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Abstract—We study topology control in heterogeneous wireless threshold. However, practically, wireless ad hoc networks can-
ad hoc networks, where mobile hosts may have different maximum not be perfectly modelled as UDGs: the maximum transmission
transmission powers and two nodes are connected iff they are y5nqag of wireless devices may vary due to various reasons such

within the maximum transmission range of each other. We present the device diff dth I hanic/electroni
several strategies that all wireless nodes self-maintain sparse ang@S the device dilierences an € small mechanic/electronic er-

power efficient topologies in heterogeneous network environment ors during the process of transmitting even the transmission
with low communication cost. The first structure is sparse and can powers of all devices are set the same initially. In [7], [8], the

be used for broadcasting. While the second structure keeps the guthors extended UDG into a new model, caligesi unit disk
minimum power consumption path, and the third structure is a graphs which is closer to reality than UDG. In this paper, we
length and power spanner with a bounded degree. Both the sec- . .
ond and third structures are power efficient and can be used for study- a more gener_alllzed quel. Each wireless "mm}’
unicast. Here a structure is power efficient if the total power con- have its own transmission radius. Then heterogeneous wire-
sumption of the least cost path connecting any two nodes in it is less networks are modelled by mutual inclusion graphs (MG):
no more than a small constant factor of that in the original hetero- - two nodes can communicate directly only if they are within
gonous gg&?“&ﬁ::éoga%rﬁﬂ‘e' Q';ggrggéhos)sb‘fse atmog?(n)  the transmission range of each other, i.e., it has a dinkff
' & ' |luv|| < min(r,,r,). Clearly UDG is a special case of MG.
Index Terms—Graph theory, wireless ad hoc networks, topology - Fey research efforts addressed the topology control for hetero-
control, heterogeneous networks, power consumption. geneous wireless networks.
The main contribution of this paper is as follows. We propose
I. INTRODUCTION severallocalizedstrategies for heterogeneous wireless devices
An important requirement of wirelessl hocnetworks is that to self-form aglobally sparse power efficient network topol-
they should be self-organizing, i.e., transmission ranges aogly: a power spanner, a sparse structure and a degree-bounded
data paths are dynamically restructured with changing topt#ngth and power spanner respectively. Here an algorithm is
ogy. Localizedad hocnetwork topology control scheme is tosaid to construct a topolog¥ locally if, every nodeu can
let each wireless node locally adjust its transmission power adeicide which edgesv belong to H using only the informa-
select which neighbors to communicate according to certdinon of nodes within a constant number of hopsuofAll our
strategy, while maintaining a structure that can support energlgorithms have communication cogb$n), where each mes-
efficient routing and improve the overall network performancsage ha€)(logn) bits. Notice, to study the topology control
Hence it can efficiently conserve the transmission energy framheterogeneous networks, it would be helpful to extend the
soft aspects with low cost. In the past several years, topadeas from the well-studied topologies, such as GG, RNG and
ogy control algorithms have drawn significant research intere¥ao, used in homogeneous networks. The topology control for
Centralized algorithms can achieve optimality or its approxiteterogeneous networks is not trivial, since many properties in
mation, which are more applicable to static networks due to themogeneous networks disappear in heterogeneous networks.
lack of adaptability to topology changes. In contrast, distributed The rest of the paper is organized as follows. In Section
algorithms are more suitable for mobile ad hoc networks sintewe introduce the background and review previous methods.
the environment is inherently dynamic and they are adaptiveltonitations on heterogeneous network topology control are dis-
topology changes at the cost of possible less optimality. Fuissed in Section Ill. We describe a strategy for all nodes form-
thermore, these algorithms only attempt to selectively choos® a sparse structure in Section IV, a sparse power spanner in
some neighbors of each node. The primary distributed topolo§gction V, and a degree-bounded power and length spanner in
control algorithms for ad hoc networks aim to maintain networ&ection VI. We also analyze the communication complexities
connectivity, optimize network throughput with power-efficienof these methods. Our theoretical results are corroborated in the
routing, conserve energy and increase the fault tolerance. simulations in Section VII. We conclude our paper in Section
Most prior art [1], [2], [3], [4], [5], [6] on network topology VIII with the discussion of future works.
control assumed that wireless ad hoc networks are modelled
by unit disk graphs(UDG), i.e., two mobile hosts can com- Il. PRELIMINARIES
municate as long as their Euclidean distance is no more thaﬂ.aHeterogeneous Wireless Network Model
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the maximum transmission power considered in this papertigpologies that are beneficial for routing. In addition, as the au-
actuallyp; = p, — e. We adopt a common assumption in théhors of [15] acknowledged, their original methods cannot pre-
literature that the power needed to support the communicatiserve the network connectivity. Then new methods were pro-
between two nodes; andv; is |lv;v;|®, wheres € [2,5] posed to remedy this in their online version of the paper. Two
is a real number depending on the environment gmd, || is  structures were proposed by them: an extended relative neigh
the Euclidean distance betweenandv;. Consequently, the borhood graph and the extended local minimum spanning tree.
signal sent by a node; can be received by all nodes with It is unknown if their structures are sparse, power efficient.
|vsv;|| < 7, wherer? < p;/po, po is the uniform thresh-
old that a signal with powep, can be recognized by a node
Thus, for simplicity, we assume that each mobile hgstas its
own transmission range. The heterogeneous wireless ad hoc When constructing a subgraph of the original communica-
network is then modelled by a mutual inclusion graph (MG}ion graph MG, we may need consume more power to connect
where two nodes;, v; are connected iff they are within thesome nodes since we may disconnect the most power efficient
transmission range of each other, i-HEUin” < Inin(ri,rj). path in MG. Thus, naturally, we would require that the con-
Previously, no method is known for topology control when thetructed structure approximates MG well in terms of the power
networks are modelled as mutual inclusion graphs. consumption for unicast routing. In graph theoretical term, the
structure should be a spanner [16], [13]. ét= (V, E) be
a n-vertex weighted connected graph. The distancé& ihe-
B. Current State of Knowledge tween two vertices,, v € V is the length of the shortest path
Many structures were proposed for topology control in hgyetweer, andv and it is denoted byl (u,v). A subgraph
mogeneous wireless ad hoc networks. Due to limited spaces.— (V, E’), whereE’ C E, is at-spannerof G if for every
we will briefly review some of proximity geometric structuresy, o ¢ V, dy (u,v) < t - dg(u,v). The value of: is called the
Therelative neighborhood grapf®] RNG(V') consists of all  stretch factoror spanning ratio When the graph is a geometric
edgesuv such that the intersection of two circles centered gtaph and the weight is the Euclidean distance between two ver-
u andv and with radius||luv|| do not contain any vertexs tices, the stretch factdris called thelength stretch factqrde-
from V. The Gabriel graph[10] GG(V') contains edgew noted by’ (G). For wireless networks, the mobile devices are
if and only if disk(u, v) contains no other points of, where ysually powered by battery only. We thus pay more attention to
disk(u,v) is the disk with edgew as a diameter. Boti'G(V)  the power consumptions. When the weight of a link e G
andRNG(V') are connected, planar, and contain the Euclidegdefined as the power to support the communication of link
minimum spanning tree of’. The intersections oG (V), yu, the stretch factor off is called thepower stretch factqr
RNG(V) with aconnected DG(V) are connected. Delaunaydenoted by (G) hereafter. The power, denoted by (u, v),
triangulation, denoted byel(V), is also used as underlyingneeded to support the communication between adlink G is
structure by several routing protocols. Here a trianfilevw  gften assumed to b|euv||ﬁ, where2 < 8 < 5. Obviously, for
belongs taDel (V) if its circumcircle does not contain any nodedny weighted grapty and a subgrapil C G,
inside. Itis well known thaRNG(V) € GG(V) C Del(V). Lemma 1:[3] GraphH has stretch factaf if and only if for
The intersection oDel(V') with a connected/ DG(V') has a any linkuv € G, dg (u,v) < 6 - de(u,v).

bounded length spanning ratio [11]. Thus, to generate a spanriér we only have to make sure that
The Yao graph[12] with an integer parametér > 6, de-  gyery Jinkof G is approximated within a constant factor.

noted byY' G (V), is defined as follows. At each nodeg any

k equal-separated rays originateduadiefinek cones. In each

cone, choose the shortest edgeamong all edges from, if D. Sparseness and Bounded Degree

there is any, and add a directed liak. Ties are broken arbi-  AJ well-known proximity graphs GG(V), RNG(V),
trarily or by ID. The resulting directed graph is called tfeo Del(V) and YG(V)) have been proved to be sparse graphs
graph Let Y Gi(V) be the undirected graph by ignoring thewhen network is modeled as a UDG. Recall thaparsegraph
direction of each link inYG, (V). Some researchers used aneans the number of edges is linear with the number of nodes.
similar construction nameg@graph [13], the difference is that The sparseness of all well-known proximity graphs implies that
it chooses the edge which has the shortest projection on the akis average node degree is bounded by a constant. Moreover,
of each cone instead of the shortest edge in each cone. we prefer the maximum node degree is bounded by a constant,
The first effort for topology control in heterogeneous wirebecause wireless nodes have limited resources and the signal
less networks was reported in [14] by the same authors of tlnigerference in wireless communications. Unbounded degree
paper. In [14], we showed how to perform topology contrdor in-degree) at a node will often cause large overheadat
based on Yao structure for heterogeneous wireless networkbereas a bounded degree increases the network throughput. In
The results presented in current paper have been available axhdition, bounded degree will also give us advantages when ap-
line since around June 2003. Recently, several structures tpigtseveral routing algorithms. Therefore, it is often imperative
extend the relative neighborhood graph and local minimuta construct a sparse network topology with a bounded node
spanning tree were proposed in [15] for topology control idegree while it is still power-efficient. However, kt al. [3]
heterogeneous wireless networks. They build directed netwatkowed that the maximum node degree of RNG, GG and Yao
topologies while the methods presented here build undirecismlild be as large as— 1. The instance consists af— 1 points

C. Spanners and Stretch Factors



lying on the unit circle centered at a nodec V. Then each that3?r,, = r,, hencey equals to3”. Thus,v has degree
edgeuv; belongs to the? NG (V), GG(V) andY G, (V). loggy + 1 = O(logy 7). In the paper, we always assumes
Recently, in homogeneous wireless ad hoc networks, sofmé&onstant. It is practical, since it is trivial that two wireless
improved or combined proximity graphs [17], [18] have beeglevices in same network have unbounded radius ratio.
proposed to build planar degree-bounded power spanner topol-
ogy, which meets all preferred properties for unicast. In het-
erogeneous networks, only a few research efforts [15], [14] are
reported so far. In the following, we will first discuss the dif- In this section, we propose a strategy for all nodes to self-
ficulties and limitations for topology control in heterogeneod®r™m a sparse structure, callétiVG (M G), based on the rela-
networks, then present our localized strategies in detail. tive neighborhood graph structure, whose total number of links
is O(n). We add a linkuv € MG to RNG(MG) if there is
noanother nodev inside lune(u, v) andbothlinks uww andwv

_ are in MG. Herdune(u, v) is the intersection ofiisk (u, ||uv|)
In heterogeneous wireless ad hoc networks, the planar topgi disk (v, ||uv||). The algorithm will be similar to Algorithm

ogy does not necessarily exist. Figure 1 (a) shows an examplethys we omit it here. Notice that the total communication
there are four nodes, y, v andv in the network, where their ¢gst of constructinlRNG(M@G) is O(nlogn) bits, assuming
transmission range, = r, = |zy|| andr, = r, = |wl, thatthe radius and ID information of a node can be represented
and nodeu is out of the transmission range of nodendy, in O(logn) bits. In addition, the structurBNG(MG) is sym-
while nodew is in the transmission range of nogeand out of metric: if a nodeu keeps a linkuv, nodewv will also keep the

the range ofr. The transmission ranges ofandy are illus- jink yv. Thus, a node: does not have to tell its neighbor
trated by the dotted circles. According to the definitiomé&+, \yhether it keeps a linkv or not.

there are only three edgeg, vy anduw in the graph. Hence |t js not difficult to prove that structur@ NG(MG) is con-

any topology control method can not make the topology plected by induction. On the other hand, same as the case in
nar while keeping the communication graph connected. On tﬁ@mogeneous networks (i.e., UDG mod&NG(MG) does
other hand, it is worth to think whether we can design a neypt have a bounded length stretch factor, nor constant bounded
routing protocol on some pseudo-planar topologies. As will segyyer stretch factor, and does not have bounded node degree.

later, the pseudo-planar topology GG(MG) and RNG(MG) prgp, this paper, we will show thaR NG (MG) is asparsegraph:
posed in this section has some special properties which are gdifas at mosén links.

ferent from other general non-planar topologies. For instanceyn the following, we define a new structure, called

two intersecting triangles can not share a common edge. W?{NG(MG). Assume that each nodeknows its maximum
leave it as a future work. transmission radius,. Let B(u) = {v | r, > r,}. A nodeu
processes a linkv from MG if r,, > r,, i.e.,v € B(u). Node

u removes a linkuww, wherev € B(u), if there is another node
w € B(u) insidelune(u, v) with both linksuw andwwv are in
MG. All the links uv kept by all nodes form the final structure
ERNG(MG).

IV. HETEROGENEOUSSPARSE STRUCTURE

1. LIMITATIONS

oL o Algorithm 1: Constructing-ERNG
(. 1) Each node initiates setd2y;¢(u) andEggrya(u) to be
() (b) empty. HereE);¢(u) is the set of links of MG known
Fig. 1. Limitations on heterogeneous networks: (a) Planar topology does not ~ t0 u SO far andEgrnc(u) is the set of links of ERNG
exist. (b) Degree of node can not be bounded by constant. known tow so far. Then, each nodelocally broadcasts a

HELLO message witti D,,, r,, and its position(z.,, y.,) t0
We also can show that the node degree in heterogeneous net- all nodes in its transmission range. Note that= p,,'/?
works can not be bounded by a constant if the radius ratio is un- s its maximum transmission range.
bounded. Figure 1 (b) shows such an example. In the example?) At the same time, each nodeprocesses the incoming

a nodev hasp + 1 incoming neighborsv;, 0 < i < p. Assume messages. Assume that nodegets a message from
that each nodey; has a transmission radius, = r,/3?~¢ and some node. If ||vu|| < min{r,,r,}, then node:; adds
lvws|| = 7v,. Obviously,||w;w;|| > min(ry,, rw,), i.e., any a link wv to Eyg(u). If 7, > r,, then nodeu per-
two nodesw;, w; are not directly connected in MG. forms the following procedures. Nodechecks if there
Obviously, none of those edges incident:ocan be deleted, is another linkuw € Ej¢(u) with the following ad-

hence there is no topology control method to bound the degree ditional properties: 1y € lune(u,v), 2) 1y > T,
by a constant without violating connectivity. Consider the ex-  and 3)||wv|| < min{r,,r,}. If no such linkuw, then

ample illustrated by Figure 1 (b), edges;, 0 < i < p, are all adduv to Egrna(u). For any linkuw € Egpne(u),
possible communication links. Thus, nodén any connected nodew checks if the following conditions hold: L) €
spanning graph has degrger 1. On the other hand, we will lune(u,w), and 2)||wv|| < min{ry,r,}. If the condi-
show in section VI, in the worst case, any connected MG graph  tions hold, then remove linkw from Eggne(u).

has degreeD(log,y) wherey = max,cy maX,cy(y) :—: 3) Nodew repeats the above steps until no néeLLoO mes-

Here, I(v) = {w | wv € MG}. In the example, recall sages received.



4) For each linkuv € Egrne(u), nodeu informs nodev  that a nodew is insidedisk (u, v) and both linksuw andwwv be-

to add linkuw. long to MG. If nodeu gets the message from first, and then
5) All links wv in Eggpna(u) are the final links in gets message from, clearly,uv cannot be added B¢ (u).

ERNG(MG) incident onu. If node u gets the message frooffirst, thenu will remove uv
We then prove that the structure ERNG has at iedtnks. from Eg¢(u) (if it is there) whenu gets the information ofv.
Lemma 2: Structure ERNG(MG) has at mast links. It is not difficult to prove that structur&G(MG) is con-

Proof: Consider any node. We will show thatu keeps nected by induction. In addition, since we remove a link
at most6 directed links emanated from Assume that: keeps only if there are two linksiw andwwv with w inside disk (u, v),
more than6 directed links. Obviously, there are two links it is easy to show that the power stretch facto6gf (M G) is 1.
anduwv such thatZwuv < w/3. Thus,vw is not the longest In other words, the minimum power consumption path for any
link in triangle Auvw. Without loss of generality, we assumewo nodesy; andw; in MG is still kept inGG(MG). Remem-
that |[uw|| is the longest in trianglé\uvw. Notice that the ex- ber that here we assume the power needed to support adink
istence of linkuw implies that|juw| < min(ry,r,) = 7. is |luv|/?, for 3 € [2,5].
Consequentlyljvw|| < |Juw| < min(r,,r,). Thus, fromthe  On the other hand, same as the case in homogeneous net-
fact thatr,, < r,, we know||vw| < min(r,,r,). Hence, link works (i.e., UDG mode)GG(M@G) is not a length spanner,

vw does exist in the original communication graph MG, it imand does not have bounded node degree. Furthermore, it is un-

plies that linkuw cannot be selected to ERNG. B known whethelGG(MG) is asparsegraph. Recently, it was
Similar to Lemma 2, we can prove the following lemma.  proven in [19] thalG'G(MG) has at mosO(n%/° log v) edges
Lemma 3: Structure RNG(MG) has at most links. wherey = maxr, /7.

Proof: Imagine that each linkv has a direction as fol-  Notice that, the extension from Gabriel graph is non-trivial.
lows: u? if r,, < r,. Then similar to Lemma 2, we can provein [19], two structures defined as follows even cannot guaran-
that each node: only keeps at most such imagined direct tee the connectivity. In the first structure, callb6dGo(MG),
links. Thus, total links are at moét.. B they remove a linkuv € MG if there is another node in-

Similarly, we can define a structufeGG(M G), which con-  side disk(u,v). In the second structure, callddiG;(MG),
tains an edgew if r, < r, and there is no node with  they remove a linkiw € MG if there is another node inside

the following properties: 1), < r, 2) w is inside the disk gisk(u,v), and either linkuw or link wwv is in MG.
disk(u,v). However, we cannot prove th&atGG(MG) has a

linear number of links. VI. HETEROGENEOUSDEGREEBOUNDED SPANNER

V. HETEROGENEOUSPOWER SPANNER Undoubtedly, as described in preliminaries, we always pre-
fer a structure has more nice properties, such as degree-bounded
%tronger than sparse), power spanner etc. Naturally, we could
extend the previous known degree-bounded spanner, such as
the Yao related structures, from homogeneous networks to het-
erogeneous networks. Unfortunately, a simple extension of the
Yao structure from UDG to MG even does not guarantee the
connectivity. Figure 2 (a) illustrates such an example. Here

. o =71y, = Ty = VTo = , and < ,
u from MG andGG respectively. Each node initiates ro = lluvl, ry = Juwl,r, = oz luwl] < Jluv]

luw] < Jlvwl], [Jvz| < [Juv|], and|vz|| < |luz|. In addition,
both Exr(u) and Egg(u) as empty. Then, each nodev andw are in the same cone of node and nodesr and
u locally broadcasts BIELLO message witi D,,, r,, and

. I T i are in the same cone of node Thus, the original MG graph
Its posmon(xu,_ yu) toallnodesinits transmlss[on raNg€¢ontains linksuv, uw andvz only and is connected. However,
2) At the same time, each nodeprocesses the incoming

A that nodeet ¢ when applying Yao structure on all nodes, nadevill only
messages. Assume that NaCGeLs a message om SOME, 0 jnformation of node andw and it will keep link uw.
nodewv. If ||vu|| < min{r,,r,}, then node: adds a link

imilarl k linkuw; k linkvz;
uv to Epre(u). Nodew checks if there is another link Similarly, nodew keeps linkuw; nodev keeps linkva; and

I ith the following two additional nodez keeps linkzv. In other words, only linkcv anduw are
uw € Epre(u) with the following two additional proper- kept by Yao method. Thus applying Yao structure disconnects
ties: 1)w € disk(u,v), and 2)||wv| < min{ry,r,}. If

h link dduw 10 E = link nodewv, « from the other two nodes andw. Consequently, we
no such linkuw, adduv to Eg (u). Forany linkuw € 004 o0 sophisticated extensions of the Yao structure to MG
E¢c(u), nodeu checks if the following two properties

to guarantee the connectivity of the structure.
hold: 1)v € disk(u, w), and 2)||wv|| < min{ry,,r,}. If g y

they hold, remove linkuiw from Egq (u).
3) Nodeu repeats the above steps until no néeLLo mes- A Extended Yao Graph

Then, we give a strategy for all nodes to self-form a pow
spanner structure, calledG(MG), based on the Gabriel
graph. We add a linkkv € MG to GG(MG) if there isno
another nodev inside disk (u, v) and both linksuw andww are
in MG. Our localized construction method works as follows.

Algorithm 2: Constructing-GG

1) Let Epe(u) and Ege(u) are the set of links known to

sages received. Algorithm 3: Constructing-EYG
4) All'links uv in Egg(u) are the final links inGG(MG) 1) Initially, each nodeu divides the diskdisk(u,r,) cen-
incident onu. tered atu with radiusr,, by k equal-sized cones centered
We first show that Algorithm 2 builds the structuw& (M G) atu. We generally assume that the cone is half open and
correctly. For any linkiw € GG(MG), clearly, we cannot re- half-close. LetC;(u), 1 < i < k, be thek cones parti-

move them in Algorithm 2. For a linkv ¢ GG(MG), assume tioned. LetC;(u), 1 < i < k, be the set of nodasinside



nodev can communicate with each other through this link. In
this paper, all proofs about connectivity or stretch factors take
the notatioruv andvu as same, which is meaningful. Only in
the topology construction algorithm or proofs about bounded-
degreeyuw is different thanvu: the former is initiated and built
by u, whereas the latter is by node Sometimes we denote a
, directional link fromw to u asvt if necessary. Then we can or-
i der all bidirectional links (at most(n — 1) such links) in an in-

(@) (b) creasing order of their identities. .Here the identities of twc_: links

are ordered based on the following ruled (uv) > ID(pq) if

Fig. 2. Extend Yao structure on heterogeneous networks: (a) Simple exten Qz |luv|| > |Ipgl|l or (2) ||uv|| = ||pq|| andID,, > ID, or (3)
of Yao structure does not guarantee the connectivity. (b) Further space parti?rJ _ o dID D P
in each cone to bound in-degree. uv|| = |Ipqll, u=pan v > 1Dg. _
Correspondingly, the rank of each linkv, denoted by
rank(uv), is its order in sorted bidirectional links. Notice that,
the ith coneC; (u) with alarger or equat radius than.. we actually only have to consider the links in MG. We then

In other words, show that the constructed network topology is a length and
power spanner.
Ci(u) ={v|v e Ci(u), andry > ru}. Theorem 4:The length stretch factor Y G, (MG), k >
6, is at most = ﬁm(%)

Initially, C;(u) is empty.

2) Each node: broadcasts &lELLO message with D,,, r,,
and its position(x,,, y,,) to all nodes in its transmission
range.

3) At the same time, each nodeprocesses the incoming
broadcast messages. Once it getiEaL O message from
some node, it setsC;(u) = C;(u) J{v}, if nodew is
inside theith coneC;(u) of nodeu andr, > r,.

4) Nodew chooses a node from each cone”;(u) so that
the link uv has the smallestD(uv) among all linksuw;
with v; in C;(u), if there is any.

5) Finally, each nodeu informs all 1-hop neighbors of

Proof: Notice it is sufficient to show that for any nodes

uw andv with |Juv|| < min(ry,r,), i.e. uv € MG, there is a
path connecting: andv in EY G (MG) with length at most
£||uv]|. We construct a pathh «~ v connectingu andv in
EYG,(MQ@G) as follows.

Assumethat, < r,. Iflink uwv € EY G (MG), then setthe
pathu «~ v as the linkuv. Otherwise, consider thésk (u, r,,)
of nodeu. Clearly, node: will get information ofv from v and
nodev will be selected to somé’;(u) sincer, > r,. Thus,
from uv ¢ EY Gy (MG), there must exist another nodein
the same cone as which is a neighbor of. in EY G,(MG).
its chosen links through a broadcast message. L-Qfen sety e v as the cpncatenatlon of the linkv and the
mk(MG) be the union of all chosen links. pathw «w v, Her.e the eX|ste|jce of path «~ v can be ea}S|Iy

proved by induction on the distance of two nodes. Notice that

Since the symmetric communications are required, g}, angled of each cone section i%}. Whenk > 6. then

EYGy(MG) be the undirected graph by ignoring the direcy _ = Itis easy to show thatwv|| < uv|. Consequently,

tion of each link iINEYGy(MG). Graph EYGy(MG) is the pathu «~ v is a simple path, i.e., each node appears at most
the final network topology. Since node chooses a node gnce.

v € disk(u,r,) With r, > 7y, link uv is indeed a bidirec- e then prove by induction that the path~ v has total
tional link, i.e.,u andv are within the transmission range ofiength at most||uv||.

each other. Additionally, this strategy could avoid the possible Qpviously, if there is only one edge ine~s v, d(u « v) =
disconnection by simple Yao extension we mentioned beforey,,|| < ¢||uv||. Assume that the claim is true for any path with

Obviously, each node only broadcasts twice: one for broadedges. Then consider a path» v with [ + 1 edges, which
casting its ID, radius and position; and the other for broagk the concatenation of edgev and the pathw «~ v with [
Casting the selected neighbors. Remember that it Select%aéeS, as shown in Figure 3whq"ev|| — Hva
most k£ neighbors. Thus, each node sends messages at most
O((k + 1) - logn) bits. Here, we assume that the node ID and
its position can be represented usiMfog n) bits for a network
with » wireless nodes.

Before we study the properties of this structure, we have to
define some terms first. Assume that each ngd# MG has a
unique identification numberD,, = . The identity of a bidi-
rectional linkuv is defined ad D(uv) = (||uv]|, ID,, ID,)
wherel/D,, > ID,. Note that we use the bidirectional links in-rig. 3. The length stretch factor &Y G, (MG) is at mOStl_gsﬁn(z)-
stead of the directional links in the final topology to guarantee k

connectivity. In other words, we require that both nadand 2|, the procedure of induction, i, < - then we induct on pathy «s v,
otherwise we induct on path «~> w. In fact, herew «~ v is same as
IThis is the main difference between this algorithm and the simple extension~~» w since the path is bidirectional for communication. Directional link is
of Yao structure discussed before, in which it considers all nedéstw can  only considered in building process and is meaningless when we talk about the
get signal from. path. This induction rule is applied throughout the remainder of the paper.




Notice, from inductiond(w «~ v) < f|lwv||. Then, let  Thus, selecting the closest incoming neighbor in each cone

v = Zwuv anda = Zuvw, we have C; is too aggressive to guarantee the connectivity. Observe that,
in Figure 1 (b), to guarantee the connectivity, when we delete
Juw|| _ sin(Zuaw)  sin(g +3) a directed linkiv; 0, we need to keepomelink, sayw;wv, such
fluzl|  sin(Zzwu) sin(f+ 5+ ) thatw;w; is a link in MG. Thus, we want to further partition the
1 _ cos(T — £) _ 1 cone into a Iimi_ted numbe_r of smallezgionsand we will keep
cosp —sinptan§ ~ cos(Z + 3p) T 1 —2sin(]) only one node in each region, e.g., the closest node. Clearly, to

guarantee that other nodes in the same region are still connected
The first inequality is because< o < T — £ and the second 0 v, We have to make sure that any two nodesw; € I(v)
inequality is because < ¢ < 2%. Consequentlyd(u «~~ that co-existin a same small region are directly connected in
v) = |luw|| + d(w «~ v) < Elluz| + £|jwv|| = £||uv], where MG. Consequently, if the number of regions is bounded by a
— L___ Thatis to say, the claim is also true for the patgonstant, a degree-bounded structure could be generated. In the
u le\m(h?l) +1 edges remainder of this subsection, we will introduce a novel space
Thus, the length stretch factor &Y G, (MG) is at most partition strategy_s_atlsfymg the above requirement.
J a ) Method 1: Partition-EYG

¢ = —21 . This finishes the proof.
1=2sin(%)" P For each node, lety, = max,cs(,) =. Remember that all
Theorem 5:The power stretch factor of the extended Yaﬂodes inI(v) have transmission raditis at most Let  be

H _ 1
graphEY G (MG), k > 6, is at moskp = 1—(2sin £)F" the positive integer satisfying®~2 < ~, < 2"~1. We then

_Proof: The proof is similar to that in UDG [3], [4] except giscuss in detail our partition strategy of the cones, which is
the induction procedure. We show by induction, on the numbg(istrated by Figure 2 (b). Each nodedivides each cone
of its edges, that the path«~ v constructed in theorem 4 hasgentered at into limited number of triangles and caps, where

power cost, denoted by(u «~ v), at mostpuv|”. B |jua;|| = [jvb;]| = 5i+r, ande; is the mid-point of the segment
a;b;, for 1 < ¢ < h. Notice that this partition can be conducted
B. Novel Space Partition by nodev locally since it can collect the transmission radius in-

formation of nodes i (v). The trianglesA\vaiby, Aa;b;cit1,

Partitioning the space surrounding a node ihtequal-sized ; 051 1C541, Dbibisicir, for 1 < i < h— 1, and the cap

cones enables us to bound the node out-degree using the - he final . ¢ h For simoli
structure. Using the same space partition, Yao-Yao structiffe’ orrr|1|t € hlna _spacle parrtlltlon ot eac cone.h or simplic-
[3], [4] produces a topology with bounded in-degree when tf§: W€ call such a triangle or the cap asegion We then prove

networks are modeled by UDG. Yao-Yao structure (for UDG) Ehat this partition indeed guarantees that any two nodes in any

generated as follows: a nodecollects all its incoming neigh- same region are connected in MG.
borsw (i.e., v € Y_dk(V)), and then selects the closest neigh-
borwv in each con&;(u). Clearly, Yao-Yao has bounded degree
at mostk. They also showed that another structure YaoSink [3],
[4] has not only the bounded node degree but also a constant
bounded stretch factor. The network topology with a bounded
degree can increase the communication efficiency. However,
these methods [3], [4] may fail when the networks are modeled
by MG: they cannot even guarantee the connectivity, which is
verified by following discussions.

Assume that we already construct a connected directed struc-

—_— —_—

ture EY G (MG). LetI(v) = {w | wo € EYGx(MG)}. In
other words/(v) is the set of nodes that have directed links to
vin BEYGr(MG). LetI;(v) = I(v) N C;(u), i.e., the nodes
in I(v) located inside théth coneC;(v). Yao-Yao structures
will pick the closest nodev in I;(v) and add undirected link
wv to Yao-Yao structure. Previous example in Figure 1 (b)
also illustrates the situation that Yao-Yao structure is not con- (©) (d)
nected. In the example’ a nodehaSp + 1 incoming I’IEIgh- Fig. 4. (a) Two nodes are in triangl&vab;. (b) Two nodes are in triangle
borsw;, 0 < i < p. Assume that each node; has a trans- Aa;b;c;; 1. (c) Two nodes are in trianglé.a;a;1¢;+1. (d) Two nodes are
mission radius-,,, = r,/3?~" and||vw;| = r.,. Obviously, inside capy,bs.
lwiw;]| > min(ry,, 70,), i.€., any two nodes;, w; are not di-
rectly connected in MG. Itis easy to show that the Yao structureLemma 6: Assume that > 6. Any two nodesu, w € I(v)
mk(MG) only has directed link$o;0. Obviously, nodey  that co-exist in any one of the generated regions are directly
will only select the closest neighbar, to the Yao-Yao struc- connected in MG, i.eluw| < min(ry,7y).
ture, which disconnects the network. This same example can Proof: There are four different cases.
also show that the structure based on Yao-Sink [3], [4] is alsol) Two nodes are if\va, by, as shown in Figure 4 (a).
not connected for heterogeneous wireless ad hoc networks. Remember that all nodes i(v) have transmission ra-




2)

3)

4)

dius at leastjva; || = 5p=y7. We havemin(ry, ) >
lvai|| = |lvb1]| and |la1b1]] < |lvai||. In addition,
sinceuw is a segment insid&wva; by, we have||uw| <
max(|la1b1|, [lvaill, |vb1]]). Consequently,|uw]| <
min(ry, ry), i.€. uw € MG.

Two nodes are i\a;b;c;+1, as shown in Figure 4 (b).
In this case, we have

a) |lvu|| > |luci+1||, sincea;b; is the perpendicular

bisector ofvc; ;1 andw is at the same side of line

a;b; asc;41.

b) [Jvul > [Jua,|, because/va;u > 5 > Zuva;.

C) |lvull > |lubs|, because/vb;u > T > Zuvb;.

d) Juw| < max(fucii, Juaill, ]lubi])), because
nodew must be inside one of the trianglés:;b;u,
Aaici_,_lu andAbicH_lu.

Thus,||uw]|| < ||uwv||. Similarly, |uw]|| < |Jwv]]. Conse-
quently,uw € MG from

luw|| < min(|luv]|, |wv]]) < min(ry, ry).

Two nodes are inAa;a;yic,11, as shown in Fig-

ure 4 (c). We havemin(ry,ry,) > |jva| =
laiaiva| = llaiciqall > [laisicisal|.  Since
uw IS a segment insideAa;a;i1ci+1, |uw| <

max(||la;ait1 |, aicit |, [laivicival) < min(ry, re),
i.e. uw € MG. Triangle Ab;b;+1c;+1 IS the symmet-
ric case with triangleAa;a;+1¢;+1, SO the claim holds
similarly.

Two nodes are inside the caﬁb\h, as show/n\in Figure 4
(d), wherea, z andby, z is the tangent of arg;, b, at point
ay, andby, respectively.

SinceZapvby, < 2%, k > 6, we have

Zvbpz = g < m — ZLapvby, = ZLvbpcp4.

Similarly, Zvapz < Zvapcpy1. This meansafl?h is in-
sideAaybycpy1. The remaining of the proof directly fol-
lows from the proof for the case @fa;b;c; 1.

|

C. Extended Yao-Yao Graph

Using the space partition discussed in Section VI-B, we

the partition. Figure 5 (b) illustrates such a selection of
incoming links.

4) Finally, for each linkuv selected by, nodewv informs

nodeu of keeping linkuw.

The union of all chosen links is the final network topology,
denoted bymk(MG). We call itextended Yao-Yagraph.
Let EY'Y, (M @G) be the undirected graph by ignoring the direc-
tion of each link iNEY'Y (M G).

Theorem 7:The out-degree of each nodén mk(MG),

k > 6, is bounded byk and the in-degree is bounded by
(3 ﬂOgZ VU-‘ + Q)k' Where’YU = maxwe[(v)(:l )

Proof: It is obvious that the out-degree of a nodes
bounded byt because the out-degree bouncﬂi—fdk(MG) is
k and this algorithm does not add any directed link.

For the in-degree bound, as shown in Figure 2 (b), obviously,
the number of triangle regions in each con8/is— 2. Remem-
ber that2" 2 < ~, < 2"~1 which impliesh = 1 + [log, 7, ].
Thus, considering the cap region also, the in-degree of mode
is at most(3[log, v, | + 2)k-. [ |

Lety = max, v,. Obviously, the maximum node degree in
graphEY'Y,(M@G) is bounded by3[log, 7] + 3)k.

Notice that the extended Yao-Yao graplY' Y, (MG) is a
subgraph of the extended Yao graply G (M G), thus, there
are at mostk - n edges inEYY,(MG). Thus, the total com-
munications of Algorithm 4 is at mos?P(% - n), where each
message had(log n) bits. It is interesting to see that the com-
munication complexity does not depend-pat all.

(@) (b)

Fig. 5. (a) INEY Gk (M@G), star formed by links toward to. (b) Nodev
chooses the shortest link iBY G, (M G) toward itself from each region to
produceEYY (M G). (c) The sink structure atin EY'Y; (MG).

Theorem 8:The graphEYY (M G), k > 6, is connected if
MG is connected .
Proof: Notice that it is sufficient to show that there is a

present our method to locally build a sparse network topologith fromu to v for any two nodes withw € M G. Remember
with bounded degree for heterogeneous wireless ad hoc nge graphEY G (MG) is connected, therefore, we only have
work. Here we assume that= max,cy 7, is bounded, where to show thatvuv € EY G (MG), there is a path connecting
Yo = MaXyer(v) 12, andI(v) = {w | wo € EYGr(MG)}.
Algorithm 4: Constructing-EYY
1) Each node finds the incident edges in the Extended Yaolf the link wv has the smallest rank among all links of

2)

3)

graphEY G (M G), as described in Algorithm 3.
Each nodev partitions thek cones centered at using

uwandv in EYY ;(MG). We prove this claim by induction on
the ranks of all links IREY G (MG).

EYGr(MG), thenuwv will obviously survive after the second
step. So the claim is true for the smallest rank.

the partitioning method described in Method 1. Notice Assume that the claim is true for all links Y G (M G)
that for partitioning, node uses parameter, in Method With rank at most:. Then consider a linkv in_EY_Gk(V) vyith
1, which can be easily calculated from local informatiorf;@k(uv) = r+1in EY G, (MG). If uv survives in Algorithm
Figure 5 (a) illustrates such a partition. 4, then the claim holds. OtherW|se,;>assume that r,. Then
Each node chooses a nodefrom each generated regiondirected edgeru cannot belong ta?Y Gy (M G) from Algo-
so that the linkut has the smallesi D(uv) among all rithm 3. Thus, directed edgev is in EY G (MG). In Algo-
directed links toward ta computed in the first step in rithm 4, directed edgewv can only be removed by nodedue to



the existence of another directed link with a smaller identity all links computed in the first step in the regifn (v). In
e ——

andw is in the same region as In addition, the angle’wvu other words, in this step, it construd’ Y, (MG).
is less thard = 37 (k > 6). Therefore we havgwu|| < |luvll.  4) For each regior2,(v) and the selected node, let
Notice that herevu is guaranteed to be a link in MG, but it is So(u) = {w | w # u, w e Q) NI} ie., the
not guaranteed to be 1Y’ G’ (M ). We then prove by induc- set of incoming neighbors af (other tharu) in the same
tion that there is a path connectingandu in EY'Y'x(MG). region asu. For each node:, nodewv uses the follow-
Assumer,, < r,. The scenario,, > r, can be proved simi- ing function Tree(u,Sq (u)) (described in Algorithm 6)
larly. There are two cases here. _ to build a treel"(u) rooted atu. We callT(u) asink tree
Case 1: the linkou is in EY G,(MG). Notice that rank of and call the union of all links chosen by nodéhe sink
wu s less than the rank afv. Then by induction, there is a path structureatv. Figure 5(c) illustrates a sink structureiat
w «~ u connectingw andu in EYY,(MG). Consequently, which is composed of all treé&(«) for « selected in the
there is a path (concatenation of the undirected path~ previous step.
and the linkwv) betweeru andv. 5) Finally, nodev informs nodes: andy for each selected
Case 2: the linkvu is notinEY G (M G). Then, from proof link zy in the sink structure rooted at

of Theorem 4, we know that there is a pallyyc, (w,u) = The union of all chosen links is the final network topology,

q142+~ gm froM w 10 u in EY Gy, (MG), whereqy = w and - genoted byEY G (MG). We call such structure as thex-

¢m = u. Additionally, we can show that each linkgi+1, tended Yao-Singraph. Notice that, sink node not u, con-

1 <@ < m, has a smaller rank thamu, which is at most gy,cts the tre@(u) and then informs the end-nodes of the se-
r. Hererank(q1g: = wgs) < rank(w, u) because the selec-|ecteq Jinks to keep such links if already exist or add such links
tion method in Algorithm 3. Andank(g;q;+1) < rank(w,u), otherwise.

1 <i <m, because Algorithm 6: Constructing-Tree Tree(u,Sq (u))
1) If Sq(u) is empty, then return.

iqi < |lgiu|| < ||gi—1u|] < -+ < ||qru|| = [[wu]|. / Y s

lgigiall < llgiull < llgizu lrell = Jlou] 2) Otherwise, partition the disk centeredwaby k equal-
Then, by induction, for each lingg;,1, there is a patly; «~ sized conesC; (u), Cy(u), -- -, Cp(u). .

gi+1 survived inEY'Y (M G) after Algorithm 4. The concate- 3) Find the nodev; € So(u) N Ci(u), 1 < i < k, with the
nation of all such pathg; «~ g;41, 1 <4 < m, and the link smallest/ D(w;u), if there is any. Linkw;u is added to
wo forms a path fromu to v in EY'Y ,(MG). [ T'(u, Sa(u)) and nodew; is removed fromsSg (u).

Although EYY ,(MG) is a connected structure, it is un- 4) Foreach nodey;, call Tree(w;, Sq(u) N C;(u)) and add
known whether it is a power or length spanner. We leave it  the created edges ®(v, Sq (u)).

as a future work. Notice that the above Algorithm 6 is only performed by
a nodev. We then prove that the constructed structure
R . '

D. Extended Yao-Sink Graph EY G, (MG) indeed has bounded degree (thus sparse), and is

. . . power efficient.
In [3], [4], the authors applied the technique in [16] to con- Theorem 9:The maximum node degree of the graph

struct a sparse network topology in UD®o and sink graph  ——=* . 9
which has a bounded degree and a bounded stretch factor. ‘ﬁ”u}gG’f(MG) |_s_at most™ + 3k + 3k - [log, 71,
Proof: Initially, each node has at mostout-degrees after

o v o anecod e o e EBnstrcing rapY . (1), h lgrh, each noce
Tree T(v) is constructed recursively. To apply this techniqu initiates only one.smk structure, V\_/hlch will introduce at. most
on MG, we need extend it by a more sophisticated way. In t %DOg? il +.2) K |n.-degrees. Addltlonallly, each nodewil
remainder of this section, we discuss how to locally construcpg mvo_lved n Algorlthm 6 for at most sink trees_; (once f_or
bounded degree structure with bounded power stretch factor ft h directed Iml_@y < Equ(N[G))' qu ea(_:h .Smk tree .|n-
heterogeneous wireless ad hoc networks. Our method Works\ll,% ement, Algorithm 6 assigns at mastinks incident on.

follows us, at mosk? new degrees could be introduced here. Then
Algorithm 5: Constructing-EYG theSJi[:sgrgg Iglg)lmsu.mber of edges is at mgst + 3k + Sk.
1) Each node finds the incident edges in the Extended Y: g

= ) ) i 0g,7|) - n, the total communication cost of our method is
graphEY G (M@G), as described in Algorithm 3. EaChO(log2 ~ - n). Here each message haglog n) bits.

nodev will have a set of incoming nodelv) = {u |  Theorem 10:The length stretch factor Y G (MG), k >
— .
uv € EY Gp(MG)}. 6, is at most —5;i=y)”
2) Each nodev partitions thek cones centered at using Proof  We hakve roved thaEY G, (MG) has length
the partitioning method described in Method 1. Noticgtretch fac'tor at mo p1 : We thuskhave only to p?ove
—2sin(%) "

that for partitioning, node uses parametey, in Method i .
nt'hat, for each linkkw € EY G (MG), there is a path connect-

1, which can be easily calculated from local informatio A h . 1
Figure 5(a) illustrates such a partition. ing them InEYY Gy, (M G) with length at most—g =y [vw|].

3) Each nodev chooses a node from each regiom. Let |If Iink vw Is kept inEYGZ(MG),_then thi_s is obvious. Oth-
Q. (v) be the regiom) partitioned by node with nodew,  €rwise, assume,, < r,, then directed linkwv belongs to
inside, so that the linkv has the smallestD(uv) among EY Gy (MG). Then, there must exist a nodein the same



region (partitioned by node) as nodew. Using the same ar- The most upper curve in Figure 6 (b) represents the maximum
ument as Theorem 4, we can prove that there is a path c8h- log, . This figure also shows thdtY G (M G) generally
g p p 2
nectingv andw in T'(u) with length at mostl_QslmvaH. It will have a larger maximum node degree thal G} (MG)
implies that the length stretch factor B G (M @) is at most andEYYy(MG). Itis interesting to see that the maximum de-
(). m gree of EYG;(MG@G) and EYY,,(MG) almost have the same
Sir;ilzr;l(yz)we have: curve when network density changes. Given the size of the net-
Theorém 11:The power stretch factor of the graphWork n = 30¢, we take the average of the maximums of all
EYG:(MG) k > 6, is at mos( 1 )2 100 random networks witln nodes we generated as the final
k ! ’ 1—(2sin Z)f/ :
k maximum value forn plotted here.

VII. SIMULATIONS . )
] ) B. Spanning ratio
In this section we measure the performance of the pro-

posed heterogeneous network topologies by conducting exten?Ve proved thatGG(MG) and EGG(MG) have power
sive simulations. In our simulations, we randomly generateSRanning ratio exactly onel?Y' G (M G) and EY G} (MG)
setV of n wireless nodes with random transmission range f@Cth have bounded length and power spanning ratios. No-
each node. We then construct the mutual inclusion comriif® thatRNG (M G) andERNG(MG) could have power and
nication graph\/G(V'), and test the connectivity aF/G(V). length spanning ratios as Iargerasl for a network ofn nodes;

If it is connected, we construct different localized topolo@nd the length spanning ratios 61G(MG) and EGG(MG)
gies: GG(MG), EGG(MG), RNG(MG), ERNG(MG), c_ould beyn —_1 even when all nodes have the same transmis-
EYGL(MG), EYY;(MG) andEY G;(MG). Then we mea- SIOn range. Itis unknoyvn wh_ethEYYk(MG) has a bounded
sure the sparseness (the average node degree), the power'%'ﬂilth or power spanning ratio even for.vwrelless ngtworks mod-
ciency and the communication cost of building these t0p0|3jled by UDG. We then conduct extensive simulations to study
gies. In the simulation results presented here, the wireld¥dV good these structures are for heterogeneous networks when
nodes are distributed in 400m x 400m square field. Each the nodes’ transmission ranges are randomly set.

wireless node has a transmission radius randomly selected frorfrigure 6 (C) illustrates the length spanning ratio of these
[60m, 260m). The number of wireless nodes36i, wherei is ~ Structures. As the theoretical results suggest, we found that
varied from1 to 10. For eachl < i < 10, we randomly gener- ZNG(MG) has a much larger length spanning ratio compared
ate100 sets of30; nodes. All structures proposed in this papetith other structures. Itis surprising to see that NG (M G)

are generated for each set of nodes. The number of cones i has a much smaller spanning ratio taNG (M G). We

to 7 for EYG(MG), EYY,(MG) andEY G5 (MG). know that ERNG(MG) has a smaller spanning ratio than
RNG(MG) sinceERNG(MG) 2 RNG(MG). Also no-

tice that EY G (MG), as the theoretical results suggest, has
A. Node Degree the smallest spanning ratio among all structures proposed here.
First of all, we want to test the sparseness of each networkFor wireless ad hoc networks, we want to keep as less links
topology proposed in this paper. Notice that, we have theoredis possible while still keep relatively power efficient paths for
cally proved thaRNG(MG) andERNG(MG) have at most every pair of nodes. Figure 6 (d) illustrates the power span-
6n links; EY G (MG) has at mosk - n links, wherek > 7 ning ratio of these structures. Here we assume that the power
is the number of cones dividedY Y}, (M G) also has at most needed to support a linkv is |luv||?. As we expected, struc-
k- nlinks sinceEYY,(MG) C EYG(MG); EYG;(MG) turesGG(MG) andEGG(MG) keep the most power efficient
also has at most- n links since the sink structure for each nod@ath for every pair of nodes, i.e., their power spanning ratios are
u has exactly the number of links as the links towarth the exactly one. We found that all structures have power spanning
directed structurgY G, (M G). We do not know how many ratio almost one, and aga®NG(MG) andERNG(MG) do
links GG(MG) andEGG(MG) could have. have the largest power spanning ratios in our simulations.
Although almost all proposed structures are sparse theoret-
ically, all of them could have unbounded node degree. The o )
node degree of the wireless networks should not be too lar§e. Communication Cost of Construction
Otherwise a node with a large degree has to communicate witht is not difficult to see thatGG(MG), RNG(MG), and
many nodes directly. This potentially increases the signal intelyY G, (M G) can be constructed using onlymessages by as-
ference and the overhead at this node. Figure 6 (a) illustragesning that each node can tell its neighbors its maximum trans-
the average node degree of different topologies. Notice thaission range, and its geometry position information in one sin-
graphRNG(MG) always has the smallest average node dgle message. Each nodecan uniquely determine all the links
gree in our simulations and structuf&” G} (M G) always has wuwv in these three structures after knowing all its one hop neigh-
the largest average node degree. We also found that the avetags in M G. StructureslY G, (MG), andEY G;.(MG) can
node degree becomes almost stable when the number of ndslegonstructed using only - n + n messages since the final
increases, i.e., the network becomes denser. structures have at mokt: links. Similarly, FERNG(MG) can
Figure 6 (b), as proved in Theorem 9, confirms that thge constructed using at mogt messages. We do not know
maximum node degree of Yao-based structtitéG; (M G) is any theoretical bound about the number of messages needed
bounded by3k - log, v + k2 + 3k, wherey = max,penmra TL.  to constructEGG(MG) since each node has to inform its
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Fig. 6.
topologies. (d) Average power spanning ratio of different topologies.

neighbors the links selected hyfor FEGG(MG). We mea-

(a) Average node degree of different topologies. (b) Maximum node degree of Yao-based structures. (c) Average length spanning ratio of differer

It remains an open problem whether grapl'Y . (M G) is

sured the actual average number of messages needed to adength or power spanner. It is also unknown how many links
struct these structures. We only measure the average number6f( M ) could have in the worst case although we show that it

messages per wireless node B6G(MG), ERNG(MG),

is definitely less tha®(n%/° log, ). Some other future works

EYGL(MG), and EY G5 (MG) (since every node only hasare what are the conditions that we can build a structure with

to spend one message for other three struct@té§MG),

some other properties for MG, such as planar or low weight.

RNG(MG, andEY G (MG@G)). Figure 7 illustrates the com- Notice that it is easy to show we cannot build a planar topology
munication cost. We found that structub®” G (M G) is the for an arbitrary heterogeneous wireless ad hoc network.
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Fig. 7. Average communication cost of building different topologies.

most expensive one to construct although it has the most favdf!
able properties theoretically (bounded length, power spanning
ratio and bounded node degree). ConstructingG; (MG)is  [7]
almost as expensive as constructif G (M G).
(8]
VIIl. CONCLUSION (9]
In this paper, we studied topology control in heterogeneous
wireless ad hoc networks, where each mobile host has dif2l
ferent maximum transmission power and two nodes are cqftj
nected iff they are within the maximum transmission range
of each other. We presented several strategies for all wirel
nodes self-maintaining sparse and power efficient topologies in
heterogeneous network environment with low communication
cost. All structuresGG(MG), RNG(MG), EYGi(MG),
EYY(MG@G), andEY G}, (MG) are connected if MG is con- [14]
nected, whileEY G (MG) and EY G, (MG) have constant
bounded power and length stretch factors. Additionally, wes)
showed thatEYY ,(MG) and EY G} (MG) have bounded
node degree®)(log, 7), wherey = max,cv max,e () (). 1O
In the worst cast any connected graph will have degree at legsf
O(log, ) for heterogeneous wireless ad hoc networks. In other
words, the structures constructed by our method are almost
timum. Our algorithms are all localized and have communica-
tion cost at mosO(n), where each message f@afog n) bits.  [19]

ﬁ A. C.-C. Yao,
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