for 1 ≤ j ≤ m do
2: Compute the outputsψj(ci).
3: Computehj = Fj(c|i∞).
4: end for
5: Useh = (h1, h2, · · · , hm) as the input for the output func-

tionO. Denoteτj = κj(O, h−j) as the cut value function of
outputO based on inputh.

6: for 1 ≤ j ≤ m do
7: Setκi,j = F−1

j (min{τj , hj}).
8: end for
9: The cut value fori is κi(O ◦ F , c−i) = maxm

j=1 κi,j .

these properties and here we show how to deduct the MAX com-
bination in [12]. For the completeness of our presentation, we first
review the MAX combination first. AssumeA1 andA2 are two
allocation rules for single minded combinatorial auction, then the
combinationMAX(A1, A2) returns the allocation with the larger
welfare. If algorithmA1 andA2 satisfy MP and FMP, the opera-
tionmax(x, y) which returns the larger element ofx andy satisfies
SMP, from Theorem 9 we obtain that combinationMAX(A1, A2)
also satisfies MP. Further, the cut value of the MAX combination
can be found by Algorithm 6. As we will show in Section 4, the
complex combination can apply to some more complicated prob-
lems.

4. CONCRETE EXAMPLES

4.1 Set Cover
In the set cover problem, there is a setU of m elements needed

to be covered, and each agent1 ≤ i ≤ n can cover a subset of
elementsSi with a costci. Let S = {S1, S2, · · · , Sn} andc =
(c1, c2, · · · , cn). We want to find a subset of agentsD such that
U ⊆ S

i∈D Si. The selected subsets is called the set cover for
U . The social efficiency of the outputD is defined as

P
i∈D ci,

which is the objective function to be minimized. Clearly, this is
a utilitarian and thus VCG mechanism can be applied if we can
find the subset ofS that coversU with the minimum cost. It is
well-known that finding the optimal solution is NP-hard. In [4], an
algorithm of approximation ratio ofHm has been proposed and it
has been proved that this is the best ratio possible for the set cover
problem. For the completeness of presentation, we review their
method here.

Algorithm 7 Greedy Set Cover (GSC)
Input: Agenti’s subsetSi covered and costci. (1 ≤ i ≤ n).
Output: A set of agents that can cover all elements.
1: Initialize r = 1, T0 = ∅, andR = ∅.
2: while R 6= U do
3: Find the setSj with the minimum density

cj

|Sj−Tr| .

4: SetTr+1 = Tr

S
Sj andR = R

S
j.

5: r = r + 1
6: end while
7: OutputR.

Let GSC(S) be the sets selected by the Algorithm 7.Notice that



the output set is a function ofS andc. Some works assume that
the type of an agent could beci, i.e., Si is assumed to be a pub-
lic knowledge. Here, we consider a more general case in which
the type of an agent is(Si, ci). In other words, we assume that
every agenti can not only lie about its costci but also can lie about
the setSi. This problem now looks similar to the combinatorial
auction with single minded bidder studied in [11], but with the fol-
lowing differences: in the set cover problem we want to cover all
the elements and the sets chosen can have some overlap while in
combinatorial auction the chosen sets are disjoint.

We can show that the mechanismM = (GSC,PV CG), using
Algorithm 7 to find a set cover and apply VCG mechanism to com-
pute the payment to the selected agents, is not truthful. Obviously,
the set cover problem is a binary demand game. For the moment,
we assume that agenti won’t be able to lie aboutSi. We will drop
this assumption later. We show how to design a truthful mechanism
by applying our general framework.

1. Check the monotone property: The output of Algorithm 7
is a round-based output. Thus, for an agenti, we first focus
on the output of one roundr. In roundr, if i is selected by
Algorithm 7, then it has the minimum ratio ci

|Si−Tr| among
all remaining agents. Now consider the case wheni lies its

cost toc′i < ci, obviously c′i
|Si−Tr| is still minimum among

all remaining agents. Consequently, agenti is still selected
in roundr, which means the output of roundr satisfies MP.
Now we look into the updating rules. For every round, we
only update theTr+1 = Tr

S
Sj andR = R

S
j, which is

obviously cross-independent. Thus, by applying Theorem 8,
we know the output by Algorithm 7 satisfies MP.

2. Find the cut value: To calculate the cut value for agenti
with fixed cost vectorc−i, we follow the steps in Algorithm
4. First, we setci = ∞ and apply Algorithm 7. Letir be the
agent selected in roundr andT−i

r+1 be the corresponding set.
Then the cut value of roundr is

`r =
cir

|Sir − T−i
r | · |Si − T−i

r |.

Remember the updating rule only updates the game setting
but not the cost of the agent, thus we have8>>><>>>:

x ≥ `1
c1

i = x ≥ `2
· · ·

ct−1
i = x ≥ `t−1

ct
i = x ≥ `t

Therefore, the final cut value for agenti is

κi(GSC, c−i) = max
r
{ cir

|Sir − T−i
r | · |Si − T−i

r |}

The payment to an agenti is κi if i is selected; otherwise its
payment is0.

We now consider the scenario when agenti can lie aboutSi.
Assume that agenti cannot lie upward, i.e., it can only report a set
S′i ⊆ Si. We argue that agenti will not lie about its elementsSi.
Notice that the cut value computed for roundr is `r =

cir

|Sir−T−i
r | ·

|Si−T−i
r |. Obviously|S′i − T−i

r | ≤ |Si − T−i
r | for anyS′i ⊆ Si.

Thus, lying its set asS′i will not increase the cut value for each
round. Thus lying aboutSi will not improve agenti’s utility.

4.2 Link Weighted Steiner Trees
Consider any link weighted networkG = (V, E, c), whereE =

{e1, e2, · · · , em} are the set of links andci is the weight of the link
ei. The link weighted Steiner tree problem is to find a tree rooted at
source nodes spanning a given set of nodesQ = {q1, q2, · · · , qk} ⊂
V . For the simplicity of notations, we assume thatqi = vi, for
1 ≤ i ≤ k. Here the links are agents. The total cost of links in a
graphH ⊆ G is called the weight ofH, denoted asω(H). It is
NP-hard to find the minimum cost multicast tree when given an ar-
bitrary link weighted graphG [15, 16]. Takahashi and Matsuyama
[16] first gave a polynomial-time2-approximation algorithm for
this problem. Then a series of results have been developed to im-
prove the approximation ratio. The currently best polynomial time
method has approximation ratio1+ ln 3

2
[15]. Here, we review and

discuss the method by Takahashi and Matsuyama [16].

Algorithm 8 Find LinkWeighted SteinerTree (LST)

Input: NetworkG = (V, E, c) wherec is the cost vector for link
setE. Source nodes and receiver setQ.
Output: A treeLST rooted ats and spanned all receivers.
1: Setr = 1, G1 = G, Q1 = Q ands1 = s.
2: repeat
3: In graphGr, find the receiver, sayqi, that is closest to the

sources, i.e., LCP(s, qi, c) has the least cost among the
shortest paths froms to all receivers inQr.

4: Select all links onLCP(s, qi, c) as relay links and set their
cost to0. The new graph is denoted asGr+1.

5: Settr asqi andPr = LCP(s, qi, c).
6: SetQr+1 = Qr\qi andr = r + 1.
7: until all receivers are spanned.

Hereafter, letLST (G) be the final tree constructed using the
above method. It is shown in [20] that mechanismM = (LST, pV CG)
is not truthful, wherepV CG is the payment calculated based on
VCG mechanism. We then show how to design a truthful payment
scheme using our general framework. Observe that the outputPr,
for any roundr, satisfies MP, and the update rule for every round
satisfiescrossing-independent. Thus, from Theorem 8, the round-
based outputLST satisfies MP. In roundr, the cut value for a link
ei can be obtained by using the VCG mechanism. Now we set
ci = ∞ and execute Algorithm 8. Letw−i

r (ci) be the cost of
the pathPr(ci) selected in therth round andΠi

r(ci) be the short-
est path selected in roundr if the cost ofci is temporarily set to
−∞. Then the cut value for roundr is `r = wi

r(c−i)− |Πi
r(c−i)|

where|Πi
r(c−i)| is the cost of the pathΠi

r(c−i) excluding node
vi. Using Algorithm 4, we obtain the final cut value for agenti:
κi(LST, c−i) = maxr{`r}. Thus, the payment to a linkei is
κi(LST, c−i) if its reported cost isdi < κi(LST, d−i); other-
wise, its payment is0.

4.3 Virtual Minimal Spanning Trees
To connect the given set of receivers to the source node, besides

the Steiner tree constructed by the algorithms described before, a
virtual minimum spanning tree is also often used. Assume thatQ is
the set of receivers, including the sender. Assume that the nodes in
a node-weighted graph are all agents. The virtual minimum span-
ning tree is constructed as follows.

The mechanismM = (V MST, pV CG) is not truthful [20],
where the paymentpV CG to a node is based on the VCG mech-
anism. We then show how to design a truthful mechanism based on
the framework we described.

1. Check the monotone property: Remember that in the com-



Algorithm 9 Constructe VMST
1: for all pairs of receiversqi, qj ∈ Q do
2: Calculate the least cost pathLCP(qi, qj , d).
3: end for
4: Construct a virtual complete link weighted graphK(d) us-

ing Q as its node set, where the linkqiqj corresponds to the
least cost pathLCP(qi, qj , d), and its weight isw(qiqj) =
|LCP(qi, qj , d)|.

5: Build the minimum spanning tree onK(d), denoted as
V MST (d).

6: for every virtual linkqiqj in V MST (d) do
7: Find the corresponding least cost pathLCP(qi, qj , d) in the

original network.
8: Mark the agents onLCP(qi, qj , d) selected.
9: end for

plete graphK(d), the weight of a linkqiqj is |LCP(qi, qj , d)|.
In other words, we implicitly defined|Q|(|Q| − 1)/2 func-
tions fi,j , for all i < j and qi ∈ Q and qj ∈ Q, with
fi,j(d) = |LCP(qi, qj , d)|. We can show that the function
fi,j(d) = |LCP(qi, qj , d)| satisfies FMP, LCP satisfies MP,
and the output MST satisfies SMP. From Theorem 9, the out-
put method VMST satisfies the monotone property.

2. Find the cut value: Notice VMST is the combination of
MST and functionfi,j , so cut value for VMST can be com-
puted based on Algorithm 6 as follows.

(a) Given a link weighted complete graphK(d) on Q, we
should find the cut value function for edgeek = (qi, qj)
based on MST. Given a spanning treeT and a pair of
terminalsp andq, clearly there is a unique path con-
necting them onT . We denote this path asΠT (p, q),
and the edge with the maximum length on this path as
LE(p, q, T ). Thus, the cut value can be represented as
κk(MST, d) = LE(qi, qj , MST (d|k∞))

(b) We find the value-cost function for LCP. Assumevk ∈
LCP(qi, qj , d), then the value-cost function isxk =
yk − |LCPvk (qi, qj , d|k0)|. Here,LCPvk (qi, qj , d) is
the least cost path betweenqi andqj with nodevk on
this path.

(c) Removevk and calculate the valueK(d|k∞). Seth(i,j) =
|LCP(qi, qj , d|∞))| for every pair of nodei 6= j and
let h = {h(i,j)} be the vector. Then it is easy to
show thatτ(i,j) = |LE(qi, qj , MST (h|(i,j)∞))| is
the cut value for output VMST. It easy to verify that
min{h(i,j), τ(i,j)} = |LE(qi, qj , MST (h)|. Thus,

we knowκ
(i,j)
k (V MST, d) is |LE(qi, qj , MST (h)|−

|LCPvk (qi, qj , d|k0)|. The cut value for agentk is
κk(V MST, d−k) = max0≤i,j≤r κij

k (V MST, d−k).

3. We pay agentk κk(V MST, d−k) if and only if k is selected
in V MST (d); else we pay it0.

4.4 Combinatorial Auctions
Lehmannet al. [11] studied how to design an efficient truthful

mechanism for single-minded combinatorial auction. In a single-
minded combinatorial auction, there is a set of itemsS to be sold
and there is a set of agents1 ≤ i ≤ n who wants to buy some of
the items: agenti wants to buy a subsetSi ⊆ S with maximum
price mi. A single-minded bidderi declares a bidbi = 〈S′i, ai〉

with S′i ⊆ S andai ∈ R+. Two bids〈S′i, ai〉 and〈S′j , aj〉 conflict
if S′i ∩ S′j 6= ∅. Given the bidsb1, b2, · · · , bn, they gave a greedy
round-based algorithm as follows. First the bids are sorted by some
criterion ( ai

|S′i|1/2 is used in[11]) in an increasing order and letL be

the list of sorted bids. The first bid is granted. Then the algorithm
exams each bid ofL in order and grants the bid if it does not conflict
with any of the bids previously granted. If it does, it is denied. They
proved that this greedy allocation scheme using criterionai

|S′i|1/2

approximates the optimal allocation within a factor of
√

m, where
m is the number of goods inS.

In the auction settings, we haveci = −ai. It is easy to verify the
output of the greedy algorithm is a round-based output. Remem-
ber after bidderj is selected for roundr, every bidder has conflict
with j will not be selected in the rounds after. This equals to up-
date the cost of every bidder having conflict withj to 0, which
satisfiescrossing-independent. In addition, in any round, if bid-
der i is selected withai then it will still be selected when it de-
claresa′i > ai. Thus, for every round, it satisfies MP and the
cut value is|S′i|1/2 · ajr

|Sjr
′|1/2 wherejr is the bidder selected in

roundr if we did not consider the agenti at all. Notice
ajr

|Sjr ′|1/2

does not increase when roundr increases, so the final cut value
is |S′i|1/2 · aj

|Sj
′|1/2 wherebj is thefirst bid that has been denied

but would have been selected were it not only for the presence
of bidder i. Thus, the payment by agenti is |S′i|1/2 · aj

|Sj
′|1/2 if

ai ≥ |S′i|1/2 · aj

|Sj
′|1/2 , and0 otherwise. This payment scheme is

exactly the same as the payment scheme in [11].

5. CONCLUSIONS
In this paper, we studied how to design a truthful mechanism

M = (O,P) using a given output methodO. We showed that the
output methodO satisfying the monotone property is the neces-
sary and sufficient condition such that a truthful mechanismM ex-
ists. By considering a polynomial-time computable output method
O, we then studied in detail how to compute the paymentP ef-
ficiently such that the mechanismM = (O,P) is computable
in polynomial time. Our main contribution here is that we pre-
sented several general methods to compute the payment efficiently
for various monotone output methodsO, such as or/and combina-
tion, the round-based algorithms, and the composition-based algo-
rithms. Several concrete examples are studied to demonstrate the
effectiveness of our methods of computing the payments in poly-
nomial time.

Computational Complexity and Approximation Ratios: In
this paper, we mainly concentrated on how to compute the pay-
ments in polynomial time. We have to point it out that our method
is not necessarily the time-optimal for computing the payments for
mechanismM = (O,P) when a given monotone outputO is used.
It seems impossible to design a general framework for computing
the payment with optimal time complexity without studying the
specifics of the original binary selection problem and the output
methodO. We have made some progress in this latter direction.
We showed in [18] a method to compute the payment for unicast in
a node weighted graph in optimal time complexityO(n log n+m).

Another interesting research direction is, given a optimization
binary demand game, how to design an approximation methodO
satisfying the monotone property with good approximation ratio.
Many works [12, 11] in the mechanism design literature are in this
direction. We pointed out here that the attempt of this paper is not
to design a better output method for a problem, but to design a
method to compute the payment efficiently whenO is given. Thus,



it would be interesting to find the output algorithm with the good
approximation ratio such that it has a computable payment scheme.

Beyond Binary Demand Game: In this paper, we studied mech-
anism design for binary demand games. However, some prob-
lems cannot be directly formulated as binary demand game. The
job-scheduling problem(Q||Cmax) is such an example. This has
been studied extensively in [2]. It is known that a truthful payment
schemeP exists for an output methodO if and only if the workload
wi assigned byO is non-decreasing insi when fixings−i.

Theorem 4 can be extended to a general output methodO, whose
range isR+. The remaining difficulty is then how to compute the
paymentP under mild assumptions about the valuations if a truth-
ful mechanismM = (O,P) does exist.
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7. APPENDIX
The outputomin that minimizes the objective functiong(o, c)

depends on the valuation vectorv and the objective functiong it-
self, so we will useomin(g, c) to denoteomin. In a binary demand
game with an objective functiong(o, c), if we fix the outputoi = 1,
then the objective function is denoted asg((o−i, 1), c); if we fix the
outputoi = 0, the objective function is denoted asg((o−i, 0), c).

Theorem 1: If a mechanismM = (O,P) satisfiesIC, then∀i, if
Oi(t|iti1) = Oi(t|iti2), thenpi(t|iti1) = pi(t|iti2).

PROOF. We prove it by contradiction. Without loss of gen-
erality, assumepi(t|iti1) > pi(t|iti2). Now consider a profile
t′ = t|iti2 . When agenti declaresvi1 , its utility is

ui(t|iti1) = pi(t|iti1) + v(Oi(t|iti1), ti2)

= pi(t|iti1) + v(Oi(t|iti2), ti2)

> pi(t|iti2) + v(Oi(t|iti2), ti2)

= ui(t|iti2)

The above inequality implies that by lying its valuation toti1 , agent
i could benefit, which is a contradiction.

Theorem 4 For any agenti and any fixedc−i in a binary demand
game with output methodO, the following three conditions are
equivalent:

1. There exists a valueκi(O, c−i) (called acut value) such that
Oi(c) = 1 if ci < κi(O, c−i) andOi(c) = 0 if ci >
κi(O, c−i). Whenci = κi(O, c−i), Oi(c) could be either
0 or 1, depending on the tie-breaker of the output methodO.
Hereafter, we will not consider the tie-breaker scenario in our
proofs.

2. The output methodO satisfies MP.

3. There exists a truthful payment schemesP for this binary de-
mand game.

PROOF. We break the proof into three directions as follow.
Direction 1:CONDITION 2 IMPLIES CONDITION 1.
The proof of this direction is straightforward and is omitted here.
Direction 2:CONDITION 3 IMPLIES CONDITION 2.
The proof of this direction is similar to a proof in [12]. To prove

this direction, we assume there exists an agenti and two valuation
vectorsc|ici1 andc|ici2 , whereci1 < ci2 , Oi(c|ici2) = 1 and
Oi(c|ici1) = 0. From corollary 2, we know thatpi(c|ici1) = p0

i

andpi(c|ici2) = p1
i .

Now fix c−i, the utility for i whenci = ci1 is ui(ci1) = p0
i .

When agenti lies its valuation toci2 , its utility is p1
i − ci1 . Since

M = (O,P) is truthful, we have

p0
i > p1

i − ci1 (1)

Now consider the scenario when the actual valuation of agenti
is ci = ci2 . Its utility is p1

i − ci2 when it reports its true valuation.
Similarly, if it lies its valuation toci1 , its utility is p0

i . SinceM =
(O,P) is truthful, we have

p0
i < p1

i − ci2 (2)

Combining inequalities (1) and (2), we havep1
i − ci2 > p0

i >
p1

i − ci1 . This inequality implies thatci1 > ci2 , which is a contra-
diction.

Direction 2:CONDITION 1 IMPLIES CONDITION 3.
We prove this direction by constructing a payment scheme and

proving that this payment scheme is truthful. The payment scheme

is: If Oi(c) = 1, then agenti gets paymentpi(c) = κi(O, c−i);
else it gets paymentpi(c) = 0.

From condition 1, ifOi(c) = 1 thenci > κi(O, c−i). Thus,
its utility is κi(O, c−i) − ci > 0, which implies that the payment
scheme satisfies the IR. In the following we prove that this payment
scheme also satisfies IC property. There are two cases here.

Case 1: ci < κ(O, c−i). In this case, wheni declares its true
costci, its utility is κi(O, c−i) − ci > 0. Now consider the situ-
ation wheni declares a costdi 6= ci. If di < κi(O, c−i), then
i gets the same payment and utility since it is still selected. If
di > κi(O, c−i), then its utility becomes0 since it is not selected
anymore. Thus, it has no incentive to lie in this case.

Case 2: ci ≥ κ(O, c−i). In this case, wheni reveals its true
valuation, its payment is0 and the utility is0. Now consider the
situation wheni declares a valuationdi 6= ci. If di > κi(O, c−i),
theni gets the same payment and utility since it is still not selected.
If di ≤ κi(O, c−i), then its utility becomesκi(O, c−i) − ci ≤ 0
since it is selected now. Thus, it has no incentive to lie in this
case.

Theorem5: The payment defined Alforithm 1 is minimum among
all truthful payment schemes usingO as output.

PROOF. Assume that there is a truthful payment schemep′ pays
agenti a paymentκ(O, c−i) − ε, for someε > 0. Notice that the
payment to an agenti does not depend on its actual cost as long as
Oi does not change. When agenti has costκ(O, c−i) − ε/2, it is
still selected. Thus, agenti still gets paymentκ(O, c−i)− ε under
schemep′. Consequently, the utility of agenti becomes−ε/2,
which violates the individual rationality property. This finishes the
proof.

Theorem 8: A round-based outputA, with the framework defined
in Algorithm 3, satisfies MP if the output methodsOr satisfy MP
and the updating functionUr is crossing-independent for every
roundr.

PROOF. Consider an agenti and fixedc−i. We prove that when
an agenti is selected with costci, then it is also selected with cost
di < ci. Assume thati is selected in roundr with costci. Then
under costdi, if agenti is selected in a round beforer, our claim
holds. Otherwise, consider in roundr. Clearly, the settingSr and
the costs of all other agents are the same as what if agenti had cost
ci sincei is not selected in the previous rounds due to the cross-
independent property. Sincei is selected in roundr with costci, i
is also selected in roundr with di < ci due to the reason thatOr

satisfies MP. This finishes the proof.

Theorem9 Assume that for every1 ≤ i ≤ m,Fi satisfies FMP,ψi

satisfies MP, and the output methodO satisfies SMP. ThenO ◦ F
satisfies MP.

PROOF. Assuming for cost vectorc we have(O ◦ F)i(c) =
1, we should prove for any cost vectorc′ = c|ic′i with c′i < ci,
(O ◦ F)i(c

′) = 1. Noticing that(O ◦ F)i(c) = 1, without loss
of generality, we assume thatOk(F(c)) = 1 andψk

i (c) = 1 for
some index1 ≤ k ≤ m.

Now consider the outputO with the cost vectorF(c′)|kFk(c).
There are two scenarios, which will be studied one by one as fol-
lows.

One scenario is that indexk is not chosen by the output function
O. From Lemma 1, there must existj 6= k such that

Fj(c
′) < Fj(c) (3)

and

Oj(F(c′)|kFk(c)) = 1 (4)



We then prove that agenti will be selected in the outputψj(c′),
i.e., ψj

i (c
′) = 1. If it is not, sinceψj(c) satisfies MP, we have

ψj
i (c) = ψj

i (c
′) = 0 from c′i < ci. SinceFj satisfies FMP, we

knowFj(c
′) ≥ Fj(c), which is a contradiction to the inequality

(3). Consequently, we haveψj
i (c

′) = 1. From Equation (4), the
fact that indexk is not selected by output functionO and the defi-
nition of SMP, we have

Oj(F(c′)) = 1,

Thus, agenti is selected byO ◦ F because ofOj(F(c′)) = 1 and
ψj

i (c
′) = 1.

The other scenario is that indexk is chosen by the output func-
tionO. First, agenti is chosen inψk(c′) since the outputψk(c) sat-
isfies the monotone property andc′i < ci andψk

i (c) = 1. Secondly,
since the functionFk satisfies FMP, we know thatFk(c′) ≤ Fk(c).
Remember that outputO satisfies the SMP, thus we can obtain
Ok(F(c′)) = 1 from the fact thatOk(F(c′)|kFk(c)) = 1 and
Fk(c′) ≤ Fk(c). Consequently, agenti will also be selected in the
final outputO ◦ F . This finishes our proof.

Theorem 10 Algorithm 6 computes the correct cut value for agent
i based on the output functionO ◦ F .

PROOF. In order to prove the correctness of the cut value func-
tion calculated by Algorithm 6, we prove the following two cases.
For our convenience, we will useκi to representκi(O ◦ F , c−i) if
no confusion caused.

First, if di < κi then (O ◦ F)i(c|idi) = 1. Without loss of
generality, we assume thatκi = κi,j for somej. Since functionFj

satisfies FMP andψj
i (c|idi) = 1, we haveFj(c|idi) < Fj(κi).

Noticedi < κi,j , from the definition ofκi,j = F−1
j (min{τj , hj})

we have (1)ψj
i (c|idi) = 1, (2)Fj(c|idi) < τj due to the fact that

Fj(x) is a non-decreasing function whenj is selected. Thus, from
the monotone property ofO andτj is the cut value for outputO,
we have

Oj(h|jFj(c|idi)) = 1. (5)

If Oj(F(c|idi)) = 1 then(O◦F)i(c|idi) = 1. Otherwise, since
O satisfies SMP, Lemma 1 and equation 5 imply that there exists
at least one indexk such thatOk(F(c|idi)) = 1 andFk(c|idi) <
hk. NoteFk(c|idi) < hk implies thati is selected inψk(c|idi)
sincehk = Fk(ci|i∞). In other words, agenti is selected inO◦F .

Second, ifdi ≥ κi(O ◦ F , c−i) then(O ◦ F)i(c|idi) = 0. As-
sume for the sake of contradiction that(O ◦ F)i(c|idi) = 1. Then
there exists an index1 ≤ j ≤ m such thatOj(F(c|idi)) = 1 and
ψj

i (c|idi) = 1. Remember thathk ≥ Fk(c|idi) for anyk. Thus,
from the fact thatO satisfies SMP, when changing the cost vector
fromF(c|idi) to h|jFj(c|idi), we still haveOj(h|jFj(c|idi)) =
1. This implies that

Fj(c|idi) < τj .

Combining the above inequality and the fact thatFj(c|ic|idi) <
hj , we haveFj(c|idi) < min{hj , τj}. This implies

di < F−1
j (min{hj , τj}) = κi,j < κi(O ◦ F , c−i).

which is a contradiction. This finishes our proof.


