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Localized Topology Control for Heterogeneous
Wireless Ad-hoc Networks

Xiang-Yang Li? Wen-Zhan Song? Yu Wang†

Abstract—We study topology control in heterogeneous wireless
ad hoc networks, where mobile hosts may have different maximum
transmission powers and two nodes are connected iff they are
within the maximum transmission range of each other. We present
several strategies that all wireless nodes self-maintain sparse and
power efficient topologies in heterogeneous network environment
with low communication cost. The first structure is sparse and can
be used for broadcasting. While the second structure keeps the
minimum power consumption path, and the third structure is a
length and power spanner with a bounded degree. Both the sec-
ond and third structures are power efficient and can be used for
unicast. Here a structure is power efficient if the total power con-
sumption of the least cost path connecting any two nodes in it is
no more than a small constant factor of that in the original hetero-
geneous communication graph. All our methods use at mostO(n)
total messages, where each message hasO(log n) bits.

Index Terms—Graph theory, wireless ad hoc networks, topology
control, heterogeneous networks, power consumption.

I. I NTRODUCTION

An important requirement of wirelessad hocnetworks is that
they should be self-organizing, i.e., transmission ranges and
data paths are dynamically restructured with changing topol-
ogy. Localizedad hocnetwork topology control scheme is to
let each wireless node locally adjust its transmission power and
select which neighbors to communicate according to certain
strategy, while maintaining a structure that can support energy
efficient routing and improve the overall network performance.
Hence it can efficiently conserve the transmission energy from
soft aspects with low cost. In the past several years, topol-
ogy control algorithms have drawn significant research interest.
Centralized algorithms can achieve optimality or its approxi-
mation, which are more applicable to static networks due to the
lack of adaptability to topology changes. In contrast, distributed
algorithms are more suitable for mobile ad hoc networks since
the environment is inherently dynamic and they are adaptive to
topology changes at the cost of possible less optimality. Fur-
thermore, these algorithms only attempt to selectively choose
some neighbors of each node. The primary distributed topology
control algorithms for ad hoc networks aim to maintain network
connectivity, optimize network throughput with power-efficient
routing, conserve energy and increase the fault tolerance.

Most prior art [1], [2], [3], [4], [5], [6] on network topology
control assumed that wireless ad hoc networks are modelled
by unit disk graphs(UDG), i.e., two mobile hosts can com-
municate as long as their Euclidean distance is no more than a
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threshold. However, practically, wireless ad hoc networks can-
not be perfectly modelled as UDGs: the maximum transmission
ranges of wireless devices may vary due to various reasons such
as the device differences and the small mechanic/electronic er-
rors during the process of transmitting even the transmission
powers of all devices are set the same initially. In [7], [8], the
authors extended UDG into a new model, calledquasi unit disk
graphs, which is closer to reality than UDG. In this paper, we
study a more generalized model. Each wireless nodeu may
have its own transmission radiusru. Then heterogeneous wire-
less networks are modelled by mutual inclusion graphs (MG):
two nodes can communicate directly only if they are within
the transmission range of each other, i.e., it has a linkuv iff
‖uv‖ ≤ min(ru, rv). Clearly UDG is a special case of MG.
Few research efforts addressed the topology control for hetero-
geneous wireless networks.

The main contribution of this paper is as follows. We propose
severallocalizedstrategies for heterogeneous wireless devices
to self-form aglobally sparse power efficient network topol-
ogy: a power spanner, a sparse structure and a degree-bounded
length and power spanner respectively. Here an algorithm is
said to construct a topologyH locally if, every nodeu can
decide which edgesuv belong toH using only the informa-
tion of nodes within a constant number of hops ofu. All our
algorithms have communication costsO(n), where each mes-
sage hasO(log n) bits. Notice, to study the topology control
in heterogeneous networks, it would be helpful to extend the
ideas from the well-studied topologies, such as GG, RNG and
Yao, used in homogeneous networks. The topology control for
heterogeneous networks is not trivial, since many properties in
homogeneous networks disappear in heterogeneous networks.

The rest of the paper is organized as follows. In Section
II we introduce the background and review previous methods.
Limitations on heterogeneous network topology control are dis-
cussed in Section III. We describe a strategy for all nodes form-
ing a sparse structure in Section IV, a sparse power spanner in
Section V, and a degree-bounded power and length spanner in
Section VI. We also analyze the communication complexities
of these methods. Our theoretical results are corroborated in the
simulations in Section VII. We conclude our paper in Section
VIII with the discussion of future works.

II. PRELIMINARIES

A. Heterogeneous Wireless Network Model

A heterogeneous wirelessad hocnetwork is composed of
a setV of n nodesv1, v2, · · · , vn, in which each nodevi has
its own maximum transmission powerp′i. Let εi be the me-
chanic/electronic error of a nodevi in its power control. Then
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the maximum transmission power considered in this paper is
actuallypi = p′i − ε. We adopt a common assumption in the
literature that the power needed to support the communication
between two nodesvi and vj is ‖vivj‖β , whereβ ∈ [2, 5]
is a real number depending on the environment and‖vivj‖ is
the Euclidean distance betweenvi andvj . Consequently, the
signal sent by a nodevi can be received by all nodesvj with
‖vivj‖ ≤ ri, whererβ

i ≤ pi/p0, p0 is the uniform thresh-
old that a signal with powerp0 can be recognized by a node.
Thus, for simplicity, we assume that each mobile hostvi has its
own transmission rangeri. The heterogeneous wireless ad hoc
network is then modelled by a mutual inclusion graph (MG),
where two nodesvi, vj are connected iff they are within the
transmission range of each other, i.e.,‖vivj‖ ≤ min(ri, rj).
Previously, no method is known for topology control when the
networks are modelled as mutual inclusion graphs.

B. Current State of Knowledge

Many structures were proposed for topology control in ho-
mogeneous wireless ad hoc networks. Due to limited spaces,
we will briefly review some of proximity geometric structures.
The relative neighborhood graph[9] RNG(V ) consists of all
edgesuv such that the intersection of two circles centered at
u and v and with radius‖uv‖ do not contain any vertexw
from V . The Gabriel graph [10] GG(V ) contains edgeuv
if and only if disk(u, v) contains no other points ofS, where
disk(u, v) is the disk with edgeuv as a diameter. BothGG(V )
andRNG(V ) are connected, planar, and contain the Euclidean
minimum spanning tree ofV . The intersections ofGG(V ),
RNG(V ) with a connectedUDG(V ) are connected. Delaunay
triangulation, denoted byDel(V ), is also used as underlying
structure by several routing protocols. Here a triangle4uvw
belongs toDel(V ) if its circumcircle does not contain any node
inside. It is well known thatRNG(V ) ⊆ GG(V ) ⊆ Del(V ).
The intersection ofDel(V ) with a connectedUDG(V ) has a
bounded length spanning ratio [11].

The Yao graph[12] with an integer parameterk ≥ 6, de-
noted by

−−→
Y Gk(V ), is defined as follows. At each nodeu, any

k equal-separated rays originated atu definek cones. In each
cone, choose the shortest edgeuv among all edges fromu, if
there is any, and add a directed link−→uv. Ties are broken arbi-
trarily or by ID. The resulting directed graph is called theYao
graph. Let Y Gk(V ) be the undirected graph by ignoring the

direction of each link in
−−→
Y Gk(V ). Some researchers used a

similar construction namedθ-graph [13], the difference is that
it chooses the edge which has the shortest projection on the axis
of each cone instead of the shortest edge in each cone.

The first effort for topology control in heterogeneous wire-
less networks was reported in [14] by the same authors of this
paper. In [14], we showed how to perform topology control
based on Yao structure for heterogeneous wireless networks.
The results presented in current paper have been available on-
line since around June 2003. Recently, several structures that
extend the relative neighborhood graph and local minimum
spanning tree were proposed in [15] for topology control in
heterogeneous wireless networks. They build directed network
topologies while the methods presented here build undirected

topologies that are beneficial for routing. In addition, as the au-
thors of [15] acknowledged, their original methods cannot pre-
serve the network connectivity. Then new methods were pro-
posed to remedy this in their online version of the paper. Two
structures were proposed by them: an extended relative neigh-
borhood graph and the extended local minimum spanning tree.
It is unknown if their structures are sparse, power efficient.

C. Spanners and Stretch Factors

When constructing a subgraph of the original communica-
tion graph MG, we may need consume more power to connect
some nodes since we may disconnect the most power efficient
path in MG. Thus, naturally, we would require that the con-
structed structure approximates MG well in terms of the power
consumption for unicast routing. In graph theoretical term, the
structure should be a spanner [16], [13]. LetG = (V,E) be
a n-vertex weighted connected graph. The distance inG be-
tween two verticesu, v ∈ V is the length of the shortest path
betweenu andv and it is denoted bydG(u, v). A subgraph
H = (V, E′), whereE′ ⊆ E, is a t-spannerof G if for every
u, v ∈ V , dH(u, v) ≤ t · dG(u, v). The value oft is called the
stretch factoror spanning ratio. When the graph is a geometric
graph and the weight is the Euclidean distance between two ver-
tices, the stretch factort is called thelength stretch factor, de-
noted bỳ H(G). For wireless networks, the mobile devices are
usually powered by battery only. We thus pay more attention to
the power consumptions. When the weight of a linkuv ∈ G
is defined as the power to support the communication of link
uv, the stretch factor ofH is called thepower stretch factor,
denoted byρH(G) hereafter. The power, denoted bypG(u, v),
needed to support the communication between a linkuv in G is
often assumed to be‖uv‖β , where2 ≤ β ≤ 5. Obviously, for
any weighted graphG and a subgraphH ⊆ G,

Lemma 1: [3] GraphH has stretch factorδ if and only if for
any linkuv ∈ G, dH(u, v) ≤ δ · dG(u, v).
Thus, to generate a spannerH, we only have to make sure that
every linkof G is approximated within a constant factor.

D. Sparseness and Bounded Degree

All well-known proximity graphs (GG(V ), RNG(V ),
Del(V ) and Y G(V )) have been proved to be sparse graphs
when network is modeled as a UDG. Recall that asparsegraph
means the number of edges is linear with the number of nodes.
The sparseness of all well-known proximity graphs implies that
the average node degree is bounded by a constant. Moreover,
we prefer the maximum node degree is bounded by a constant,
because wireless nodes have limited resources and the signal
interference in wireless communications. Unbounded degree
(or in-degree) at a nodeu will often cause large overhead atu,
whereas a bounded degree increases the network throughput. In
addition, bounded degree will also give us advantages when ap-
ply several routing algorithms. Therefore, it is often imperative
to construct a sparse network topology with a bounded node
degree while it is still power-efficient. However, Liet al. [3]
showed that the maximum node degree of RNG, GG and Yao
could be as large asn−1. The instance consists ofn−1 points
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lying on the unit circle centered at a nodeu ∈ V . Then each
edgeuvi belongs to theRNG(V ), GG(V ) and

−−→
Y Gk(V ).

Recently, in homogeneous wireless ad hoc networks, some
improved or combined proximity graphs [17], [18] have been
proposed to build planar degree-bounded power spanner topol-
ogy, which meets all preferred properties for unicast. In het-
erogeneous networks, only a few research efforts [15], [14] are
reported so far. In the following, we will first discuss the dif-
ficulties and limitations for topology control in heterogeneous
networks, then present our localized strategies in detail.

III. L IMITATIONS

In heterogeneous wireless ad hoc networks, the planar topol-
ogy does not necessarily exist. Figure 1 (a) shows an example,
there are four nodesx, y, u andv in the network, where their
transmission rangerx = ry = ‖xy‖ andru = rv = ‖uv‖,
and nodeu is out of the transmission range of nodex andy,
while nodev is in the transmission range of nodey and out of
the range ofx. The transmission ranges ofx andy are illus-
trated by the dotted circles. According to the definition ofMG,
there are only three edgesxy, vy anduv in the graph. Hence
any topology control method can not make the topology pla-
nar while keeping the communication graph connected. On the
other hand, it is worth to think whether we can design a new
routing protocol on some pseudo-planar topologies. As will see
later, the pseudo-planar topology GG(MG) and RNG(MG) pro-
posed in this section has some special properties which are dif-
ferent from other general non-planar topologies. For instance,
two intersecting triangles can not share a common edge. We
leave it as a future work.

x
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w 0

1

v
(a) (b)

Fig. 1. Limitations on heterogeneous networks: (a) Planar topology does not
exist. (b) Degree of nodev can not be bounded by constant.

We also can show that the node degree in heterogeneous net-
works can not be bounded by a constant if the radius ratio is un-
bounded. Figure 1 (b) shows such an example. In the example,
a nodev hasp + 1 incoming neighborswi, 0 ≤ i ≤ p. Assume
that each nodewi has a transmission radiusrwi = rv/3p−i and
‖vwi‖ = rwi . Obviously,‖wiwj‖ > min(rwi , rwj ), i.e., any
two nodeswi, wj are not directly connected in MG.

Obviously, none of those edges incident onv can be deleted,
hence there is no topology control method to bound the degree
by a constant without violating connectivity. Consider the ex-
ample illustrated by Figure 1 (b), edgesvwi, 0 ≤ i ≤ p, are all
possible communication links. Thus, nodev in any connected
spanning graph has degreep + 1. On the other hand, we will
show in section VI, in the worst case, any connected MG graph
has degreeO(log2 γ) where γ = maxv∈V maxw∈I(v)

rv

rw
.

Here, I(v) = {w | wv ∈ MG}. In the example, recall

that 3prw0 = rv, henceγ equals to3p. Thus,v has degree
log3 γ + 1 = O(log2 γ). In the paper, we always assumeγ is
a constant. It is practical, since it is trivial that two wireless
devices in same network have unbounded radius ratio.

IV. H ETEROGENEOUSSPARSESTRUCTURE

In this section, we propose a strategy for all nodes to self-
form a sparse structure, calledRNG(MG), based on the rela-
tive neighborhood graph structure, whose total number of links
is O(n). We add a linkuv ∈ MG to RNG(MG) if there is
noanother nodew insidelune(u, v) andboth links uw andwv
are in MG. Herelune(u, v) is the intersection ofdisk(u, ‖uv‖)
anddisk(v, ‖uv‖). The algorithm will be similar to Algorithm
2, thus we omit it here. Notice that the total communication
cost of constructingRNG(MG) is O(n log n) bits, assuming
that the radius and ID information of a node can be represented
in O(log n) bits. In addition, the structureRNG(MG) is sym-
metric: if a nodeu keeps a linkuv, nodev will also keep the
link uv. Thus, a nodeu does not have to tell its neighborv
whether it keeps a linkuv or not.

It is not difficult to prove that structureRNG(MG) is con-
nected by induction. On the other hand, same as the case in
homogeneous networks (i.e., UDG mode),RNG(MG) does
not have a bounded length stretch factor, nor constant bounded
power stretch factor, and does not have bounded node degree.
In this paper, we will show thatRNG(MG) is asparsegraph:
it has at most6n links.

In the following, we define a new structure, called
ERNG(MG). Assume that each nodev knows its maximum
transmission radiusrv. Let B(u) = {v | rv ≥ ru}. A nodeu
processes a linkuv from MG if rv ≥ ru, i.e.,v ∈ B(u). Node
u removes a linkuv, wherev ∈ B(u), if there is another node
w ∈ B(u) insidelune(u, v) with both linksuw andwv are in
MG. All the links uv kept by all nodes form the final structure
ERNG(MG).

Algorithm 1: Constructing-ERNG
1) Each nodeu initiates setsEMG(u) andEERNG(u) to be

empty. HereEMG(u) is the set of links of MG known
to u so far andEERNG(u) is the set of links of ERNG
known tou so far. Then, each nodeu locally broadcasts a
HELLO message withIDu, ru and its position(xu, yu) to
all nodes in its transmission range. Note thatru = pu

1/β

is its maximum transmission range.
2) At the same time, each nodeu processes the incoming

messages. Assume that nodeu gets a message from
some nodev. If ‖vu‖ ≤ min{ru, rv}, then nodeu adds
a link uv to EMG(u). If rv ≥ ru, then nodeu per-
forms the following procedures. Nodeu checks if there
is another linkuw ∈ EMG(u) with the following ad-
ditional properties: 1)w ∈ lune(u, v), 2) rw ≥ ru,
and 3)‖wv‖ ≤ min{rw, rv}. If no such linkuw, then
adduv to EERNG(u). For any linkuw ∈ EERNG(u),
nodeu checks if the following conditions hold: 1)v ∈
lune(u,w), and 2)‖wv‖ ≤ min{rw, rv}. If the condi-
tions hold, then remove linkuw from EERNG(u).

3) Nodeu repeats the above steps until no newHELLO mes-
sages received.
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4) For each linkuv ∈ EERNG(u), nodeu informs nodev
to add linkuv.

5) All links uv in EERNG(u) are the final links in
ERNG(MG) incident onu.

We then prove that the structure ERNG has at most6n links.
Lemma 2:Structure ERNG(MG) has at most6n links.

Proof: Consider any nodeu. We will show thatu keeps
at most6 directed links emanated fromu. Assume thatu keeps
more than6 directed links. Obviously, there are two linksuw
anduv such that∠wuv < π/3. Thus,vw is not the longest
link in triangle4uvw. Without loss of generality, we assume
that‖uw‖ is the longest in triangle4uvw. Notice that the ex-
istence of linkuw implies that‖uw‖ ≤ min(ru, rw) = ru.
Consequently,‖vw‖ ≤ ‖uw‖ ≤ min(ru, rw). Thus, from the
fact thatru ≤ rv, we know‖vw‖ ≤ min(rv, rw). Hence, link
vw does exist in the original communication graph MG, it im-
plies that linkuw cannot be selected to ERNG.

Similar to Lemma 2, we can prove the following lemma.
Lemma 3:Structure RNG(MG) has at most6n links.

Proof: Imagine that each linkuv has a direction as fol-
lows: −→uv if ru ≤ rv. Then similar to Lemma 2, we can prove
that each nodeu only keeps at most6 such imagined direct
links. Thus, total links are at most6n.

Similarly, we can define a structureEGG(MG), which con-
tains an edgeuv if ru ≤ rv and there is no nodew with
the following properties: 1)ru ≤ rw, 2) w is inside the disk
disk(u, v). However, we cannot prove thatEGG(MG) has a
linear number of links.

V. HETEROGENEOUSPOWER SPANNER

Then, we give a strategy for all nodes to self-form a power
spanner structure, calledGG(MG), based on the Gabriel
graph. We add a linkuv ∈ MG to GG(MG) if there isno
another nodew insidedisk(u, v) and both linksuw andwv are
in MG. Our localized construction method works as follows.

Algorithm 2: Constructing-GG
1) Let EMG(u) andEGG(u) are the set of links known to

u from MG andGG respectively. Each nodeu initiates
both EMG(u) andEGG(u) as empty. Then, each node
u locally broadcasts aHELLO message withIDu, ru and
its position(xu, yu) to all nodes in its transmission range.

2) At the same time, each nodeu processes the incoming
messages. Assume that nodeu gets a message from some
nodev. If ‖vu‖ ≤ min{ru, rv}, then nodeu adds a link
uv to EMG(u). Nodeu checks if there is another link
uw ∈ EMG(u) with the following two additional proper-
ties: 1)w ∈ disk(u, v), and 2)‖wv‖ ≤ min{rw, rv}. If
no such linkuw, adduv to EGG(u). For any linkuw ∈
EGG(u), nodeu checks if the following two properties
hold: 1)v ∈ disk(u,w), and 2)‖wv‖ ≤ min{rw, rv}. If
they hold, remove linkuw from EGG(u).

3) Nodeu repeats the above steps until no newHELLO mes-
sages received.

4) All links uv in EGG(u) are the final links inGG(MG)
incident onu.

We first show that Algorithm 2 builds the structureGG(MG)
correctly. For any linkuv ∈ GG(MG), clearly, we cannot re-
move them in Algorithm 2. For a linkuv 6∈ GG(MG), assume

that a nodew is insidedisk(u, v) and both linksuw andwv be-
long to MG. If nodeu gets the message fromw first, and then
gets message fromv, clearly,uv cannot be added toEGG(u).
If nodeu gets the message fromv first, thenu will removeuv
from EGG(u) (if it is there) whenu gets the information ofw.

It is not difficult to prove that structureGG(MG) is con-
nected by induction. In addition, since we remove a linkuv
only if there are two linksuw andwv with w insidedisk(u, v),
it is easy to show that the power stretch factor ofGG(MG) is 1.
In other words, the minimum power consumption path for any
two nodesvi andvj in MG is still kept inGG(MG). Remem-
ber that here we assume the power needed to support a linkuv
is ‖uv‖β , for β ∈ [2, 5].

On the other hand, same as the case in homogeneous net-
works (i.e., UDG mode),GG(MG) is not a length spanner,
and does not have bounded node degree. Furthermore, it is un-
known whetherGG(MG) is a sparsegraph. Recently, it was
proven in [19] thatGG(MG) has at mostO(n8/5 log γ) edges
whereγ = max ru/rv.

Notice that, the extension from Gabriel graph is non-trivial.
In [19], two structures defined as follows even cannot guaran-
tee the connectivity. In the first structure, calledLGG0(MG),
they remove a linkuv ∈ MG if there is another nodew in-
sidedisk(u, v). In the second structure, calledLGG1(MG),
they remove a linkuv ∈ MG if there is another nodew inside
disk(u, v), and either linkuw or link wv is in MG.

VI. H ETEROGENEOUSDEGREE-BOUNDED SPANNER

Undoubtedly, as described in preliminaries, we always pre-
fer a structure has more nice properties, such as degree-bounded
(stronger than sparse), power spanner etc. Naturally, we could
extend the previous known degree-bounded spanner, such as
the Yao related structures, from homogeneous networks to het-
erogeneous networks. Unfortunately, a simple extension of the
Yao structure from UDG to MG even does not guarantee the
connectivity. Figure 2 (a) illustrates such an example. Here
ru = rv = ‖uv‖, rw = ‖uw‖, rx = ‖vx‖, and‖uw‖ < ‖uv‖,
‖uw‖ < ‖vw‖, ‖vx‖ < ‖uv‖, and‖vx‖ < ‖ux‖. In addition,
v andw are in the same cone of nodeu, and nodesx andu
are in the same cone of nodev. Thus, the original MG graph
contains linksuv, uw andvx only and is connected. However,
when applying Yao structure on all nodes, nodeu will only
have information of nodev and w and it will keep link uw.
Similarly, nodew keeps linkuw; nodev keeps linkvx; and
nodex keeps linkxv. In other words, only linkxv anduw are
kept by Yao method. Thus applying Yao structure disconnects
nodev, x from the other two nodesu andw. Consequently, we
need more sophisticated extensions of the Yao structure to MG
to guarantee the connectivity of the structure.

A. Extended Yao Graph

Algorithm 3: Constructing-EYG
1) Initially, each nodeu divides the diskdisk(u, ru) cen-

tered atu with radiusru by k equal-sized cones centered
at u. We generally assume that the cone is half open and
half-close. LetCi(u), 1 ≤ i ≤ k, be thek cones parti-
tioned. LetCi(u), 1 ≤ i ≤ k, be the set of nodesv inside
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Fig. 2. Extend Yao structure on heterogeneous networks: (a) Simple extension
of Yao structure does not guarantee the connectivity. (b) Further space partition
in each cone to bound in-degree.

theith coneCi(u) with a larger or equal1 radius thanu.
In other words,

Ci(u) = {v | v ∈ Ci(u), and rv ≥ ru}.

Initially, Ci(u) is empty.
2) Each nodeu broadcasts aHELLO message withIDu, ru

and its position(xu, yu) to all nodes in its transmission
range.

3) At the same time, each nodeu processes the incoming
broadcast messages. Once it gets aHELLO message from
some nodev, it setsCi(u) = Ci(u)

⋃{v}, if nodev is
inside theith coneCi(u) of nodeu andrv ≥ ru.

4) Nodeu chooses a nodev from each coneCi(u) so that
the link uv has the smallestID(uv) among all linksuvj

with vj in Ci(u), if there is any.
5) Finally, each nodeu informs all 1-hop neighbors of

its chosen links through a broadcast message. Let−−−→
EY Gk(MG) be the union of all chosen links.

Since the symmetric communications are required, let
EY Gk(MG) be the undirected graph by ignoring the direc-

tion of each link in
−−−→
EY Gk(MG). Graph EY Gk(MG) is

the final network topology. Since nodeu chooses a node
v ∈ disk(u, ru) with rv ≥ ru, link uv is indeed a bidirec-
tional link, i.e., u andv are within the transmission range of
each other. Additionally, this strategy could avoid the possible
disconnection by simple Yao extension we mentioned before.

Obviously, each node only broadcasts twice: one for broad-
casting its ID, radius and position; and the other for broad-
casting the selected neighbors. Remember that it selects at
most k neighbors. Thus, each node sends messages at most
O((k + 1) · log n) bits. Here, we assume that the node ID and
its position can be represented usingO(log n) bits for a network
with n wireless nodes.

Before we study the properties of this structure, we have to
define some terms first. Assume that each nodevi of MG has a
unique identification numberIDvi = i. The identity of a bidi-
rectional linkuv is defined asID(uv) = (‖uv‖, IDu, IDv)
whereIDu > IDv. Note that we use the bidirectional links in-
stead of the directional links in the final topology to guarantee
connectivity. In other words, we require that both nodeu and

1This is the main difference between this algorithm and the simple extension
of Yao structure discussed before, in which it considers all nodesv thatu can
get signal from.

nodev can communicate with each other through this link. In
this paper, all proofs about connectivity or stretch factors take
the notationuv andvu as same, which is meaningful. Only in
the topology construction algorithm or proofs about bounded-
degree,uv is different thanvu: the former is initiated and built
by u, whereas the latter is by nodev. Sometimes we denote a
directional link fromv to u as−→vu if necessary. Then we can or-
der all bidirectional links (at mostn(n−1) such links) in an in-
creasing order of their identities. Here the identities of two links
are ordered based on the following rule:ID(uv) > ID(pq) if
(1) ‖uv‖ > ‖pq‖ or (2) ‖uv‖ = ‖pq‖ andIDu > IDp or (3)
‖uv‖ = ‖pq‖, u = p andIDv > IDq.

Correspondingly, the rank of each linkuv, denoted by
rank(uv), is its order in sorted bidirectional links. Notice that,
we actually only have to consider the links in MG. We then
show that the constructed network topology is a length and
power spanner.

Theorem 4:The length stretch factor ofEY Gk(MG), k >
6, is at most̀ = 1

1−2 sin( π
k ) .

Proof: Notice it is sufficient to show that for any nodes
u andv with ‖uv‖ ≤ min(ru, rv), i.e. uv ∈ MG, there is a
path connectingu andv in EY Gk(MG) with length at most
`‖uv‖. We construct a pathu ! v connectingu and v in
EY Gk(MG) as follows.

Assume thatru ≤ rv. If link uv ∈ EY Gk(MG), then set the
pathu ! v as the linkuv. Otherwise, consider thedisk(u, ru)
of nodeu. Clearly, nodeu will get information ofv from v and
nodev will be selected to someCi(u) sincerv ≥ ru. Thus,
from uv 6∈ EY Gk(MG), there must exist another nodew in
the same cone asv, which is a neighbor ofu in EY Gk(MG).
Then setu ! v as the concatenation of the linkuw and the
pathw ! v. Here the existence of pathw ! v can be easily
proved by induction on the distance of two nodes. Notice that
the angleθ of each cone section is2π

k . Whenk > 6, then
θ < π

3 . It is easy to show that‖wv‖ < ‖uv‖. Consequently,
the pathu ! v is a simple path, i.e., each node appears at most
once.

We then prove by induction that the pathu ! v has total
length at most̀‖uv‖.

Obviously, if there is only one edge inu ! v, d(u ! v) =
‖uv‖ < `‖uv‖. Assume that the claim is true for any path with
l edges. Then consider a pathu ! v with l + 1 edges, which
is the concatenation of edgeuw and the path2 w ! v with l
edges, as shown in Figure 3 where‖wv‖ = ‖xv‖.

ϕ

w

xu vα

Fig. 3. The length stretch factor ofEY Gk(MG) is at most 1
1−2 sin( π

k
)
.

2In the procedure of induction, ifrw ≤ rv then we induct on pathw ! v,
otherwise we induct on pathv ! w. In fact, herew ! v is same as
v ! w since the path is bidirectional for communication. Directional link is
only considered in building process and is meaningless when we talk about the
path. This induction rule is applied throughout the remainder of the paper.
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Notice, from induction,d(w ! v) ≤ `‖wv‖. Then, let
ϕ = ∠wuv andα = ∠uvw, we have

‖uw‖
‖ux‖ =

sin(∠uxw)
sin(∠xwu)

=
sin(π

2 + α
2 )

sin(π
2 + α

2 + ϕ)

=
1

cosϕ− sin ϕ tan α
2

≤ cos(π
4 − ϕ

4 )
cos(π

4 + 3
4ϕ)

≤ 1
1− 2 sin(π

k )

The first inequality is because0 ≤ α ≤ π
2 − ϕ

2 and the second
inequality is because0 ≤ ϕ ≤ 2π

k . Consequently,d(u !
v) = ‖uw‖ + d(w ! v) < `‖ux‖ + `‖wv‖ = `‖uv‖, where
` = 1

1−2 sin( π
k ) . That is to say, the claim is also true for the path

u ! v with l + 1 edges.
Thus, the length stretch factor ofEY Gk(MG) is at most

` = 1
1−2 sin( π

k ) . This finishes the proof.
Theorem 5:The power stretch factor of the extended Yao

graphEY Gk(MG), k > 6, is at mostρ = 1
1−(2 sin π

k )β .

Proof: The proof is similar to that in UDG [3], [4] except
the induction procedure. We show by induction, on the number
of its edges, that the pathu ! v constructed in theorem 4 has
power cost, denoted byp(u ! v), at mostρ‖uv‖β .

B. Novel Space Partition

Partitioning the space surrounding a node intok equal-sized
cones enables us to bound the node out-degree using the Yao
structure. Using the same space partition, Yao-Yao structure
[3], [4] produces a topology with bounded in-degree when the
networks are modeled by UDG. Yao-Yao structure (for UDG) is
generated as follows: a nodeu collects all its incoming neigh-
borsv (i.e.,−→vu ∈ −−→Y Gk(V )), and then selects the closest neigh-
borv in each coneCi(u). Clearly, Yao-Yao has bounded degree
at mostk. They also showed that another structure YaoSink [3],
[4] has not only the bounded node degree but also a constant
bounded stretch factor. The network topology with a bounded
degree can increase the communication efficiency. However,
these methods [3], [4] may fail when the networks are modeled
by MG: they cannot even guarantee the connectivity, which is
verified by following discussions.

Assume that we already construct a connected directed struc-
ture

−−−→
EY Gk(MG). Let I(v) = {w | −→wv ∈ −−−→EY Gk(MG)}. In

other words,I(v) is the set of nodes that have directed links to

v in
−−−→
EY Gk(MG). Let Ii(v) = I(v) ∩ Ci(u), i.e., the nodes

in I(v) located inside theith coneCi(v). Yao-Yao structures
will pick the closest nodew in Ii(v) and add undirected link
wv to Yao-Yao structure. Previous example in Figure 1 (b)
also illustrates the situation that Yao-Yao structure is not con-
nected. In the example, a nodev hasp + 1 incoming neigh-
borswi, 0 ≤ i ≤ p. Assume that each nodewi has a trans-
mission radiusrwi = rv/3p−i and‖vwi‖ = rwi . Obviously,
‖wiwj‖ > min(rwi , rwj ), i.e., any two nodeswi, wj are not di-
rectly connected in MG. It is easy to show that the Yao structure−−−→
EY Gk(MG) only has directed links−−→wiv. Obviously, nodev
will only select the closest neighborw0 to the Yao-Yao struc-
ture, which disconnects the network. This same example can
also show that the structure based on Yao-Sink [3], [4] is also
not connected for heterogeneous wireless ad hoc networks.

Thus, selecting the closest incoming neighbor in each cone
Ci is too aggressive to guarantee the connectivity. Observe that,
in Figure 1 (b), to guarantee the connectivity, when we delete
a directed link−−→wiv, we need to keepsomelink, saywjv, such
thatwiwj is a link in MG. Thus, we want to further partition the
cone into a limited number of smallerregionsand we will keep
only one node in each region, e.g., the closest node. Clearly, to
guarantee that other nodes in the same region are still connected
to v, we have to make sure that any two nodeswi, wj ∈ I(v)
that co-exist in a same small region are directly connected in
MG. Consequently, if the number of regions is bounded by a
constant, a degree-bounded structure could be generated. In the
remainder of this subsection, we will introduce a novel space
partition strategy satisfying the above requirement.

Method 1: Partition-EYG
For each nodev, let γv = maxw∈I(v)

rv

rw
. Remember that all

nodes inI(v) have transmission radius at mostrv. Let h be
the positive integer satisfying2h−2 < γv ≤ 2h−1. We then
discuss in detail our partition strategy of the cones, which is
illustrated by Figure 2 (b). Each nodev divides each cone
centered atv into limited number of triangles and caps, where
‖vai‖ = ‖vbi‖ = 1

2h−i rv andci is the mid-point of the segment
aibi, for 1 ≤ i ≤ h. Notice that this partition can be conducted
by nodev locally since it can collect the transmission radius in-
formation of nodes inI(v). The triangles4va1b1,4aibici+1,
4aiai+1ci+1, 4bibi+1ci+1, for 1 ≤ i ≤ h − 1, and the cap
ânbn form the final space partition of each cone. For simplic-
ity, we call such a triangle or the cap as aregion. We then prove
that this partition indeed guarantees that any two nodes in any
same region are connected in MG.

h

v

u
w

a a

cb

h
1

h

b

1

c1 c

a

b

b

v

c
u

w

a i+1
i

i i+1

i+1

i

(a) (b)

w

bi+1

b c

c

ai+1

i+1

av

i

i

i u

h

u

w

z

v a

ch+1bh

hc

(c) (d)

Fig. 4. (a) Two nodes are in triangle4va1b1. (b) Two nodes are in triangle
4aibici+1. (c) Two nodes are in triangle4aiai+1ci+1. (d) Two nodes are

inside cap̂ahbh.

Lemma 6:Assume thatk ≥ 6. Any two nodesu,w ∈ I(v)
that co-exist in any one of the generated regions are directly
connected in MG, i.e.,‖uw‖ < min(ru, rw).

Proof: There are four different cases.
1) Two nodes are in4va1b1, as shown in Figure 4 (a).

Remember that all nodes inI(v) have transmission ra-
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dius at least‖va1‖ = 1
2(h−1) rv. We havemin(ru, rw) ≥

‖va1‖ = ‖vb1‖ and ‖a1b1‖ ≤ ‖va1‖. In addition,
sinceuw is a segment inside4va1b1, we have‖uw‖ ≤
max(‖a1b1‖, ‖va1‖, ‖vb1‖). Consequently,‖uw‖ <
min(ru, rw), i.e. uw ∈ MG.

2) Two nodes are in4aibici+1, as shown in Figure 4 (b).
In this case, we have

a) ‖vu‖ > ‖uci+1‖, sinceaibi is the perpendicular
bisector ofvci+1 andu is at the same side of line
aibi asci+1.

b) ‖vu‖ > ‖uai‖, because∠vaiu > π
3 > ∠uvai.

c) ‖vu‖ > ‖ubi‖, because∠vbiu > π
3 > ∠uvbi.

d) ‖uw‖ < max(‖uci+1‖, ‖uai‖, ‖ubi‖), because
nodew must be inside one of the triangles4aibiu,
4aici+1u and4bici+1u.

Thus,‖uw‖ < ‖uv‖. Similarly, ‖uw‖ < ‖wv‖. Conse-
quently,uw ∈ MG from

‖uw‖ < min(‖uv‖, ‖wv‖) < min(ru, rw).

3) Two nodes are in4aiai+1ci+1, as shown in Fig-
ure 4 (c). We havemin(ru, rw) ≥ ‖vai‖ =
‖aiai+1‖ = ‖aici+1‖ > ‖ai+1ci+1‖. Since
uw is a segment inside4aiai+1ci+1, ‖uw‖ <
max(‖aiai+1‖, ‖aici+1‖, ‖ai+1ci+1‖) ≤ min(ru, rw),
i.e. uw ∈ MG. Triangle4bibi+1ci+1 is the symmet-
ric case with triangle4aiai+1ci+1, so the claim holds
similarly.

4) Two nodes are inside the cap̂ahbh, as shown in Figure 4
(d), whereahz andbhz is the tangent of arĉahbh at point
ah andbh respectively.
Since∠ahvbh < 2π

k , k ≥ 6, we have

∠vbhz =
π

2
< π − ∠ahvbh = ∠vbhch+1.

Similarly, ∠vahz < ∠vahch+1. This meansâhbh is in-
side4ahbhch+1. The remaining of the proof directly fol-
lows from the proof for the case of4aibici+1.

C. Extended Yao-Yao Graph

Using the space partition discussed in Section VI-B, we
present our method to locally build a sparse network topology
with bounded degree for heterogeneous wireless ad hoc net-
work. Here we assume thatγ = maxv∈V γv is bounded, where
γv = maxw∈I(v)

rv

rw
, andI(v) = {w | −→wv ∈ −−−→EY Gk(MG)}.

Algorithm 4: Constructing-EYY
1) Each node finds the incident edges in the Extended Yao

graph
−−−→
EY Gk(MG), as described in Algorithm 3.

2) Each nodev partitions thek cones centered atv using
the partitioning method described in Method 1. Notice
that for partitioning, nodev uses parameterγv in Method
1, which can be easily calculated from local information.
Figure 5 (a) illustrates such a partition.

3) Each nodev chooses a nodeu from each generated region
so that the link−→uv has the smallestID(uv) among all
directed links toward tov computed in the first step in

the partition. Figure 5 (b) illustrates such a selection of
incoming links.

4) Finally, for each linkuv selected byv, nodev informs
nodeu of keeping linkuv.

The union of all chosen links is the final network topology,
denoted by

−−−→
EY Y k(MG). We call it extended Yao-Yaograph.

Let EY Yk(MG) be the undirected graph by ignoring the direc-

tion of each link in
−−−→
EY Y k(MG).

Theorem 7:The out-degree of each nodev in
−−−→
EY Y k(MG),

k ≥ 6, is bounded byk and the in-degree is bounded by
(3dlog2 γve+ 2)k, whereγv = maxw∈I(v)( rv

rw
).

Proof: It is obvious that the out-degree of a nodev is
bounded byk because the out-degree bound of

−−−→
EY Gk(MG) is

k and this algorithm does not add any directed link.
For the in-degree bound, as shown in Figure 2 (b), obviously,

the number of triangle regions in each cone is3h− 2. Remem-
ber that2h−2 < γv ≤ 2h−1, which impliesh = 1 + dlog2 γve.
Thus, considering the cap region also, the in-degree of nodev
is at most(3dlog2 γve+ 2)k.

Let γ = maxv γv. Obviously, the maximum node degree in
graphEY Yk(MG) is bounded by(3dlog2 γe+ 3)k.

Notice that the extended Yao-Yao graphEY Yk(MG) is a
subgraph of the extended Yao graphEY Gk(MG), thus, there
are at mostk · n edges inEY Yk(MG). Thus, the total com-
munications of Algorithm 4 is at mostO(k · n), where each
message hasO(log n) bits. It is interesting to see that the com-
munication complexity does not depend onγ at all.

v

u

v

u u

v

(a) (b) (c)

Fig. 5. (a) InEY Gk(MG), star formed by links toward tov. (b) Nodev
chooses the shortest link inEY Gk(MG) toward itself from each region to
produceEY Y k(MG). (c) The sink structure atv in EY Y ∗k(MG).

Theorem 8:The graphEY Y k(MG), k ≥ 6, is connected if
MG is connected .

Proof: Notice that it is sufficient to show that there is a
path fromu to v for any two nodes withuv ∈ MG. Remember
the graphEY Gk(MG) is connected, therefore, we only have
to show that∀uv ∈ EY Gk(MG), there is a path connecting
u andv in EY Y k(MG). We prove this claim by induction on
the ranks of all links inEY Gk(MG).

If the link uv has the smallest rank among all links of
EY Gk(MG), thenuv will obviously survive after the second
step. So the claim is true for the smallest rank.

Assume that the claim is true for all links inEY Gk(MG)
with rank at mostr. Then consider a linkuv in EY Gk(V ) with
rank(uv) = r+1 in EY Gk(MG). If uv survives in Algorithm
4, then the claim holds. Otherwise, assume thatru < rv. Then
directed edgevu cannot belong to

−−−→
EY Gk(MG) from Algo-

rithm 3. Thus, directed edgeuv is in
−−−→
EY Gk(MG). In Algo-

rithm 4, directed edgeuv can only be removed by nodev due to
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the existence of another directed linkwv with a smaller identity
andw is in the same region asu. In addition, the angle∠wvu
is less thanθ = 2π

k (k ≥ 6). Therefore we have‖wu‖ < ‖uv‖.
Notice that herewu is guaranteed to be a link in MG, but it is
not guaranteed to be inEY Gk(MG). We then prove by induc-
tion that there is a path connectingw andu in EY Y k(MG).
Assumerw ≤ ru. The scenariorw > ru can be proved simi-
larly. There are two cases here.

Case 1: the linkwu is in EY Gk(MG). Notice that rank of
wu is less than the rank ofuv. Then by induction, there is a path
w ! u connectingw andu in EY Yk(MG). Consequently,
there is a path (concatenation of the undirected pathw ! u
and the linkwv) betweenu andv.

Case 2: the linkwu is not inEY Gk(MG). Then, from proof
of Theorem 4, we know that there is a pathΠEY Gk

(w, u) =
q1q2 · · · qm from w to u in EY Gk(MG), whereq1 = w and
qm = u. Additionally, we can show that each linkqiqi+1,
1 ≤ i < m, has a smaller rank thanwu, which is at most
r. Hererank(q1q2 = wq2) < rank(w, u) because the selec-
tion method in Algorithm 3. Andrank(qiqi+1) < rank(w, u),
1 < i < m, because

‖qiqi+1‖ ≤ ‖qiu‖ < ‖qi−1u‖ < · · · < ‖q1u‖ = ‖wu‖.

Then, by induction, for each linkqiqi+1, there is a pathqi !
qi+1 survived inEY Y k(MG) after Algorithm 4. The concate-
nation of all such pathsqi ! qi+1, 1 ≤ i < m, and the link
wv forms a path fromu to v in EY Y k(MG).

Although EY Y k(MG) is a connected structure, it is un-
known whether it is a power or length spanner. We leave it
as a future work.

D. Extended Yao-Sink Graph

In [3], [4], the authors applied the technique in [16] to con-
struct a sparse network topology in UDG,Yao and sink graph,
which has a bounded degree and a bounded stretch factor. The
technique is to replace the directed star consisting of all links
toward a nodev by a directed treeT (v) with v as the sink.
TreeT (v) is constructed recursively. To apply this technique
on MG, we need extend it by a more sophisticated way. In the
remainder of this section, we discuss how to locally construct a
bounded degree structure with bounded power stretch factor for
heterogeneous wireless ad hoc networks. Our method works as
follows.

Algorithm 5: Constructing-EYG∗

1) Each node finds the incident edges in the Extended Yao
graph

−−−→
EY Gk(MG), as described in Algorithm 3. Each

nodev will have a set of incoming nodesI(v) = {u |
−→uv ∈ −−−→EY Gk(MG)}.

2) Each nodev partitions thek cones centered atv using
the partitioning method described in Method 1. Notice
that for partitioning, nodev uses parameterγv in Method
1, which can be easily calculated from local information.
Figure 5(a) illustrates such a partition.

3) Each nodev chooses a nodeu from each regionΩ. Let
Ωu(v) be the regionΩ partitioned by nodev with nodeu
inside, so that the linkuv has the smallestID(uv) among

all links computed in the first step in the regionΩu(v). In

other words, in this step, it constructs
−−−−−−−−→
EY Yk(MG).

4) For each regionΩu(v) and the selected nodeu, let
SΩ(u) = {w | w 6= u, w ∈ Ωu(v) ∩ I(v)}, i.e., the
set of incoming neighbors ofv (other thanu) in the same
region asu. For each nodeu, nodev uses the follow-
ing functionTree(u,SΩ(u)) (described in Algorithm 6)
to build a treeT (u) rooted atu. We callT (u) a sink tree
and call the union of all links chosen by nodev thesink
structureatv. Figure 5(c) illustrates a sink structure atv,
which is composed of all treesT (u) for u selected in the
previous step.

5) Finally, nodev informs nodesx andy for each selected
link xy in the sink structure rooted atv.

The union of all chosen links is the final network topology,
denoted byEY G∗k(MG). We call such structure as theEx-
tended Yao-Sinkgraph. Notice that, sink nodev, not u, con-
structs the treeT (u) and then informs the end-nodes of the se-
lected links to keep such links if already exist or add such links
otherwise.

Algorithm 6: Constructing-Tree Tree(u,SΩ(u))
1) If SΩ(u) is empty, then return.
2) Otherwise, partition the disk centered atu by k equal-

sized cones:C1(u), C2(u), · · · , Ck(u).
3) Find the nodewi ∈ SΩ(u) ∩ Ci(u), 1 ≤ i ≤ k, with the

smallestID(wiu), if there is any. Linkwiu is added to
T (u, SΩ(u)) and nodewi is removed fromSΩ(u).

4) For each nodewi, call Tree(wi, SΩ(u) ∩Ci(u)) and add
the created edges toT (u, SΩ(u)).

Notice that the above Algorithm 6 is only performed by
a node v. We then prove that the constructed structure−−−→
EY G

∗
k(MG) indeed has bounded degree (thus sparse), and is

power efficient.
Theorem 9:The maximum node degree of the graph−−−→

EY G
∗
k(MG) is at mostk2 + 3k + 3k · dlog2 γe.

Proof: Initially, each node has at mostk out-degrees after
constructing graphEY Gk(MG). In the algorithm, each node
v initiates only one sink structure, which will introduce at most
(3dlog2 γe + 2) · k in-degrees. Additionally, each nodex will
be involved in Algorithm 6 for at mostk sink trees (once for
each directed linkxy ∈ EY Gk(MG)). For each sink tree in-
volvement, Algorithm 6 assigns at mostk links incident onx.
Thus, at mostk2 new degrees could be introduced here. Then
the theorem follows.

Since the total number of edges is at most(k2 + 3k + 3k ·
dlog2 γe) · n, the total communication cost of our method is
O(log2 γ · n). Here each message hasO(log n) bits.

Theorem 10:The length stretch factor ofEY G∗k(MG), k >
6, is at most( 1

1−2 sin( π
k ) )

2.

Proof: We have proved thatEY Gk(MG) has length
stretch factor at most 1

1−2 sin( π
k ) . We thus have only to prove

that, for each linkvw ∈ EY Gk(MG), there is a path connect-
ing them inEY G∗k(MG) with length at most 1

1−2 sin( π
k )‖vw‖.

If link vw is kept inEY G∗k(MG), then this is obvious. Oth-
erwise, assumerw ≤ rv, then directed linkwv belongs to−−−→
EY Gk(MG). Then, there must exist a nodeu in the same
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region (partitioned by nodev) as nodew. Using the same ar-
gument as Theorem 4, we can prove that there is a path con-
nectingv andw in T (u) with length at most 1

1−2 sin( π
k )‖vw‖. It

implies that the length stretch factor ofEY G∗k(MG) is at most
( 1
1−2 sin( π

k ) )
2.

Similarly, we have:
Theorem 11:The power stretch factor of the graph

EY G∗k(MG), k > 6, is at most( 1
1−(2 sin π

k )β )2.

VII. S IMULATIONS

In this section we measure the performance of the pro-
posed heterogeneous network topologies by conducting exten-
sive simulations. In our simulations, we randomly generate a
setV of n wireless nodes with random transmission range for
each node. We then construct the mutual inclusion commu-
nication graphMG(V ), and test the connectivity ofMG(V ).
If it is connected, we construct different localized topolo-
gies: GG(MG), EGG(MG), RNG(MG), ERNG(MG),
EY Gk(MG), EY Yk(MG) andEY G∗k(MG). Then we mea-
sure the sparseness (the average node degree), the power effi-
ciency and the communication cost of building these topolo-
gies. In the simulation results presented here, the wireless
nodes are distributed in a400m × 400m square field. Each
wireless node has a transmission radius randomly selected from
[60m, 260m]. The number of wireless nodes is30i, wherei is
varied from1 to 10. For each1 ≤ i ≤ 10, we randomly gener-
ate100 sets of30i nodes. All structures proposed in this paper
are generated for each set of nodes. The number of cones is set
to 7 for EY Gk(MG), EY Yk(MG) andEY G∗k(MG).

A. Node Degree

First of all, we want to test the sparseness of each network
topology proposed in this paper. Notice that, we have theoreti-
cally proved thatRNG(MG) andERNG(MG) have at most
6n links; EY Gk(MG) has at mostk · n links, wherek ≥ 7
is the number of cones divided;EY Yk(MG) also has at most
k · n links sinceEY Yk(MG) ⊆ EY Gk(MG); EY G∗k(MG)
also has at mostk ·n links since the sink structure for each node
u has exactly the number of links as the links towardu in the
directed structureEY Gk(MG). We do not know how many
links GG(MG) andEGG(MG) could have.

Although almost all proposed structures are sparse theoret-
ically, all of them could have unbounded node degree. The
node degree of the wireless networks should not be too large.
Otherwise a node with a large degree has to communicate with
many nodes directly. This potentially increases the signal inter-
ference and the overhead at this node. Figure 6 (a) illustrates
the average node degree of different topologies. Notice that
graphRNG(MG) always has the smallest average node de-
gree in our simulations and structureEY G∗k(MG) always has
the largest average node degree. We also found that the average
node degree becomes almost stable when the number of nodes
increases, i.e., the network becomes denser.

Figure 6 (b), as proved in Theorem 9, confirms that the
maximum node degree of Yao-based structureEY G∗k(MG) is
bounded by3k · log2 γ + k2 + 3k, whereγ = maxuv∈MG

ru

rv
.

The most upper curve in Figure 6 (b) represents the maximum
3k · log2 γ. This figure also shows thatEY Gk(MG) generally
will have a larger maximum node degree thanEY G∗k(MG)
andEY Yk(MG). It is interesting to see that the maximum de-
gree ofEY G∗k(MG) andEY Yk(MG) almost have the same
curve when network density changes. Given the size of the net-
work n = 30i, we take the average of the maximums of all
100 random networks withn nodes we generated as the final
maximum value forn plotted here.

B. Spanning ratio

We proved thatGG(MG) and EGG(MG) have power
spanning ratio exactly one;EY Gk(MG) and EY G∗k(MG)
both have bounded length and power spanning ratios. No-
tice thatRNG(MG) andERNG(MG) could have power and
length spanning ratios as large asn−1 for a network ofn nodes;
and the length spanning ratios ofGG(MG) andEGG(MG)
could be

√
n− 1 even when all nodes have the same transmis-

sion range. It is unknown whetherEY Yk(MG) has a bounded
length or power spanning ratio even for wireless networks mod-
elled by UDG. We then conduct extensive simulations to study
how good these structures are for heterogeneous networks when
the nodes’ transmission ranges are randomly set.

Figure 6 (c) illustrates the length spanning ratio of these
structures. As the theoretical results suggest, we found that
RNG(MG) has a much larger length spanning ratio compared
with other structures. It is surprising to see thatERNG(MG)
also has a much smaller spanning ratio thanRNG(MG). We
know that ERNG(MG) has a smaller spanning ratio than
RNG(MG) sinceERNG(MG) ⊇ RNG(MG). Also no-
tice thatEY Gk(MG), as the theoretical results suggest, has
the smallest spanning ratio among all structures proposed here.

For wireless ad hoc networks, we want to keep as less links
as possible while still keep relatively power efficient paths for
every pair of nodes. Figure 6 (d) illustrates the power span-
ning ratio of these structures. Here we assume that the power
needed to support a linkuv is ‖uv‖2. As we expected, struc-
turesGG(MG) andEGG(MG) keep the most power efficient
path for every pair of nodes, i.e., their power spanning ratios are
exactly one. We found that all structures have power spanning
ratio almost one, and againRNG(MG) andERNG(MG) do
have the largest power spanning ratios in our simulations.

C. Communication Cost of Construction

It is not difficult to see thatGG(MG), RNG(MG), and
EY Gk(MG) can be constructed using onlyn messages by as-
suming that each node can tell its neighbors its maximum trans-
mission range, and its geometry position information in one sin-
gle message. Each nodeu can uniquely determine all the links
uv in these three structures after knowing all its one hop neigh-
bors inMG. StructuresEY Gk(MG), andEY G∗k(MG) can
be constructed using onlyk · n + n messages since the final
structures have at mostkn links. Similarly,ERNG(MG) can
be constructed using at most7n messages. We do not know
any theoretical bound about the number of messages needed
to constructEGG(MG) since each nodeu has to inform its
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Fig. 6. (a) Average node degree of different topologies. (b) Maximum node degree of Yao-based structures. (c) Average length spanning ratio of different
topologies. (d) Average power spanning ratio of different topologies.

neighbors the links selected byu for EGG(MG). We mea-
sured the actual average number of messages needed to con-
struct these structures. We only measure the average number of
messages per wireless node forEGG(MG), ERNG(MG),
EY Gk(MG), andEY G∗k(MG) (since every node only has
to spend one message for other three structuresGG(MG),
RNG(MG, andEY Gk(MG)). Figure 7 illustrates the com-
munication cost. We found that structureEY G∗k(MG) is the
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Fig. 7. Average communication cost of building different topologies.

most expensive one to construct although it has the most favor-
able properties theoretically (bounded length, power spanning
ratio and bounded node degree). ConstructingEY G∗k(MG) is
almost as expensive as constructingEY Gk(MG).

VIII. C ONCLUSION

In this paper, we studied topology control in heterogeneous
wireless ad hoc networks, where each mobile host has dif-
ferent maximum transmission power and two nodes are con-
nected iff they are within the maximum transmission range
of each other. We presented several strategies for all wireless
nodes self-maintaining sparse and power efficient topologies in
heterogeneous network environment with low communication
cost. All structuresGG(MG), RNG(MG), EY Gk(MG),
EY Y k(MG), andEY G∗k(MG) are connected if MG is con-
nected, whileEY Gk(MG) and EY G∗k(MG) have constant
bounded power and length stretch factors. Additionally, we
showed thatEY Y k(MG) and EY G∗k(MG) have bounded
node degreesO(log2 γ), whereγ = maxv∈V maxw∈I(v)( rv

rw
).

In the worst cast any connected graph will have degree at least
O(log2 γ) for heterogeneous wireless ad hoc networks. In other
words, the structures constructed by our method are almost op-
timum. Our algorithms are all localized and have communica-
tion cost at mostO(n), where each message hasO(log n) bits.

It remains an open problem whether graphEY Y k(MG) is
a length or power spanner. It is also unknown how many links
GG(MG) could have in the worst case although we show that it
is definitely less thanO(n8/5 log2 γ). Some other future works
are what are the conditions that we can build a structure with
some other properties for MG, such as planar or low weight.
Notice that it is easy to show we cannot build a planar topology
for an arbitrary heterogeneous wireless ad hoc network.
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